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We study immersed critical points X of an elliptic parametric functional
F(X) =

∫
B F(Xu ∧ Xv) du dv that are spanned into a partially free bound-

ary configuration {0, S} in R3. We suppose that S is a cylindrical support
surface and that 0 is a closed Jordan arc with a simple convex projection.
Under geometrically reasonable assumptions on {0, S}, F, and X we prove
the projectability and uniqueness of stable immersions. This generalizes a
result for minimal surfaces obtained by Hildebrandt and Sauvigny.

1. Introduction

It is well known that one cannot expect uniqueness for disc-type solutions of
Plateau’s problem spanning an arbitrary closed Jordan curve 0 ⊂ R3. However,
0 bounds exactly one minimal surface if it has a simple projection onto a planar
convex curve; this is a celebrated theorem of Radó [1926], with a contribution by
Kneser [1926]. Moreover, this surface must in fact be a graph. Sauvigny [1982]
was able to generalize this result to surfaces with prescribed mean curvature under
an additional stability assumption.

More generally, Hildebrandt and Sauvigny studied the partially free boundary
problem for minimal surfaces inside boundary configurations {0, S}, consisting of
a closed Jordan arc 0 with a simple convex projection and a cylindrical support
surface S. They proved various uniqueness results and the existence of graph rep-
resentations; see [Hildebrandt and Sauvigny 1991; 1992; 1995]. Again, this result
was extended in [Müller 2005] to stable surfaces of prescribed mean curvature.

Here we consider this partially free boundary problem for elliptic parametric
functionals of the type

F(X) =

∫
B

F(Xu ∧ Xv) du dv,
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whose integrand F : R3
\ {0} → R+ represents a smooth elliptic Lagrangian satis-

fying the homogeneity relation

(1-1) F(t z) = t F(z) for all z ∈ R3, t > 0.

Obviously, F generalizes the classical area functional

A(X) =

∫
B

|Xu ∧ Xv| du dv

obtained in the case F(z) = |z|.
Using sophisticated tools from the direct methods in the calculus of variations,

Hildebrandt and von der Mosel [1999] studied Plateau’s problem for general elliptic
parametric functionals of the form

F(X) =

∫
B

F(X, Xu ∧ Xv) du dv;

they also addressed the partially free boundary problem [2002]. For a detailed
survey on the existence and regularity theory as well as further remarks on the
literature, see [Hildebrandt and von der Mosel 2005].

Investigating the functional F from a more geometric point of view, Winklmann
[2003] and Clarenz and von der Mosel [2004] studied immersed critical points, the
so-called F-stationary immersions, under Plateau-type boundary conditions. This
leads to surfaces of vanishing or, more generally, prescribed anisotropic mean cur-
vature, allowing extensions of Radó’s and Sauvigny’s projectability and uniqueness
results.

Here we obtain similar results for immersed surfaces with partially free bound-
aries. In particular, we extend the uniqueness result of [Hildebrandt and Sauvigny
1995] in an appropriate manner and prove graph representations for stable critical
points, or F-stable immersions in short, in the cylindrical boundary configuration
{0, S}. (Concerning anisotropic capillary surfaces with free boundaries, see [Koiso
and Palmer 2006].)

Specifically, in Section 2 we formulate general assumptions and collect basic
facts on F-stationary immersions with partially free boundaries; Lemma 2.5 might
be of independent interest. In Section 3 we show that the free boundary remains
inside 6 × R (Lemma 3.1) and prove that the surface is transversal to the fixed
boundary (Lemma 3.2). We also derive an equation for the surface normal at
the free boundary (Lemma 3.3). In Section 4 we compute the second variation
of F (Theorem 4.1) and use the previous results to construct an admissible test
function in the stability inequality (Lemma 4.2). In Section 5 we finally prove
the projectability of F-stable immersions (Theorem 5.1). This leads to the desired
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uniqueness result (Theorem 5.2) via a comparison principle for mixed boundary
value problems of minimal surface type.

2. Notation and preliminary results

A boundary configuration {0, S} consists of a closed Jordan arc 0 ⊂ R3 of class
C3 with endpoints P1, P2 and an embedded support manifold S ⊂ R3 of class C3

such that S ∩0 = {P1, P2}. We also suppose that 0 meets S with a positive angle
at these points.

Definition 2.1. A boundary configuration {0, S} is named projectable if

(a) S = 60 ×R is a cylinder surface over the planar Jordan curve 60 ∈ C3, which
decomposes the x1, x2-plane E into two unbounded domains.

(b) 0 is representable as a graph over E : 0 = {(x1, x2, γ (x1, x2)) : (x1, x2) ∈ 0},
where γ (x1, x2)∈C3(0) denotes the height function and 0∈C3 the projection
of 0 onto E .

