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MICHAEL P. MCCOOEY

A pseudofree group action on a space X is one whose set of singular orbits
forms a discrete subset of its orbit space. Equivalently — when G is finite
and X is compact — the set of singular points in X is finite. In this paper, we
classify all of the finite groups which admit pseudofree actions on S2 × S2.
The groups are exactly those that admit orthogonal pseudofree actions on
S2 × S2 ⊂ R3 × R3, and they are explicitly listed.

This paper can be viewed as a companion to a preprint of Edmonds,
which uniformly treats the case in which the second Betti number of a four-
manifold M is at least three.

1. Introduction

The classification of free actions of groups on spheres and products of spheres
is an important problem in topology. In even dimensions, however, the question
of which groups admit free actions is much less interesting: It follows from the
Lefschetz fixed point theorem that such a group must admit a faithful, and rather
special, representation on homology. Thus, for example, Z2 is the only group
which can act freely on S2n , or freely and orientably on S2n

× S2n . The Lefschetz
fixed point theorem puts the same sort of restriction on free actions of groups on
closed, simply-connected four-manifolds: in the homologically trivial case, there
are none. This is one motivation for the concept of pseudofree actions.

An action of a finite group G on a space X is pseudofree if it is free on the
complement of a discrete set of points. (The use of this term is not consistent
across the literature. Some authors also require that each singular point be fixed by
the entire group.) Such actions make the singular set of the group action as small
as is compatible with the Lefschetz theorem. It is a theorem of Edmonds [1997a]
that if b2(M4)≥ 3, the only groups which can act pseudofreely on M and trivially
on H∗(M) are cyclic. In this paper, we treat the case M = S2

× S2 — which is
especially interesting in its own right — for all possible actions on homology.
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Let G be a finite group with an action on S2
× S2 which preserves orienta-

tion and is locally linear and pseudofree. Two questions arise naturally: Which
groups G admit such actions? And given a group which acts pseudofreely, can
we classify the actions? A partial answer to the latter question is known: if G is
cyclic, the Wilczyński–Bauer invariants [Bauer and Wilczyński 1996; Wilczyński
1994], detect whether two given pseudofree actions (on any simply-connected four-
manifold) are topologically conjugate. The work of Edmonds and Ewing [1992],
as well as that of other authors, addresses the question of which combinations of
these invariants are realizable, but there are number-theoretical difficulties involved
in making the answer explicit.

Evidence from the study of other simple 4-manifolds (see [Cappell and Shane-
son 1979; Kulkarni 1982] for the case of S4 and [Wilczyński 1987; Hambleton
and Lee 1988] for CP2) hints at an answer to the first question: the groups which
admit pseudofree actions are exactly those which can also act pseudofreely and
orthogonally on S2

× S2
⊂ R6. Our main result is that this is indeed the case: we

classify the groups acting orthogonally and pseudofreely, and prove that these are
the only groups admitting even locally linear pseudofree actions. (More precisely,
the groups and their corresponding representations on homology are exactly those
which occur in the linear case.) The remaining problem, that of classifying the
actions themselves, is left for future work.

Here is a brief outline of the paper: The homology representation of a group
acting on S2

× S2 gives rise to a short exact sequence. Certain group extension
problems related to this sequence are solved, and then the geometry of linear ac-
tions is used to determine which of these extensions admit pseudofree orthogonal
actions. Actions are constructed in the course of the proofs. The classification of
groups acting linearly and pseudofreely is stated explicitly in Theorem 3.9, and is
reformulated in terms of the homology representation in Corollary 3.10. In Section
4, the conditions of Corollary 3.10 are shown to be necessary in the locally linear
case, as well, thereby proving the main theorem. The proof uses a series of lemmas
which apply orbit-counting arguments to the singular set of a group action, and
then some group-theoretical and cohomological calculations to rule out minimal
potential pathologies.

2. Group theory

Suppose a group G acts on S2
×S2. The induced action of G on H2(S2

×S2) defines
a representation ϕ : G → GL(2,Z). Since ϕ must respect the intersection form, it
must leave the positive and negative definite subspaces of H2(S2

× S2) invariant.
H+

2 is spanned (rationally) by x + y, and H−

2 is spanned by x − y, where x and y
represent the standard generators. With respect to this basis, ϕ(g) must have the
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form
(

±1 0
0 ±1

)
for any g ∈ G. It follows that with respect to the standard basis,

ϕ(g) ∈

〈
±

(
1 0
0 1

)
,±

(
0 1
1 0

)〉
∼= Z2 × Z2.

Thus the representation on homology induces a short exact sequence

1 → K → G
ϕ
→ Q → 1,

where K acts trivially on homology and Q ⊂ Z2 × Z2. This sequence allows us
to approach general G-actions by first considering homologically trivial actions
and then dealing with associated extension problems. In this section, we address
the group theory involved in the extension problems, and also some cohomology
calculations which will be needed later on in the nonlinear case. The results, though
technical, are for the most part routine.

First recall some generalities about the classification of group extensions:
If K is an abelian group, and 1 → K → G → Q → 1 is an extension, then G

acts on K by conjugation. Since K acts trivially on itself, conjugation induces a
well-defined action of Q on K . For a specific g ∈ G, the conjugation automorphism
h 7→ g−1hg will be denoted µg. The action of Q defines a homomorphism ψ :

Q → Aut K and a Q-module structure on K . As is well known, the extensions
1 → K → G → Q → 1 which give rise to the action ψ of Q on K are classified
by H 2(Q; K ).

If K is nonabelian, the situation is a bit more delicate: an extension problem
1 → K → G → Q → 1 with nonabelian kernel is described by the “abstract
kernel” (K , Q, ψ), where ψ : Q → Out K describes the “outer action” of Q on K .
For general (K , Q, ψ), an extension might not exist: ψ determines an obstruction
cocycle in H 3(Q; Z(K )). The obstruction measures, roughly, whether it is possible
to simultaneously realize the (outer) actions of each element of Q by conjugations
in G. If the obstruction vanishes, then the extensions realizing (K , Q, ψ) are
in (noncanonical) one-to-one correspondence with H 2(Q; Z(K )). For detailed
accounts of this theory, see [Brown 1982] or [Mac Lane 1975].

In this section, we will mainly be concerned with extensions with quotient Z2.
Assume such an extension exists, and pick some q ∈ G \ K . Two pieces of data
determine the structure of G:

(1) The particular value in K of the square of q . Denote it by gq2 .

(2) The automorphism µq of K . In the abstract (when a specific extension is not
given in advance), this automorphism will be denoted γ .

The choices of gq2 and γ are not arbitrary: γ must always fix gq2 , and γ 2 must be
an inner automorphism of K . In specific instances, there may be other restrictions
as well.
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Notation. The dihedral group of order 2m will be denoted Dm . Similarly, the
binary dihedral group of order 4m, with presentation <<k, q | km

= q2, q−1kq =

k−1
>> , will be denoted D∗

m . (This group is also commonly referred to as a dicyclic
or generalized quaternion group.)

Lemma 2.1. Let K ∼= Zn . Each extension 0 → K → G → Z2 → 1 is of one of the
following forms:

(1) Zn o Z2, where the semidirect product automorphism is given by a certain
tuple (δ2, ε2, . . . , εpi , . . . , εpk ). Every split extension is of this type.

(2) (Zm−
o Z2n2+1)× Zm+

, where the semidirect product automorphism is inver-
sion.

(3) D∗

2n2−1m−

× Zm+
.

If n is odd, then every extension is split. Notation is explained in the proof.

Proof. We use additive notation for the group operation in Zn .
Let n = p

n p1
1 · · · p

n pk
q be a prime factorization. Then Zn ∼= Zp

n p1
1

× · · · × Zp
n pk
q

,
and γ restricts to an automorphism of each of the factors.

If p is odd, Aut Zpn p is cyclic, so each order two automorphism of Zpn p sends a
generator to its inverse. However, Aut Z2n2

∼=Z2×Z2n2−2 , so if n2>2, Z2n2 has three
automorphisms of order two: x 7→ −x , x 7→ (1+2n2−1)x , and x 7→ (−1+2n2−1)x .
Thus γ |Z2n2 is encoded by a pair (δ2, ε2), where δ2 = 1 or 0, ε2 = ±1, and (δ2, ε2) :

x 7→ (ε2 + δ2 · 2n2−1)x . For p > 2, we simply have γ |Zpn p : x 7→ εp · x . With
this notation, we write γ = (δ2, ε2, . . . , εpi , . . . , εpk ). Then Zn can be viewed as a
product

Zn ∼= Z2n2 × Zm−
× Zm+

,

where Zm−
is the (odd) −1-eigenspace for γ , and Zm+

is the (odd) +1-eigenspace.
Since γ fixes gq2 , gq2 ≡ 0 (mod pn p) for each odd p with εp = −1, so gq2 ≡

0 (mod m−). On the other hand, any element of Zm+
is a multiple of 2, so q

may be normalized to be trivial mod m+, as well. We may therefore assume that
gq2 ∈ Z2n2 × 0 × 0, and we have a subextension 1 → Z2n2 → G ′

→ Z2 → 1.
These are classified by H 2(Z2; Z2n2 ), where (δ2, ε2) defines the module structure
on Z2n2 . Brown [1982, IV.4.2] computes that if δ2 = 1, then H 2(Z2; Z2n2 ) = 0,
so every extension is split. Thus if δ2 = 1, the main extension 1 → Zn → G →

Z2 → 1 is a semidirect product. Henceforth we assume δ2 = 0. We now have
H 2(Z2; Z2n2 ) ∼= Z2, so H 2(Z2; Zn) ∼= Z2, as well. The split extensions are again
semidirect products. But for each γ , there is one nonsplit extension. Since Zm+

is
central in G, the sequence can be written

0 → (Z2n2 × Zm−
)× Zm+

→ G ′′
× Zm+

→ Z2 → 1,

so we may pretend for the moment that Zm+
= {0}, and focus attention on G ′′.
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The structure of G ′′ depends on the sign of ε2. If ε2 = 1, then Z2n2 is central,
and G ′′ ∼= Zm−

o Z2n2+1 . If ε2 = −1, then G ′′ ∼= D∗

2n2−1m−

. By appending the Zm+

factor, we recover G in each case. �

Next we consider the possibility that K is a dihedral group. Since extensions of
dihedral groups have nonabelian kernel, the algebra is a little more technical than
in the cyclic case.

