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In this paper, various Homological Conjectures are studied for local rings
which are locally finitely generated over a discrete valuation ring V of mixed
characteristic. Typically, we can only conclude that a particular conjecture
holds for such a ring provided the residual characteristic of V is sufficiently
large in terms of the complexity of the data, where the complexity is primar-
ily given in terms of the degrees of the polynomials over V that define the
data, but possibly also by some additional invariants such as (homological)
multiplicity. Thus asymptotic versions of the Improved New Intersection
Theorem, the Monomial Conjecture, the Direct Summand Conjecture, the
Hochster—Roberts Theorem and the Vanishing of Maps of Tors Conjecture
are given.

That the results only hold asymptotically is due to the fact that nonstan-
dard arguments are used, relying on the Ax—Kochen—Ershov Principle, to
infer their validity from their positive characteristic counterparts. A key
role in this transfer is played by the Hochster—-Huneke canonical construc-
tion of big Cohen—Macaulay algebras in positive characteristic via absolute
integral closures.

1. Introduction

In the last three decades, all the so-called Homological Conjectures have been
settled completely for noetherian local rings containing a field by work of Peskine
and Szpiro [1973], Hochster and Roberts [1974], Hochster [1975b; 1983], Evans
and Griffith [1981] and others, to cite just some of the key papers. More recently,
Hochster and Huneke have given more simplified proofs of most of these results by
means of their tight closure theory, including their canonical construction of big
Cohen—Macaulay algebras in positive characteristic (see [Hochster and Huneke
1992; 1989; 2000; Huneke 1996]; for further discussion and proofs, see [Bruns
and Herzog 1993, §9] or [Strooker 1990]).
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In sharp contrast is the development in mixed characteristic, where only spo-
radic results (often in low dimensions) are known, apart from the breakthrough
by Roberts [1987], settling the New Intersection Theorem for all noetherian local
rings, and the recent work of Heitmann [2002] in dimension three. Some attempts
have been made by Hochster, either by finding a suitable substitute for tight closure
in mixed characteristic [1994], or by constructing big Cohen—Macaulay modules
in mixed characteristic [1975a]. These approaches have yet to bear fruit and the
best result to date in this direction is the existence of big Cohen—Macaulay algebras
in dimension three [Hochster 2002], which in turn relies on the positive solution
of the Direct Summand Conjecture in dimension three by Heitmann [2002].

In this paper, we will follow the big Cohen—Macaulay algebra approach, but
instead of trying to work with rings of Witt vectors, we will use the Ax—Kochen—
Ershov Principle [Ax and Kochen 1965; Ershov 1965; 1966], linking complete
discrete valuation rings in mixed characteristic with complete discrete valuation
rings in positive characteristic via an equicharacteristic zero (nondiscrete) valuation
ring (see Theorem 2.3 below). This intermediate valuation ring is obtained by a
construction which originates from logic, but is quite algebraic in nature, to wit,
the ultraproduct construction. Roughly speaking, this construction associates to
an infinite collection of rings C,, their ultraproduct C ., which should be thought
of as a kind of “limit” or “average” (realized as a certain homomorphic image
of the product). An ultraproduct inherits many of the algebraic properties of its
components. The correct formulation of this transfer principle is £.os’ Theorem,
which makes precise when a property carries over (namely, when it is first order
definable in some suitable language). Properties that carry over are those of being
a domain, a field, a valuation ring, local, henselian; among the properties that
do not carry over is noetherianness, so that almost no ultraproduct is noetherian
(except an ultraproduct of fields or of artinian rings of bounded length). This
powerful tool is used in [Schmidt-Géttsch 1987; van den Dries and Schmidt 1984;
Schoutens 2000a; 2007], to obtain uniform bounds in polynomial rings over fields;
in [Schoutens 2000a; 2000b; 2003a; 2003c], to transfer properties from positive to
zero characteristic; and in [Aschenbrenner and Schoutens 2007; Schoutens 2003d;
2004a; 2005a; 2005b], to give an alternative treatment of tight closure theory in
equicharacteristic zero. The key fact in the first set of papers is a certain flatness
result about ultraproducts (see Theorem 2.2 below for a precise formulation), and
in the two last sets, the so-called Lefschetz Principle for algebraically closed fields
(the ultraproduct of the algebraic closures of the p-element fields [, is isomorphic
to C).

The Ax—Kochen—-Ershov Principle is a kind of Lefschetz Principle for henselian
valued fields, and its most concrete form states that the ultraproduct of all [, [z],
with ¢ a single indeterminate, is isomorphic to the ultraproduct of all rings of p-adic
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integers Z,. We will identify both ultraproducts and denote the resulting ring by
9. Tt follows that O is an equicharacteristic zero henselian valuation ring with
principal maximal ideal, whose separated quotient (i.e., reduction modulo the in-
tersection of all powers of the maximal ideal) is an equicharacteristic zero excellent
complete discrete valuation ring.

Z-affine algebras. To explain the underlying idea in this paper, we introduce some
notation. Let (Z, p) be a (not necessarily noetherian) local ring. A Z-affine algebra
C is any Z-algebra of the form C = Z[X]/I where X is a finite tuple of indeter-
minates and / a finitely generated ideal in Z[X]. A local Z-affine algebra is any
localization R = Cy, of a Z-affine algebra C with respect to a prime ideal m of
C lying above p. In particular, the natural homomorphism Z — R is local. We
denote the category of all local Z-affine algebras by Aff(Z).

The objective is to transfer algebraic properties (such as the homological Conjec-
tures) from the positive characteristic categories Aff(F,[¢]) to the mixed character-
istic categories Aff(Z,,). This will be achieved through the intermediate equicharac-
teristic zero category Aff(£). As this latter category consists mainly of nonnoethe-
rian rings, we will have to find analogues in this setting of many familiar notions
from commutative algebra, such as dimension, depth, Cohen—Macaulayness or
regularity (see Sections 5 and 6).

The following example is paradigmatic: let X be a finite tuple of indeterminates
and let Sg’(A) be the ultraproduct of all F,[#][X], and Sgi" (A), the ultraproduct
of all Z,[X]. Note that both rings contain ©, and in fact, contain O[X]. The key
algebraic fact, which is equivalent to a result on effective bounds by Aschenbrenner
[2001a], is that both inclusions O[X] € £5(A) and O[X] S £8*(A) are flat. Sup-
pose we have in each F,[¢][X] a polynomial f ,, and let f, be their ultraproduct.
A priori, we can only say that fo, € Sg(A). However, if all f, have X-degree d,
for some d independent from p, then f itself is a polynomial over O of degree
d (since an ultraproduct commutes with finite sums by Los’ Theorem). Hence, as
f oo lies in D[ X], we can also view it as an element in £‘gx (A). Therefore, there are
polynomials f » € Z,[ X] whose ultraproduct is equal to f . The choice of the f p
is not unique, but any two choices will be equal for almost all p, by Los’ Theorem.
In conclusion, to a collection of polynomials defined over the various [F,[t], of
uniformly bounded degree, we can associate, albeit not uniquely, a collection of
polynomials defined over the various Z,, (of uniformly bounded degree), and of
course, this also works the other way. Instead of doing this for just one polynomial
in each component, we can now do this for a finite tuple of polynomials of fixed
length. If at the same time, we can maintain certain algebraic relations among them
(characterizing one of the properties we seek to transfer), we will have achieved
our goal.
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Unfortunately, it is the nature of an ultraproduct that it only captures the “av-
erage” property of its components. In the present context, this means that the
desired property does not necessarily hold in all Z,[X], but only in almost all. In
conclusion, we cannot hope for a full solution of the Homological Conjectures by
this method, but only an asymptotic solution. In view of the above, the following
definition is now natural.

Complexity. Let C be a Z-affine algebra, say, of the form C = Z[X]/I, with X a
finite tuple of indeterminates and / a finitely generated ideal, and let R = Cy,, be
a local Z-affine algebra (so that p € m). We say that C has Z-complexity at most
¢, if | X| < c and I is generated by polynomials of degree at most c; we say that R
has Z-complexity at most c, if, moreover, also m is generated by polynomials of
degree at most c. An element r € C is said to have Z-complexity at most c, if C
has Z-complexity at most ¢ and r is the image of a polynomial in Z[X] of degree
at most c. An element r € R has Z-complexity at most c, if R has Z-complexity at
most ¢ and if r is (the image of) a quotient P/Q of polynomials of degree at most
c with O ¢ m. We say that a tuple or a matrix has Z-complexity at most c, if each
of its entries has Z-complexity at most ¢ and the number of entries is also bounded
by c. Note that in a Z-affine algebra, the sum of two elements of Z-complexity at
most ¢, has again Z-complexity at most ¢, whereas in a local Z-affine algebra, the
sum has Z-complexity at most 2c.

An ideal J in C or R has Z-complexity at most c, if it is generated by a tuple
of Z-complexity at most ¢. A Z-algebra homomorphism C — C’ or a local Z-
algebra homomorphism R — R’ is said to have Z-complexity at most ¢, if C and
C’ (respectively, R and R’) are (local) Z-affine algebras of Z-complexity at most
¢ and the homomorphism is given by sending each indeterminate X; to an element
of Z-complexity at most c.

Asymptotic properties. Let P be a property of noetherian local rings (possibly in-
volving some additional data). We will use the phrase P holds asymptotically in
mixed characteristic, to express that for each ¢, we can find a bound ¢’, such that
if V is a complete discrete valuation ring of mixed characteristic and C a local
V -affine algebra of V-complexity at most ¢ (and a similar bound on the additional
data), then property P holds for C, provided the characteristic of the residue field of
V is at least ¢’. Sometimes, we have to control some additional invariants in terms
of the bound c. In this paper, we will prove that in this sense, many Homological
Conjectures hold asymptotically in mixed characteristic.

A final note. Its asymptotic nature is the main impediment of the present method to
carry out Hochster’s program of obtaining tight closure and big Cohen—Macaulay
algebras in mixed characteristic. For instance, despite the fact that we are able
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to define an analogue of a balanced big Cohen—Macaulay algebra for O-affine
domains, this object cannot be realized as an ultraproduct of Z,-algebras, so that
there is no candidate so far for a big Cohen—Macaulay in mixed characteristic.
Although I will not pursue this line of thought in this paper, one could also define
some nonstandard closure operation on ideals in O-affine algebras, but again, such
an operation will only partially descend to any component.

Notation. A tuple x over a ring Z is always understood to be finite. Its length is
denoted by |x| and the ideal it generates is denoted xZ. When we say that (Z, p)
is local, we mean that p is its (unique) maximal ideal, but we do not imply that Z
has to be noetherian.

For a survey of the results and methods in this paper, see [Schoutens 2003b].
In the forthcoming [Schoutens 2004b] some of the present asymptotic versions
will be generalized through a further investigation of the algebraic properties of
ultraproducts using the notions introduced in Sections 5 and 6.

2. Ultraproducts

In this preliminary section, I state some generalities about ultraproducts and then
briefly review the situation in equicharacteristic zero and the Ax—Kochen—Ershov
Principle. The next section lays out the essential tools for conducting the transfer
discussed in the introduction, to wit, approximations, protoproducts and nonstan-
dard hulls, whose properties are then studied in Sections 5 and 6. The subsequent
sections contain proofs of various asymptotic results, using these tools.

Whenever we have an infinite index set W, we will equip it with some (unnamed)
countably incomplete nonprincipal ultrafilter; ultraproducts will always be taken
with respect to this ultrafilter and we will write

ulim O, orsimply O

w—00
for the ultraproduct of objects O, (this will apply to rings, ideals and elements
alike). A first introduction to ultraproducts, including L.os’ Theorem, sufficient to
understand the present paper, can be found in [Schoutens 2003d, §2]; for a more
detailed treatment, see [Hodges 1993]. Los’ Theorem states essentially that if a
fixed algebraic relation holds among finitely many elements fi, ..., fsy in each
ring Cy,, then the same relation holds among their ultraproducts fio, - .., fsoo i1
the ultraproduct C ., and conversely, if such a relation holds in C,, then it holds
in almost all C,,. Here almost all means “for all w in a subset of the index set
which belongs to the ultrafilter” (the idea is that sets belonging to the ultrafilter are
large, whereas the remaining sets are small).
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An immediate, but important application of £.os’ Theorem is that the ultraprod-
uct of algebraically closed fields of different prime characteristics is an (uncount-
able) algebraically closed field of characteristic zero, and any sufficiently large
algebraically closed field of characteristic zero, including C, can be realized thus.'
This simple observation, in combination with work of van den Dries on nonstan-
dard polynomials (see below), was exploited in [Schoutens 2003d] to define an
alternative version of tight closure for C-affine algebras, called nonstandard tight
closure, which was then further generalized to arbitrary noetherian local rings
containing the rationals in [Aschenbrenner and Schoutens 2007]. The ensuing no-
tions of F-regularity and F-rationality have proved to be more versatile [Schoutens
2004a; 2005a; 2005b] than those defined in [Hochster and Huneke 2000].

