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We give new congruences for singular real algebraic curves, generalizing
Fiedler’s congruence for nonsingular curves.

1. Introduction

Let AR be an irreducible real algebraic curve of degree 2k with only real nodal
singularities. AR consists of the image of a number of immersed circles. AR is
called an M-curve if the number of immersed circles plus the number of double
points is 1 +

(2k−1
2

)
. Let AC be the complex curve in CP(2) given by the same

polynomial as AR. Thus AR = AC ∩ RP(2). AR is an M-curve precisely when
AC \ AR consists of two punctured spheres interchanged by complex conjugation.
Arbitrarily choose one of these components, say AC

+. The complex structure on
AC

+ induces an orientation on AC
+, and thus on each immersed circle of AR. Of

course if we choose the other component, we get the opposite orientation on each
immersed circle of AR. An orientation on each of the components up to reversing
all the orientations simultaneously is called a semiorientation. Thus each M-curve
receives a semiorientation, called the complex orientation [Rokhlin 1978].

An oval is a two-sided simple closed curve in the real projective plane RP(2).
The inside of an oval is the component of its complement that is a disk; the outside
is a Möbius band. Suppose C is a simple curve, that is, a disjoint collection of
oriented ovals. An oval of C is called even or odd according to whether it lies
inside an even or odd number of other ovals of C. Let p(C) denote the number of
even ovals in C, and n(C) the number of odd ovals in C. If one of ovals of C lies
inside another oval of C or vice versa, we say they are linked. We say C is odd
if each oval is linked with an odd number of other ovals; thus an odd curve must
have an even number of components. We say C is even if each oval is linked with
an even number of other ovals and the total number of ovals is odd.
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We denote by 5+(C) the number of pairs of linked ovals for which the orien-
tations on the curves extend to an orientation of the intervening annulus, and by
5−(C) the number of pairs of linked ovals for which this is not the case.

We will usually write simply n, p,5± without C, except in ambiguous instances.
By a curve we will mean a collection of immersed oriented curves in RP(2)

with only transverse double point intersections. We say two curves A and A′ are
weakly equivalent if they can be connected via a sequence of ambient isotopies in
RP(2), plus local moves and their inverses: balanced type I moves (see figure),
safe type II moves, type III moves, and “empty” figure-eight deaths.1

A balanced type I move replaces an arc having two curls, as shown, by an arc
without double points.

Theorem 1.1. Let AR be a nodal M-curve of degree 2k.
If k is even and AR is weakly equivalent to an odd simple curve C, then

5+(C)−5−(C)− p(C)≡
1
2 k2 or (1

2 k2
− 2) (mod 8).

If k is odd and AR is weakly equivalent to an even simple curve C, then

5+(C)−5−(C)− n(C)≡
1
2(k

2
− 1) (mod 8).

In the case AR = C, this reduces to a congruence due to Fiedler [1983]. The
reduction is not obvious; we prove it explicitly in Theorem 5.4. Fiedler [1986] has
also given generalizations of his congruence to singular curves. The scheme

for a degree-8 nodal M-curve with complex orientation is prohibited by Theorem
1.1 but not by the results of [Fiedler 1986]. Nor is it prohibited by any of the

1Type II and III moves mean Reidemeister moves of these types on diagrams without over- or
undercrossings. In the type II case, “safe” means we require in addition that the two strands have
opposite orientations.
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other known general restrictions on nodal curves: the Kharlamov–Viro congru-
ences [1988] (as correctly stated in [Viro and Orevkov 2001]), the Viro inequalities
[Viro 1978; Finashin 1996; Gilmer 2000], or the extremal properties of the Viro
inequalities in [Gilmer 2000]. If we perturb the figure-eights in this scheme into
pairs of ovals we obtain the scheme for a nonsingular M-curve 〈14

∐
1〈7〉〉 which

can be realized by a real algebraic curve [Viro 1986].
Theorem 1.1 is a corollary of Theorem 5.3 below, which in turn is a simplified

version of the more general Theorem 3.3 of [Gilmer 2000]. To prove (or even state)
Theorem 5.3, we must discuss the Arf invariant of links, which we do in Sections
2 and 3. These sections are, mainly, a review of parts of [Gilmer 1993a; 1993b].