Given an automorphism γ of Dn whose square is inner, there exists gq2 ∈ Dn

such that γ 2
= µgq2 , and this choice of gq2 is unique up to a factor in Z(Dn).

Z(Dn) is trivial if n is odd, and has order 2 if n is even. Clearly, gq2 is fixed by
γ 2. Working through the definitions in [Brown 1982] or [Mac Lane 1975] shows
that the obstruction to realizing the abstract kernel (Dn,Z2, γ ) as an extension
vanishes exactly if gq2 is fixed by γ . It is straightforward to verify that vanishing
of the obstruction depends only on the outer automorphism class of γ .

Claim 1. Aut Dn ≈

{
S3 if n = 2,

Zn o Aut Zn if n > 2.
We use the presentation Dn ≈ <<s, t | sn

= t2
= 1, tst = s−1

>> .
If n = 2, then explicitly checking that the 2-cycle (s, t) and the 3-cycle (s, t, st)

respect the group operation shows that any permutation of {s, t, st} defines an au-
tomorphism of D2.

If n > 2 then, since an automorphism must send s to another element of order
n, and t to an element which does not commute with f (s), any automorphism is
of the form fa,b, where fa,b(t)= sat , and fa,b(s)= sb, for a ∈ Zn and (b, n)= 1.
By calculating fa,b ◦ fc,d = fbc+a,bd , we see that Aut Dn is a semidirect product,
as claimed.

We first deal with the case n = 2. Since D2 is abelian, γ 2
= 1.

Case 1: γ is nontrivial. For convenience, we choose generators a, b of D2, and
assume that γ transposes them, leaving ab fixed. Since gq2 must be fixed by γ ,
gq2 = ab or 1; replacing gq by aq if necessary, we may assume q2

= 1. Then
G = <<a, b, q | a2

= b2
= (ab)2 = q2

= 1, qaq−1
= b>> , or more simply, setting

s = aq, t = b, G = <<s, t | s4
= t2

= 1, tst = s−1
>> , with D2 included as the subgroup

<<s2, t >> .

Case 2: γ is trivial. In this case, G is abelian. It is straightforward to check that
G = Z4 × Z2 or G = Z2 × Z2 × Z2.

Assume henceforth that n > 2.

Claim 2. Inn Dn ≈ 2Zn o {±1} ⊂ Zn o Aut Zn .

It suffices to check that µsa = f2a,1, and µt = f0,−1.
Now let γ = fa,b. Then γ 2

= fab+a,b2 . If γ 2
∈ Inn Dn , then b2

= ±1. But if
b2

= ±1, then b+1 must be a multiple of 2 in Zn , so ab+a ∈ 2Zn for any a ∈ Zn .
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Thus γ 2 is inner if and only if b2
= ±1. Since γ 2 must be inner for an extension

to exist, we assume henceforth that b2
= ±1.

Claim 3. If n is odd, the obstruction always vanishes. If n is even and b2
≡ 1

(mod n), the obstruction vanishes unless a and (b2
− 1)/n are both odd in Z. If n

is even and b2
≡ −1 (mod n), the obstruction vanishes unless a and (b2

+1)/n are
both odd in Z.

Suppose n is even. Then the equation 2b′
= b +1 has two solutions mod n. Fix

one. The other is b′
+ n/2.

Case 1: b2
= 1. In this case, γ 2

= µ(sab′
), so gq2 = sab′

or sa(b′
+n/2). If the first is

fixed by γ , so is the second. So we ask: when is γ (sab′

)= sab′

?
Since γ (sab′

) = sbab′

, gq2 is fixed by γ if and only if (b − 1)ab′
≡ 0 (mod n).

Notice that 2(b − 1)ab′
= a(b2

− 1) ≡ 0 (mod n). However, it is possible that
(b − 1)ab′

≡ n/2 (mod n). This occurs if 2(b − 1)ab′
= a(b2

− 1) is an odd
multiple of n, which occurs only if a and (b2

− 1)/n are both odd.

Case 2: b2
= −1. Now γ 2

= µ(sab′ t), and gq2 = sab′

t or sa(b′
+n/2)t . γ fixes gq2 =

sab′

t if and only if ab′
≡ bab′

+a (mod n), if and only if (b−1)b′a+a ≡ 0 (mod n).
As above, everything works unless 2((b−1)b′a +a)= (b2

−1)a +2a = (b2
+1)a

is an odd multiple of n. This occurs only if a and (b2
+ 1)/n are both odd.

If n is odd, then similar but easier calculations show that gq2 is always fixed by
γ . This establishes the claim.

Definition. Let us say that an automorphism γ of Dn is admissible if an extension
1 → Dn → G → Z2 → 1 exists with µk = γ for some k ∈ G \ Dn .

We have just seen that for n > 2, γ = fa,b is admissible if and only if b2
≡ ±1

(mod n) and the obstruction mentioned in claim 3 vanishes.
When extensions exist, they are in correspondence with

H 2(Z2, Z(Dn))≈

{
0 if n is odd,
Z2 if n > 2 is even.

If n is even, the extensions correspond to the two choices of gq2 , which differ
by the nontrivial element in Z(Dn). Thus

G ∼= <<s, t, q | sn
= t2

= 1, tst = s−1, q2
= gq2, q−1sq = γ (s), q−1tq = γ (t)>>

∼= << Dn, q | q2
= gq2, q−1gq = γ (g) for g ∈ Dn >> .

This presentation depends on a particular γ ∈ [γ ] ∈ Out Dn . For some purposes,
we might wish to normalize gq2 . To this end, note that for g ∈ Dn ,

(µg ◦ γ )2 = µgγ (g) ◦ γ
2
= µgγ (g)gq2 .
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Thus gq2 can be modified by left multiplication by any element of the form gγ (g).
The sequence will split when one of these candidates for gq2 is the identity.

To summarize:

Lemma 2.2. Let γ ∈ Aut Dn . If γ is admissible, there are extensions

1 → Dn → G → Z2 → 1

in which the conjugation action of some q ∈ G \ Dn is given by γ . If n = 2, the
extensions are

1 → D2 → D4 → Z2 → 1,

with D2 mapping to <<s2, t >> ⊂ D4, and the two abelian extensions with G ≈ Z4×Z2

and G ≈ (Z2)
3. For n > 2, there is exactly one such extension if n is odd, and two

if n is even, and every extension is of this form. The resulting groups G have
presentations of the form

<< Dn, q | q2
= gq2, q−1gq = γ (g) for g ∈ Dn >> .

Let Tet, Oct, and Icos denote the three symmetry groups of the Platonic solids.

Lemma 2.3. Let K be one of the groups Tet, Oct, or Icos. Then every extension

1 → K → G → Z2 → 0

is split.

Proof. Recall that Tet ≈ A4, Oct ≈ S4, and Icos ≈ A5. A group G is said to be
complete if Z(G) is trivial and every automorphism of G is inner. For n 6= 2, 6,
Sn is complete; see [Rotman 1995, Theorem 7.5]. Alternating groups are never
complete: for n > 2, An ⊆ Sn , and conjugation by the transposition (12) is an
automorphism of An which is not inner in An .

Claim. Aut A4 ≈ S4.

We know S4 ⊆ Aut A4, since any conjugation by an element of S4 leaves A4

invariant, and since Z(S4) is trivial. A4 has the presentation << x, y | x3
= y2

=

(xy)3 = 1>> . Any automorphism must send x to an element of order 3, and y to
an element of order 2. Since A4 contains 8 elements of order 3 and 3 elements of
order 2, we see that |Aut A4| ≤ 3 · 8 = 24. But |S4| = 24.

Claim. Aut A5 ≈ S5.

This follows by an argument similar to the preceding one: the presentation
<< x, y | x2

= y5
= (xy)3 =1>> gives an upper bound |Aut A5|≤180. But Aut A5 ⊇ S5,

a group of order 120.
Thus Out Tet ≈ Out Icos ≈ Z2, with the outer automorphism realized by conju-

gation by a transposition in S4 or S5. Out Oct is trivial, since S4 is complete.
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Now, each of Tet, Oct, and Icos has trivial center, so in each case,

H 2(Z2; Z(K ))= 0.

Thus if an abstract kernel admits a realization, it will be unique. Extensions do
exist in all cases: the two extensions of Tet have G ∼= S4 and G ∼= Tet × Z2; the
extensions of Icos have G ∼= S5 and G ∼= Icos × Z2; and the unique extension of
Oct has G ∼= Oct × Z2. All are split extensions. �

The last classification lemma is somewhat more technical than the others, but it
turns out to be exactly what is necessary when ϕ(G)= Z2 × Z2.