Let 60 ∈ C3 be parametrized by σ = σ(s), −∞ < s < +∞, with arc length
|σ ′(s)|≡1. Suppose that Pk = (σ (sk), γ (σ (sk)), k =1, 2, for −∞< s1 < s2 <+∞.
If we set 6 := {σ(s) : s1 < s < s2}, the closed Jordan curve 0∪6 bounds a simply
connected domain G ⊂ E .

Definition 2.2. A projectable boundary configuration {0, S} is admissible if

(a) 0 is convex with respect to G and does not meet 60 perpendicularly, and

(b) for each s ∈ (−∞, s1) ∪ (s2, +∞), the normal line

L(s) := {p ∈ E : 〈p − σ(s), σ ′(s)〉 = 0}

meets G ∪ 60 only at the point σ(s).

We also introduce the tangent t (x) := (σ ′(s), 0) for x ∈ {σ(s)}×R, s ∈ R. With
the aid of e3 := (0, 0, 1) we define n(x) := t (x)∧e3 and κ(x) :=−

〈
(σ ′′(s), 0), n(x)

〉
for x ∈ {σ(s)} × R, s ∈ R. We can assume that n(x) points to the exterior of G.
Obviously,

t (x), e3 ∈ Tx S, n(x) ⊥ Tx S for all x ∈ S,

where Tx S denotes the tangent space of S at x .
Let B := {w = (u, v) ∈ R2

: u2
+ v2 < 1, v > 0} denote the semidisc. The

boundary ∂ B consists of the interval I := (−1, 1) × {0} and the closed semicircle
C :=∂ B\I . In the sequel, we consider immersions X : B →R3 of class C0(B, R3)∩

C3(B \ {−1, 1}, R3) with their Gauss map

N : B \ {−1, 1} → R3, N (w) :=
Xu ∧ Xv

|Xu ∧ Xv|
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possessing finite area

A(X) =

∫
B

d A < ∞.

Here d A =|Xu ∧Xv| du dv denotes the surface element with respect to the induced
metric g. In order to extend the projectability and uniqueness result of [Hildebrandt
and Sauvigny 1995] to parametric functionals, we introduce the following class
C(0, S) of immersions:

Definition 2.3. An immersion X = X (u, v) ∈ C0(B, R3) ∩ C3(B \ {−1, 1}, R3)

with finite area A(X) < ∞ is called admissible, and we write X ∈ C(0, S), if

(a) X |C : C → 0 maps C topologically onto 0 and X (−1, 0) = P1, X (1, 0) = P2,
and

(b) X (I ) ⊂ S.

Later we will need the following regularity assumptions, which allow us to
control the curvature of an F-stationary immersion X ∈ C(0, S) at the corners
w = ±1.

Condition (R). The total curvature of X is bounded, i.e.,

(2-1)
∫

B
|K | d A < ∞,

and the limits

(2-2) N (±1) := lim
w→±1

N (w)

exist.

Remark. For stationary minimal surfaces, i.e. the case F(z) = |z|, one can show
that both conditions (2-1), (2-2) are satisfied. In fact, this follows from asymptotic
expansions at the corners w = ±1, see [Dierkes et al. 1992, Section 8.4]. Thus
Condition (R) seems geometrically reasonable.

For X ∈ C(0, S) we now consider the parametric functional

F(X) =

∫
B

F(N ) d A

with a Lagrangian F ∈ C3(R3
\ {0}, R) ∩ C0(R3, R) satisfying the homogeneity

relation (1-1). Throughout this paper, F is assumed to be positive:

F(z) > 0 for all z 6= 0.

In addition, we always assume F to be elliptic; that is, the restriction of

Fzz(z) =

(
∂2 F

∂zα∂zβ
(z)

)
α,β=1,2,3
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to z⊥
:= {ζ ∈ R3

: 〈ζ, z〉 = 0} is a positive-definite linear mapping for all z 6= 0.
Geometrically, the ellipticity condition implies that F represents a support func-

tion of the convex body ⋂
z 6=0

{
y ∈ R3

: 〈y, z〉 ≤ F(z)
}
.

Its boundary WF gives us the convex surface parametrized by

(2-3) Fz : S2
→ R3, z 7→ Fz(z).

In the terminology of [Taylor 1978], WF = Fz(S2) is called the Wulff shape.
Given X ∈ C(0, S), we say that a smooth family X : B × (−ε0, ε0) → R3 of

immersions is an admissible variation of X if we have X( · , 0) = X ,

Y :=
∂

∂ε
X( · , ε)|ε=0 ∈ C2

0(B ∪ I, R3),

X(w, ε) = X (w) for all ε ∈ (−ε0, ε0) and all w ∈ (B ∪ I ) \ K with some compact
set K ⊂ B ∪ I , and X( · , ε)|I : I → S for all ε ∈ (−ε0, ε0). Y is called the
corresponding variational vector field. Evidently, we deduce

(2-4) Y (w) ∈ TX (w)S for all y ∈ I.