In Section 6 we show that the two explicit examples given by Fiedler of curves
prohibited by his congruence [1986] for singular curves are prohibited by our
Theorem 5.3 as well. It seems likely that any scheme for a curve with complex
orientation that can be prohibited by Fiedler’s congruence can also be prohibited
by Theorem 5.3. However our theorem applies to hypothetical curves with a com-
plex orientation. Fiedler’s result concerns hypothetical singular curves which, by
hypothesis, are related to actual nonsingular real algebraic curves by desingulariza-
tion. Thus information about the complex orientations of the hypothetical curves
is contained only implicitly in the relation to the actual nonsingular real algebraic
curve. For this reason, it seems difficult to derive [Fiedler 1986] as a corollary of
Theorem 5.3 in a way similar to the proof of Theorem 5.4. However both obstruc-
tions can be interpreted as deriving from the calculation of the Brown invariant of
the Gillou–Marin form on characteristic surfaces. Moreover the two surfaces are
closely related.

2. Arf invariants of links in S3

An oriented link in S3 is called proper if for each component the sum of the linking
numbers with all the other components is even. That is, L = ti Ki is proper if and
only if lk(Ki , L − Ki ) ≡ 0 (mod 2) for all i . We use lk to denote the Z-valued
linking number of oriented links.

Robertello defined the Arf invariants of proper links and gave several equivalent
definitions. One involved the Seifert pairing on an orientable spanning surface.
We generalized this definition so that it applies to nonorientable spanning surfaces
[Gilmer 1992; 1993a]. This definition for the Arf invariant is analogous to the
Gordon–Litherland [Gordon and Litherland 1978] definition of the signature of a
knot. There is a version for unoriented links, but the oriented link version is more
useful in this paper.

Let V be a Z/2Z vector space equipped with a symmetric bilinear form

· : V × V → Z/2Z.
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A function q : V → Z/4Z is called a quadratic refinement of · if

q(x+y)− q(x)− q(y)= 2 x · y

for all x, y ∈ V . Here 2 denotes the nontrivial group homomorphism Z/2Z →

Z/4Z. Let rad be the radical of · . We say that q is proper if q vanishes on rad. If
q is proper, the Brown invariant β(q) ∈ Z/8Z is defined by the equation

e2π iβ(q)/8
=

1

(
√

2)dim V +dim rad

∑
v∈V

iq(v).

The Brown invariant is additive for the direct sum of quadratic refinements. A sim-
ple graphical scheme for writing a given form as a direct sum of simple elementary
forms and thus calculating the Brown invariant is given in [Gilmer 1993a; 1993b].

Let L be a link in S3 with oriented components {Ki }. Let F be a not necessarily
orientable spanning surface for L . Define a map

qF : H1(F,Z/2Z)→ Z/4Z

as follows. Given x ∈ H1(F,Z/2Z), pick a simple closed curve αx representing x ,
and define qF (x) to be the number of positive half twists in a tubular neighborhood
of x in F . More precisely,

qF (x)= lk(αx , α̂x).

Here α̂x is the boundary of a tubular neighborhood of αx oriented in the same
direction as some arbitrarily chosen orientation for x . The function qF is well
defined and is a quadratic refinement of the intersection pairing

· : H1(F,Z/2Z)× H1(F,Z/2Z)→ Z/2Z.

We note that

qF ([Ki ])= 0 ⇐⇒ lk(Ki , L − Ki )≡ 0 (mod 2).

Let F denote the quotient space of F obtained by identifying each component of
F to a point corresponding to that component. Let π : F → F denote the quotient
map. Thus L is proper if and only if qF [Ki ] = 0 for all i if and only if qF can be
factored through π∗.

Define
µ(F)=

1
2

∑
i, j

lk(Ki , K ′

j ),

where K ′

j denotes K j pushed slightly into the interior of F . Then set

Arf L = β(qF )−µ(F) ∈ Z/8Z.
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One can relate any two spanning surfaces by a sequence of moves of certain
types (and their inverses):

(0) isotopy;

(1) adding a hollow handle;

(2) replacing a collar of the boundary with a punctured Möbius band, obtained by
adding an unknotted positively or negatively half- twisted band (see Figure 7
in [Gordon and Litherland 1978]);

(3) the birth of an empty two-sphere in a small 3-ball, as described in [Gilmer
1993a].

The equivalence relation generated by these moves is called S∗-equivalence. Since
β(qF )−µ(F) is preserved by these moves, Arf L is well defined. It takes values
in 4Z/8Z. It is invariant under oriented band summing, and adding and removing
small unlinked unknots. This implies that it is an invariant of planar cobordism
[Gilmer 1993a].