Lemma 2.4. Suppose <<a, b>>
∼= Z2 × Z2, and 1 → Zn → G

ϕ
→ <<a, b>> → 1 is

exact. Let Ga = ϕ−1( <<a>> ) and Gb = ϕ−1( <<b>> ). Finally, let γ = µqb , viewed
as an automorphism of Ga . Using the notation of Lemma 2.1, we have γ |Zn =

(δ2, ε2, . . . , εpi , . . . , εpk ). If Ga is abelian and 1 → Ga → G → <<b>> → 1 does not
split, then one of the following holds:

(1) G ∼= D∗

2n2 m−
× Zm+

, with ε2 = −1, Ga ∼= Z2n , and γ (qa)= q−1
a .

(2) G ∼= ((Zm−
o Z2n2+1)× Zm+

)o Z2, with Ga ∼= Za × Z2, n2 > 1, ε2 = 1, and
γ (qa)= ((n/2)k)qa .

(3) G ∼= (D∗

2n2−1m−

× Zm+
)× Z2, with Ga ∼= Zn × Z2, ε2 = −1, and γ (qa)= qa .

(4) G ∼= (Zm−
o Z2n2+1)×Zm+

×Z2, with Ga ∼= Zn ×Z2, ε2 = 1, and γ (qa)= qa .

In the latter two cases, qa and qb commute. Notation, including some important
normalizations for qa and qb, is explained in the proof.

Proof. We use additive notation for the group operation in K , but multiplicative
notation in the (possibly nonabelian) group G. Let k generate K = Zn . G is
generated by k, together with qa and qb, where ϕ(qa) = a and ϕ(qb) = b. We
assume qa and qb are normalized so that gq2

a
and gq2

b
lie in the Sylow 2-subgroup

of K , and

(1) gq2
a

is either 0, or a generator of this subgroup.

(2) If ε2 = 1, then gq2
b

is either 0, or a generator.

(3) If ε2 = −1, then either gq2
b
= 0, or it has order two.

With this in mind, the problem easily reduces to the case n = 2n2 , since the restric-
tion of γ to the subgroup Zm−m+

of Zn is known. We assume henceforth that n is
a power of 2.

If gq2
b
= 0, the sequence splits, so we assume gq2

b
6= 0. Once Ga is known, G is

determined by the automorphism γ of Ga . In the proof of Lemma 2.1, we observed
that γ |Zn is described by a pair (δ2, ε2)∈{0, 1}×{±1}, where k 7→ (ε2+δ2 ·2n2−1)k,
and also that if δ2 = 1, then 1 → Zn → Gb → Z2 → 1 splits. So we may assume
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γ (k) = ε2 · k and consider the various cases for γ (qa). Note that γ (qa) = cqa for
some c ∈ K , and that γ (q2

a )= 2c+gq2
a
. Hence c is determined mod 2n2−1 by γ |Zn .

If Ga ∼= Z2n , then the argument cited in Lemma 2.1 shows that 1 → Ga →

G → <<b>> → 1 splits if c 6= 0. So we assume γ (qa) = q±1
a , depending on ε2. If

ε2 = −1, then G ∼= D∗

2n2 . If ε2 = 1, then G ∼= Z2n × Z2, and (qaq−1
b )2 = 1, so

1 → Ga → G → <<b>> → 1 splits.
If Ga ∼= Zn × Z2, we have several cases:

(1) If c = 0 and ε2 = 1, then G ∼= Z2n2+1 ×Z2. G contains three elements of order
2, but all are contained in Ga , so the sequence 1 → Ga → G → <<b>> → 1
does not split.

(2) If c = 0 and ε2 = −1, then G ∼= Gb × Z2 ∼= D∗

2n2−1 × Z2.

(3) If c=2n2−1k and ε2 =1, then Gb ∼=Z2n2+1, and G ∼=GboZ2 =Z2n2+1oZ2, with
q−1

a qbqa = ((1 + 2n2−1)k)q. Although G contains involutions, the extension
1 → Ga → G → <<b>> → 1 does not split if n2 > 1.

(4) If c = 2n2−1k and ε2 = −1, then (qaqb)
2
= 1, so the sequence splits. �

In Section 4, we will require explicit descriptions of the restriction maps r∗
:

H 2(D4; Z) → H 2(H ; Z) as H ranges over the various subgroups of D4. Rather
than interrupt the flow of that argument later, we discuss them here. The methods
used to calculate these maps are described in [Pearson 1996]. Some of the specific
maps are also described there, and most of the rest were worked in the course of a
conversation with the author of that paper.

Using the presentation D4 ∼= <<s, t | s4
= t2

= 1, tst = s−1
>> , the subgroups (up

to conjugacy) can be enumerated as follows, with subscripts denoting generators:
Gs ≈ Z4, Gs2 ≈ Z2, G t ≈ Z2, Gst ≈ Z2, Gs2,t ≈ Z2 × Z2, and Gs2,st ≈ Z2 × Z2.
The integral cohomology of these groups is computed from (known) descriptions
of the cohomology with Z2 coefficients using the Bockstein spectral sequence.

For a general group K , H 1(K ; Z2)∼=hom(K ′

abZ2), and generators of H 2(K ; Z2)

are often products of 1-dimensional classes. When integral cohomology classes
are lifts of powers of Z2-classes, we will name them accordingly, even when the
integral classes themselves are indecomposable.

Generators of H 1(D4; Z2) ≈ hom(H1(D4),Z2) are given by e and f , where
e(s)= 1, e(t)= 0, f (s)= 1, and f (t)= 1. This seemingly asymmetrical choice of
generators yields the convenient relation e∪ f =0, while e2 and f 2 lift to generators
ê2 and f̂ 2 of H 2(D4; Z)≈ Z2 ×Z2. (H2(D4; Z2) also contains an indecomposable
element w which does not lift.)

Similarly, for each copy of Z2 × Z2 described by an ordered set of generators
<< x, y>> , we have H 2(Z2 ×Z2; Z)≈ Z2 ×Z2 = << â2, b̂2

>> , where a(x)= 1, a(y)= 0,
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b(x) = 0, and b(y) = 1. A word of warning: we use the same notation for H 2-
generators of different copies of Z2×Z2; meaning can be determined from context.

Finally, H 2(Z4; Z)≈ Z4, with a generator denoted by c. Both c and its reduction
mod 2 are indecomposable.

Lemma 2.5. The restriction maps r∗
: H 2(D4; Z)→ H 2(H ; Z), as H ranges over

subgroups of D4, are as follows:

Gs2,t Gs2,st Gs2 G t Gst Gs

ê2 0 b̂2 0 0 b̂2 2c

f̂ 2 b̂2 0 0 b̂2 0 2c

Proof. We use the commutative diagram

<< ê2, f̂ 2
>> ≈ H 2(D4; Z)

r∗

−−−→ H 2(H ; Z)y y
<<e2, f 2, w>> ≈ H 2(D4; Z2)

r∗

−−−→ H 2(H ; Z2),

where the vertical maps are induced by the coefficient reduction. The right-hand
map is an isomorphism for all the subgroups except for Z4, where H 2(Z4; Z2) ∼=

H 2(Z4; Z)⊗ Z2. The fact that e2 and f 2 are squares of one-dimensional classes
makes calculation easy for every column except Gs . In that case, since the gen-
erator of H2(Z4; Z2) is indecomposable, the map r∗

: H2(D4; Z2) → H2(Z4; Z2)

is zero. It follows immediately that each of r∗(ê2) and r∗( f̂ 2) is either 0 or 2c.
Determining which actually occurs requires a closer look at the Bockstein spectral
sequence. Details are in [Pearson 1996]; our calculation later on actually only
requires that each be an even multiple of c. �

3. The linear case

Let us say that the group of linear actions on S2
× S2 is W = {A ∈ SO(6) |

A(S2
× S2)= S2

× S2
}. What is the structure of W ? The homology representation

ϕ extends to all of W . We will apply it in the proof of the following:

Lemma 3.1. W ∼= (SO(3) × SO(3) × Z2) o Z2, where the semidirect product
automorphism is a coordinate switch in the factors of SO(3)× SO(3).

Proof. The main claim that needs to be established is the exactness of the sequence

1 → SO(3)× SO(3)
i

→ W
ϕ
→ Z2 × Z2 → 1.

Since a rotation in SO(3) is homotopic to the identity, any g ∈ SO(3)×SO(3) is
in the kernel of ϕ. For the reverse inclusion, suppose ϕ(g)= e ∈ Z2 × Z2. Since g
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acts trivially on homology, it has a fixed point (x, y) ∈ S2
× S2. A fairly standard

calculation shows that the only sections of T(x,y)S2
× S2 with sectional curvature

K = 1 are those tangent to the two factors. Since g is an isometry, it preserves the
splitting of T(x,y)S2

× S2, so it acts on T(x,y)S2
× S2 by a pair of rotations θ1 and

θ2. Thus g agrees with an element of SO(3)×SO(3) on a 5-dimensional subspace
of R6. Since det(g)= 1, g ∈ SO(3)× SO(3). This finishes the proof of exactness.