Conversely, if Y ∈ C2
0(B ∪ I, R3) satisfies (2-4), one can show that an admissible

variation of the form
X( · , ε) = X + εY + o(ε)

exists; see [Dierkes et al. 1992, Volume I, p. 333], for example.
We say that X ∈ C(0, S) is F-stationary if the first variation

δF(X, Y ) :=
d
dε

F
(
X( · , ε)

)∣∣
ε=0

vanishes for all admissible variations. An F-stationary immersion X ∈ C(0, S) is
called F-stable if additionally the second variation

δ2F(X, Y ) =
d2

dε2 F
(
X( · , ε)

)∣∣
ε=0

is nonnegative for all admissible variations. Obviously, any minimizer X ∈C(0, S)

of F is F-stable, but the converse is not true in general.
Standard computations (see [Clarenz 2002, Section 1] or [Winklmann 2002,

Proposition 2.1], for example) show that the first variation for X ∈ C(0, S) is

(2-5) δF(X, Y ) = −

∫
B

HF 〈Y, N 〉 d A −

∫
I

〈
Fz(N ), Xu ∧ Y

〉
du.
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Here HF denotes the F-mean curvature or anisotropic mean curvature of X , de-
fined as follows [Räwer 1993; Clarenz 2002]: Let

(2-6) NF := Fz ◦ N , NF : B \ {−1, 1} → WF ,

describe the generalized Gauss map of X into the Wulff shape. Then SF :=

−d X−1
◦ d NF is called the F-Weingarten operator and

(2-7) HF := tr SF .

For technical reasons, we write

(2-8) SF := AF ◦ S,

where S := −d X−1
◦ d N denotes the classical Weingarten operator and AF indi-

cates the symmetric, positive-definite endomorphism given by

(2-9) AF := d X−1
◦ Fzz(N ) ◦ d X.

Note that AF is the identity if F(z) = |z| is the area integrand. Hence, in this case
all definitions coincide with the classical notions.

Now assume that X ∈ C(0, S) is F-stationary. If we choose Y = λN with
λ ∈ C2

0(B, R), we infer the identity

(2-10) HF ≡ 0 on B

from (2-5) and the fundamental lemma of the calculus of variations. As a conse-
quence,∫

I

〈
Fz(N ), Xu ∧ Y

〉
du = 0 for all Y ∈ C2

0(B ∪ I, R3) satisfying (2-4).

This implies

(2-11) Fz(N (w)) ∈ TX (w)S for all w ∈ I.

Hence we have the following characterization of F-stationary immersions:

Lemma 2.4. Let F be an elliptic Lagrangian and let {0, S} be a projectable
boundary configuration. X ∈ C(0, S) is F-stationary if and only if X satisfies
(2-10) and the contact condition (2-11).

We now derive two general relations, which represent the anisotropic analogues
to the well known relations Nu = N ∧ Nv, Nv = −N ∧ Nu for conformally
parametrized minimal surfaces. These will be particularly important in the deriva-
tion of the boundary condition for the normal (Lemma 3.3).

We will use standard shorthands when computing in coordinates, writing in-
differently (u, v) = (u1, u2) and ϕu = ϕu1 = ϕ,1, ϕv = ϕu2 = ϕ,2. We denote
the coefficients of the induced metric by gαβ = 〈X,α, X,β〉, and the coefficients



F -STABLE IMMERSIONS WITH PARTIALLY FREE BOUNDARIES 415

of (gαβ)−1
α,β=1,2 by gαβ . Moreover, we abbreviate g := det(gαβ) = g11g22 − g2

12
with a slight notational overlap. Finally, we let hαβ := g(S∂α, ∂β) = −〈N,α, X,β〉

indicate the coefficients of the second fundamental form and aαβ = g(AF∂α, ∂β) =

〈Fzz(N )X,α, X,β〉 the coefficients of g(AF · , · ).
As an immediate consequence of (2-7), (2-8), and (2-9) we obtain

SF∂ε = gαβaβγ gγ δhδε∂α,(2-12)

HF = gαβaβγ gγ δhδα,(2-13)

where the Einstein summation convention is in effect. We also need the well known
identities

(2-14) Xu ∧ N = −
√

gg2α X,α, Xv ∧ N =
√

gg1α X,α

on B \ {−1, 1}, valid for an arbitrary immersion X ∈ C(0, S).

Lemma 2.5. For any F-stationary immersion X ∈ C(0, S) we have

∂

∂u
Fz(N ) =

√
gg2αaαβgβγ N ∧ N,γ ,(2-15)

∂

∂v
Fz(N ) = −

√
gg1αaαβgβγ N ∧ N,γ(2-16)

on B \ {−1, 1}.

Proof. We prove only the first equality; the argument for the second is similar.
First note that both sides of (2-15) are tangential to X ; more precisely,

∂

∂u
Fz(N ) = Uα X,α,

√
gg2αaαβgβγ N ∧ N,γ = V α X,α.