Let me briefly recall the results in [van den Dries and Schmidt 1984; van den
Dries 1979] on nonstandard polynomials mentioned above. Let K, be fields (of
arbitrary characteristic) with ultraproduct K o, (which is again a field by L.os’ The-
orem). Let X be a fixed finite tuple of indeterminates and set A := K [X] and
Ay = Ky [X]. Let A be the ultraproduct of the A,,. As in the example discussed
in the introduction, we have a canonical embedding of A inside A. In fact, the
following easy observation, valid over arbitrary rings, describes completely the
elements in Ay that lie in A (the proof is straightforward and left to the reader).

Lemma 2.1. Let X be a finite tuple of indeterminates. Let C., be rings and let C
be their ultraproduct. If f, is a polynomial in C,[X] of degree at most c, for each
w and for some c independent from w, then their ultraproduct in ulimy,_, oo C,[X]
belongs already to the subring C [ X], and conversely, every element in C | X] is
obtained in this way.

This result also motivates the notion of complexity from the introduction. Re-
turning to the results of Schmidt and van den Dries, the following two properties of
the embedding A C A, do not only imply the uniform bounds from [van den Dries
and Schmidt 1984; Schoutens 2000a], but also play an important theoretical role
in the development of nonstandard tight closure [Aschenbrenner and Schoutens
2007; Schoutens 2003d].

Theorem 2.2 (Schmidt and van den Dries). The embedding A C A is faithfully
flat and every prime ideal in A extends to a prime ideal in A .

To carry out the present program, we have to replace the base fields K, by com-
plete discrete valuation rings ©,,. Unfortunately, we now have to face the following
complications. Firstly, the ultraproduct O of the ©,, is no longer noetherian, and

ITo be more precise, any algebraically closed field of characteristic zero whose cardinality is of
the form 2* for some infinite cardinal A, is an ultraproduct of algebraically closed fields of prime char-
acteristic; under the generalized continuum hypothesis this means every uncountable algebraically
closed field of characteristic zero.
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so in particular the corresponding A := ©O[X] is nonnoetherian. Moreover, the
embedding A C A, wWhere A is now the ultraproduct of the A, := O,[X],
although flat (see Theorem 4.2 below), is no longer faithfully flat (this is related
to Kronecker’s problem; see [Aschenbrenner 2001a] or [Schoutens > 2007] for
details). Furthermore, not every prime ideal extends to a prime ideal. However, by
working locally, we can circumvent all the latter complications (see Theorem 4.2
and Remark 4.5).

To obtain the desired transfer, we will realize £ in two different ways, as an
ultraproduct of complete discrete valuation rings in positive characteristic and as
an ultraproduct of complete discrete valuation rings in mixed characteristic, and
then pass from one set to the other via O, as explained in the introduction (for
more details, see Section 6.9 below). This is the celebrated Ax—Kochen—Ershov
Principle [Ax and Kochen 1965; Ershov 1965; Ershov 1966], and I will discuss
this now. For each p, let D‘;}ix be a complete discrete valuation ring of mixed
characteristic with residue field « , of characteristic p. To each Dg‘ix, we associate
a corresponding equicharacteristic complete discrete valuation ring with the same
residue field, by letting

1) O =k p[t]
where  is a single indeterminate.

Theorem 2.3 (Ax—Kochen—Ershov). The ultraproduct of the D;q is isomorphic (as
a local ring) with the ultraproduct of the D?ix.

Remark 2.4. As stated, we need to assume the continuum hypothesis. Otherwise,
by the Keisler—Shelah Theorem [Hodges 1993, Theorem 9.5.7], one might need
to take further ultrapowers, that is to say, over a larger index set. In order to not
complicate the exposition, I will nonetheless make the set-theoretic assumption, so
that our index set can always be taken to be the set of prime numbers. The reader
can convince himself that all proofs in this paper can be adjusted so that they hold
without any set-theoretic assumption.

To conclude this section, I state a variant of Prime Avoidance which also works
in mixed characteristic (note that for nonprime ideals one normally has to assume
that the ring contains a field, see for instance [Eisenbud 1995, Lemma 3.3]).

Proposition 2.5. Let Z be a local ring with infinite residue field k. Let C be
an arbitrary Z-algebra and let W be a finitely generated Z-submodule of C. If
ai, ..., a; are ideals in C not containing W, then there exists f € W not contained
in any of the a;.

Proof. We induct on the number ¢ of ideals to be avoided, where the case t = 1
holds by assumption. Hence assume ¢ > 1. By induction, we can find elements
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g € W, fori =1, 2, which lie outside any a; for j #i. If either g| ¢ aj or g> ¢ a
we are done, so assume g; € a;. Therefore, every element of the form g + zg»
with z a unit in Z does not lie in a; nor in a,. Since « is infinite, we can find r — 1
units zp, z2, ..., Z;—1 in Z whose residues in « are all distinct. I claim that at least
one of the g; + z;g> lies outside all a;, so that we found our desired element in
W. Indeed, if not, then each g; + z; g» lies in one of the ¢ — 2 ideals a3, ..., a;, by
our previous remark. By the Pigeon Hole Principle, for some j and some [ # k,
we have that g; + 2z, g2 and g +z;€> lie both in a;. Hence so does their difference
(zk — 21)&2. However, zx — z; is a unit in Z, by choice of the z;, so that g; € a;,
contradiction. O

Corollary 2.6 (Controlled Ideal Avoidance). Let Z be a local ring with infinite
residue field and let C be a (local) Z-affine algebra. If I and a1, ..., a, are ideals
in C with I not contained in any a;, then I contains an element outside every a;.
More precisely, if c is an upper bound for the Z-complexity of 1, then there exists
an element f € I of Z-complexity at most ¢*, not contained in any a;.

Proof. Let (x1, ..., x,) be a tuple of Z-complexity at most ¢ generating / and let
W be the Z-submodule of C generated by (xi, ..., x,). In particular, W is not
contained in any «;, so that we may apply Proposition 2.5 to obtain an element
f € W, outside each a;. Write f = z1x1 +...2,x, with z; € Z. After putting on
a common denominator, we see that f has Z-complexity at most cn < ¢? (in case
C is not local, the Z-complexity of f is in fact at most c). O

It is clear from the proof of Proposition 2.5 that in both results, we only need the
residue field to have a larger cardinality than the number of ideals to be avoided.

3. Approximations, protoproducts and nonstandard hulls

In this section, some general results on ultraproducts of finitely generated algebras
over discrete valuation rings will be derived. We start with introducing some gen-
eral terminology, over arbitrary noetherian local rings, but once we start proving
some nontrivial properties in the next sections, we will specialize to the case that
the base rings are discrete valuation rings. For some results in the general case, we
refer to [Schoutens 2007; 2004b; > 2007].

For each w, we fix a noetherian local ring O, and let O be its ultraproduct. If
the p,, are the maximal ideals of the 9, then their ultraproduct p is the maximal
ideal of . We will write Jo for the ideal of infinitesimals of O, that is to say, the
intersection of all the powers p¥ (note that in general Jo # (0) and therefore, O is
in particular nonnoetherian).

By saturatedness of ultraproducts, O is quasicomplete in its p-adic topology in
the sense that any Cauchy sequence has a (nonunique) limit. Hence the completion
of O is O /T (see also Lemma 5.3 below). Moreover, we will assume that all O,
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have embedding dimension at most €. Hence so do O and £/J . Since a complete
local ring with finitely generated maximal ideal is noetherian [Matsumura 1986,
Theorem 29.4], we showed that /3¢ is a noetherian complete local ring. For
more details in the case of interest to us, where each 9, is a discrete valuation
ring or a field, see [Becker et al. 1979].

We furthermore fix throughout a tuple of indeterminates X = (X1, ..., X,,), and
we set A :=9O[X]and A, := O, [X].

Definition 3.1. The nonstandard D-hull of A is by definition the ultraproduct of
the A,, and is denoted £5(A).

This terminology is a little misleading, because £5(A) does not only depend on
© but also on the choice of O, whose ultraproduct is . In fact, we will exploit this
dependence when applying the Ax—Kochen—Ershov principle, in which case we
have to declare more precisely which nonstandard O-hull is meant. Nonetheless,
whenever O and 9, are clear from the context, we will denote the nonstandard
O-hull of A simply by £(A).

By Los’ Theorem, we have an inclusion O C £(A). Let us continue to write
X; for the ultraproduct in £(A) of the constant sequence X; € A,. By Los’
Theorem, the X; are algebraically independent over ©. In other words, A is a
subring of £(A). In the next section, we will prove the key algebraic property
of the extension A C £(A) when the base rings £,, are discrete valuation rings,
to wit, its flatness. We start with extending the notions of nonstandard hull and
approximation from [Schoutens 2003d], to arbitrary local 9-affine algebras (recall
that a local -affine algebra is a localization of a finitely presented 9-algebra at a
prime ideal containing p).

D-approximations and nonstandard O-hulls. An O-approximation of a polyno-
mial f € A is a sequence of polynomials f,, € A, such that their ultraproduct is
equal to f, viewed as an element in £(A). Note that according to Lemma 2.1, we
can always find such an D-approximation. Moreover, any two £-approximations
are equal for almost all w, by f.os’ Theorem. Similarly, an D-approximation of
a finitely generated ideal / := fA with f a finite tuple, is a sequence of ideals
I, :=1f,A,, where f,, is an O-approximation of f (meaning that each entry in f,,
is an O-approximation of the corresponding entry in f). Los’ Theorem gives once
more that any two O-approximations are almost all equal. Moreover, if 1,, is some
©-approximation of / then

) ulim 7,, = I.£(A).
w—>00

Assume now that C is an O-affine algebra, say C = A/I with I a finitely gen-
erated ideal. We define an ©O-approximation of C to be the sequence of finitely
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generated O,,-algebras Cy, := A,,/I,,, where I,, is some D-approximation of I.
We define the nonstandard O-hull of C to be the ultraproduct of the C, and denote
it £5(C) or simply £(C). It is not hard to show that £(C) is uniquely defined up
to C-algebra isomorphism (for more details see [Schoutens 2003d] or [Schoutens
2007]). From (2), it follows that £(C) = £(A)/I£(A). In particular, there is a
canonical homomorphism C — £(C) obtained from the base change A — £(A).

When [ is not finitely generated, /£(A) might not be realizable as an ultra-
product of ideals, and consequently, has no ©-approximation. Although one can
find special cases of infinitely generated ideals admitting O-approximations, we
will never have to do this in the present paper. Similarly, we only define -
approximations for -affine algebras.

Although A — £(A) is injective, this is not necessarily the case for C — £(C), if
the O,, are not fields. For instance, if W is the set of prime numbers, O, :=Z, for
eachpeWandI =(1—-nX, y)A where 7 :=ulim,_,», p and y :=ulim,_, , p?,
then I # (1) but I£(A) = (1). However, when the O, are discrete valuation
rings, we will see shortly, that this phenomenon disappears if we localize at prime
ideals containing p. Next we define a process which is converse to taking O-
approximations.

Protoproducts. Fix some c. Foreach w, let I, be an ideal in A,, of ,,-complexity
at most ¢. In other words, we can write I,, = f,,A,,, for some tuple f,, of O,,-
complexity at most c¢. Let f be the ultraproduct of these tuples. By Lemma 2.1, the
tuple f is already defined over A. We call I := fA the protoproduct of the I,,. It
follows that the I, are an -approximation of I and that 7 £(A) is the ultraproduct
of the 7,,.

