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THE FIXED POINT SUBALGEBRA
OF A LATTICE VERTEX OPERATOR ALGEBRA

BY AN AUTOMORPHISM OF ORDER THREE

KENICHIRO TANABE AND HIROMICHI YAMADA

We study the subalgebra of the lattice vertex operator algebra V√
2A2

con-
sisting of the fixed points of an automorphism which is induced from an
order-three isometry of the root lattice A2. We classify the simple modules
for the subalgebra. The rationality and the C2-cofiniteness are also estab-
lished.

1. Introduction

The space of fixed points of an automorphism group of finite order in a vertex
operator algebra is a vertex operator subalgebra. The study of such subalgebras
and their modules is called orbifold theory. It is a rich field both in conformal field
theory and in the theory of vertex operator algebras. However, orbifold theory
is difficult to study in general. One reason is that the subalgebra of fixed points
usually has more complicated structure than the original vertex operator algebra.

The first example of orbifold theory in vertex operator algebras is the moonshine
module V \ by Frenkel, Lepowsky, and Meurman [Frenkel et al. 1988], constructed
as an extension of V +

3 by its simple module V T,+
3 , where V +

3 is the space of
fixed points of an automorphism θ of order two in the Leech lattice vertex op-
erator algebra V3. This construction is called a 2B-orbifold construction because
θ corresponds to a 2B involution of the monster simple group. More generally,
Frenkel et al. defined a vertex operator algebra VL associated with an arbitrary
positive definite even lattice L . These lattice vertex operator algebras provide a
large family of vertex operator algebras. Such a lattice vertex operator algebra
admits an automorphism θ of order two, which is a lift of the isometry α 7→ −α

of the underlying lattice L . Orbifold theory for the fixed point subalgebra V +

L of
θ has been developed extensively. The simple V +

L -modules have been classified
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[Abe and Dong 2004], the fusion rules have been determined [Abe et al. 2005], and
it has been established that V +

L is C2-cofinite [Abe et al. 2004; Yamskulna 2004].
Here we study the fixed point subalgebra by an automorphism of order three

for a certain lattice vertex operator algebra. Namely, let L =
√

2A2 be
√

2 times
an ordinary root lattice of type A2 and let τ be an isometry of the root lattice of
type A2 induced from an order-three permutation on the set of positive roots. We
classify the simple modules for the subalgebra V τ

L of fixed points by τ . Moreover,
we show that V τ

L is rational and C2-cofinite.
In [Dong et al. 2004; Kitazume et al. 2003] we have already discussed the vertex

operator algebra V τ
L . It was shown that V τ

L = M0
⊕ W 0 is a direct sum of a

subalgebra M0 and its simple highest-weight module W 0. Actually, M0 is a tensor
product of a W3 algebra of central charge 6/5 and a W3 algebra of central charge
4/5. The property of a W3 algebra of central charge 6/5 as the first component of
the tensor product M0 was investigated in [Dong et al. 2004]. It is generated by
the Virasoro element ω̃1 and a weight-three vector J . The second component of
M0, a W3 algebra of central charge 4/5, was studied in [Kitazume et al. 2000b].
It is generated by the Virasoro element ω̃2 and a weight-three vector K . Each of
these W3 algebras possesses a symmetry of order three. The order-three symmetry
of the second W3 algebra is related to the Z3 part of L⊥/L ∼= Z2 ×Z2 ×Z3, where
L⊥ denotes the dual lattice of L . As an M0-module, W 0 is generated by a highest-
weight vector P of weight 2. Thus the vertex operator algebra V τ

L is generated by
the five elements ω̃1, ω̃2, J , K , and P .

There are 12 inequivalent simple VL -modules, which correspond to the cosets of
L in its dual lattice L⊥ [Dong 1993]. Let (U, YU ) be a simple VL -module. One can
define a new simple VL -module (U ◦ τ, YU◦τ ) by U ◦ τ = U as vector spaces and
YU◦τ (v, z)= YU (τv, z) for v ∈ VL . Then U 7→ U ◦τ is a permutation on the set of
simple VL -modules. In the case where U and U ◦ τ are equivalent VL -modules, U
is said to be τ -stable. If U is τ -stable, the eigenspace U (ε) of τ with eigenvalue ξ ε,
where ξ = exp(2π