We will show that the coefficients coincide, i.e., Uα
= V α for α = 1, 2. To this end

we use (2-12) obtaining

(2-17) Uα
= −gαβaβγ gγ δhδ1.

In order to compute V α, we employ (2-14) and deduce

g1β
〈
N ∧ N,α, X,β

〉
=

1
√

g
h2α, g2β

〈
N ∧ N,α, X,β

〉
= −

1
√

g
h1α.

Consequently, we arrive at

(2-18) V 1
= g2βaβγ gγ δhδ2, V 2

= −g2βaβγ gγ δhδ1.

Comparison of (2-17) and (2-18) immediately yields U 2
= V 2. Furthermore, we

see that V 1
−U 1

= gαβaβγ gγ δhδα = HF , due to (2-13). Because X is supposed to
be F-stationary, we infer that U 1

= V 1. �
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Let ϕ ∈ C2(B) and a smooth vector field V = V α∂α on B be prescribed. We
introduce

∇ϕ = gαβϕ,α∂β and div V =
1

√
g
(
√

gV α),α = V α
,α − 0α

αβ V β,

the gradient and divergence with respect to g; as usual, the 0
γ

αβ here are the
Christoffel symbols, given by the Gauss–Weingarten relations (see [Dierkes et al.
1992, Chapter 1])

X,αβ = 0
γ

αβ X,γ + hαβ N .

Following [Clarenz 2002], we define the elliptic operator 1F of second order by

(2-19) 1Fϕ := div(AF∇ϕ) =
1

√
g

(√
ggαβaβγ gγ δϕ,δ

)
,α

.

We recall the divergence of AF , given by the 1-form

(2-20) (div AF )[V ] := V αgβγ aαβ;γ ,

where aαβ;γ = aαβ,γ − 0δ
γ αaδβ − 0δ

γβaαδ denote the coefficients for the covariant
derivative of the tensor g(AF · , · ).

The following two identities were established in [Clarenz 2002, Theorem 2;
Clarenz and von der Mosel 2004, Corollary 4.3]. Using (2-19) and (2-20), the first
of them is derived via the Gauss–Weingarten relations, and the second identity via
the Codazzi equation hαβ;γ = hβγ ;α.

Lemma 2.6. Let F be an elliptic Lagrangian. Then any F-stationary immersion
X ∈ C(0, S) fulfills the equations

1F X − (divAF )[∇ X ] = 0,(2-21)

1F N + tr(AF S2)N = 0(2-22)

on B \ {−1, 1}.

We conclude this section with a general assumption on F , which has two conse-
quences: it forces any F-stationary surface X ∈ C(0, S) in an admissible boundary
configuration {0, S} to map I onto 6×R (Lemma 3.1), and it ensures that N 3 > 0
at the corners (Lemma 3.2).

Condition (W). The Wulff shape WF meets E perpendicularly, and WF ∩ E =

∂ BR(0) ∩ E for some radius R > 0.

According to (2-3), this condition is equivalent to

(2-23) Fz(z1, z2, 0) = (Rz1, Rz2, 0) for all z ∈ S1
× {0}.
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3. Boundary behaviour of F-stationary immersions

Lemma 3.1. Let F denote an elliptic Lagrangian satisfying Condition (W), and
let {0, S} represent an admissible boundary configuration. Suppose X ∈ C(0, S)

to be F-stationary. Defining f (w) = (X1(w), X2(w)) : B → E , we then infer
f (I ) = 6.

Proof. We follow the proof of [Hildebrandt and Sauvigny 1992, Proposition 1].
Let s∗

∈ (−∞, s1] be the largest number such that f (B) ⊂ H(s∗), where we have
made the abbreviation

H(s) :=
{

y ∈ E :
〈
y − σ(s), σ ′(s)

〉
≥ 0

}
, s ∈ (−∞, s1].

Because f : B → E is continuous, such an s∗ exists by (a) in Definition 2.1.
Suppose that s∗ < s1. Then the nonnegative function

8(w) :=
〈
f (w) − σ(s∗), σ ′(s∗)

〉
, w ∈ B,

satisfies the homogeneous elliptic equation 1F8 − (div AF )[∇8] = 0 on B, by
Lemma 2.6. According to the maximum principle and the choice of s∗, we can
find a point w0 ∈ ∂ B \ {−1, 1} with 8(w0) = 0. From condition (b) in Definition
2.2 and the boundary conditions for X we infer that w0 ∈ I and f (w0) = σ(s∗).

Hopf’s boundary point lemma now implies 8u(w0) = 0 and 8v(w0) > 0, which
we may rewrite as

(3-1)
〈
Xu(w0), t (X (w0))

〉
= 0,

〈
Xv(w0), t (X (w0))

〉
> 0.