With Cy, := A, /1, and C := A/, we call C the protoproduct of the C,,. The
C,, are an D-approximation of C and their ultraproduct £(C) is the nonstandard
O-hull of C. We can now extend the previous definition to the image in C,, of
an element c,, € A, (respectively, to the extension J,,C,, of a finitely generated
ideal J,, C Ay, of O,,-complexity at most ¢ and define similarly their protoproduct
c € C and JC as the image in C of the respective protoproduct of the c,, and the
Jw-

Functoriality. We have a commutative diagram

C 4 ~ D

3)

£(C - £(D
©) ) (D)
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where C — D is an 9-algebra homomorphism of finite type between O-affine
algebras and £(C) — £(D) is its base change over £(A). Alternatively, we may
view this diagram coming from a sequence of O,,-algebras homomorphisms C, —
D,, of O, -complexity at most ¢, for some ¢ independent from w, in which case
C — D and £(C) — £(D) are the respective protoproduct and ultraproduct of
these homomorphisms.

Lemma 3.2. Any prime ideal m of A containing p is finitely generated and its
extension mL£(A) is again prime.

Proof. Since A/pA = k[X] is noetherian, where « is the residue field of O, the
ideal m(A/pA) is finitely generated. Therefore so is m, since by assumption p is
finitely generated. Moreover, £(A)/pL(A) is the ultraproduct of the « ,[ X], so that
by Theorem 2.2, the extension m(£(A)/p£(A)) is prime, whence so is mL(A). I

In particular, if m,, is an O-approximation of m, then almost all m,, are prime
ideals. Therefore, the following notions are well-defined (with the convention that
we put By, equal to zero whenever n is not a prime ideal of the ring B). Let R be
a local D-affine algebra, say, of the form Cy,, with C an O-affine algebra and m a
prime ideal containing p.

Definition 3.3. We call £(C)mg(c) the nonstandard O-hull of R and denote it
L£o(R) or simply £(R). Moreover, if C,, and m,, are O-approximations of C and
m respectively, then the collection R, := (Cy)m, is an O-approximation of R.

One easily checks that the ultraproduct of the O-approximations R,, is precisely
the nonstandard O-hull £(R).

4. Flatness of nonstandard ©O-hulls

In this section, we specialize the notions from the previous result to the situation
where each O, is a discrete valuation ring. We fix throughout the following nota-
tion. For each w, let O,, be a discrete valuation ring with uniformizing parameter
7 and with residue field «,,. Let O, 7 and « be their respective ultraproducts, so
that 7O is the maximal ideal of O and « its residue field. We call any ring of this
form an ultra-DVR. The intersection of all 7™ £ is called the ideal of infinitesimals
of O and is denoted Jy. Using [Schoutens 1999], one sees that O/7™$ is an
artinian local Gorenstein «-algebra of length m.

Fix a finite tuple of indeterminates X and let A := D[X]. As before, we denote
the nonstandard O-hull of A by £(A); recall that it is given as the ultraproduct of
the ©-approximations A, := 9,,[X].

Proposition 4.1. For I an ideal in A, the residue ring A/I is noetherian if and
only if Jo C 1. In particular, every maximal ideal of A contains Jo and is of the
form IoA + J with J a finitely generated ideal.
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Proof. Let C := A/ for some ideal I of A. If C is noetherian, then the intersection
of all #"C is zero by Krull’s Intersection Theorem. Hence Jo C I. Conversely, if
Jp C 1, then since A/TpA = (O/To)[X] is noetherian, so is C. The last assertion
is now clear. O

In spite of Lemma 3.2, there are even maximal ideals of A (necessarily not
containing 7) which do not extend to a proper ideal in £(A). For instance with X
a single indeterminate and W = N, the ideal JpA + (1 — 7 X)A is maximal (with
residue field the field of fractions of 9 /J¢), but I L(A) + (1 — 71 X)L(A) is the
unit ideal. Indeed, let f, be the ultraproduct of the

fw:=0=(@,X)")/(1 =7y X).

Since (1 — 7 X)fw = 1 modulo ()" Ay, we get by Los’ Theorem that (1 —
7X) foo =1 modulo Jo£(A). Therefore, we cannot hope for A — £(A) to be
faithfully flat. Nonetheless, using for instance a result of Aschenbrenner on bounds
of syzygies, we do have this property for local affine algebras. This result will prove
to be crucial in what follows.

Theorem 4.2. The canonical homomorphism A — £(A) is flat. In particular, the
canonical homomorphism of a local O-affine algebra to its nonstandard O-hull is
faithfully flat, whence in particular injective.

Proof. The last assertion is clear from the first, since the homomorphism R — £(R)
is obtained as a base change of A — £(A) followed by a suitable localization,
for any local O-affine algebra R. I will provide two different proofs for the first
assertion

For the first proof, we use a result of Aschenbrenner [Aschenbrenner 2001a] in
order to verify the equational criterion for flatness, that is to say, given a linear
equation L = 0, with L a linear form over A, and given a solution f, over £(A),
we need to show that there exist solutions b; in A such that f, is an £(A)-linear
combination of the b;. Choose L., and f,, with respective ultraproducts L and f.
In particular, almost all L., have O,,-complexity at most ¢, for some ¢ independent
from w. By Los’ Theorem, f,, is a solution of the linear equation L, =0, for almost
all w. Therefore, by [Aschenbrenner 2001a, Corollary 4.27], there is a bound
¢/, only depending on ¢, such that f,, is an A, -linear combination of solutions
by, ..., by of Oy -complexity at most c¢. Note that s can be chosen independent
from w as well by [Schoutens 2007, Lemma 1]. In particular, the ultraproduct b;
of the b;,, lies in A by Lemma 2.1. By Los’ Theorem, each b; is a solution of
L =0in £(A), whence in A, and f,, is an £(A)-linear combination of the b;,
proving flatness.

If we want to avoid the use of Aschenbrenner’s result, we can reason as follows.
By Theorem 2.2, both extensions A/7 A — £(A)/rL(A)and AQQ — L(A) R Q0
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are faithfully flat, where Q is the field of fractions of O. Let M be an A-module.
Since 7 is A-regular, the standard spectral sequence

Tor,/ ™ (£(A)/m £(A). Torg (M, A/w A)) = Tory,,(£(A)/x L(A). M)

r+q

degenerates into short exact sequences

Tor, /T (£(A) /7 L(A), (0 2y 7)) — Tor{ (£(A) /T £(A), M) —
A/nA(g(A)/ng(A) M/aM),

foralli > 2. Fori =2, since A/mrA — £(A)/m£(A) is flat, the middle module
Tor’z“ (£(A)/w£(A), M) vanishes. Applying this to the short exact sequence

0— £(A) > £(A) > £(A)/7L(A) > 0
we get a short exact sequence
(4)  0=Tor} (£(A)/mL£(A), M) — Torf (£(A), M) Tor{ (£(A), M).
On the other hand, flatness of A® Q — £(A) ® Q yields
) Tor! (£(A), M) ® Q = Tor!®2(£(A)® 0, M ® Q) =

In order to prove that A — £(A) is flat, it suffices by [Matsumura 1986, Theorem
7.8] to show that TorA (£(A), A/I) vanishes, for every finitely generated ideal /
of A. Towards a contradiction, suppose that Tor1 (£(A), A/I) contains a nonzero
element 7. By (5), we have at = 0, for some nonzero a € . As observed
in [Sabbagh 1974, Proposition 3], every polynomial ring over a valuation ring is
coherent, so that in particular / is finitely presented (namely, since / is torsion-free
over O, it is O-flat, and therefore finitely presented by [Raynaud and Gruson 1971,
Theorem 3.4.6]). Hence we have some exact sequence

AL P A AT — 0,

Therefore Torf‘(S(A), A/I) is calculated as the homology of the complex

S22 o4y 2 g A).

Suppose t is the image of a tuple x € £(A)* with ¢;(x) = 0. Hence x does
not belong to ¢,(£(A)*?) but ax does. Choose x,,, a,, and ¢;,, with respective
ultraproduct x, a and ¢;. By Los’ Theorem, almost all x,, lie in the kernel of ¢,
but not in the image of ¢,,,, yet a,X, lies in the image of ¢5,,. Choose n,, € N
maximal such that y,, := (7,)"*X,, does not lie in the image of ¢,,,. Since almost
all a,, are nonzero, this maximum exists for almost all w. Therefore, if y is the
ultraproduct of the y,,, then ¢;(y) = 0 and y does not lie in ¢ (£(A)%?), but my
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lies in @2 (£(A)“?). Therefore, the image of y in Tor{‘ (£(A), A/I) is a nonzero
element annihilated by 7, contradicting (4). O

Remark 4.3. In [Schoutens > 2007], I exhibit a general connection between the
flatness of an ultraproduct over certain canonical subrings and the existence of
bounds on syzygies. In particular, using these ideas, the second argument in the
above proof of flatness reproves the result in [Aschenbrenner 2001a]. In fact, the
role played here by coherence is not accidental either; see [Aschenbrenner 2001b]
or [Schoutens > 2007] for more details.

Theorem 4.4. Let R be a local O-affine algebra with nonstandard -hull £(R)
and -approximation R,.

o Almost all R, are flat over O, if and only if R is torsion-free over O if and
only if w is R-regular.

o Almost all Ry, are domains if and only if R is.

Proof. Suppose first that almost all R, are flat over ©,,, which amounts in this case,
to almost all R,, being torsion-free over £,,. By Los’ Theorem, £(R) is torsion-
free over £, and since R C £(R), so is R. Conversely, assume 7 is R-regular.
By faithful flatness, 7 is £(R)-regular, whence almost all 7, are R, -regular by
Los’ Theorem. Since the O, are discrete valuation rings, this means that almost
all ©,, — R, are flat.

If almost all R,, are domains, then so is £(R) by L.os’ Theorem, and hence so is
R, since it embeds in £(R). Conversely, assume R is a domain. If # =0 in R, then
£(R) is a domain by Lemma 3.2, whence so are almost all R,, by Los’ Theorem.
So assume 7 is nonzero in R, whence R-regular. By what we just proved, R is
then torsion-free over . Let Q be the field of fractions of . Write R in the form
S/p, where S is some localization of A at a prime ideal containing v and p is a
finitely generated prime ideal in S. Since S/p is torsion-free over O, the extension
p(S ®o Q) is again prime and its contraction in S is p. By Theorem 2.2, since we
are now over a field, p(£(S)®¢o Q) is a prime ideal, where £(S) is the nonstandard
$-hull of S (note that £(S) ®¢ Q is then the nonstandard hull of S ® 5 O in the
sense of [Schoutens 2003d]). Moreover, since S/p is torsion-free over £, so is
L£(S)/pL(S) by the first assertion. This in turn means that

pL(S) = p(L(S) ®o Q) NL(S),

showing that p£(S) is prime. It follows then from Los’ Theorem that almost all
pw are prime, where p,, is an D-approximation of p, and hence almost all R,, are
domains. g
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Remark 4.5. The last assertion is equivalent with saying that any prime ideal
in R extends to a prime ideal in £(R). Indeed, let q be a prime ideal in R
with O-approximation q,,. By the preceding result (applied to R/q and its O-
approximation R, /qy), we see that almost all q,, are prime, whence so is their
ultraproduct q£(R), by Los’ Theorem.

5. Geometric dimension

In this and the next section, we will study the local algebra of the category Aff(9).
Although part of the theory can be developed for arbitrary base rings £, or even
for arbitrary local rings of finite embedding dimension (see [Schoutens 2004b]),
we will only deal with the case that O is a local domain of embedding dimension
one. Recall that the embedding dimension of a local ring (Z, p) is by definition
the minimal number of generators of p, and its ideal of infinitesimals Tz is the
intersection of all powers p". Of course, if Z is moreover noetherian, then its ideal
of infinitesimals is zero. In general, we call Z := Z/J, the separated quotient
of Z.