Now, the quotient Z2×Z2 is easily seen to be generated by α, the isometry which
acts by the antipodal map in each factor, and σ , which switches coordinates. α is
central in SO(6), so <<α>> extends SO(3)× SO(3) with a direct product. However,
σ is not central, so the product is only semidirect. �

For the remainder of this section, let G be a finite subgroup of W which acts
linearly and pseudofreely and preserves orientation. It is well known (see [Wolf
1984; Kulkarni 1982], for example, or Lemma 4.4 below) that the finite groups
which act pseudofreely on S2 are either cyclic, dihedral, or one of the three sym-
metry groups of the Platonic solids. These groups also act pseudofreely on S2

×S2

via the diagonal action. It will turn out that if the induced action on homology
is trivial, this is essentially, but not exactly, the only possibility. If the homology
action is nontrivial, things are more complicated, and we approach them via the
short exact sequence 1 → K → G

ϕ
→ Q → 1.

Example. Consider the action of Z5 on S2
×S2 defined by γ ·(x, y)= (γ ·x, γ 2

·y),
where γ acts on S2 by a rotation of 2π/5 around an axis. The action has four
isolated fixed points. Notice also that this action resembles the diagonal action, in
the sense that γ · (x, y) = (γ · x, ψ(γ ) · y), where ψ is the automorphism of Z5

sending γ 7→ γ 2. However, this action is not equivalent to the diagonal action: A
neighborhood of a singular point in the quotient by the diagonal action is a cone
on the lens space L(5, 1), while the corresponding neighborhood for this action is
a cone on L(5, 2).

Definition. Suppose G acts on a space X . An action θ of G on X × X will be
called semidiagonal if there is an automorphism ψ of G so that θ is equivalent to
(g, (x, y)) 7→ (gx, ψ(g)(y)).

Proposition 3.2. If G acts trivially on homology, then G is a polyhedral group,
and its action is semidiagonal.

Proof. Since G acts trivially on homology, we must have G ⊂ SO(3)× SO(3).
Let (g, h) ∈ G. Since each of g and h preserves orientation on S2, each has a
fixed point on S2. By the assumption of pseudofreeness, each fixed set must be
0-dimensional unless (g, h)= (e, e).

Claim. Let π1 and π2 denote the two obvious projections from SO(3)× SO(3)→

SO(3). Then π1(G)≈ π2(G).
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Observe that for any g, there is a unique h so that (g, h) ∈ G. For if (g, h1) and
(g, h2) are both in G and h1 6= h2, then (g−1, h−1

1 )(g, h2) = (1, h−1
1 h2) ∈ G. But

h−1
1 h2 6= 1, so it has two fixed points on S2. But then Fix((1, h−1

1 h2), S2
× S2) ∼=

S2
× S0, contradicting pseudofreeness.
Now we can define ψ : π1(G)→ π2(G) by

g 7→ the unique h such that (g, h) ∈ G.

ψ is clearly a homomorphism, and by symmetry, an isomorphism. This proves the
claim. To simplify notation, write G1 = π1(G) and G2 = π2(G).

G1 acts pseudofreely on S2, so it must be a polyhedral group. Moreover, the
projection G → G1 must be injective, since if (g, h) ∈ kerπ1, then g = e, and
h =ψ(g)= e, also. Similar considerations apply to G2. Now, any two isomorphic
finite subgroups of SO(3) are conjugate [Wolf 1984, Theorem 2.6.5]. That is,
there is a change of coordinates with respect to which we actually have G1 = G2.
Without loss of generality, assume we have applied it. (In doing so, we have fixed,
once and for all, a particular identification between the two factors of S2

× S2.
For later reference, this also defines a particular choice of coordinate switch σ :

(x, y) 7→ (y, x). Abstractly, σ is only well-defined mod {e} × SO(3).) Then for
any g ∈ G, we have g · (x, y)= (gx, ψ(g)y). �

Here it is worthwhile to note a consequence of the proof of Lemma 2.3: If the
automorphismψ of G above is inner, then after applying the coordinate change, we
may treat ψ as identity. Since Out Oct is trivial, every Oct action is diagonal. And
since Out Tet ≈ Out Icos ≈ Z2, each of Tet and Icos admits at most one nondiagonal
action. In fact, by embedding Tet in Oct, we see that the outer automorphism of
Tet is realized by an SO(3) conjugation, so every Tet action is diagonal. However,
if there were an SO(3) conjugation which realized the outer automorphism of Icos,
then S5 would be a subgroup of SO(3). It isn’t, so there are two linear, pseudofree
actions of Icos which are not linearly equivalent.

If the action of G on homology is nontrivial, what can we say? If G ⊂ O(3)×
O(3), for example, the only possible nontrivial action is via

(
−1

0
0

−1

)
. Thus we

have a short exact sequence

1 → K → G → Z2 → 0.

Since we know the possible groups K in the above sequence, we should expect the
possible groups G simply to be extensions of polyhedral groups by Z2. But it turns
out that many of the extended actions can not be pseudofree and must be ruled
out. The following statement describes the possible groups G. Explicit actions are
constructed in its proof.
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Proposition 3.3. If the homology action of G is given by ϕ(G) ≈
〈(

−1 0
0 −1

)〉
, then

G ≈ Zn × Z2 or G ≈ Z2n . Pseudofree actions exist in these cases.

Proof. We begin with some observations about the geometry of W .
Suppose g and s are nontrivial elements of SO(3). Each has a well defined axis

of rotation — we denote them respectively by Xg and Xs . Observe that µg(s)= sl

for some l if and only if g leaves Xs invariant. If g fixes Xs , then Xg = Xs , and
µg(s)= s. If g inverts Xs , then Xs ⊥ Xg, and g is an order 2 rotation. In this case,
µg(s)= s−1.

Lemma 3.1 tells us that any q ∈ W with ϕ(q) =
(

−1 0
0 −1

)
has the form q =

(α, α)(r1, r2), where (r1, r2) ∈ SO(3)× SO(3). Also, an element S ∈ W acting
homologically trivially and pseudofreely has the form (s1, s2), where neither coor-
dinate is 1. It follows from the previous observations that if q2

= 1 and µq(s) 6= s
for some s, then r1 and r2 are both nontrivial order 2 rotations, and q fixes a torus.
So if G acts pseudofreely, any q with ϕ(q)=

(
−1 0

0 −1

)
and q2

= 1 must be central
in G. Similar considerations show that a q of order greater than 2 leaves invariant a
unique axis in each factor, so at most one cyclic subgroup of K can be normalized
by q , and in fact, the generator of such a group commutes with q . Thus for each
q ∈ G \ K , one of the following holds:

(1) q has order 2, and µq is trivial.

(2) q has order greater than 2, and q normalizes (at most) a single maximal cyclic
subgroup of K , which it centralizes.

Now consider the possibilities for K :

Case 1: K ∼= Zn . The only groups G satisfying conditions (1) and (2) are G ∼=

Zn × Z2 and G ∼= Z2n . If n is odd, these two groups are isomorphic, and the
extension is realized by choosing q = (α, α) ◦ (1, r), where r has order 2 and
shares an axis with the generator of K . If n is even, this construction realizes the
case Zn ×Z2. Z2n is realized if both r1 and r2 are order 2n rotations. Note that if n
is odd, the latter construction still yields a Z2n action, but if n is odd, then qn fixes
a torus.

Case 2: K ∼= Dn = <<s, t | sn
= t2

= 1, tst = s−1
>> . If some q exists satisfying

condition (2), then tq has order 2 but fails to satisfy (1). If no q satisfies (2), then
n = 2, and either q , sq, tq , or stq has both r1 and r2 nontrivial, and thus fixes a
torus.

Case 3: K ∼=Tet, Oct, or Icos. By Lemma 2.3, the sequence 1→ K → G →Z2 →1
splits, so we may pick q of order 2. By condition (1), µq is trivial. Now let g ∈ K
be an involution. Then gq also has order 2, but µgq is nontrivial, contradicting
condition (1). �
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Next we consider the case in which ϕ(G)≈
〈(

0 1
1 0

)〉
. For actions which need not

be locally linear, it follows from a theorem of Bredon that:

Proposition 3.4. (1) If the sequence 1 → K → G →
〈(

0 1
1 0

)〉
→ 1 splits, then G

can not act pseudofreely.

(2) Suppose G acts on S2
× S2 with ϕ(G) ∼= Z2. If the action of K = kerϕ is

pseudofree, and 1 → K → G → Z2 → 1 does not split, then the action of G
is pseudofree.

Proof. As a special case of Bredon’s theorem [1972, VII.7.5], an involution T on
S2

× S2 with T ∗
6= 1 on H 2(S2

× S2
; Z2) has a fixed point set F with H 2(F; Z2)=

Z2. If the sequence 1 → K → G →
〈(

0 1
1 0

) 〉
→ 1 splits, then G contains such an

involution. The second statement follows from the observation that for q ∈ G \ K ,
Fix(q2)⊆ Fix(q). �

Corollary 3.5. If the homology action of G is given by ϕ(G) ≈
〈(

0 1
1 0

)〉
, then K

can’t be Tet, Oct, or Icos.

Proof. This follows immediately from Lemma 2.3. �

Proposition 3.6. If K ∼= Zn and ϕ(G)≈
〈(

0 1
1 0

)〉
, then either

(1) G ∼= (Zm−
o Z2n2+1)× Zm+

, or

(2) G ∼= D∗

2n2−1m−

× Zm+
,

with notation as in the proof of Lemma 2.1. Pseudofree linear actions exist in these
cases.

Proof. We know from Proposition 3.4 that if 1 → K → G → Z2 → 1 splits, then G
cannot act pseudofreely. It follows from Lemma 2.1 that G must be of type (1) or
(2) (and that n is even). Recall from the beginning of Section 2 that the structure
of G is determined by the data γ and gq2 . By Lemma 3.1, a hypothetical q ∈ G \ K
has the form σr , where σ : (x, y) 7→ (y, x), and r = (r1, r2)∈ SO(3)×SO(3). Our
construction of a pseudofree G-action uses two ingredients:

(1) A choice of a particular semidiagonal K -action, which makes it possible to
realize γ as µq .