Consider the trefoil below, which is spanned by a Möbius band F . The group
H1(F,Z/2Z)≈Z/2Z is generated by the core x . We have qF (x)≡−3≡1 (mod 4),
β(qF )≡ 1 (mod 8), µ=

−6
2 = −3, and Arf(trefoil)≡ 4 (mod 8).

3. Arf invariants of links in rational homology spheres

Let L be a link in a rational homology sphere M with oriented components {Ki }.
By a spanning surface for L we mean a possibly nonorientable surface F in M
with boundary L . We can speak of S∗-equivalence of spanning surfaces in M . Two
spanning surfaces for a link need not be S∗-equivalent. We introduced a parameter
to index S∗ equivalence classes of spanning surfaces in [Gilmer 1993a]. Suppose
the homology class of L represents zero in H1(M,Z/2Z). Then

0(L)= {γ ∈ H1(M)|2γ = [L] ∈ H1(M)}

is nonempty.
Let F be a spanning surface for L with no closed components, and iF : F→M

be the inclusion. H1(F) is free abelian and the homology class of L the boundary
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of F equipped with the string orientation of the link represents a homology class
in H1(F) which is divisible by two. Define

γ (F)= iF (
1
2 [L] ∈ H1(F)) ∈ 0(L)⊂ H1(M).

If F has some closed components, we take γ (F) to be γ (F ′), where F ′ is formed
by deleting the interior of a disk from each closed component and orienting the
new boundary components in an arbitrary way. For further discussion, see [Gilmer
1992].

Then γ (F) is preserved by S∗-equivalence, and the map from S∗-equivalence
classes of spanning surfaces for L to 0(L) is bijective. By abuse of notation, we
let Fγ denote a spanning surface F with γ (Fγ ) = γ . This should not cause any
confusion.

The number of positive half twists in a tubular neighborhood of a curve on a
surface in M has no well-defined analog in this more general situation. What we
actually need is an analog of the number of half twists modulo four.

We do have a linking number in Q which can be defined for disjoint 1-cycles.
We continue to denote this linking number by lk. We do know what it means to
increase or decrease the number of half twists in the neighborhood of a curve α.
Moreover if we add a half twist to a neighborhood of α, we increase the linking
number of α and the boundary of the neighborhood of α by one.

But we do not know what untwisted (mod 4) should mean. As a replacement
for this, it suffices to fix a quadratic refinement of the linking form of M [Gilmer
1993b]. The linking form of M ,

`M : H1(M)× H1(M)→Q/Z,

is a bilinear form with an injective adjoint. A quadratic refinement of `M is a
function

r : H1(M)→Q/Z,

such that
r(x + y)− r(x)− r(y)≡ `M(x, y) (mod 1).

It follows that the boundary α̂ of a neighborhood of an oriented curve α on a
surface F will have lk(α̂, α)≡ r(3[α])−r(2[α])−r([α])≡ (33

−22
−1)r([α])≡

4r([α]) (mod 1). Thus we may define

qr,F : H1(F,Z/2Z)→ Z/4Z

by
qr,F (x)≡ lk(γx , γ̂x)− 4r(x) (mod 4).

This is a quadratic refinement of the intersection form on H1(F,Z/2Z), and is well
defined by [Gilmer 1993a, Theorem 6.1].
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We also have, by [Gilmer 1993a, Proposition 6.3],

qr,F ([Ki ])= 0 ⇐⇒ lk(Ki , L − Ki )≡ 2`M([Ki ], γ (F))− 2r([Ki ]) (mod 2).

Note that qr,Fγ [Ki ] = 0 for all i if and only if qr,Fγ can be factored through π∗. We
say (L , γ, r) is proper if either of these equivalent conditions holds, that is, if

lk(Ki , L − Ki )≡ 2`M([Ki ], γ (F))− 2r([Ki ]) (mod 2) for all i .

As in the previous section, we define

µ(Fγ )=
1
2

∑
i, j

lk(Ki , K ′

j )

where K ′

j denotes K j pushed slightly into the interior of Fγ .
If (L , γ, r) is proper, we define

(3-1) Arf(L , γ, r)= β(qr,Fγ )−µ(Fγ ) ∈ Q/8Z.