For the duration of the next two sections, let ) denote a local domain of embed-
ding dimension one, with generator of the maximal ideal v, with ideal of infinites-
imals Jo and with residue field k. We will work in the category Aff(£) of local
©O-affine algebras, that is to say, the category of algebras of the form R := (A/I)m,
where as before A := O[X] for some finite tuple of indeterminates X, where I is
a finitely generated ideal in A and where m is a prime ideal containing 7 and /.
Nonetheless, some results can be stated even for local algebras which are locally
finitely generated over £, that is, without the assumption that [ is finitely gener-
ated. We call R a torsion-free -algebra if it is torsion-free over O (that is to say, if
ar =0 for some r € R and some nonzero a € £, then r =0). Recall from Theorem
4.4 that a local D-affine algebra R is torsion-free if and only if 7 is R-regular.

Lemma 5.1. The separated quotient O /T o of  is a discrete valuation ring with
uniformizing parameter 7.

Proof. For each element a € © outside Jp, there is a smallest e € N for which
a ¢ 7¢O, Hence a = um® with u a unit in . It is now straightforward to check
that the assignment a — e induces a discrete valuation on 9 /J¢. U

Note that we do not even need O to be domain, having positive depth (that is
to say, assuming that 79 is not an associated prime of O; see [Bruns and Herzog
1993, Proposition 9.1.4]) would suffice, for then 7 is necessarily O-regular. How-
ever, we do not need this amount of generality as in all our applications O will be an
ultra-DVR, that is to say, an ultraproduct of discrete valuation rings ©,,. If we are
in this situation, then as before, we let A,, := O ,,[ X] and we let £(A) be their ultra-
product. Moreover, for R = (A/I)n as above, we let £(R) :=(£(A)/1£(A))me(a)
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be its nonstandard O-hull and we let Ry, := (A, /I y)m, be an O-approximation
of R, where I,, and m,, are D-approximations of I and m respectively. Note that
m is finitely generated, as it contains by definition 7.

Lemma 5.2. Let (R, m) be a local ring which is locally finitely generated over 9.
If I is a proper ideal in R containing some power ™, then the intersection of all
I" for n € Nis equal to TJoR. In particular, Jp = Jo R and the separated quotient
of R is equal to R:= R/Jo R whence is noetherian.

Proof. Suppose 7™ € I € m. Let J be the intersection of all /" for n € N.
Since 7™ € I, we get JoR C J. Since R is locally finitely generated over the
discrete valuation ring 9 /J¢o (see Lemma 5.1), it is noetherian. Applying Krull’s
Intersection Theorem (see for instance [Matsumura 1986, Theorem 8.10]), we get
JR= (0), and hence that J =JoR. The last assertion follows by letting / :=m. [

Lemma 5.3. Let O be an ultra-DVR. A local O-affine algebra (R, m) has the
same m-adic completion as its separated quotient, and this is also isomorphic to
L(R) /T g(r). In particular, the completion is noetherian.

Proof. Let R := R/J g be the separated quotient. For every n, we have
R/m" = R/m"R = £(R)/m"£(R),

where the second isomorphism follows from the fact that length is a first order
invariant (see for instance [Schoutens 1999]). Hence R, R and £(R) have the same
completion R. Noetherianness now follows from Lemma 5.2. By saturatedness
of ultraproducts (with respect to a countably incomplete nonprincipal ultrafilter),
L£(R) is quasicomplete in the sense that every Cauchy sequence has a (nonunique)
limit. Therefore, its separated quotient £(R)/J¢(g) is complete, whence equal to
R. For a more detailed proof, see [Schoutens 2004b, Lemma 5.2]. O

Our first goal is to introduce a good notion of dimension. Below, the dimension
of a ring will always mean its Krull dimension. Recall that it is always finite for
noetherian local rings.

Theorem 5.4. For a local ring (R, m) which is locally finitely generated over 3,
the following numbers are all equal:

o the least possible length d of a tuple in R generating some m-primary ideal,
o the dimension d of the completion R ;
o the dimension d of the separated quotient R:=R /JoR;

o the degree d of the Hilbert—Samuel polynomial xg, which is defined as the
unique polynomial with rational coefficients for which x g (n) equals the length
of R/m"*! for all large n.
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If w is R-regular, then R/m R has dimension d — 1.
If, moreover, O is an ultra-DVR and R a torsion-free local -affine algebra
with -approximation R, then almost all R, have dimension d.

Proof. By Lemmas 5.2 and 5.3, the separated quotient R is noetherian, with com-
pletion equal to R. Hence d =d. Moreover, XR = X 7> so that by the Hilbert—Samuel
theory, d = d.

Let x be a tuple of length d such that its image in Risa system of parameters
of R. Hence, for some n, we have that m” C xR + JoR. In particular, since
JoR Cn"t'R, we can find x xR and r € R, such that 7" = x+rn"*!. Therefore,
7" € XR, since 1 — rx is a unit. Since Jpo C 7”0, we get m"” C xR, showing that
xR is an m-primary ideal and hence that d < d. On the other hand, if y is a tuple
of length d such that yR is m-primary, then yR is an mR-primary ideal, and hence
d < d. This concludes the proof of the first assertion.

Assume that 7 is moreover R-regular. I claim that 7 is Ié—regular. Indeed,
suppose 77 =0, for some 7 € R. Take a preimage r € R, so that 77 € JoR C "R,
for every n. Since 7 is R-regular, we get » € 7"~ R, for all n. Therefore, r € JoR
by Lemma 5.2, whence 7 = 0 in R, as we needed to show. Since 7 is R-regular
and R/ R = R/m R, the dimension of R/ R is d — 1.

Suppose finally that © is moreover an ultra-DVR. We already observed that
Ry/myw Ry is an approximation of R/m R in the sense of [Schoutens 2003d]. In
particular, by [Schoutens 2003d, Theorem 4.5], almost all R, /7, Ry, have dimen-
sion d — 1. Since 7 is L£(R)-regular by flatness, whence 7, is R,-regular by Los’
Theorem, we get that R,, has dimension d , for almost all w. O

5.5. Geometric dimension. The common value given by the theorem is called the
geometric dimension of R. We call a tuple x in R generic, if it generates an m-
primary ideal and has length equal to the geometric dimension of R. Note that if
(x1, ..., xq) is a generic sequence, then R/(xy, ..., x.) R has geometric dimension
d—e.

Corollary 5.6. In a local ring (R, m) which is locally finitely generated over 9,
every m-primary ideal contains a generic sequence.

Proof. Let R :== R/JoR and let d be the geometric dimension of R. Let n be an
m-primary ideal of R. Since nR is mﬁ—primary and R is noetherian, we can find
a tuple y with entries in n so that its image in Risa system of parameters. In
particular, y has length d by Theorem 5.4. Let S := R/yR and S = S/JDS By
Theorem 5.4, the geometrlc dimension of S is equal to the dimension of S, whence
is zero since S = R/yR. In particular, yR is m-primary. Since y has length equal
to the geometric dimension of R, it is therefore a generic sequence. O
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In fact the above proof shows that there is a one-one correspondence between
generic sequences in R and systems of parameters in R/JoR. In general, the
last assertion in Theorem 5.4 is false when R is not torsion-free. For instance, let
R := ©/a® with a a nonzero infinitesimal, so that each R,, = /a9, has
dimension zero, but R/Jy is the (one-dimensional) discrete valuation ring £ /J¢.

In the following definition, let © be an ultra-DVR and let R be a local O-affine
algebra of geometric dimension d, with O-approximation R,,. Note that the R,,
have almost all dimension at most d. Indeed, if y has length d and generates an
m-primary ideal, then almost all y,, are m,,-primary by Los’ Theorem, for y,, an
O-approximation of y.

Definition 5.7. We say that R is isodimensional if almost all R,, have dimension
equal to the geometric dimension of R.

Theorem 5.4 shows that every torsion-free local O-affine algebra is isodimen-
sional. In particular, over an ultra-DVR, the protoproduct R of domains R, of
uniformly bounded ©,-complexity is isodimensional, since £(R) is then a do-
main by L.os’ Theorem, whence so is R as it embeds in £(R). The next result
shows that generic sequences in an isodimensional ring are the analog of systems
of parameters.

Corollary 5.8. Let O be an ultra-DVR and R an isodimensional local O-affine
algebra with O-approximation R.,. Let X be a tuple in R with -approximation X,,.

If X is generic, then Xy, is a system of parameters of R, for almost all w. Con-
versely, if (r,)¢ € Xy Ry, for some ¢ and almost all w, then X is generic.

Proof. Let m be the maximal ideal of R, with D-approximation m,,. Let d be the
geometric dimension of R, so that almost all R,, have dimension d. Suppose first
that x is generic, so that |x| =d and xR is m-primary. Since X£(R) is then m£(R)-
primary, X,, Ry, is my,-primary by Los’ Theorem, showing that x,, is a system of
parameters for almost all w.

Conversely, suppose x,, is a system of parameters of R,,, generating an ideal
containing (;,)°. By Los’ Theorem and faithful flatness, 7¢ € xR. Applying
[Schoutens 2007, Corollary 4] to the artinian base ring 9,,/(7 )¢, we can find a
bound ¢/, only depending on ¢, such that (mw)"/ C xRy, for almost all w. Hence
m¢ £(R) C xL(R), so that by faithful flatness, xR is m-primary. This shows that
X is generic. U

The additional requirement in the converse is necessary: indeed, for arbitrary
ny > 0, the element ()" is a parameter in O,, and has 9,,-complexity zero,
but if n,, is unbounded, its ultraproduct is an infinitesimal whence not generic.
To characterize isodimensional rings, we use the following notion introduced in
[Schoutens 2006].



ASYMPTOTIC HOMOLOGICAL CONJECTURES IN MIXED CHARACTERISTIC 445

Definition 5.9 (Parameter degree). The parameter degree of a noetherian local
ring C is by definition the smallest possible length of a residue ring C/xC, where
x runs over all systems of parameters of C.

In general, the parameter degree is larger than the multiplicity, with equality
precisely when C is Cohen—Macaulay, provided the residue field is infinite (see
[Matsumura 1986, Theorem 17.11]). The homological degree of C is an upper
bound for its parameter degree (see [Schoutens 2006, Corollary 4.6]). A priori,
being isodimensional is a property of the O-approximations of R, of for that matter,
of its nonstandard O-hull. However, the last equivalent condition in the next result
shows that it is in fact an intrinsic property.

Proposition 5.10. Let O be an ultra-DVR and let R be a local O-affine algebra
with -approximation R,. The following are equivalent:

(1) R is isodimensional,

(i1) there exists a c € N, such that for almost all w, we can find a system of param-
eters Xy, of Ry, of Oy -complexity at most ¢, generating an ideal containing
(W)

(ii1) there exists an e € N, such that almost all R, have parameter degree at most
e,

(iv) for every generic sequence in R of the form (1, 'y), the contracted ideal yRNO

is zero.

Proof. Let m be the maximal ideal of R, with D-approximation m,,. Let d be the
geometric dimension of R and let d’ be the dimension of almost all R,,. Suppose
first that d = d’. Let x be any generic sequence in R with O-approximation X,,.
By Los’ Theorem, almost all x,, generate an m,,-primary ideal. Since their length
is equal to the dimension of R, they are almost all systems of parameters of R,,.
Choose c large enough so that 7€ € XxR. Enlarging c if necessary, we may moreover
assume by Lemma 2.1 that almost all x,, have ©,,-complexity at most c. By Los’
Theorem, (77,,)¢ € X,y Ry, so (ii) holds.

Assume next that ¢ and the x,, are as in (ii). Let Ry, := Ry, /(@) Ry,. We can
apply [Schoutens 2007, Corollary 2] over 9,,/(74,) O, to the my, R, -primary
ideal x,,R,,, to conclude that there is some ¢, depending only on c, such that
R /Xw Ry, has length at most ¢’. Since the latter residue ring is just Ry, /X, Ry by
assumption, the parameter degree of R,, is at most ¢’, and hence (iii) holds.

To show that (iii) implies (i), assume that almost all R,, have parameter degree
at most e. Let y,, be a system of parameters of R,, such that R,,/y, R, has length
at most e, for almost all w. It follows that (m,,)° is contained in y,, R,,. Let Yoo
be the ultraproduct of the y,. By Los’ Theorem, m*£(R) C yoo£(R) whence
m‘R C yooﬁ, by Lemma 5.3, showing that yooﬁ is mﬁ—primary. Since yo has
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length at most d’ (some entries might be zero in R), the dimension of R is at most
d’. Since we already remarked that d’ < d, we get from Theorem 4.4 that d’ = d.