(2) An appropriate choice of r which ensures that q2
= gq2 .

As in the proof of Proposition 3.3, conjugation by r must either fix or invert the
axis of rotation of K in each factor, so µσr = µr ◦µσ is either (inversion) ◦µσ ,
or simply µσ . For simplicity, we will assume that r1 and r2 share the axis of K ,
so µσr =µσ . The construction can also be carried out with minor modifications if
Xri ⊥ X K .

A semidiagonal embedding of K ⊂ SO(3) into SO(3)× SO(3) takes the form

k
i

7→ (k, ψ(k)) ∈ SO(3)× SO(3) for some ψ ∈ Aut K .
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Observe that µσ (k, ψ(k)) = σ(k, ψ(k))σ = (ψ(k), k), and also that i(γ (k)) =

(γ (k), ψ(γ (k))). Since γ 2
= 1, choosing ψ = γ allows us to realize γ as µq :

µq(i(k))= µσ (k, ψ(k))= (γ (k), k)= (γ (k), ψ(γ (k)))= i(γ (k)).

Next observe that q2
= σrσr = (r2r1, r1r2) = (r1r2, r1r2). Thus if we choose

r1 and r2 so that r1r2 = gq2 , then q2
= (gq2, gq2) = (gq2, ψ(gq2)) = i(gq2) (recall

that ψ = γ fixes gq2).
It follows from the second part of Proposition 3.4 that the extended action is

still pseudofree. �

Proposition 3.7. If K ∼= Dn and ϕ(G) ∼=
〈(

0 1
1 0

)〉
, then G acts pseudofreely and

linearly if and only if the sequence 1 → K → G → Z2 → 1 does not split.

Proof. We know it is necessary that the sequence not split. To prove the converse,
we assume it does not split and we construct a pseudofree G-action. Let the data γ
and gq2 be given. As in the previous proof, q = σr , and we will choose r = (r1, r2)

and ψ ∈ Aut Dn appropriately. In this case, choose any r1 and r2 so that r2r1 =

gq2 ∈ Dn ⊂ SO(3), and each µri leaves Dn invariant. (For example, simply take
r1 =1, r2 = gq2 .) Letψ=µr2 ◦γ

−1
∈Aut Dn , and let i embed Dn in SO(3)×SO(3)

via g
i

7→ (g, ψ(g)).
We show that the subgroup of W generated by i(Dn) and q is isomorphic to G,

and then appeal to Proposition 3.4 to see that the resulting action of G is pseudofree.
For the first claim, it suffices to verify that q2

= i(gq2) and that µq ◦ i =

i ◦ γ . We have q2
= (r2r1, r1r2). On the other hand, i(gq2) = (r2r1, ψ(r2r1)) =

(r2r1, r−1
2 (γ−1(r2r1))r2)= (r2r1, r1r2), because γ fixes gq2 . Note that as a conse-

quence, µr2r1 = µgq2 = γ 2.

For g ∈ Dn , i(γ (g)) = (γ (g), ψ(γ (g))) = (γ (g), r−1
2 gr2). But µq(i(g)) =

µq(g, ψ(g))=µr (µσ (g, ψ(g)))= µr (ψ(g), g)= (r−1
1 r−1

2 γ−1(g)r2r1, r−1
2 gr2)=

(γ 2(γ−1(g)), r−1
2 gr2)= (γ (g), r−1

2 gr2). �

Proposition 3.8. Suppose ϕ(G)= Z2 × Z2. Then

(1) G ∼= D∗

2n2 m−
× Zm+

, or

(2) G ∼= ((Zm−
o Z2n2+1)× Zm+

)o Z2, with n2 > 1,

with notation as in Lemma 2.1. Pseudofree actions exist in these cases.

Proof. Let a =
(

−1 0
0 −1

)
and b =

(
0 1
1 0

)
∈Aut H2(S2

×S2), and suppose an extension

1 → H → G
ϕ
→ <<a>> × <<b>> → 1

exists, with G acting pseudofreely. Let Ga = ϕ−1( <<a>> ), and Gb = ϕ−1( <<b>> ).
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By Propositions 3.3 and 3.4, we know that K must be cyclic of even order, with
Ga ∼= Z2n or Zn × Z2, and that the sequence 1 → Ga → G → <<b>> → 1 must not
split. Lemma 2.4 describes those groups G which satisfy these criteria.

If Ga ∼= Zn ×Z2, the geometry of W puts one more restriction on G. Let q2
a = 1,

where ϕ(qa) = a. Then qa = (α, α)(r1, r2), where (r1)
2

= (r2)
2

= 1. If both r1

and r2 are nontrivial, then qa fixes a torus. If both are trivial, then the product
of qa with the unique element of order two in K fixes a torus. So exactly one of
them is nontrivial. Suppose it is r1. The element qb has the form σ(s1, s2), so
q−1

b qaqb = (α, α)(1, s−1
2 r1s2). Thus qa and qb can not commute in the linear case.

Lemma 2.4 then shows that G necessarily has one of the forms given in the
statement of the theorem. We must now construct pseudofree actions of these
groups. For simplicity, we assume all rotations used in the constructions have the
same axes.

Case 1: G ∼= D∗

2n2 m−
× Zm+

. We start with an action of Gb = D∗

2n2−1m−

× Zm+
as

provided by Proposition 3.6. Extend ψ (the semidiagonalizing automorphism of
K ) to an automorphism of Z2n . Let qa = (α, α)(r, ψ(r)), where r2 is a generator
of the Sylow 2-subgroup of K . Then << K , qa >>

∼= Z2n acts pseudofreely. We need
only verify that q−1

b qaqb = q−1
a to conclude that the subgroup of W generated by

Gb and qa is isomorphic to G:

(s−1
1 , s−1

2 )σ (α, α)(r, ψ(r))σ (s1, s2)= (α, α)(ψ(r), r)

= (α, α)(r−1, ψ(r)−1)= q−1
a .

Case 2: G ∼= ((Zm−
oZ2n2+1)×Zm+

)oZ2, with n2 > 1. Again, start with an action
of Gb = (Zm−

oZ2n2+1)oZm+
as in Proposition 3.6. Let qa = (α, α)(r, 1), where r

is an order two rotation. Then q2
a = 1, so Ga = << K , qa >>

∼= Zn o Z2. And we have
qb = σ(s1, s2), chosen so that (qb)

2
= k generates the 2-subgroup of Zn . To show

that << Gb, qa >>
∼= G, we observe that

q−1
a qbqa = (α, α)(r, 1)σ (s1, s2)(α, α)(r, 1)= 2n2−1kqa,

as required.
Pseudofreeness of the extended actions follows from Proposition 3.4, as usual.

�

Gathering together the results of this section, we have:

Theorem 3.9. The following are all of the groups G which act linearly and pseudo-
freely on S2

× S2:

(1) Tet, Oct, Icos, Zn , and Dn , acting homologically trivially.

(2) Zn × Z2 and Z2n , where K ≈ Zn , and ϕ(G)≈
〈(

−1 0
0 −1

)〉
.

(3) The groups
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(a) G ∼= (Zm−
o Z2n2+1)× Zm+

, or
(b) G ∼= D∗

2n2−1m−

× Zm+
,

(c) << Dn, k | k2
= gk2, kgk−1

= γ (g) for g ∈ Dn >> , where 1 → Dn → G →

Z2 → 1 does not split.

In this case, ϕ(G)≈
〈(

0 1
1 0

)〉
.

(4) The groups

(a) G ∼= D∗

2n2 m−
× Zm+

, or
(b) G ∼= ((Zm−

o Z2n2+1)× Zm+
)o Z2, with n2 > 1.

In this case, ϕ(G)≈ Z2 × Z2.

This theorem can be restated in a form somewhat more amenable to generaliza-
tion to the nonlinear case: Let a =

(
−1 0
0 −1

)
and b =

(
0 1
1 0

)
∈ Aut H2(S2

× S2), and
suppose an extension

1 → K → G
ϕ
→ Q → 1

exists, with Q ⊂ <<a>> × <<b>> . The sequence then determines the subgroups Ga =

ϕ−1( <<a>> ), and Gb = ϕ−1( <<b>> ).
Conversely, suppose a homology representation of a group G is described by a

tuple (G, K ,Ga,Gb) as above.

Corollary 3.10. (G, K ,Ga,Gb) admits a linear, pseudofree action on S2
× S2 if

and only if

(1) K is polyhedral.

(2) If Ga 6= K , then Ga is abelian and K is cyclic.

(3) If Gb 6= K , then 1 → Ga → G → Z2 → 1 does not split.

(4) If ϕ(qa)= a, ϕ(qb)= b, and q2
a = 1, then qa and qb do not commute.