As for proper links in S3, Arf is well defined and is an invariant of planar cobor-
dism. It is also invariant under oriented band summing, and adding and removing
small unlinked unknots. When defined, Arf(L , γ, r), taken modulo four, depends
only on γ and r [Gilmer 1993a, Proposition 6.9].

(In [Gilmer 1993a; 1996] our µ above is broken up into the sum of two terms,
λ(L) =

∑
i< j lk(Ki , K j ) and −

1
2 e(Fγ ) =

1
2

∑
i lk(Ki , K ′

i ). For our purposes in
this paper, the use of µ makes things simpler.) We note that

µ(Fγ )≡ `([L], γ ) (mod 1).

This restricts the range of values Arf(L , γ, r) can take.
Both 0(L) and the set of all quadratic refinements of `(M) are free H 1(M,Z2)

sets. Properness of links is preserved under the action which changes both γ and
r simultaneously by [Gilmer 1996, 6.5]. Moreover Arf(L , γ, r) changes in a nice
way under this action

Proposition 3.1 [Gilmer 1996, 6.5]. If (L , γ, q) is proper then (L , ψ · γ,ψ · q) is
proper and

Arf(L , ψ · γ,ψ · q)= Arf(L , γ, q)+ Arf(∅, ψ · 0, ψ · q).

4. The tangent circle bundle of the real projective plane

We will be concerned with links in the tangent circle bundle of RP(2) which we
will denote T. This is the boundary of D, the tangent disk bundle of RP(2). D,
of course, has the homology of RP(2). It follows that T is a rational homology
sphere. In fact T is the lens space L(4, 3) [Gilmer 1992]. We let ` denote `T.
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By an I-curve, we mean a collections of immersed oriented curves in RP(2)
where each curve is never tangent to itself or any other curve in the collection. We
can describe links in T by I-curves. Lying over an I-curve C in T, we have a link
T(C) consisting of all the rays tangent to a part of C and pointing in the direction
of the orientation. We let g denote the homology class of T represented by the
oriented knot in T which lies over a straight line with either orientation. (There is an
isotopy that can be obtained by spinning the line around a point on the line. It sends
a line in RP(2) with one orientation to the same line with the opposite orientation.)
The homology class g is a generator for H1(T). An oval represents 2g.

Whenever we have an invariant of links in T, we obtain an invariant of I-curves.
We use the same symbol to denote an invariant of oriented links in T and the
corresponding invariant of I-curves. An immersed circle in an I-curve C is called
a component of C , and describes a component of the link T(C). This should not
cause any confusion and simplifies our expressions.

Similarly, if we have two I-curves C1 and C2 which are never tangent to each
other, we can speak of their linking number lk(C1,C2) ∈

1
4 Z. In [Gilmer 1992],

we worked out the linking numbers of some two component I-curves. Two linked
ovals (see Section 1) oriented in the same direction (so they contribute to5−) have
linking number 1. Two linked ovals that are oriented oppositely (so they contribute
to 5+) have linking number −1. Two unlinked ovals have linking number zero.

A one-sided simple closed curve and a disjoint oval have linking number 1
2 , if

the oval is homologous to twice the one-sided curve in the Möbius band formed
by deleting the interior of the oval from RP(2). Otherwise the linking number
is −

1
2 . A one-sided simple closed curve and oval which the curve meets twice

transversally have linking number −
1
2 . Two one-sided simple closed curves which

meet in one point have linking number −
1
4 . Thus `(g, g)= −

1
4 , and there are two

quadratic refinements of `, r−1/8 with r−1/8(g)=
−1
8 , and, r3/8 with r3/8(g)=

3
8 .

A dangerous type II move (that is, a nonsafe type II Reidemeister move on
diagrams) between two components which reduces the number of double points by
two leads to a new I-curve where the linking number between the two components
has been increased by one. Smoothing (according to the orientations) a double
point of an I-curve is called a smoothing move. A smoothing move corresponds to
a oriented band move to the corresponding link in T. Thus if we wish to calculate
a linking number between two sub-I-curves of an I-curve, we can smooth the
double points of sub-I-curves without changing the relevant linking numbers. Of
course the reverse of this smoothing move which we call an unsmoothing move will
introduce a double point and also corresponds to an oriented band move performed
on the corresponding link in T.