So remains to show that (iv) is equivalent to the other conditions. Assume first
that it holds but that R is not isodimensional. Since we have inequalities d — 1 <
d’' <d, this means that d’ =d — 1. Moreover, R/ R must have geometric dimension
also equal to d — 1, for if not, its geometric dimension would be d, whence almost
all R, /7, R, would have dimension d by [Schoutens 2003d, Theorem 4.5], which
is impossible. Since there is a uniform bound ¢ on the 9,,-complexity of each R,
we can choose, using Corollary 2.6, a system of parameters y,, of R, of O,-
complexity at most ¢2. In particular, some power of ,, lies in y, R,. Leta € O
be the ultraproduct of these powers. If y is the ultraproduct of the y,,, then y is
already defined over R by Lemma 2.1. By Los’ Theorem, a € y£(R), whence
by faithful flatness, a is a nonzero element in yR N 9. Therefore, to reach the
desired contradiction with (iv), we only need to show that (i, y) is generic. As we
already established, R,,/m,, R, has dimension d — 1, so that y,, is also a system
of parameters in that ring. Therefore, y is a system of parameters in R/m R by
[Schoutens 2003d, Theorem 4.5]. This in turn implies that (77, y) generates an m-
primary ideal in R. Since this tuple has length d, it is therefore generic, as we
wanted to show.

Finally, assume R is isodimensional, and suppose (7, y) is generic. Let a €
yR N9 and choose D-approximations a,, and y,, of a and y respectively. By Los’
Theorem, a,, € y, Ry. However, if a is nonzero, then a,, is, up to a unit, a power
of m,, which contradicts the assertion in Corollary 5.8 that (7, y,,) is a system
of parameters. So a =0, as we needed to show. U

Corollary 5.11. For each c, there exists a bound PD(c) with the following property.
Let V be a discrete valuation ring and let C be a local V-affine algebra of V -
complexity at most c. If C is torsion-free over V, then the parameter degree of C
is at most PD(c).

Proof. If the statement is false for some c, then we can find for each w a discrete
valuation ring ,, and a torsion-free local £ ,,-affine algebra R, of O,,-complexity
at most ¢, whose parameter degree is at least w. Let R be the protoproduct of
the R, and let £(R) be their ultraproduct. Since m,, is R, -regular, 7 is £(R)-
regular, whence R-regular. Hence R is isodimensional by Theorem 5.4. Therefore,
there is a bound on the parameter degree of almost all R,, by Proposition 5.10,
contradicting our assumption. 0

Our next goal is to introduce a notion similar to height. Let / be an arbitrary
ideal of R.
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Definition 5.12 (Geometric height). We call the geometric height of I the maxi-
mum of all & such that there exists a generic sequence whose first / entries belong
to 1.

For noetherian rings, we cannot expect a good relationship between the height of
an ideal and the dimension of its residue ring, unless the ring is a catenary domain;
the following is the analogue over ultra-DVR’s.

Theorem 5.13. Let O be an ultra-DVR and let R be a local O-affine domain with
D-approximation R,,. Let I be a finitely generated ideal in R with O-approx-
imation I ,.

If R/ 1 is isodimensional, then the geometric height of I is equal to the geometric
dimension of R minus the geometric dimension of R/I, and this is also equal to
the height of almost all I ,,.

Proof. Let d be the geometric dimension of R and e the geometric dimension
of R/I. Since a domain is isodimensional, almost all R,, have dimension d by
Theorem 5.4, and by assumption, almost all R, /I, have dimension e. Let i be
the geometric height of /. Let z be a generic sequence in R with its first / entries
in 1, and let z,, be an D-approximation of z. By Corollary 5.8, almost all z,, are a
system of parameters in R,,. Since by Los’ Theorem the first 4 entries of z,, lie in
I, we get that R,,/I,, has dimension at most d — h. In other words, h < d —e.
Since almost all R,, are catenary domains, almost all 7,, have height d —e.

So remains to show that d —e < h. By Lemma 5.2, the separated quotient of R/I
is equal to R/1 R. Therefore, by the remark following Corollary 5.6, we can find a
generic sequence (x, ..., Xg) in R such that (the image of) (x, ..., x.) is a generic
sequence in R/I. By definition of generic sequence, S := R/(xy, ..., xX.)R has
geometric dimension d — e. If x;,, is an D-approximation of x;, then almost each
Xy = (X1w, - - ., Xew) 1S a system of parameters in R,,/I,, by Corollary 5.8. Since
X, is therefore part of a system of parameters in R,,, almost each Sy, := R, /Xy Ry,
has dimension d — e by [Matsumura 1986, Theorem 14.1]. By choice of the x;,
the ideal 7 4 (x, ..., x,) R is m-primary and hence /S is mS-primary. Therefore,
by Corollary 5.6, we can find a tuple y of length d — e in I, so that its image in
S is a generic sequence. It follows that (xi, ..., x.,)R 4+ yR is m-primary. Since
(y, x1, ..., x) has length d, it is a generic sequence, showing thatd —e <h. U

6. Pseudo singularities

In this section, we maintain the notation introduced in the previous section. Our
goal is to extend several singularity notions of noetherian local rings to the category
of local D-affine algebras.
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Grade and depth. Let B be an arbitrary ring and I := (xy, ..., x,)B a finitely
generated ideal. The grade of I, denoted grade(/), is by definition equal to n — A,
where £ is the largest value i for which the i-th Koszul homology H;(x1, ..., x)
is nonzero. For a local ring R of finite embedding dimension, we define its depth
as the grade of its maximal ideal.

If B is moreover noetherian, then we can define the grade of I alternatively as the
minimal { for which Ext’é(B /1, B) is nonzero (for all this see for instance [Bruns
and Herzog 1993, §9.1]). An arbitrary local ring has positive depth if and only
if its maximal ideal is not an associated prime. Grade, and hence depth, deforms
well, in the sense that the

grade(/ (B/xB)) = grade(!) — |x|

for every B-regular sequence x in /. For a locally finitely generated O-algebra
(R, m), its depth never exceeds its geometric dimension. Indeed, by definition, the
grade of a finitely generated ideal never exceeds its minimal number of generators,
and by [Bruns and Herzog 1993, Proposition 9.1.3], the depth of R is equal to the
grade of any of its m-primary ideals. It follows that the depth of R is at most its
geometric dimension.

In general, the grade of a finitely generated ideal might be positive without it
containing a B-regular element. However, the next lemma shows that this is not
the case for ultraproducts of noetherian local rings.

Lemma 6.1. Let C o, be the ultraproduct of noetherian local rings C, and let I
be a finitely generated ideal of C » obtained as the ultraproduct of ideals I, C C,.

If 1  has grade n, then there exists a Coo-regular sequence of length n with all
of its entries in I .. Moreover, any permutation of a C ~-regular sequence is again
C ~-regular.

Proof. By [Bruns and Herzog 1993, Proposition 9.1.3], there exists a finite tuple
of indeterminates Y and a C[Y]-regular sequence f, of length n, with all of its
entries in 1 C[Y]. Choose tuples f,, in C,[Y] so that their ultraproduct is fu.
By Los’ Theorem, f,, is C,,[Y ]-regular and has all of its entries in /,,C,[Y], for
almost all w. This shows that /,,C,,[Y] has grade at least n. Since C,, — C[Y]
is faithfully flat, /,, has grade at least n by [Bruns and Herzog 1993, Proposition
9.1.2]. Hence, since C,, is noetherian, we can find a C-regular sequence Xx,, of
length n with all of its entries in /,,. By Los’ Theorem, the ultraproduct X, of the
X, 18 Coo-regular and has all of its entries in / .

The last assertion follows from f.os’ Theorem and the fact that in a noetherian
local ring, any permutation of a regular sequence is again regular ([Matsumura
1986, Theorem 16.3]). O
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Recall that a noetherian local ring for which its dimension and its depth (respec-
tively, its dimension and its embedding dimension) coincide is Cohen—Macaulay
(respectively, regular). We will shortly see that upon replacing dimension by geo-
metric dimension, we get equally well behaved notions. Let us therefore make the
following definitions, for R a local O-affine algebra.

Definition 6.2. We say that R is pseudo-Cohen—Macaulay, if its geometric dimen-
sion is equal to its depth, and pseudoregular, if its geometric dimension is equal to
its embedding dimension.

Theorem 6.3. Let O be an ultra-DVR and let R be an isodimensional local -
affine algebra with O-approximation R,,. In order for R to be pseudo-Cohen—
Macaulay it is necessary and sufficient that almost all R,, are Cohen—Macaulay.

Proof. Let d be the geometric dimension of R and § its depth. Suppose first that
d = 4. Since R — £(R) is faithfully flat, £(R) has depth é as well by [Bruns
and Herzog 1993, Proposition 9.1.2]. By Lemma 6.1, there exists an £(R)-regular
sequence Xo, of length d. If x,, is an O-approximation of X, then almost each
Xy 1S Ry-regular by Los’ Theorem. Since almost all R,, have dimension d by

isodimensionality, almost all are Cohen—Macaulay.
Conversely, assume almost all R, are Cohen—Macaulay. It follows by reversing
the above argument that £(R) has depth d and hence, so has R, by faithful flatness.
O

Since every system of parameters is a regular sequence in a local Cohen—Mac-
aulay ring, we expect a similar behavior for generic sequences, and this indeed
holds.

Theorem 6.4. Let O be an ultra-DVR and let R be an isodimensional local 9-
affine algebra. If R is pseudo-Cohen—Macaulay, then any generic sequence is
R-regular.

Proof. Let x be a generic sequence with D-approximation X,,. Almost each x,, is
a system of parameters in R,,, by Corollary 5.8. Since almost all R,, are Cohen—
Macaulay by Theorem 6.3, almost each x,, is R,-regular. Hence x is £(R)-regular,
by Los’ Theorem, whence R-regular, by faithful flatness. 0

Theorem 6.5. Let O be an ultra-DVR. An isodimensional local O-affine algebra R
with O-approximation R, is pseudoregular if and only if almost all R, are regular
local rings.

Proof. Let m be the maximal ideal of R, with D-approximation m,,. Let £(R) be
the nonstandard O-hull of R. Let € be the embedding dimension of R and d its
geometric dimension. Suppose that R is pseudoregular, that is to say, that € = d.
Hence m = xR for some d-tuple x, necessarily generic. Since m£(R) = x£(R),
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Los’ Theorem yields that m,, = x,, R, where Xx,, is an D-approximation of x. Since
almost all R,, have dimension d, almost all are regular local rings.

Conversely, suppose almost all R, are regular. Since the ©,-complexity of
almost all R, is at most ¢, for some ¢, we can find a regular system of parameters
x,, of O,,-complexity at most ¢ (as part of a minimal system of generators of m,,).
By Lemma 2.1, their ultraproduct x belongs to R, and is a generic sequence by
Corollary 5.8. By Los” Theorem and faithful flatness, xR = m whence € < d.
Since geometric dimension never exceeds embedding dimension, € = d and R is
pseudoregular. O

The following is now immediate from the previous result and Theorem 4.4.

Corollary 6.6. Let 9 be an ultra-DVR. If R is a pseudoregular local O-affine
algebra, then R is a domain if and only if it is isodimensional. Moreover, if this is
the case, then every localization of R with respect to a prime ideal containing m is
again pseudoregular.

In fact, the protoproduct R of regular local O,,-affine algebras R,, of uniformly
bounded O,,-complexity is pseudoregular and isodimensional. Indeed, we already
observed that then R is isodimensional, and therefore by Theorem 6.5, pseudoreg-
ular. For a homological characterization of pseudoregularity, see Corollary 11.5
below.

Example 6.7. If R denotes the localization of O[X, Y]/(X 24 Y3+ 7) at the
maximal ideal generated by X, Y and m, then R is pseudoregular (namely X and
Y generate the maximal ideal, so € =2, and since R /7 R has dimension one, d =2
as well). Note though that R/7 R is not regular.