Proof. We have already seen that condition 1 is necessary and sufficient in the
homologically trivial case, and that condition 2 is necessary and sufficient in the
±

(
1 0
0 1

)
case. Condition 3 is necessary by Proposition 3.4 (Bredon’s theorem). On

the other hand, this condition implies that 1 → H → Gb → Z2 → 1 does not split,
and Propositions 3.6 and 3.7 show this to be sufficient in the

(
0 1
1 0

)
case. Finally,

Lemma 2.4 enumerates those groups G with ϕ(G)∼= Z2×Z2 which satisfy the first
three conditions, and Proposition 3.8 shows that the last condition is necessary and
sufficient to finish the classification. �

4. The nonlinear case

In this section we prove that any group which acts pseudofreely and locally linearly
also acts pseudofreely and linearly. (It should be pointed out that nonlinear actions
definitely do exist: Edmonds and Ewing [1992] construct pseudofree actions of
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cyclic groups with fixed point data incompatible with linearity.) Our strategy fol-
lows the statement of Corollary 3.10: Bredon’s theorem shows that condition 3 is
necessary. We show that conditions 1, 2, and 4 are necessary in the general case.

For the remainder of the paper, we will make constant use of the Lefschetz
fixed-point theorem and the Riemann–Hurwitz formula. We recall them here:

Let g : X → X be a periodic, locally linear map on a compact manifold X . Then
χ(X g) = λ(g), where λ(g), the Lefschetz number of g, is the alternating sum of
g’s traces on homology. (The formula holds more generally, but this suffices for
our purposes.) In particular, if g acts trivially on homology, χ(X g) = χ(X). In
the context of homologically trivial pseudofree actions on S2

× S2, it follows that
each element of G apart from the identity has exactly four fixed points.

The Riemann–Hurwitz formula describes the orbit structure of a pseudofree
action of a finite group G on a compact space X . If the action has singular orbits
Gx1, . . . ,Gxm ; |Gxi | = ni , and |G| = N , then

χ(X)= Nχ(X/G)−
m∑

i=1

(
N −

N
ni

)
.

Again, the theorem generalizes — this time, to nonpseudofree actions. See [Kul-
karni 1982], for example. In our case (X = S2

× S2; homologically trivial actions,
for now), transfer considerations show that χ(X)= χ(X/G)= 4. Thus

N =
4

4 −

m∑
i=1

(
1 −

1
ni

) .
Definition. The Riemann–Hurwitz data for a pseudofree action is the m-tuple
(n1, . . . , nm) described in the statement of the formula; each number ni is the size
of the isotropy subgroup corresponding to one orbit.

In the case of pseudofree actions of a group G on S2, it is easily seen that m ≤ 3,
and the only possible Riemann–Hurwitz data are of the form (N , N ), (2, 2, k),
(2, 3, 3), (2, 3, 4), or (2, 3, 5). By local linearity, each isotropy group is cyclic,
and then group theory calculations show that the only possible groups are cyclic,
dihedral, tetrahedral, octahedral, or icosahedral (see [Kulkarni 1982] or Lemma
4.4 below). In contrast, in the case X = S2

× S2, an analogous calculation to the
one in the S2 case only gives the bound m ≤ 7. There are some 20 or so infinite
families of such m-tuples satisfying the Riemann–Hurwitz formula, plus a finite,
but quite large, number of exceptional solutions. Also, the tuples only describe
the sizes, and not the structures, of the isotropy groups. From this point of view,
then, an argument directly analogous to the one in the S2 case would be intractable.
However, the linear examples exhibit two more salient features:
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(1) A priori, the isotropy groups might be any groups admitting free orthogonal
actions on S3 (under the tangent space representation). In fact, they are all
cyclic.

(2) Each element of G has the four fixed points (x, y), (x,−y), (−x, y), and
(−x,−y). In the cyclic, tetrahedral, and icosahedral cases, all four fixed
points lie in different orbits, while in the dihedral and octahedral cases, the
fixed-point sets of some elements meet two orbits in two points each. But
all four fixed points of g ∈ G never lie in the same orbit. Thus in the list of
isotropy groups corresponding to the Riemann–Hurwitz data, each isotropy
group actually occurs two or four times. Because of this repetition, the data in
this case correspond to the data for an action on S2, where things are simpler.

Our strategy, then, is to show that in the general case,

(1) The isotropy groups are still cyclic.

(2) They still occur in pairs in the Riemann–Hurwitz data,

and then appeal to the proof in the S2 case, to show:

Theorem 4.1. A group acting pseudofreely, locally linearly, and homologically
trivially on S2

× S2 is polyhedral.

The proof will use a series of lemmas. We first describe the possible isotropy
groups:

Proposition 4.2. Suppose a finite group G acts pseudofreely, homologically triv-
ially, and locally linearly on a closed, simply-connected four-manifold X with
b2(X)≥ 2. Then each isotropy group is cyclic.

Proof. It is shown in [McCooey 2002] that, without the pseudofree assumption,
such an isotropy group Gx0 must be abelian of rank 1 or 2. But a rank 2 group
cannot act freely on the linking sphere to x0, and thus cannot act pseudofreely
on X . �

Lemma 4.3. Let G and X be as in Proposition 4.2. For each singular point x , let
o(X Gx ) be the number of G-orbits which meet X Gx . Then o(X Gx ) divides χ(X).

Proof. Since Gx = << g>> for some g, |X Gx | = |Fix(g)| = λ(g)= χ(X).
Observe that for any h ∈ G, if h−1gh(x) = x , then h(x) ∈ Fix(g). In other

words, NG( << g>> ) acts on Fix(g). Two points of Fix(g) are in the same G-orbit if
and only if they are in the same NG( << g>> )-orbit, for if gx = x , gy = y, and kx = y,
then k−1gk ∈ Gx = << g>> . But each NG( << g>> )-orbit of the action on Fix(g) has
cardinality

∣∣NG(g)/ << g>>

∣∣. Since they all have the same size, the number of orbits
must divide χ(X). �
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Now, corresponding to the set of singular orbits (and hence to the Riemann–
Hurwitz data (n1, . . . , nm)), there is a list orbit types Gx1, . . . ,Gxn . We say the
groups are repeated in pairs if each orbit type occurs in this list an even number
of times.

Lemma 4.4. Let G act homologically trivially and pseudofreely on S2
× S2. If the

isotropy groups of the G-action are repeated in pairs, then G is polyhedral.

Proof. Since the groups occur in pairs, m is even. Let m′
= m/2, and rearrange the

list so that G1 = Gm′+1, G2 = Gm′+2, and so forth. Since N (4−
∑m

i=1(1−1/ni ))=

4, it follows that 2 = N (2 −
∑m′

i=1(1 − 1/ni )). As in the S2 case, the possible
n1, . . . , nm′ are (N , N ), (2, 2, k), (2, 3, 3), (2, 3, 4), and (2, 3, 5). In each case,
these numbers represent the sizes of maximal cyclic subgroups of G, and each
conjugacy class of maximal cyclic subgroups occurs in the list. Kulkarni [1982]
describes the groups that can correspond to this data. Proofs are omitted for some
of his assertions, and some details are different in our case and his, so we repeat
the argument here.
(N , N ) clearly corresponds to a cyclic group of order N .
For the remaining cases, we make the following observations: If a maximal

cyclic subgroup << g>> of G is also normal, it has index ≤2 in G. For G/ << g>> operates
freely on Fix(g), a set of four points. But since orbits come in pairs, Fix(g) must
meet 2 or 4 G/ << g>> -orbits, so |G/ << g>> | = 2 or 1. By a similar argument, any
maximal cyclic subgroup intersecting the center of G nontrivially has index ≤ 2.
(2, 2, k) corresponds to a group of order 2k. It has a cyclic, index 2 subgroup

<< g>> of order k, which must be normal. Kulkarni assumes that his groups operate
on a space with χ = 2, and uses this fact to prove that each h ∈ G \ << g>> must have
order 2. In our case, we use the observation above. Now assume h ∈ G \ << g>> is
fixed. Since each (hga) has order 2, hgahga

= 1, so hgah−1
= (ga)−1. It follows

that G is dihedral.
In the (2, 3, 3) case, |G| = 12. G is nonabelian. There are three nonabelian

groups of order 12, and two of them contain elements of order 6. The third is Tet.
In the (2, 3, 4) case, G has order 24 and trivial center. With this in mind, a look

at a table of groups such as [Coxeter and Moser 1980, p. 137] easily shows that
G = Oct.

Finally, in the (2, 3, 5) case, |G| = 60. Sylow theory shows that G contains
five copies of D2, intersecting trivially, 20 copies of Z3, and six copies of Z5. If
any proper subgroup of G were normal, it would contain every conjugate of each
element. Counting arguments show this to be impossible, so G is simple. Thus
G = Icos. �

Lemma 4.5. Let G act pseudofreely, locally linearly, and homologically trivially
on S2

× S2. Then the isotropy groups of the G-action are repeated in pairs.
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Proof. Say G is nice if for each singular point x ∈ S2
× S2, (S2

× S2)Gx meets
2 or 4 G-orbits. If G is nice, then its isotropy groups are repeated in pairs. We
assume inductively that every proper subgroup of G is nice, but that G is not.
Then by Lemma 4.3, there is some x0 so that o((S2

× S2)Gx0 )= 1; that is, G acts
transitively on S2

× S2)Gx0 .
By Proposition 4.2, Gx0 is cyclic — say Gx0 = << g>> , and Fix(g)= {x0, . . . , x3}.

Let h1(x0)= x1, h2(x0)= x2, and h3(x0)= x3. By minimality, G is generated by
g, h1, h2, and h3, and since h−1

i ghi (x0)= x0, << g>> is normal in G. By minimality
again, |g| = p for some prime p. Now, G/ << g>> acts freely on {x0, . . . , x3}, so
|G/ << g>> | = 4. Thus G is an extension of Gx0 by Z4 or Z2 × Z2.

The remainder of the proof is an analysis of these extensions. Most can be ruled
out by elementary group theory considerations. The two more difficult cases use
arguments essentially due to Edmonds [1997b].