Lying above an empty figure-eight curve is a local unknot in T. The easiest
way to see this is to note that any empty figure-eight is isotopic to an I-curve
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which does not use every tangent direction as one travels around a circuit. Thus
this I-curve lies in an interval bundle over a disk in RP(2) which includes the
figure-eight. Moreover the I-curve projects to a curve in this disk with only one
double point. Also, lying above two I-curves related by balanced type I move,
a safe type II or a type III move are isotopic links in T. Thus weakly equivalent
I-curves are proper for that same γ and r , and have the same Arf invariant, when
it is defined.

As an example, consider the I-curve, called td given by the diagram for trefoil
in Figure 2, with the three crossings (made double points) placed in an affine part
of RP(2). A Möbius band F is described by a “vector field” 2 on the shaded region
which extends the tangential field on the boundary. Let δ denote a 1-sided curve in
F which represents the homology class 2g. Thus γ (F)= 2g. The linking number
of the boundary of F with a parallel may be calculated using the above techniques.
It is −2. Thus µ(F)= −1. Moreover it follows that

(4-1) q−1/8,F (δ)= q3/8,F (δ)= 1.

Thus Arf(td, 2g, −1
8 )≡ Arf(td, 2g, 3

8) ≡ 2 (mod 8). td is actually a nodal M-curve
of degree 4. This is a small confirmation of Theorem 5.3 below.

Proposition 4.1.

Arf(∅, 2g, r−1/8)≡ 2 (mod 8) and Arf(∅, 2g, r3/8)≡ −2 (mod 8).

If either (L , γ, r−1/8) or (L , γ + 2g, r3/8) is proper for some γ , then the other is
proper, and

Arf(L , γ, r
−

1
8
)− Arf(L , γ + 2g, r3/8)≡ 2 (mod 8).

Proof. Fix a line in RP(2) and consider the Klein bottle K in T given by the set
of all directions through points on this line. K is a spanning surface for the empty
link. The lift of this line with one orientation α, and the lift α′ with the other ori-
entation each have neighborhoods which are Möbius bands. These neighborhoods
may be isotoped off of K so that they are the two lifts to T of the Möbius bands
neighborhood of the line in RP(2). Since lk(α, α̂) and lk(α′, α̂′) are seen to be 1

2 ,
we calculate that

qr−1/8,K (α)= qr−1/8,K (α
′)=

1
2 − 4 ·

−1
8 = 1,(4-2)

qr3/8,K (α) = qr3/8,K (α
′) =

1
2 − 4 ·

3
8 = −1.(4-3)

In this way we obtain the first two equations. The rest follows from Proposition
3.1. �

2At the double points, we have a whole arc of lines joining the two intersecting lines which fill
out the shaded region.
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The following is a special case of [Gilmer 2000, Proposition 3.2]. Its proof is a
simple calculation using as a spanning surface the union of k disjoint annuli swept
out by rotating k lines.

Proposition 4.2. Let X2k be 2k lines in general position. Then (X2k, kg, r−1/8)

and (X2k, (k + 2)g, r3/8) are proper, and

Arf(X2k, kg, r−1/8)≡
1
2 k2

≡ Arf(X2k, (k + 2)g, r3/8)+ 2 (mod 8).

Also (X2k, (k + 2)g, r−1/8) and (X2k, kg, r3/8) are not proper.

If C is a collection of disjoint ovals in RP(2), let B+(C) be the closed surface
in RP(2) with boundary C which is the closure of the set of points which lie inside
an odd number of ovals of C . Let B−(C) be the closure of RP(2) \ B+(C).

Proposition 4.3. Let C be a collection of disjoint ovals in RP(2) with an even
number of components. There is equivalence between:

(1) (C, γ, r) is proper for some γ and r.

(2) (C, γ, r) is proper for all possible γ (i.e., both 0 and 2g) and for all r .

(3) C is odd.

(4) Every component of B+(C) has even Euler characteristic.

Proof. Each component Ci represents 2g ∈ H1(T). Thus 2r([Ci ]) = 8r [g] = 1
(mod 2). As C has an even number of components and each oval represents 2g,
we have that [C] = 0 ∈ H1(T). Thus γ must be either 0 or 2g. Also C is proper
for either γ and either r if and only if lk(Ci ,C \ Ci ) is odd. On the other hand,
lk(Ci ,C \ Ci ) is odd if and only if C is odd. The equivalence of the last two
conditions is easily seen. �

The definitions of this paragraph are due to Rokhlin [1978]. A linked pair of
ovals is called positive or negative according to whether the pair contributes to5+

or 5−. An odd oval is called disoriented if forms a negative pair with the even
oval that immediately surrounds it. Let d denote the number of disoriented ovals.
Let D+ denote the number of positive pairs with disoriented outer oval. Similarly
let D− denote the number of negative pairs with disoriented outer oval. Rokhlin
observed that

5+
−5−

= n − 2(d − D+
+ D−).