Noting that Xu(w0) ∈ TX (w0)S we find Xu(w0) = X3
u(w0)e3. This reveals that

N 3(w0)=
〈
N (w0), e3

〉
=0, and (2-11) together with Condition (W) imply N (w0)=〈

N (w0), t (X (w0))
〉
t (X (w0)). With the aid of (2-14) and (3-1), we now obtain the

contradiction

0 > −
√

gg2α
〈
X,α(w0), t (X (w0))

〉
=

〈
Xu(w0) ∧ N (w0), t (X (w0))

〉
= 0.

Thus we conclude s∗
= s1 and hence f (B) ⊂ H(s1). Similarly, one shows that

f (B) ⊂ H(s2) holds true with

H(s) :=
{

y ∈ E :
〈
y − σ(s), σ ′(s)

〉
≤ 0

}
, s ∈ [s2, +∞).

A further application of Hopf’s boundary point lemma finally yields f (I ) = 6. �

Form Lemma 3.1 we infer that f (∂ B) = ∂G. A standard argument then proves
transversality to the fixed boundary C .

Lemma 3.2. In addition to the assumptions of Lemma 3.1, suppose that X ∈

C(0, S) satisfies Condition (R). Then N 3(w) > 0 for all w ∈ C.
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Proof. By [Clarenz 2002, Theorem 2.3], F-stationary immersions have the convex-
hull property. Hence, the argument of [Sauvigny 1982, Satz 2] applies and yields
the estimate N 3(w)>0 for arbitrary w ∈C\{−1, 1}. See also [Clarenz and von der
Mosel 2004, p. 33].

To prove that N 3(w) > 0 for all w ∈ C , suppose that N 3(−1) vanished. Then
Condition (W), (2-11) and the continuity of N would imply N (−1) ∈ TP1S; hence

(3-2) N (−1) = 〈N (−1), t (P1)〉t (P1).

On the other hand, we have 〈N (−1), a(P1)〉 = 0, where a(P1) ∈ R3 denotes a unit
tangent vector to 0 in P1. Combining this with (3-2), we infer the relation

〈t (P1), a(P1)〉 = 0.

However, because {0, S} is projectable, this is only possible if 0 meets 60 perpen-
dicularly, in contradiction to condition (a) in Definition 2.2. Thus we must have
N 3(−1) 6= 0, and by continuity even N 3(−1) > 0. The same argument applies to
N 3(+1) and the proof is complete. �

Now we derive a boundary condition for N 3 on I which generalizes [Hildebrandt
and Sauvigny 1995, Proposition 1].

Lemma 3.3. Let F be an elliptic Lagrangian, and let X ∈ C(0, S) be an F-
stationary immersion in a projectable boundary configuration {0, S}. Writing F =

F(N ), κ = κ(X), etc., we have

(3-3)
√

gg2αaαβgβγ
[F−1 N 3

],γ = F−3κ
〈
Fz, t

〉2〈Fz ∧ Xu, n
〉
N 3 on I.

Proof. First note the relation

F[F−1 N 3
],γ = F

〈
(F−1 N ),γ , e3

〉
= −F−1

〈Fz, N,γ 〉〈N , e3〉 + 〈N,γ , e3〉.

Because 〈Fz(N ), N 〉 = F(N ) (by homogeneity), this implies

[F−1 N 3
],γ = F−2

〈N ∧ N,γ , Fz ∧ e3〉 on B \ {−1, 1}.

In view of Lemma 2.5, we arrive at

(3-4)
√

gg2αaαβgβγ
[F−1 N 3

],γ = F−2
〈

∂

∂u
Fz, Fz ∧e3

〉
=−F−2

〈
Fz,

∂

∂u
[Fz ∧e3]

〉
on B \ {−1, 1}.

From (2-11) we conclude Fz ∧e3 = Fz ∧(n∧t)=〈Fz, t〉n on I and consequently

(3-5)
〈
Fz,

∂

∂u
[Fz ∧ e3]

〉
=

〈
Fz, t

〉〈
Fz,

∂

∂u
n
〉
= κ

〈
Fz, t

〉2〈Xu, t
〉

on I.

In the last identity, we used the general relation

(3-6)
〈
v, Dn(x)w

〉
= κ(x)

〈
v, t (x)

〉 〈
w, t (x)

〉
for all v, w ∈ Tx S, x ∈ S,
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due to the cylindrical structure of S. On the other hand, we compute

〈Xu, t〉Fz − 〈Fz, t〉Xu = (Xu ∧ Fz) ∧ (e3 ∧ n) = 〈Xu ∧ Fz, n〉e3 on I,

by applying (2-11) and t = e3 ∧ n. By multiplication with N we finally deduce

(3-7) F〈Xu, t〉 = −〈Fz ∧ Xu, n〉N 3 on I.

Now the relation (3-3) stated above results from (3-4), (3-5), and (3-7). �

4. The second variation

In this section we consider the second variation of an F-stationary immersion
X ∈ C(0, S) in a projectable boundary configuration. For second variation formu-
las under Plateau type boundary conditions we refer the reader to [Räwer 1993],
[Fröhlich 2002] and [Clarenz and von der Mosel 2004].