In the following cases, consideration of the possible automorphism actions of
H on << g>> shows that some element of G \ << g>> must be central, and then that g is
contained in a cyclic subgroup of order 2p, contradicting minimality.

(1) Zp o (Z2 × Z2), for p > 2.

(2) Any nonsplit extension of Z2 by Z2 × Z2.

(3) Zp o Z4, for p ≡ 3 (mod 4).

The case G = Z2 o Z4 must actually be abelian, so G is a direct product. Z2 × Z4

contains two cyclic subgroups of order 4. They intersect nontrivially, and therefore
have the same fixed set. It follows that G must act semifreely, that is, each singular
point is fixed by the entire group.

Two cases remain: G = Z2 ×Z2 ×Z2, and G = Zp oZ4, where p ≡ 1 (mod 4).
Suppose G = Z2 × Z2 × Z2 admits a nonnice action. G has seven cyclic sub-

groups. Since Z2 × Z2 does not act freely on S3, their fixed-point sets are disjoint,
and each has Z2 stabilizer. Since G is abelian, it acts on each fixed-point set, so
each constitutes an orbit. The action has Riemann–Hurwitz data (2, 2, 2, 2, 2, 2, 2).

Let X be S2
× S2 minus a small invariant neighborhood of the singular set, and

let Y = X/G. Y is a compact 4-manifold with seven RP3 boundary components
P1, . . . , P7. The cohomology long exact sequence for the pair (Y, ∂Y ) (with Z2-
coefficients) shows that im(i∗

: H 3(Y ) → H 3(∂Y )) has rank 6. The covering
X → Y is classified by a map ϕ : Y → BG. This induces a map (ϕ◦i)∗ : H 3(G)→
H 3

(⋃
j Pj

)
= (Z2)

7, which factors through H 3(Y ). Since it factors, the rank of
im(ϕ ◦ i)∗ is at most 6.

On the other hand, each π1(Pj ) maps to a different subgroup of π1(Y ) ≈ Z2 ×

Z2 × Z2 under the natural inclusion, and hence each Pj corresponds to a different
nontrivial element of H1(Y ). Since H1(Y ) ∼= hom(H1(Y ),Z2), each nontrivial
element of H 1(Y,Z2) restricts nontrivially to H 1(Pj ) for some j . By the Kunneth
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theorem and the cohomology structure of H∗(RP3), each of these has a nonzero
cube which maps to the top class of Pj . Thus rk(im(ϕ ◦ i)∗)= 7, a contradiction.

A somewhat similar argument covers the remaining case. Let G ∼= Zp oZ4, with
p ≡ 1 (mod 4). The semidirect product automorphism must have order 4; other-
wise G contains a cyclic subgroup Z2p. Thus G ≈ << g, h | g p

= h4
= 1, h−1gh =

ga
>> , where 4a = p + 1. G has p different subgroups of order 4, all of which

are conjugate, so if an action exists, it has Riemann–Hurwitz data (4, 4, 4, 4, p).
Define X and Y as before. Then Y has boundary consisting of five lens spaces
L4, L4, L4, L4, and L p, with associated inclusions i1, . . . , i5 : Ln j ↪→ Y . Once
again, the covering X → Y is classified by a map ϕ : Y → BG, with induced maps
ϕ ◦ i j : Ln j → BG. However, the cohomology calculation is just a bit subtler this
time.

For any coefficient module M , the transfer map gives an isomorphism

H∗(G; M)→ H∗(Zp; M)Z4 .

With Zp coefficients, the ring H∗(Zp) is generated by elements s ∈ H 1(Zp) and
t ∈ H 2(Zp), where t is the image of s under the Bockstein map. H∗(Zp) therefore
inherits a G-module structure from the action of G on s given by h · s = as. Thus
h ·t =at , and h ·st = (2a)st , so the action of h on H 3(Zp) is given by multiplication
by −1. This has the unfortunate consequence that H 3(G; Zp)= 0. To compensate
for the G-action on H∗(Zp), we replace Zp with a twisted coefficient module Z̃p,
where h acts by −1. Note that H∗(Zp; Z̃p) ∼= H∗(Zp; Zp) ∼= Zp as Zp-modules,
since the restriction of the G-action to its subgroup Zp is trivial. With this twisting,
we observe:

(1) Restriction gives an isomorphism (ϕ ◦ i5)
∗
: H 3(G; Z̃p)→ H 3(Zp; Z̃p)∼= Zp.

(2) For j = 1, . . . , 4, the maps (ϕ ◦ i j )
∗

: H 3(G; Z̃p) → H 3(Z4; Z̃p) = 0 are
trivial.

Now, since the coboundary map δ∗ : H 3(∂Y ; Z̃p)→ H 4(Y, ∂Y ; Z̃p) is Poincaré
dual to the augmentation H0(∂Y ; Z̃p)→ H0(Y ; Z̃p), we see that

im
(
i∗

: H 3(Y ; Z̃p)→ H 3(∂Y ; Z̃p)
)

consists of all (u1, . . . , u5) in H 3(∂Y ; Z̃p) such that
∑

u j = 0. In particular, if
u1 + u2 + u3 + u4 = 0, then u5 = 0, as well. But by the observations above,
there are elements u ∈ H 3(Y, Z̃p) which restrict trivially to each H 3(L4; Z̃p), but
nontrivially to H 3(L p, Z̃p). This rules out the G-actions in question. �

Theorem 4.1 follows from the lemmas. Thus condition 1 in Corollary 3.10
is necessary in the general case. In other words, any group acting pseudofreely
and homologically trivially on S2

× S2 also admits a linear, homologically trivial,
pseudofree action. We now proceed to prove the necessity of condition 2.
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Theorem 4.6. Let G act pseudofreely on S2
× S2, and suppose ϕ(G)=

〈(
−1 0

0 −1

)〉
.

Then G is abelian, and kerϕ is cyclic.

Proof. Let K ⊂ G act homologically trivially, so that

1 → K → G
ϕ
→

〈(
−1 0

0 −1

)〉
≈ Z2 → 1

is exact.

Claim. G/K acts freely on S2
× S2/K .

Let u ∈ G \ K , so that ϕ(u) generates Z2. If, for some x , u(x) lies in the same
orbit as x , then for some k ∈ K , ku(x)= x . But ku has Lefschetz number 0, so if
it has a fixed point, its fixed point set must be 2-dimensional.

For the same reason, G/K acts freely on the set of singular points in S2
×S2/K ,

and therefore it identifies the paired orbits of Lemma 4.5. Choose a small G-
invariant open neighborhood N ⊂ S2

×S2 of the singular set of the K -action, and let
X = S2

×S2
\ N . Let Y = X/G. It follows from the claim that Y is a manifold with

boundary consisting of two or three lens spaces Lni . (These ni ’s are exactly those
which appear in pairs in the Riemann- Hurwitz data.) Since X is a cover of Y , we
can use the Cartan–Leray spectral sequence (E p,q

2
∼= H p(G; Hq(X))⇒ H p+q(Y ))

to compute H 2(Y ; Z). Note that

(1) Since G is finite, H 1(G; M)= 0 for any free Z-module M .

(2) In general, H 0(G; M) ∼= MG , the submodule of M fixed by G. In our case,
G acts by

(
−1 0

0 −1

)
on H 2(X), so H 0(G; H 2(X))= 0.

(3) No nonzero differentials enter or leave E2,0
k

∼= H 2(G; H 0(X)).

Thus H 2(Y ) ∼= H 2(G). Similar arguments show that, for each component Lni

of ∂Y , H 2(Lni )
∼= H 2(Zni ), and that the restriction H 2(Y )→ H 2(Lni ) is given by

the corresponding map on subgroups.
By Poincaré duality in Y, we have an exact sequence

H 2(Y )→ H 2(∂Y )∼= H1(∂Y )→ H1(Y ).

This becomes

H 2(G)
r G
⊕

→

⊕
H 2(Zni )

∼=

⊕
H1(Zni )

i G
⊕

→ H1(G).

And since the restriction and inclusion maps factor through K , we also have a
sequence

H 2(K )
r K
⊕

→

⊕
H 2(Zni )

∼=

⊕
H1(Zni )

i K
⊕

→ H1(K ).

This sequence is not exact in general. However, from the previous sequence, it
follows that H 2(∂Y )/im(r G

⊕
) injects into H1(K ), and that H 2(∂Y )/im(r K

⊕
) injects



404 MICHAEL P. MCCOOEY

into a quotient of H1(K ). The remainder of the proof consists of cohomology
calculations showing that this is impossible unless G is abelian and K is cyclic.

Case 1: K is cyclic. Since G maps onto Z2, [G,G] ⊆ K . Thus if G is nonabelian,
the kernel of <<k>> → H1(G) is nontrivial. In the exact sequence

H 2(G)
r G
⊕

→ H 2(Zn)⊕ H 2(Zn)∼= H1(Zn)⊕ H1(Zn)
i G
⊕

→ H1(G),

the image of r G
⊕

lies in the diagonal subgroup of H 2(Zn)⊕ H 2(Zn). If G is non-
abelian, the kernel of the inclusion map does not.