If C is odd, it is easy to see that D+
+ D− is even. Thus, if C is odd, we have

(4-4) 2d ≡5+
−5−

− n (mod 4).

Proposition 4.4. Let C be an odd collection of disjoint ovals in RP(2). Then
(C, (5+

−5−
− p)g, r) and (C, (5+

−5−
− p − 2)g, r) are proper for either r .
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Moreover

Arf(C, (5+
− 5−

− p)g, r−1/8)≡ Arf(C, (5+
−5−

− p)g,r3/8)

≡5+
−5−

− p (mod 8),

Arf(C, (5+
−5−

− p −2)g, r3/8)≡5+
−5−

− p−2 (mod 8),

Arf(C, (5+
−5−

− p+2)g,r−1/8)≡5+
−5−

− p+2 (mod 8).

Proof. By Proposition 4.3, every component of B+ has even Euler characteristic.
Thus we can pick a vector field on B+ which is tangent to the boundary and pointed
in the direction of the orientation of C with (n−p)/2 zeros of index -2. This defines
a surface in T lying over B+ with (n− p)/2 disks removed around the zeros, which
we denote by zi . We complete this surface to form a spanning surface F for L(C)
in T by adding Möbius bands above the disks around the zeros. We do this so that
the cores of these Möbius bands, which we denote by xi , are the fibers over zi of
the map from F to RP(2). This is similar to the construction of spanning surfaces
in [Gilmer 1996, §1]. Then

(4-5) qr,F (xi )≡ −1 − 4r(2g)≡ 1 (mod 4).

Since B+ is a planar surface,

β(qr,F )≡
1
2(n − p) (mod 8).

We have

(4-6) µ(F)=
1
2

(
n + p − 2(5+

−5−)
)
.

We have
γ (F)=

( 1
2(n − p)+ d

)
2g.

Using (4-4), this becomes

γ (F)= (5+
−5−

− p) g.

Together with (3-1) gives the first equation. The last two equations follow from
this and Proposition 4.1. �

Proposition 4.5. Let C be a collection of disjoint ovals in RP(2) with an odd
number of components. There is equivalence between:

(1) (C, γ, r) is proper for some γ , and r.

(2) (C, γ, r) is proper for all possible γ (that is, both g and −g) and for all r .

(3) C is even.

(4) Every component of B−(C) has even Euler characteristic.



308 PATRICK M. GILMER

Proof. Since C has an odd number of components and each oval represents 2g,
we have [C] = 2g ∈ H1(T). Thus γ must be either g or −g. Also C is proper
for either γ and either r if and only if lk(Ci ,C \ Ci ) is even. On the other hand,
lk(Ci ,C \ Ci ) is even if and only if C is even. The equivalence of the last two
conditions is easily seen. �

Proposition 4.6. Let C be an even collection of disjoint ovals in RP(2), then
(C,±g, r) are proper for both r = r−1/8 and r = r3/8. Moreover

Arf(C,±g, r−1/8)≡5+
−5−

− n +
1
2 (mod 8),

Arf(C, ±g, r3/8)≡5+
−5−

− n −
3
2 (mod 8).

Proof. By Proposition 4.5, every component of B− has even Euler characteristic.
Thus we can pick a vector field on B− which is tangent to the boundary and pointed
in the direction of the orientation of C with (p − n − 1)/2 zeros of index -2. This
defines a surface in T lying over B− with (p − n − 1)/2 disks removed around
the zeros. As above, we complete this surface to form a spanning surface F for
L(C) in T by adding Möbius bands above the removed disks around the zeros. B−

is a planar surface disjoint union a Möbius band with some holes removed. The
same can be said of the surface we obtain when we delete neighborhoods of the
singularities of the vector field. One can see the γ (F) is either g or −g. As we
will see, this allows us to compute our Arf invariants without ambiguity. Let us
now write γ (F)= ±g, and read plus, if indeed it is plus, and read minus, if indeed
it is minus.