Let X be an admissible variation of X ∈ C(0, S) with the variational vector
field Y ∈ C2

0(B ∪ I, R3). We denote by N (ε), d A(ε), HF (ε) and Y (ε) geometric
quantities evaluated at X( · , ε). Differentiating the first variation formula (2-5), we
obtain

δ2F(X,Y )

=
d
dε

(
δF(X( · ,ε),Y (ε))

) ∣∣∣∣
ε=0

=
d
dε

(
−

∫
B

HF (ε)〈Y (ε), N (ε)〉d A(ε) −

∫
I
〈Fz(N (ε)), Xu( · ,ε) ∧ Y (ε)〉du

)∣∣∣∣
ε=0

.

We now assume that X is F-stationary. Then we infer from (2-10) and (2-11) that

(4-1) δ2F(X, Y ) = −

∫
B

∂

∂ε
HF (ε)

∣∣∣
ε=0

〈Y, N 〉 d A

−

∫
I

〈
∂

∂ε
Fz(N (ε))

∣∣∣
ε=0

, Xu ∧ Y
〉

du

−

∫
I

〈
Fz(N ),

∂

∂ε

[
Xu( · , ε)∧ Y (ε)

]∣∣∣
ε=0

〉
du.

According to [2004, Section 4], the variation of the F-mean curvature is

∂

∂ε
HF (ε)

∣∣∣
ε=0

= 1Fϕ + ϕ tr(AF S2)

where ϕ = 〈Y, N 〉. Integration by parts consequently yields

(4-2) −

∫
B

∂

∂ε
HF (ε)

∣∣∣
ε=0

〈Y, N 〉 d A =

∫
B

(
g(AF∇ϕ, ∇ϕ) − tr(AF S2)ϕ2) d A

+

∫
I
ϕ
√

gg2αaαβgβγ ϕ,γ du.
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Furthermore, we note the relation

∂

∂ε
N (ε)

∣∣∣
ε=0

= −gαβ
〈Y,β, N 〉X,α = gαβ

(
〈Y, N,β〉 −ϕ,β

)
X,α.

In view of (2-14) and the identity Fzz(N )N = 0, this gives us

(4-3)
〈

∂

∂ε
Fz(N (ε))

∣∣∣
ε=0

, Xu∧Y
〉
=ϕ

√
gg2αaαβgβγ ϕ,γ −ϕ

√
gg2αaαβgβγ

〈
Y, N,γ

〉
.

Note that Fzz(N )N = 0 is an immediate consequence of the homogeneity relation
(1-1).

Finally, we observe that

Xu( · , ε)∧ Y (ε) =
〈
Xu( · , ε)∧ Y (ε), n(X( · , ε))

〉
n(X( · , ε)) on I,

because Y (ε) is always tangential to S. Using
〈
Fz(N ), n

〉
= 0 and (3-6), we thus

obtain

(4-4)
〈
Fz(N ),

∂

∂ε

[
Xu( · , ε)∧ Y (ε)

]∣∣∣
ε=0

〉
= κ

〈
Xu ∧ Y, n

〉〈
Fz(N ), t

〉 〈
Y, t

〉
.

Collecting formulas (4-1)–(4-4), we arrive at

δ2F(X, Y ) =

∫
B

{
g(AF∇ϕ, ∇ϕ) − tr(AF S2)ϕ2

}
d A

+

∫
I
ϕ
√

gg2αaαβgβγ
〈
Y, N,γ

〉
du −

∫
I
κ
〈
Xu ∧ Y, n

〉 〈
Fz(N ), t

〉 〈
Y, t

〉
du,

with ϕ =
〈
Y, N

〉
.

Variational vector fields of the form Y = λF(N )−1 Fz(N ) with some function
λ ∈ C2

0(B ∪ I, R) are of special interest. According to
〈
Y, N

〉
= λ and

〈
Y, N,γ

〉
=

λF(N )−1 F(N ),γ , we obtain:

Theorem 4.1. Let F be an elliptic Lagrangian and let X ∈ C(0, S) be an F-
stationary immersion in a projectable boundary configuration {0, S}. For any λ ∈

C2
0(B ∪ I, R) the second variation of X in the direction Y = λF(N )−1 Fz(N ) is

then given by

(4-5) δ2F(X, λ) =

∫
B

(
g(AF∇λ, ∇λ) − tr(AF S2)λ2) d A

+

∫
I
λ2√gF(N )−1g2αaαβgβγ F(N ),γ du

−

∫
I
λ2κ F(N )−2〈Xu ∧ Fz(N ), n(X)

〉 〈
Fz(N ), t (X)

〉2 du.
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Here we have set δ2F(X, λ) := δ2F(X, λF(N )−1 Fz(N )). In particular, for all
F-stable X we have

(4-6) δ2F(X, λ) ≥ 0

with arbitrary λ ∈ C2
0(B ∪ I, R).