Corollary 6.8. Let 9 be an ultra-DVR and let R be an isodimensional local -
affine algebra. If R is pseudoregular, then it is pseudo-Cohen—Macaulay.

Proof. Let R, be an D-approximation of R. By Theorem 6.5, almost all R,, are
regular whence Cohen—Macaulay. This in turn implies that R is pseudo-Cohen—
Macaulay by Theorem 6.3. (|

Without the isodimensionality assumption, the result is false. For instance, let
a be a nonzero element in the ideal of infinitesimals of © and put R := 9/a9.
It follows that R has geometric dimension one, whence is pseudoregular, but its
depth is zero.

6.9. Transfer. Let me now elaborate on why the results in this section are in-
stances of transfer between positive and mixed characteristic. Suppose Oisa
second ultra-DVR, realized as the ultraproduct of discrete valuation rings O, and
suppose ) = ©. Note that this does not imply that O, and 9, are almost all
pair-wise isomorphic. In fact, in the next sections, one set of discrete valuation
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rings will be of mixed characteristic and the other set of prime characteristic. Let
R be a local D-affine algebra. Since R is then also local b-afﬁne, its admits a
nonstandard O-hull and b—approximations with respect to this second set of dis-
crete valuation rings; let us denote them by £5(R) and R, respectively. Suppose
9, and éw have pair-wise isomorphic residue fields (as will be the case below).
Since the R, /7 R, are an approximation of the x-algebra R/m R (in the sense of
[Schoutens 2003d]) and, mutatis mutandis, so are the Rw /ﬁwkw, where 7, is a
uniformizing parameter of O, we get from [Schoutens 2003d, 3.2.3] that almost
all Ry, /my Ry, are isomorphic to Iéw /frwléw. Therefore, if we assume that there
is no torsion, then R,, and Rw have the same dimension, and one set consists of
almost all Cohen—Macaulay local rings if and only if the other set does (note that
this argument does not yet use the above pseudo notions). However, this argument
breaks down in the presence of torsion, or, when we want to transfer the regular-
ity property. This can be overcome by using the notions defined in this section,
provided we have a uniform upper bound on the parameter degree.

Suppose, for some d, e € N, that almost all R,, have dimension d and parameter
degree at most e. Note that in view of Corollary 5.11 this last condition is automati-
cally satisfied if almost all R, are torsion-free over O,,; and that it is implied by the
assumption that almost all R,, have uniformly bounded homological multiplicity
(see [Schoutens 2006, Corollary 4.6]). Applying Proposition 5.10 twice gives first
that R is isodimensional, with geometric dimension d, and then that almost all R w
have dimension d and uniformly bounded parameter degree. Now, Theorems 6.3
and 6.5 tell us that almost all R, are respectively Cohen—Macaulay or regular, if
and only if almost all R,, are.

7. Big Cohen—Macaulay algebras

In [Aschenbrenner and Schoutens 2007; Schoutens 2004a], ultraproducts of abso-
lute integral closures in characteristic p were used to define big Cohen—Macaulay
algebras in equicharacteristic zero. This same process can be used in the current
mixed characteristic setting. Recall that for an arbitrary domain B, we define its
absolute integral closure as the integral closure of B in some algebraic closure of
its field of fractions and denote it B*. This is uniquely defined up to B-algebra
isomorphism.

For each prime number p, let Dg‘i" be a mixed characteristic complete discrete
valuation ring with uniformizing parameter 7, and residue field « , of character-
istic p, and let £, 7w and « be their respective ultraproducts. Put Df,q =K p[[t]],
for t a single indeterminate. By Theorem 2.3, the Ax—Kochen—Ershov Theorem,
9 is isomorphic to the ultraproduct of the Dj,q. As before, Jo denotes the ideal
of infinitesimals of . Put A := O[X], for a fixed tuple of indeterminates X,
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and let Eg(A) and Qgi"(A) be its respective equicharacteristic and mixed char-
acteristic nonstandard ©-hull, that is to say, the ultraproduct of respectively the
Ayl :=0,'[X] and the AT := ONX[X].

Throughout, R will be a local O-affine domain with R;q and Sg(R) respectively
an equicharacteristic O-approximation and the equicharacteristic nonstandard ©-
hull of R (so that Sg(R) is the ultraproduct of the Rt;,q). By Theorem 4.4, almost
all R‘;q are local domains.

Definition 7.1. Define %(R) as the ultraproduct of the (R,")T.

Since (R‘;’,q)Jr is well-defined up to R?,q-algebra isomorphism, we have that B(R)
is well-defined up to R-algebra isomorphism. Moreover, this construction is weakly
functorial in the following sense. Let R — S be an $-algebra homomorphism be-
tween local D-affine domains. This induces D;q—algebra homomorphisms R;q —
S f,q of the corresponding equicharacteristic O-approximations. These in turn yield
homomorphisms (Rj,:,q)Jr — (S';,q)Jr between the absolute integral closures. Taking
ultraproducts, we get an -algebra homomorphism B(R) — RB(S) and a commu-
tative diagram

(6)

B(R) - B(S).

Theorem 7.2. If R is a local O-affine domain, then any generic sequence in R is
B(R)-regular.

Proof. Let Sg(R) and R;q be respectively, the equicharacteristic nonstandard O-
hull and an equicharacteristic O-approximation of R. Let x be a generic sequence,
and let x,, be an O-approximation of x. By Corollary 5.8, almost each x,, is a
system of parameters in R, whence is (R;q)+—regular by [Hochster and Huneke
1992]. By Los’ Theorem, x is B(R)-regular. O

8. Improved New Intersection Theorem

The remaining sections will establish various asymptotic versions in mixed char-
acteristic of the Homological Conjectures listed in the abstract. We start with
discussing Intersection Theorems. By [Roberts 1987], we now know that the New
Intersection Theorem holds for all noetherian local rings. However, this is not yet
known for the Improved New Intersection Theorem. We need some terminology
and notation (all taken from [Bruns and Herzog 1993]).
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Let C be an arbitrary noetherian local ring and ¢: C¢ — C” a linear map be-
tween finite free C-modules. We will always think of ¢ as an (a x b)-matrix over
C. For r > 0, recall that the r-th Fitting ideal of ¢, denoted I, (¢), is the ideal in
C generated by all (r x r) minors of ¢; if r exceeds the size of the matrix, we put
I (p) == (0).

By a finite free complex over C we mean a complex

(F.) 0 Ccu2cur 2, Boca P cw ),

We call s the length of the complex, and for each i, we define

N
ri ‘= Z(—l)j_iaj
j=i

We will refer to r; as the expected rank of ¢;. We will call the residue ring C/ 1, (¢;)
the i-th Fitting ring of F, and we will denote it N; (F,).
The i-th homology of F, is by definition the quotient module

H;(F,) :=Ker(g;)/ Im(g;11).

We call F, acyclic, if all H;(F,) =0 for i > 0. In that case, F, yields a finite free
resolution of Hy(F,).

In case C is a Z-affine algebra with Z a local ring, we say that F, has Z-
complexity at most c, if its length s is at most ¢, if all @; < ¢, and if every entry
of each ¢; has Z-complexity at most c. Below we will say that an element 7 in a
homology module H;(F,) has Z-complexity at most c, if it is the image of a tuple
in Ker(g;) of Z-complexity at most ¢ (for more details, see Section 11 below).

Theorem 8.1 (Asymptotic Improved New Intersection Theorem). For each c, there
exists a bound INI'T(c) with the following property. Let V be a mixed characteristic
discrete valuation ring and let (C, m) be a local V -affine domain. Let F, be a finite
free complex over C. Assume Hy(F,) has a minimal generator t, such that Ct has
finite length and assume that c¢ simultaneously bounds the V-complexity of C, T
and F,, the parameter degree of each Fitting ring R; (F,), and the length of Ct.

If W; (F,) has dimension at most dimC —i, fori =1, ..., s, then the dimension
of C is at most the length of the complex F,, provided the characteristic of the
residue field of O is bigger than INIT(c).

Proof. If mC = 0, then C contains the residue field of V and in that case the
Theorem is known (see for instance [Bruns and Herzog 1993, Theorem 9.4.1] or
[Evans and Griffith 1981; Hochster 1983]). So we may moreover assume that
C is flat over V. By faithful flat descent, we may replace V and C by V and
a suitable localization of V ®y C respectively, where V is the completion of V.
In other words, we only need to prove the result for a torsion-free local domain
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over a complete discrete valuation ring of mixed characteristic. Suppose this last
assertion is false for some c, so that there exists an infinite set U of prime numbers
and for each p € U a counterexample consisting of the following data:

» a mixed characteristic complete discrete valuation ring Dg‘i" with uniformiz-
ing parameter 7 ,, whose residue field has characteristic p;

e alocal D‘;i"-afﬁne domain er;“i" of D?}i"—complexity at most c¢;
« a finite free complex
mix mixya; %P mixya;_; Ps—Le
(FIx) 0 — (RUX)a 220, (RmiXyd 200,
#2.p (RgliX)CH (pl,p; (erl;liX)llO — 0
of length s and of Dg‘ix—complexity at most ¢, such that the i-th Fitting ring
N (F gli") has dimension at most d — i and parameter degree at most c;

+ aminimal generator 7, of Ho(F}.*) of O7'*-complexity at most ¢, generating

a module of length at most c,

but such that s is strictly less than the dimension of R‘;i". Choose some nonprin-
cipal ultrafilter on the set of prime numbers which contains U. In particular, we
have a counterexample with the above properties for almost all p. Without loss of
generality, we may assume that the dimension of each R‘;}ix and that the ranks of
each F 1’,“:" are independent from p, since there are only finitely many possibilities,
and hence precisely one such possibility almost always holds. In particular, the
expected ranks do not depend on p.

Let O and 7 be the respective ultraproduct of the D‘;}ix and the 7 ,. Let R and
Erg"(R) be the respective protoproduct and ultraproduct of the Rr[;“ix. It follows
from Theorem 4.4, that R is a local O-affine domain, and from Theorem 4.2, that
R — Srgx(R) is faithfully flat. Let d be the geometric dimension of R, so that
almost all R have dimension d by Theorem 5.4. Let ¢; be the ultraproduct of
the ¢;, . It follows from Lemma 2.1 that each ¢; is already defined over R. Hence
by Los’ Theorem

1

(F.) 0—> Ru L Rar B, B Rpa PLRw

is a finite free complex. Let M denote its zeroth homology and fix some i. By L.os’
Theorem, I,,(¢;, ,) is an O-approximation of I, (¢;). By the uniform boundedness
of the parameter degrees, 9;(F,) is isodimensional by Proposition 5.10. If d; is
the geometric dimension of M; (F,), then d —d; is equal to the height of almost all
I, (¢i, p) and to the geometric height of 7, (¢;), by Theorem 5.13. In particular, by
assumption, i < d — d;, and therefore, by definition of geometric height, we can
find a generic sequence X; in R whose first i entries belong to 1, (¢;).
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Let B :=®B(R). Since Xx; is B-regular by Theorem 7.2, the grade of I, (¢;) B is
at least i. Since this holds for all i, the Buchsbaum—Eisenbud—Northcott Acyclicity
Theorem ([Bruns and Herzog 1993, Theorem 9.1.6]) proves that F, Qg B is acyclic.
Since B has depth at least d, it follows from Theorem 9.1.2 of the same reference
that the zeroth homology of F, ® B, that is to say, M ®x B, has depth at least
d—s.

Let 7 be the ultraproduct of the 7,. Note that each 7, is by assumption the
image of a tuple in (Rg‘ix)“o of D‘;ix—complexity at most ¢, so that 7 is already
defined over R by Lemma 2.1. By L.os’ Theorem, t is a minimal generator of

Ho(Foe ® £5%(R)) = M ® £5%(R),

and by [Schoutens 1999, Proposition 1.1] or [Jensen and Lenzing 1989, Proposition
9.1], the length of SgiX(R)r is at most c. By faithful flatness, t € M —mM, where
m is the maximal ideal of R, and Rt has length at most c. In particular, the image
of t®1in M/mM ® B/mB is nonzero, and therefore T ® 1 itself is a nonzero
element of M ® B. Since m¢ annihilates 7 ® 1, we conclude that M ® B has depth
zero. Together with the conclusion from the previous paragraph, we get d < s,
contradiction. g

This type of argument by reductio ad absurdum, to obtain uniform bounds via
ultraproducts, is very common and will be used constantly in the sequel. We will
shorten the argument by saying from the start that by way of contradiction, we may
assume that for some c, there exist for almost each p a counterexample with such
and such properties.