As in proof of Proposition 4.4, we let xi denote the cores of these Möbius bands.
Equation (4-5) gives us qr,F (xi ). Let α denote an orientation reversing curve in B−,
then, as in (4-2) and (4-3),

(4-7) qr,F (α)≡
1
2 − 4r(g)≡

{
+1 if r = r−1/8

−1 if r = r3/8

}
(mod 4).

Thus

β(qr,F )≡
1
2(p − n − 1)+

{
+1 if r = r−1/8,
−1 if r = r3/8,

}
(mod 8).

Equation (4-6) gives µ(F). Plugging this into (3-1), we obtain the stated results
but where must read ± according to whether γ (F) is ±g. However an application
of Proposition 4.1 to both these equations shows that they must hold for the other
choice of γ as well. �

5. Main results

By the proof of [Gilmer 1996, Theorem 3.1], we have:
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Theorem 5.1. If AR is a nodal M-curve of degree 2k, then T(AR) is planar cobor-
dant to T(X2k).

Corollary 5.2. Let AR be a nodal M-curve of degree 2k. T(AR) is homologous
to 2kg ∈ H1(T). If k is even, AR cannot be weakly equivalent to an even simple
curve. If k is odd, AR cannot be weakly equivalent to an odd simple curve.

The next theorem follows from Proposition 4.2, the invariance of Arf invariants
of proper links under planar cobordism, and Theorem 5.1.

Theorem 5.3. Let AR be a nodal M-curve of degree 2k and suppose (AR, kg, r−1/8)

is proper. Then Arf(AR, kg, r−1/8)≡
1
2 k2 (mod 8).

We can now give the proof of Theorem 1.1. Theorem 5.3 is more general but
its application requires that one calculate Arf(AR, kg, r−1/8).

Proof of Theorem 1.1. Suppose k is even, and AR is weakly equivalent to an odd
simple curve. Then, by Proposition 4.3, (AR, kg, r−1/8) is proper. So, by Theorem
5.3,

Arf(AR, 0, r−1/8)≡
1
2 k2 (mod 8).

By Proposition 4.4, one of (5+
−5−

− p)g or (5+
−5−

− p + 2)g is zero, and

Arf(C, 0, r−1/8)≡5+
−5−

− p +

{
0 (mod 8) if 5+

−5−
− p ≡ 0 (mod 4),

2 (mod 8) if 5+
−5−

− p ≡ 2 (mod 4).

Since T(C) and T(AR) are planar cobordant, we have

Arf(AR, 0, r−1/8)≡ Arf(C, 0, r−1/8) (mod 8).

This gives the k even case.
Now suppose k is odd, and AR is weakly equivalent to an even simple curve.

Then, by Proposition 4.5, (AR, kg, r−1/8) is proper. So, by Theorem 5.3,

Arf(AR, kg, r−1/8)≡
1
2 k2 (mod 8).

By Proposition 4.6,

Arf(C, kg, r−1/8)≡5+
−5−

− n +
1
2 (mod 8).

Since T(C) and T(AR) are planar cobordant, we have

Arf(AR, kg, r−1/8)≡ Arf(C, kg, r−1/8) (mod 8).

This gives the k odd case. �

We now show how Fiedler’s original congruence for certain nonsingular curves
is equivalent to Theorem 1.1 when AR is a simple curve, even or odd, as the case
may be.
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Theorem 5.4 (Fiedler). Let AR be a nonsingular M-curve of degree 2k.
If k is even, and AR is an odd simple curve, then

p − n ≡ −k2 (mod 16).

If k is odd, and AR is an even simple curve, then

p − n ≡ 1 (mod 16).

Proof. We have Gudkov’s congruence:

(5-1) p − n ≡ k2 (mod 8).

Harnack’s inequality is extremal:

(5-2) p + n = 1 +

(
2k − 1

2

)
= 2k2

− 3k + 2.

Adding Equations (5-1) and (5-2) , and dividing by 2:

(5-3) p ≡
3k2

− 3k + 2
2

(mod 4).

According to [Rokhlin 1978, Equation 4],

(5-4) 5+
−5−

=
(k − 1)(k − 2)

2
=

k2
− 3k + 2

2
.

Subtracting (5-3) from (5-4), we obtain

(5-5) 5+
−5−

− p ≡ −k2 (mod 4).

At this point, we consider separately three different cases: k ≡ 0 (mod 4), k ≡ 2
(mod 4), and k ≡ 1 (mod 2).