Remark. Observe that (4-6) remains true for λ ∈ H 1
2 (B, X) ∩ C0

0(B ∪ I ), where
we have set

H 1
2 (B, X) =

{
λ : B → R measurable :

∫
B
{λ2

+ |∇λ|
2
}d A < +∞

}
.

Using the essential assumption (W) and the regularity hypothesis (R), we now
show that (N 3)− := min{N 3, 0} is an admissible test function.

Lemma 4.2. Let F be an elliptic Lagrangian satisfying the Condition (W), and
let {0, S} be an admissible boundary configuration. Suppose furthermore that
X ∈ C(0, S) denotes an F-stationary immersion satisfying Condition (R). Then
(N 3)− lies in H 1

2 (B, X) ∩ C0
0(B ∪ I ).

Proof. Clearly, (N 3)− ∈ C0
0(B ∪ I ) in view of the continuity assumption (2-2) and

Lemma 3.2.
In order to prove (N 3)− ∈ H 1

2 (B, X), we utilize (2-1) and argue as follows: Fix
w ∈ B, and let {e1, e2} be an orthonormal basis of Tw B such that Sei = κi ei for
i = 1, 2 hold true at this point; here κ1, κ2 denote the principal curvatures of X .
Because HF vanishes, we have the relation

(4-7) α1κ1 + α2κ2 = 0

with αi := g(AF ei , ei ). Now we estimate 0 < 3−
≤ α1, α2 ≤ 3+ < ∞ where

(4-8) 3−
:= inf

z∈S2

ζ∈z⊥
\{0}

〈Fzz(z)ζ, ζ 〉

|ζ |2
, 3+

:= sup
z∈S2

ζ∈z⊥
\{0}

〈Fzz(z)ζ, ζ 〉

|ζ |2

give a lower and upper bound for the eigenvalues of AF , respectively. A combina-
tion with (4-7) yields the estimate

κ2
1 + κ2

2 ≤ 2
(

3+

3−

)
|K |

where K = κ1κ2 denotes the Gaussian curvature of X . Due to |∇N |
2

= κ2
1 + κ2

2 ,
we conclude that ∫

B
|∇N |

2 d A ≤ 2
(

3+

3−

) ∫
B

|K | d A.

Thus N lies in H 1
2 (B, X) and the assertion follows. �
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Remark. Sauvigny [1990, Lemma 7] has used similar arguments in order to es-
tablish curvature estimates for immersions of minimal-surface type in weighted
conformal parameters.

5. Projectability and uniqueness

In this section we prove our main results.

Theorem 5.1. Let F denote an elliptic Lagrangian satisfying Condition (W), and
let {0, S} constitute an admissible boundary configuration. Furthermore, let X ∈

C(0, S) describe an F-stable immersion satisfying Condition (R). Then we have

(5-1) N 3(w) > 0 on B

and X can be represented as a graph over the x1, x2-plane, i.e., we have the
parametrization x3

= ζ(x1, x2), (x1, x2) ∈ G, with some function

ζ ∈ C3(G \ {p1, p2}) ∩ C0(G),

where p1 := σ(s1) and p2 := σ(s2).

Proof. According to Lemma 4.2 and the preceding remark, we know that the func-
tion ω−

:= min{ω, 0} ∈ H 1
2 (B, X) ∩ C0

0(B ∪ I ) with ω := N 3 is admissible in the
second variation formula (4-5). Using (2-22), an integration by parts yields

δ2F(X, ω−) = −

∫
I
ω−

√
gg2αaαβgβγ N 3

,γ du

+

∫
I
ω−N 3√gF(N )−1g2αaαβgβγ F(N ),γ du

−

∫
I
ω−N 3κ F(N )−2〈Xu ∧ Fz(N ), n(X)

〉 〈
Fz(N ), t (X)

〉2du

= −

∫
I
ω−

√
gF(N )g2αaαβgβγ

[F(N )−1 N 3
],γ du

−

∫
I
ω−N 3κ F(N )−2〈Xu ∧ Fz(N ), n(X)

〉 〈
Fz(N ), t (X)

〉2du.

Lemma 3.3 then reveals that δ2F(X, ω−) = 0.
From here onwards we can argue as in [Hildebrandt and Sauvigny 1995]: Defin-

ing 8(ε) := δ2F(X, ω−
+ εϕ) with arbitrary ϕ ∈ C∞

0 (B), the stability inequality
(4-6) implies 8′(0) = 0. This is equivalent to∫

B

(
g(AF∇ω−, ∇ϕ) − tr(AF S2)ω−ϕ

)
d A = 0 for all ϕ ∈ C∞

0 (B).
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Because ω− lies in C0
0(B ∪ I ), Moser’s weak Harnack inequality yields ω−

≡ 0,
i.e., N 3

≥ 0 on B. This gives us N 3 > 0 on B ∪ C , which is a consequence of
(2-22) and N 3 > 0 near C in conjunction with Harnack’s inequality.