Case 2: K = Tet, Oct, or Icos. To every polyhedral group K , there corresponds a
binary polyhedral group K̃ such that 1→Z2 → K̃ → K →1 is exact. The Lyndon–
Hochschild–Serre spectral sequence (E p,q

2
∼= H p(K ; Hq(Z2)) ⇒ H p+q(K̃ ), in

this case) relates the cohomologies of the groups in this sequence. It shows, in
particular, that H 2(K ) injects into H 2(K̃ ). But since each K̃ acts freely on S3,
Poincaré duality shows that H 2(K̃ )≈ H1(K̃ ). Thus H 2(K ) ↪→ H1(K̃ ).

By computing the sizes of H1(K̃ ) in each case, we find that |H 2(Tet)| ≤ 3,
|H 2(Oct)| ≤ 2, and H 2(Icos) = 0. On the other hand,

∣∣⊕ H 2(Zni )
∣∣ = n1 ×

n2 × n3. Finally, H1(Tet) = Z3, H1(Oct) = Z2, and H1(Icos) = 0. In each case,
H 2(∂Y )/im(r K

⊕
) is too large to inject into a quotient of H1(K ).

Case 2: K = Dn . Recall that

H1(Dn)≈

{
Z2 = << t >> if n is odd,

Z2 × Z2 = <<s, t >> if n is even,

and

H 2(Dn)≈

{
Z2 if n is odd,

Z2 × Z2 if n is even.

Since n1 =n2 =2 and n3 =n, we have
∣∣⊕ H 2(Zni )

∣∣=4n. Except in the cases n =2
and n = 4, it is immediate that H 2(∂Y )/im(r K

⊕
) cannot inject into any quotient of

H1(Dn). We consider the remaining possibilities:
Suppose n = 2. Using Lemma 2.2, we find that the only nonabelian extension

1 → D2 → G → Z2 → 1 has G = D4 ∼= <<s, t | s4
= t2

= 1, tst−1
= s−1

>> , with
D2 = <<s2, t >> . Thus we have an exact sequence

H 2(D4)
r

D4
⊕

→ H 2(Z2)⊕ H 2(Z2)⊕ H 2(Z2)∼= H1(Z2)⊕ H1(Z2)⊕ H1(Z2)
i

D4
⊕

→ H1(D4),

where the three Z2 subgroups are generated by s2, t , and s2t . Since the restrictions
and inclusions factor through D2, Lemma 2.5 shows that |im(r D4

⊕ )| = |ker i D4
⊕ | = 2.

This contradicts exactness.
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D2 also has two abelian extensions: 1 → D2 → D2 × Z2 → Z2 → 1, and
1 → D2 → Z4 × Z2 → Z2 → 1. In each case, the restriction and inclusion maps
can be explicitly calculated, and the sequence is seen not to be exact. D2 is the
only candidate for kerϕ which is abelian, but not cyclic.

Finally, suppose K = D4. Then we have Zn1 = << t >> ≈ Z2, Zn2 = <<st >> ≈ Z2,
and Zn3 = <<s>> ≈ Z4. Consulting Lemma 2.5 again, we see that r D4

⊕ has matrix(
0 1
1 0
2 2

)
relative to the bases given there; i D4

⊕ has matrix
(

0 1 1
1 1 0

)
, as is easily checked.

Now, if r G
D4

is not onto, then the element counts which applied for most n also
apply for D4. But if r G

D4
is onto, then

⊕
H 2(Zni )/im(r

D4
⊕ ) should inject into

H1(D4), so we should have ker i D4
⊕ ⊆ im(r D4

⊕ ). However, the element (1, 1, 1) ∈

H1( << t >> )⊕ H1( <<st >> )⊕ H1( <<s>> ) is in the kernel, but not in the image. �

Condition 3 of Corollary 3.10 is necessary by Bredon’s theorem. A related result
of Bredon helps us establish the necessity of condition 4, and thus complete the
proof of the main theorem:

Proposition 4.7. Suppose G acts pseudofreely, ϕ(qa)= a, ϕ(qb)= b, and q2
a = 1.

Then qa and qb do not commute.

Proof. Given the necessity of conditions 1, 2, and 3 of Corollary 3.10, it suffices
to rule out the possibility that G = <<qa, qb>>

∼= Z2 × Z4k , where k ≥ 1. In the
case of the linear models (Proposition 3.8), the argument divided into two parts:
If qa = (α, α), then qaq2k

b fixes a torus, contradicting pseudofreeness. And if
qa = (α, ρ) or (ρ, α), then the fact that qb exchanges factors of S2

× S2 means
that qa and qb cannot commute, so no action exists, even with a two-dimensional
singular set.

Assume, then, that qa and qb commute. Now, qa must act freely, so X = S2
×

S2/ <<qa >> is a manifold which inherits an action by <<qb>> = Z4k . As motivation,
we note that the linear models for qa are distinguished by the intersection forms
(with Z2 coefficients) of the quotient spaces: In X1 = S2

× S2/(α, α), the diagonal
S2 maps to an embedded RP2 with self-intersection 1, so w2(X1) 6= 0. On the
other hand, generators of second homology for X2 = S2

× S2/(α, ρ) are given by
the images of S2

× ∗, (where ∗ is some point fixed by ρ), and (∗ ∪ −∗)× S2,
(where ∗ is any point in the first factor). Each of these has trivial self-intersection,
so w2(X2)= 0. To complete the proof, we will show (just as in the linear models)
that if <<qb>> acts on X , then w2(X) 6= 0. Bredon’s theorem then guarantees a
two-dimensional singular set.

Let x and y denote the standard generators for H 2(S2
× S2

; Z2), and consider
the cohomology spectral sequence of the covering:

E p,q
2 (X)= H p(Z2; Hq(S2

× S2
; Z2))⇒ H p+q(X; Z2).



406 MICHAEL P. MCCOOEY

<< xy>> Z2 Z2 Z2 Z2 Z2 Z2 · · ·

0 0 0 0 0 0

<< x, y>> Z2⊕Z2 Z2⊕Z2 Z2⊕Z2 Z2⊕Z2 Z2⊕Z2 Z2⊕Z2 · · ·

0 0 0 0 0 0

<<1>> Z2 Z2 Z2 Z2 Z2 Z2 · · ·

Z2 <<s>> <<s2
>> <<s3

>> <<s4
>> <<s5

>> · · ·

Table 1. E2(X).

It follows from the multiplicative structure of the spectral sequence that the
behavior of the entire E2 page is determined by d2(x) and d2(y). At least one must
be nonzero, since the sequence converges to the cohomology of a four-manifold.
And since <<qb>> acts on the quotient, the differentials must respect the induced
action of qb on H 2(S2

× S2). Hence d2(x)= d2(y)= 1s3, and ker d2 is generated
by x + y. It is easy to check that E3 = · · · = E∞, so u = [x + y] is a permanent
cocycle.

This spectral sequence is identified by a homotopy equivalence with that of the
fibration S2

× S2
→ EZ2 ×Z2 (S

2
× S2) → BZ2 (see [Hu 1959, IX.15]), and

under this identification, the cocycles which live to E0,∗
∞

are those in the image of
p∗

: H∗(X) → H∗(S2
× S2). Thus there is a class u ∈ H 2(X; Z2) which lifts to

x + y ∈ H 2(S2
× S2

; Z2).
We claim that u ∪ u 6= 0. To see this from the homological point of view, let

C∗(X) denote the singular chain complex of X . Then S2
×S2

= X̃ , and C∗(X̃; Z)∼=

C∗(X; Z)⊗Z Z[Z2]. The covering projection induces p∗
: C∗(X) → C∗(X̃) via

c 7→c⊗(1+qa). Moreover, because C∗(X) is a free Z-module, there is a natural iso-
morphism µ : C∗(X; Z)⊗Z2 → C∗(X; Z2), so that H∗(C∗(X)⊗Z2)= H∗(X; Z2).

Every class in H 2(S2
× S2

; Z2) is integral. Thus we can choose a cochain
υ ∈ C∗(X; Z) so that δ(p∗(υ)) = δ(υ ⊗ (1 + qa)) = 0 in C3(X̃; Z) and such
that υ⊗1 is a cocycle representing u in H 2(X; Z2). (Note that υ itself need not be
an integral cocycle. For related discussion, see [Acosta and Lawson 1997].) Then
[p∗(υ)⊗ 1] = x + y ∈ H 2(X̃; Z2), and [p∗(υ)] ∈ H 2(X̃; Z) represents an integral
lift of x + y — say (2m + 1)x̂ + (2n + 1)ŷ. So [p∗(υ)∪ p∗(υ)] = (8mn + 4m +

4n + 2)(x̂ ∪ ŷ)≡ 2 mod 4.
But p∗(υ)∪ p∗(υ) is also an equivariant cochain and hence must be of the form

γ ⊗ (1 + qa), where γ ∈ C4(X; Z). So [γ ] ≡ 1 mod 2, and [γ ⊗ 1] represents
u ∪ u. Thus u ∪ u 6= 0, so w2(X) 6= 0.

A heuristic geometrical argument is more direct: the Poincaré dual of u can
be represented by a surface F , and F̃ ⊂ S2

× S2 will represent an integral lift of
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P D(x + y), so F̃ · F̃ ≡ 2 (mod 4). The intersection points will be paired up by
the <<qa >> -action, so F · F ≡ 1 (mod 2), and u ∪ u 6= 0. �

Combining Corollary 3.10, Theorem 4.1, Theorem 4.6, Proposition 4.7, and
Proposition 3.4, we have our main theorem:

Theorem 4.8. Any finite group which admits a locally linear, orientation preserv-
ing, pseudofree action on S2

× S2 also admits a linear, orientation preserving,
pseudofree action.

In fact, the pairs (group, cohomology representation) are exactly those which
occur in the linear case.
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