Now assume that k ≡ 0 (mod 4) and AR is an odd simple curve. By (5-5),
5+

−5−
− p ≡ 0 (mod 4). Thus by Theorem 1.1

5+
−5−

− p ≡
1
2 k2

≡ 0 (mod 8).

Thus, using (5-4),

2p = k2
− 3k + 2 ≡ −3k + 2 (mod 16).

Subtracting (5-2), p − n = −2k2
≡ 0 (mod 16), which agrees with the desired

conclusion.
Now assume that k ≡ 2 (mod 4) and AR is an odd simple curve. We still have

5+
−5−

− p ≡ 0 (mod 4), but now 1
2 k2

≡ 2 mod 8. So, by Theorem 1.1,

5+
−5−

− p ≡
1
2 k2

− 2 ≡ 0 (mod 8).
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Using Equations (5-4) and (5-2), as above, we obtain the conclusion of the theorem
to be proved.

Now assume k ≡ 1 (mod 2) and AR is an even simple curve. By Theorem 1.1,

5+
−5−

− n ≡
1
2(k

2
− 1)≡ 0 (mod 8).

Using (5-4) we get −2n ≡ 3k − 3 (mod 16), and finally, using (5-2),

p − n ≡ 2k2
− 1 ≡ 1 (mod 16). �

6. Fiedler’s curves

6.1. Prohibiting a curve of degree 6. Consider the hypothetical curve of degree
six prohibited by Fiedler [1986, Figure 1]. We denote this I-curve by C1. We note
that there is only one orientation on this two component curve up isotopy. So we
equip C1 with the orientation which allows the unsmoothing move that we take
below. C1 is proper for γ = ±g and r equal either r−1/8 or r3/8. We perform some
safe type II moves and type III moves on C1 followed by an unsmoothing move,
and a balanced type I move to obtain this I-curve:

which we denote by C2. Since the unsmoothing move decreases the number of
components, (C2,±g, r) must be proper, [Gilmer 1993a, Corollary 6.10]. Thus

Arf(C1,±g, r)≡ Arf(C2,±g, r) (mod 8)

for either r .
We pick a “vector field” on B−(C2) which is tangential to the boundary pointed

in the direction of the orientation, has a whole arc of tangent directions at each
double point (as in the spanning surface for td in section 3 ) and has a single
singularity of index −2. This describes a spanning surface F for L(C2). We
calculate that γ (F) = −g and µ(F) =

−9
2 . We have a basis for H1(F,Z/2Z)

consisting of two 1-sided curves δ1, δ2 on F in the affine part of picture, the fiber
x over the singularity of index −2, and the line at infinity α. As in (4-1), (4-5),
and (4-7) we have respectively

q−1/8,F (δ1)= qr−1/8,F (δ2)= 1, qr−1/8,K (x)= 1, qr−1/8,K (α)= 1.
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Thus β(qr−1/8,F )≡ 4 (mod 8), and hence

Arf(C2, 3g, r−1/8)≡ Arf(C2,−g, r−1/8)≡ 4 +
9
2 ≡

1
2 6≡

9
2 (mod 8).

By Theorem 5.3, C1 is not a real algebraic curve of degree 6.

6.2. Prohibiting a curve of degree 8. Consider the hypothetical curve of degree
eight prohibited by Fiedler [1986, Figure 2]. We denote this I-curve by C3 and
equip it with the only semiorientation on C3, up to isotopy, which is consistent
with [Rokhlin 1978, Equation 4] and Fiedler’s alternation of ovals with respect to
a pencil of lines [1982] when applied to C3 smoothed. For this calculation, we
use the language of floppy curves as developed in [Gilmer 1996]. We draw a real
floppy curve C4 in RP(2) whose corresponding link in T is isotopic to the link that
corresponds to C3 with this orientation:

The outer curve with two flops is oriented clockwise. The inner curve with two
flops is oriented counterclockwise. Ten of the ovals are oriented counterclock-
wise and eight clockwise.

We check that C3 is proper for γ = 0 and r = r−1/8. We can extend the vector
field on the boundary over B+ with ten singularities of index −2. This specifies a
spanning surface F . One calculates that γ (F)= 0 and µ(F)= 6. Using Equation
(4-5), we thus get β(qr−1/8,F )≡ 10 ≡ 2 (mod 8). Therefore

Arf(C3, 0, r−1/8)≡ 2 − 6 ≡ 4 6≡ 0 (mod 8).

By Theorem 5.3, C3 is not a real algebraic curve of degree 8.
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