Finally, we establish that N 3 > 0 on I . Indeed, if N 3(w0) = 0 were true for
some w0 ∈ I , Lemma 3.3 would imply

(5-2) g2αaαβgβγ N 3
,γ (w0) = 0.

On the other hand, Hopf’s boundary point lemma yields N 3
u (w0)=0 and N 3

v (w0) 6=

0. According to the definiteness of the matrix (gδαaαβgβγ ) we have g2αaαβgβ2
6=0,

and (5-2) generates a contradiction proving (5-1).
Due to Lemma 3.1, we have f |∂ B : ∂ B → ∂G topologically. Indeed, we already

know f |C : C →0 topologically by assumption, and (5-1) yields J f (w)> 0 on B\

{−1, 1}, thus | fu|>0 on I as well. In addition, an index argument yields f |B : B →

G topologically. In fact, this follows from J f (w)>0 on B, the boundary behaviour
of f and the well known index-sum formula, compare [Sauvigny 2006, Chapter
III]. Finally, the implicit function theorem reveals ζ(x1, x2) := X3

◦ f −1(x1, x2) ∈

C3(G \ {p1, p2}) ∩ C0(G). �

We conclude with a geometric uniqueness result.

Theorem 5.2. Let F be an elliptic Lagrangian satisfying Condition (W), and let
{0, S} denote an admissible boundary configuration. Then, apart from reparam-
etrizations, there exists at most one F-stable immersion X ∈ C(0, S) satisfying
Condition (R).

Remark. Again we refer the reader to [Hildebrandt and Sauvigny 1995] and
[Müller 2005], concerning comparable results for stable minimal surfaces and sur-
faces of prescribed mean curvature, respectively. The existence of F-stationary
immersions with partially free boundaries has not yet been proved, but see [Hilde-
brandt and von der Mosel 2002] for related results. For the construction of an
embedded F-minimal surface bounding a closed smooth Jordan curve 0 ⊂ R3, see
[White 1991].

Proof of Theorem 5.2. According to Theorem 5.1, any F-stable immersion X ∈

C(0, S) satisfying Condition (R) can be represented as a graph

ζ(x1, x2) = X3
◦ f −1(x1, x2) ∈ C3(G \ {p1, p2}) ∩ C0(G).

Moreover, this graph representation has the same orientation as X , due to (5-1).
Because X is F-stationary, the height function ζ is a critical point of the nonpara-
metric functional

F[ζ ] =

∫
G

f (Dζ ) dx,
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where we have written f (q) = f (q1, q2) := F(−q1, −q2, 1) ∈ C3(R2) and Dζ =

(ζx1, ζx2). In particular, the function ζ solves the mixed boundary value problem

(5-3)
Qζ :=

∂

∂xα

( ∂ f
∂qα

(Dζ )
)

= 0 on G,

ζ = γ on 0, 〈 fq(Dζ ), ν〉 = 0 on 6.

Here γ = γ (x1, x2) denotes the given height function above 0, and ν = ν(x1, x2)

is the normal of 6 which points to the exterior of G. In view of the ellipticity of
F , we infer the minimal surface type condition

(5-4)
∂2 f

∂qα∂qβ

(q)ξαξβ
≥

3−√
1 + |q|2

(
|ξ |

2
−

〈q, ξ〉
2

1 + |q|2

)
for all q = (q1, q2), ξ = (ξ 1, ξ 2) ∈ R2, where 3− is the positive number given by
(4-8); see also [Finn 1954; Simon 1977].

Now assume we had two F-stable immersions X1, X2 ∈ C(0, S) such that
ζl = X3

l ◦ f −1
l (x1, x2) ∈ C3(G \ {p1, p2}) ∩ C0(G) with l = 1, 2 satisfy (5-3).

Then the difference function ζ := ζ1 − ζ2 solves a linear elliptic equation on G
with their coefficients in C1(G \ {p1, p2}), compare [Gilbarg and Trudinger 1983]
and [Sauvigny 2006, Chapter VI, § 2]. According to the maximum principle, the
function ζ has to assume its maximum and minimum on 6 ∪ 0.

We now infer

(5-5)
〈
M · Dζ, ν

〉
= 0 on 6

from the second boundary condition in (5-3), where we abbreviated

M = M(x1, x2) :=

∫ 1

0
fqq

(
t Dζ1 + (1 − t)Dζ2

)
dt.

If the function ζ assumed a positive maximum at the point x0 ∈6, Hopf’s boundary
point lemma would imply Dζ(x0) = 〈Dζ(x0), ν〉ν with 〈Dζ(x0), ν〉 > 0. In view
of (5-4), we would have

〈M · Dζ(x0), ν〉 = 〈Dζ(x0), ν〉〈Mν, ν〉 > 0,

contradicting (5-5). Similarly, one excludes a negative minimum on 6. Hence we
infer ζ ≡ 0 on G and the announced result follows. �
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