9. Monomial and Direct Summand Conjectures

We keep notation as in the previous section, so that in particular £ will denote the
ultraproduct of mixed characteristic complete discrete valuation rings Dl;}ix. In or-
der to formulate a nonstandard version of the Monomial Conjecture, we need some
terminology. Let Ny, be the ultrapower of N. Let C,, be rings, X := (X1, ..., Xg)
indeterminates and A, the ultraproduct of the C,[X]. Although each C,[X] is
N-graded, it is not true that A is Nyo-graded, since we might have infinite sums
of monomials in As,. Nonetheless, for each vo, € (Noo)?, the element X> is
well-defined, namely, if v, is the ultraproduct of elements v,, € N, then

XV* .= ulim X"».
w—> 00

In particular, if B is an arbitrary ultraproduct of rings B, and if x is a d-tuple in
B, then x>~ is a well-defined element of B .

By a cone H in a semigroup I" (e.g., T =N or I' = Ngo), we mean a subset H
of I such that v+T" C H, for every v € H, where v+ I  stands for the collection of
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all v+y with y € I'. A cone H is finitely generated, if there exist vy, ..., vs € H,
called generators of the cone, such that

H:Uvi—i—F.
i

If H is a cone in N, we let Jy be the monomial ideal in Z[Y] generated by all
YY with v € H, where Y is a d-tuple of indeterminates. If H is generated by
Vi, ..., Vs, then Jp is generated by X", ..., X*. Conversely, if J is a monomial
ideal in Z[X], then the collection of all v for which X" € J is a cone in N¢. Since
Z[Y] is noetherian, every cone in N¢ is finitely generated. This is no longer true
for a cone in N<_.

Let B be an arbitrary ring. We will use the following well-known fact about
regular sequences. If x is a B-regular sequence (in fact, it suffices that x is quasireg-
ular), H a cone in N¢ and v ¢ H, then x" does not lie in the ideal Jy(x) generated
by all x? with § € H.

Corollary 9.1. Let R be a local -affine domain with equicharacteristic nonstan-
dard O-hull Sg’(R). Let x be a generic sequence in R, let H be a cone in Ngo and
letv e N‘Olo. Ifv ¢ H, then

) x' ¢ (x| pe H)LG(R).

Proof. Suppose (7) is false for some choice of cone H of Ngo and some vy ¢ H.
In other words, we can find f;s in Sg(R) and tuples v; in H, such that

(8) x" = flooxv1 +--- 4+ fsooxvs-

Since R — %B(R) factors through SeDQ(R), we can view (8) as a relation in B(R),
and we want to show that that is impossible. Let Rf,q be an equicharacteristic -
approximation of R, so that B(R) is the ultraproduct of the (R?,q)Jr. Choose tuples
vip €N, elements f; , € (R,)* and tuples x,, in R}, whose respective ultraproducts
are v;, fico and x. By L.os” Theorem, we get

) Xzop:flpx;lp+"'+fSPX;XP

in (R,)T, for almost all p. Los” Theorem also yields that vy, does not lie in the
cone of N¢ generated by vy, ..., vy, for almostall p. However, X is B(R)-regular
by Theorem 7.2, whence, almost all x,, are (Rf,q)+-regular by Los’ Theorem. By
our above discussion on regular sequences, (9) cannot hold for those p. O

Theorem 9.2 (Asymptotic Monomial Conjecture I). For each c, there exists a
bound MC(c) with the following property. Let Y be a tuple of indeterminates and
J a monomial ideal in Z[Y]. Let V be a mixed characteristic discrete valuation
ring and let C be a local V -affine domain. Lety be a system of parameters in C
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and let J(y)C denote the ideal in C obtained from J by the substitution Y +>y.
Assume JV[Y], C andy have V -complexity at most ¢c and ¢ € yC.

If YV is a monomial of degree at most ¢ not belonging to J, then'y’ ¢ J(y)C,
provided the characteristic of the residue field of V is bigger than MC(c).

Proof. Note that since C has V-complexity at most c, its dimension d is at most
c. By faithful flat descent, we may reduce to the case that V is complete. Suppose
the result is false for some c, so that we can find for almost each prime number p,

» a mixed characteristic complete discrete valuation ring D‘;;i" with uniformiz-
ing parameter 7 ,, whose residue field has characteristic p,

 alocal Dgli"-afﬁne domain R;‘}i" of D?}i"—complexity at most c,

» multi-indices vgp, ..., v;p such that |v,- p| < cand vy, is not in the cone gen-
erated by the remaining tuples,

* a system of parameters y, of Dg‘i"—complexity at most ¢ generating an ideal
containing (7 ),

such that

(10) Yo' € ps Y IR,

Note that the possible number 7 of tuples v; , is bounded in terms of ¢ and hence can
be taken to be independent of p. Let O be the ultraproduct of the D;‘i" and let R
and 2‘5”‘(R) be the respective protoproduct and ultraproduct of the Rgﬁx. Since R
is then a domain, it is isodimensional. Let y and v; be the respective ultraproducts
of y, and v;,. In particular, |v;| < c, so that v; € N?. Let H be the cone in N¢
generated by vy, ..., v,. By Los’ Theorem, vy ¢ H. The sequence y is defined
over R, by Lemma 2.1, and is generic in R, by Corollary 5.8. By an application
of Los” Theorem to (10) together with Theorem 4.2, we get

y*ey”,...,y")R.
However, this contradicts Corollary 9.1 for the cone H. O

Remark 9.3. In [Schoutens 2003b, Theorem 1.1], this result was stated erro-
neously without imposing a bound on the degrees of the monomials. I can only
prove this more general result in the special case given by Corollary 9.5 below.

Using some results from [Schoutens > 2007], we can remove the restriction on
C to be a domain. Namely, by the usual argument, we reduce to the domain case
by killing a minimal prime p of C of maximal dimension (that is to say, so that
dim C =dim C/p). However, in order to apply the theorem to the domain C/p, we
must be guaranteed that its V-complexity is at most ¢’, for some ¢’ only depending
on c. Such a bound does indeed exist.
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Theorem 9.4 (Asymptotic Direct Summand Conjecture). For each c, we can find a
bound DS(c) with the following property. Let V be a mixed characteristic discrete
valuation ring and let C — D be a finite, injective local V -algebra homomorphism
of V-complexity at most c.

If C is regular, then C is a direct summand of D (as a C-module), provided the
characteristic of the residue field of V is bigger than the bound D5(c).

Proof. It 7 C =0, we are in the equicharacteristic case and the result is well-known.
So we may assume that V C C. We leave it to the reader to make the reduction to
the case that V is complete and D is torsion-free over V. Towards a contradiction,
suppose for some ¢ and almost each p, we have a mixed characteristic complete
discrete valuation ring D?ix with residue field of characteristic p, and a finite,
injective local Df;‘i"-glgebra homomorphism RI™ — $™X of D‘;ix—complexity at
most ¢, such that R‘;“x is regular but not a direct summand of S‘;,“x.

By the transfer described in Section 6.9, these data in mixed characteristic yield
corresponding data in equal characteristic. In particular, we have for almost each p,
an equicharacteristic p complete discrete valuation ring O , and a finite, injective
local Df,q—algebra homomorphism R;q — S;q of D;q—complexity at most ¢, such
that R;q is regular. Although, we did not discuss transfer of homomorphisms and
their properties, it is not hard to see, using faithfully flat descent, that almost no R;q
is a direct summand of S?,q. However, this is in violation of the Direct Summand
theorem in equicharacteristic. O

Corollary 9.5 (Asymptotic Monomial Conjecture II). For each c, we can find a
bound MC'(c) with the following property. Let V be a mixed characteristic discrete
valuation ring, let D be a local V -affine algebra and let (x1, ..., xq) be a system
of parameters in D.

If there exists a finite, injective local V -algebra homomorphism C € D of V-
complexity at most c, such that the x; belong to C and generate its maximal ideal,
then (x1 - - - x4)" does not belong to (x;'H, - x2+1)D,f0r all t = 0, provided the
residue field of V is bigger than MC'(c) .

Proof. We may take MC'(c) equal to the bound DS(c) from Theorem 9.4. Indeed,
since D has dimension d, so does C, showing that C is regular. Hence C is a direct
summand of D by Theorem 9.4, so that we are done by [Bruns and Herzog 1993,
Lemma 9.2.2]. U

Note that the bounds provided by Theorem 9.2 for the problem at hand depend
a priori also on the exponent ¢, so that the corollary gives a stronger result. Inter-
estingly, by Cohen’s Structure Theorem, any system of parameters in a complete
local V -affine domain arises as the image of a regular system of parameters under a
finite extension. However, since we are forced to work with noncomplete V -affine
algebras, it is not clear yet to which extent the above theorem applies.
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10. Pure subrings of regular rings

We keep notation as in the previous section, so that in particular £ will denote
the ultraproduct of mixed characteristic complete discrete valuation rings Dg‘ix.
Our goal is to show an asymptotic version of the Hochster—Roberts Theorem in
[Hochster and Roberts 1974]. Recall that a ring homomorphism C — D is called
cyclically pure if every ideal I in C is extended from D, that is to say, if I =1 DNC.

Theorem 10.1. If R is a pseudoregular isodimensional local O-affine algebra,
then R — RB(R) is faithfully flat.

Proof. Let L be a linear form in a finite number of indeterminates Y with co-
efficients in R and let b be a solution in B := B(R) of L = 0. Let R}, L}
and b‘;’,q be equicharacteristic $-approximations of R, L and b respectively. By
Los’ Theorem, b;q is a solution in (R;q)*' of the linear equation L;q = 0. By

[Aschenbrenner 2001a, Corollary 4.27], we can find tuples a; ;q, el as;q over R;q
generating the module of solutions of L‘;q =0, all of D;q—complexity at most ¢, for
some ¢ independent from p and s. Let ay, ..., a; be the respective ultraproducts,

which are then defined over R by Lemma 2.1. By Los’ Theorem, L(a;) = 0, for
each i. On the other hand, almost all R‘;q are regular, by Theorem 6.5. Therefore,
R — (RNHT is flat by [Huneke 1996, Theorem 9.1]. Hence we can write b}, as
a linear combination over (R?,q)+ of the ai;q. By Los’ Theorem, b is a B-linear
combination of the solutions a;, showing that R — B is flat whence faithfully flat.

O

Proposition 10.2. Let R — S be an injective homomorphism of local isodimen-
sional O-affine algebras. If R/t R — S/ S is cyclically pure and S is a pseu-
doregular local ring, then R is pseudo-Cohen—Macaulay.

Proof. Since S is a domain by Corollary 6.6, so is R. If 7R = 0, we are in an
equicharacteristic noetherian situation and the statement becomes the Hochster—
Roberts Theorem [Hochster and Roberts 1974]. Therefore, we may assume 7 is
R-regular, so that we can choose a generic sequence x := (x, ..., Xg) in R with
x1 =m. Foreachn <d, let I, := (xy, ..., x,)R. Suppose rx,+1 € I,, for some
r € R. By Theorem 7.2, the sequence x is a B(R)-regular. Therefore, r € I,B(R).
Since the homomorphism R — § induces a homomorphism B(R) — B(S), we
getr € I,B(S). By Theorem 10.1, we have

LBS)NS =18,

sor € I,S. Using finally that R/m R — S/ S is cyclically pure and 7 € I,,, we
get r € I,. This shows that x is R-regular, so that R has depth at least d and hence
is pseudo-Cohen—Macaulay. O
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Theorem 10.3 (Asymptotic Hochster—Roberts Theorem). For each c, we can find
a bound HR(c) with the following property. Let V be a mixed characteristic dis-
crete valuation ring and let C — D be a local V -algebra homomorphism of V -
complexity at most c. If C — D is cyclically pure and D is regular, then C is Coh-
en—Macaulay, provided the characteristic of the residue field of V is at least HR(c).

Proof. As before, we may reduce to the case that V is complete and that V C C.
Suppose this assertion is then false for some ¢, so that we can find for almost each
prime number p, a mixed characteristic complete discrete valuation ring D‘;i" with
residue field of characteristic p and a cyclically pure Dg‘ix—algebra homomorphism
R;ﬁx — S?ix of Dg‘ix—complexity at most ¢, such that S‘;ix is regular but Rg‘i" is
not Cohen—Macaulay. Let R — S and £giX(R) — E‘Bi"(S) be respectively the
protoproduct and the ultraproduct of the R;™ — S7'*. Theorem 6.3 implies that
R is not pseudo-Cohen—Macaulay, and Theorem 6.5, that S is pseudoregular. I
claim that R/m R — S/x S is cyclically pure. Assuming this claim, we get from
Proposition 10.2 that R is pseudo-Cohen—Macaulay, contradiction.

To prove the claim, let / be an arbitrary ideal in R containing w. Letr € ISNR,
so that we need to show that r € I. Note that / is finitely generated, as R/ R is
noetherian. Let / ‘;,‘i" and rg‘ix be mixed characteristic D-approximations in R;‘ix
of I and r respectively. By £.os’ Theorem, almost all r/*™* lie in 7" S N RY™,
whence in / g‘ix by cyclical purity. By Los’ Theorem, r € I ng"(R), sothatr e [
by faithful flatness, as we needed to prove. 0

11. Asymptotic vanishing for maps of Tor

Proposition 11.1. If R — S is an integral extension of local O-affine domains,
then B(R) = RB(S).

Proof. Since any integral extension is a direct limit of finite extensions, we may
assume that R — S is finite. Choose an equicharacteristic O-approximation

eq eq
Rp — Sp

of R — S. By Theorem 4.4 and L.os’” Theorem, almost all Rf,q and S;q are domains
and the extension Ry — S is finite. Therefore, (R, = (Sp) 7, so that in the
ultraproduct, we get B(R) = B(S). Il

Theorem 11.2. Let R — S — T be local D-algebra homomorphisms between
local O-affine domains. Assume that R and T are pseudoregular and that R — S
is integral and injective. For every R-module M, the induced map

TorR(S, M) — Tor®(T, M)

is zero forall i > 1.
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Proof. Since R — S is integral, we have that B(R) = %B(S) by Proposition 11.1.
Therefore, TorlR (B(S), M) =0, for all i > 1, by Theorem 10.1. By weak functo-
riality, we have, for each i > 1, a commutative diagram

TorR (S, M) Tor®(T, M)

Y

0 = TorR(B(S), M) > Tor® (B(T), M).

In particular, the composite map in this diagram is zero, so that the statement
follows once we have shown that the last vertical map is injective. However, this
is clear, since T — %B(T) is faithfully flat by Theorem 10.1. g

To make use of this theorem, we need to incorporate modules in our present
setup. I will not provide full details, since many results are completely analogous to
the case where we work over a field, and this has been treated in detail in [Schoutens
2000a]. Of course, we do not have the full equivalent of Theorem 2.2 to our
disposal, but for most purposes, the flatness result in Theorem 4.2 suffices.

Let C be an arbitrary noetherian local ring and M a finitely generated module
over C. We say that a finite free complex F, is a finite free resolution of M up to
level n, if Hy(F,) =M and all H;(F,) =0, for j =1, ..., n. Hence, if n is strictly
larger than the length of F,, then this just means that F, is a finite free resolution
of M (compare with the terminology introduced in the beginning of Section 8).

Suppose moreover that Z is a noetherian local ring and C is a local Z-affine
algebra. We say that M has Z-complexity at most c, if C has Z-complexity at most
c and if M can be realized as the cokernel of a matrix of Z-complexity at most ¢
(meaning that its size is at most ¢ and all its entries have Z-complexity at most c).

Proposition 11.3. For each pair (c, n), there exist bounds RES(c, n) and HOM(c)
with the following property. Let V be a mixed characteristic discrete valuation
ring and let C be a local V -affine algebra of V -complexity at most c.

o Any finitely generated C-module of V-complexity at most c, admits a (mini-
mal) finite free resolution up to level n of V-complexity at most RES(c, n).

o Any finite free complex over C of V -complexity at most c, has homology mod-
ules of V-complexity at most HOM(c).

Proof. The first assertion follows by induction from the already quoted [Aschen-
brenner 2001a, Corollary 4.27] on bounds of syzygies (compare with the proof of
[Schoutens 2000a, Theorem 4.3]). It is also clear that we may take this resolution
to be minimal (=every tuple in one of the kernels has its entries in the maximal
ideal), if we choose to do so. The second assertion is derived from the flatness of
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the nonstandard ©-hull in exactly the same manner as the corresponding result for
fields was obtained in [Schoutens 2000a, Lemma 4.2 and Theorem 4.3]. O

Recall that the weak global dimension of a ring C is by definition the supremum
(possibly infinite) of the weak homological dimensions (=flat dimensions) of all C-
modules, that is to say, the supremum of all n for which Tor,f( -, ) is not identically
Zero.

Corollary 11.4. A pseudoregular local 9-affine domain has finite weak global
dimension.

Proof. Let R be a pseudoregular local 9-affine domain. Given an arbitrary R-
module M, we have to show that M has bounded flat dimension, that is to say,
admits a flat resolution of bounded length. Assume first that M is finitely presented.
Hence we can realize M as the cokernel of some matrix I". Let £(R) be the
nonstandard O-hull of R and let R, and '}, be O-approximations of R and '
respectively. Let M, be the cokernel of I'y,. Let d be the geometric dimension of
R. By Proposition 11.3, we can find a finite free resolution F,, up to level d of
each M, of O,-complexity at most ¢, for some ¢ depending only on I', whence
independent from w. Since almost each R,, is regular by Theorem 6.5 and has
dimension d by Theorem 5.4, almost each M, has projective dimension at most
d, so that we can even assume that F,,, is a finite free resolution of M,,. Let F,
be the protoproduct of the F),, (that is to say, the finite free complex over R given
by the protoproduct of the matrices in Fy,). By Los’ Theorem, F, @ £(R) is a
free resolution of M Q@ £(R), and therefore by faithful flat descent, F, is a free
resolution of M, proving that M has projective dimension at most d.

Assume now that M is arbitrary. By what we just proved, we have for every
finitely generated ideal I of R that Tor§ +1(M, R/I) vanishes. Hence, if H is a d-th
syzygy of M, then Torf (H, R/I)=0. Since this holds for every finitely generated
ideal of R, we get from [Matsumura 1986, Theorem 7.7] that H is flat over R.
Hence M has finite flat dimension at most d. O

By [Jensen 1970], any flat R-module has projective dimension less than the
finitistic global dimension of R (the supremum of all projective dimensions of mod-
ules of finite projective dimension). Therefore, if, moreover, the finitistic global
dimension of R is finite, then so is its global dimension. For a noetherian local
ring, its global dimension is finite if and only if its residue field has finite projective
dimension (if and only if it is regular). Here is the pseudo analogue of this.

Corollary 11.5. A local O-affine domain is pseudoregular if and only if it is a
coherent regular ring in the sense of [Bertin 1971], if and only if its residue field
has finite projective dimension.
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Proof. In [Bertin 1971] or [Glaz 1992, §5], a local ring R is called a coherent
regular ring, if every finitely generated ideal of R has finite projective dimension.
If R is a pseudoregular local 9-affine domain, then this property was established in
the course of the proof of Corollary 11.4. Conversely, suppose R is a local O-affine
domain in which every finitely generated ideal has finite projective dimension. In
particular, its residue field k admits a finite projective resolution, say of length n.
Let R, and k,, be O-approximations of R and k respectively. Since the k,, have
uniformly bounded ©,,-complexity, Proposition 11.3 allows us to take a minimal
finite free resolution F,, of k,, up to level n, with the property that each F,
has 9,,-complexity at most ¢, for some ¢ independent from w. Let F, be the
protoproduct of these resolutions. By L.os’ Theorem and faithfully flat descent, F,
is a minimal finite free resolution of k up to level n. Since F, is minimal and since
k has by assumption projective dimension 7, it follows that the final morphism
(that is to say, the left most arrow) in F, is injective. By Los’ Theorem, so are
almost all final morphisms in F,,, showing that almost all k,, have finite projective
dimension. By Serre’s characterization of regular local rings, we conclude that
almost all R,, are regular. Theorem 6.5 then yields that R is pseudoregular, as we
wanted to show. O

Closer inspection of the above argument shows that the residue field of a pseu-
doregular local -affine domain R has projective dimension equal to the geometric
dimension of R. In particular, the weak global dimension of R is equal to its
geometric dimension.

Theorem 11.6 (Asymptotic Vanishing for Maps of Tors). For each c, we can find a
bound V'T(c) with the following property. Let V be a mixed characteristic discrete
valuation ring, let C — D — E be local V -algebra homomorphisms of local V -
affine domains and let M be a finitely generated R-module, all of V -complexity at
most c.

If C and E are regular and C — D is finite and injective, then the natural map
Torg(D, M) — Tor,f (E, M) is zero, for all n > 1, provided the characteristic of
the residue field of V is at least V'T(c).

Proof. Note that C has dimension at most ¢ and therefore Tor,f(-, -) vanishes iden-
tically for all n > ¢ and the assertion trivially holds for these values of n. If 7C =0,
we are in the equicharacteristic case, for which the result is known ([Huneke 1996,
Theorem 9.7]). Hence we may assume that all rings are torsion-free over V. More-
over, without loss of generality, we may assume that V' is complete. Suppose even
in this restricted setting, there is no such bound for ¢ and some 1 <n < c. Hence,
for almost each prime number p, we can find a counterexample consisting of the
following data:
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» amixed characteristic complete discrete valuation ring O™ of residual char-
acteristic p;

« local R"™-algebra homomorphisms R — §™iX — TMix of OMiX_complexity
at most ¢ between torsion-free local domains, with R?ix and Trl’,nix regular and
R‘;;ix — S‘;}ix finite and injective;

» a finitely generated R7;™-module M 7™ of O7'*-complexity at most c;

such that - -
Tor,” (™, M™) - Tor,” (T, M™™)
is nonzero.

Let O be the ultraproduct of the D‘;ix and let M be the protoproduct of the M an
(that is to say, M is the cokernel of the protoproduct of matrices whose cokernel
is M?i"). Let R—> S — T and S‘g"(R) — Srgx(S) — Srgx(T) be the respeptive
protoproduct and mixed characteristic ultraproduct of the homomorphisms R;™ —
§mix — 7™t follows from Corollary 6.6 and Theorems 4.4 and 6.5, that R, §
and T are local D-affine domains with R and T pseudoregular. By L.os’ Theorem,
using that the Rr;ix — S‘;}ix have bounded D?ix—complexity, £gix(R) — SSiX(S ) is
finite, whence so is R — S by faithful flat descent. By Theorem 11.2, the natural
homomorphism Torff S, M) — Tor,lf(T, M) is therefore zero.

By Proposition 11.3, we can find a finite free resolution F' Ir;fx of M ;‘ix up to
level n, of D‘;ix complexity at most ¢/, for some ¢’ only depending on ¢ (note that
n < c). By definition of Tor, we have isomorphisms

mix

R . . . .
Tory, " (ST, M) 2 H, (FI* @ g ST)

mix

R . . . .
Tor,” (Th™, Mp™) = H, (Fpa* @pnix T'™)

In particular, by Proposition 11.3, both modules have Dg‘ix—complexity at most ¢,
for some ¢” only depending on ¢’, whence only on ¢. Let Hg and Hr be their
respective protoproduct, so that by Los’ Theorem and our assumptions, Hs — Hr
is nonzero. Let F, be the protoproduct of the F l‘,n,ix. By Los’ Theorem and faithful
flatness, Hs and Hp are isomorphic to H,(F, ®r S) and H,(F, ®r T) respec-
tively. Since F, is a finite free resolution of M up to level n by another application
of Los’ Theorem and faithful flatness, these two modules are also isomorphic to
Tor,lf(S , M) and Torf(T, M) respectively. Hence the natural map between these
two modules is nonzero, contradiction. O
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