√
−1/3), ε= 0, 1, 2, is a simple V τ

L -module, while if U belongs
to a τ -orbit of length three, U itself is a simple V τ

L -module and the three members
in the τ -orbit are equivalent [Dong and Yamskulna 2002, Theorem 6.14]. Among
the 12 inequivalent simple VL -modules, three are τ -stable and the remaining nine
are divided into three τ -orbits. In this way we obtain 12 simple V τ

L -modules. It
is known that there are three inequivalent simple τ -twisted VL -modules and three
inequivalent simple τ 2-twisted VL -modules. We denote them respectively by

(1-1) V j
L (τ ) := V

Tχ j
L (τ ), V j

L (τ
2) := V

Tχ ′
j

L (τ 2), j = 0, 1, 2.

The automorphism τ acts on these τ -twisted or τ 2-twisted VL -modules and each
eigenspace of τ is a simple V τ

L -module [Miyamoto and Tanabe 2004, Theorem 2].
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There are 18 such simple V τ
L -modules, all of them inequivalent. Hence there are

at least 30 inequivalent simple V τ
L -modules.

The main part of our argument is to show that every simple V τ
L -module is iso-

morphic to one of these 30 simple V τ
L -modules. Recall that V τ

L = M0
⊕ W 0 and

that M0 is a tensor product of two W3 algebras. The W3 algebra of central charge
6/5 (resp. 4/5) possesses 20 (resp. 6) inequivalent simple modules. Thus there are
120 inequivalent simple M0-modules. It turns out that among these simple M0-
modules, 60 of them cannot appear as an M0-submodule in any simple V τ

L -module
and that each simple V τ

L -module is a direct sum of two of the remaining 60 simple
M0-modules. We note that W 0 is not a simple current M0-module. Thus V τ

L is a
nonsimple current extension of M0. A discussion on simple modules for another
nonsimple current extension of a certain vertex operator algebra can be found in
[Lam et al. 2005, Appendix C].

The organization of this paper is as follows. In Section 2 we review various
notions about untwisted or twisted modules for vertex operator algebras, together
with some basic tools which will be used in later sections. In Section 3 we fix
notation for the vertex operator algebra V τ

L and collect its properties. We clarify
an argument on the simplicity of M0

T (τ
i ) and W 0

T (τ
i ), i = 1, 2, in [Kitazume et al.

2003, Proposition 6.8]. Furthermore, we correct some misprints in [Kitazume et al.
2003, (6.46)] and in an equation of [Dong et al. 2004, page 265] concerning a
decomposition of a simple τ -twisted VL -module V j

L (τ ), j = 1, 2 as a τ -twisted
M0

k ⊗ M0
t -module (see Remark 3.5). In Section 4 we discuss the structure of the

30 known simple V τ
L -modules. In particular, we calculate the action of o(ω̃1),

o(ω̃2), o(J ), o(K ), and o(P) on the top level of these simple modules. Finally, in
Section 5 we complete the classification of simple V τ

L -modules. We also show the
rationality of V τ

L .
The authors would like to thank Ching Hung Lam, Masahiko Miyamoto, and

Hiroshi Yamauchi for valuable discussions. The proof of Lemma 5.7 is essentially
the same as that of [Lam et al. 2005, Lemma C.3]. Part of our calculation was
done by a computer algebra system Risa/Asir. The authors are grateful to Kazuhiro
Yokoyama for helpful advice on computer programs.

2. Preliminaries

We recall some notation for untwisted or twisted modules for a vertex operator
algebra. We also review the twisted version of Zhu’s theory. A basic reference
to twisted modules is [Dong et al. 1998a]. For untwisted modules, see also [Lep-
owsky and Li 2004]. Let (V, Y, 1, ω) be a vertex operator algebra and g be an
automorphism of V of finite order T . Set V r

= {v ∈ V | gv= e2π
√

−1r/T v}, so that
V =

⊕
r∈Z/T Z V r .
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Definition 2.1. A weak g-twisted V -module M is a vector space equipped with a
linear map

YM( · , z) : v ∈ V 7→ YM(v, z)=

∑
n∈Q

vnz−n−1
∈ (End M){z}

satisfying the following conditions.

(1) YM(v, z)=
∑

n∈r/T +Z vnz−n−1 for v ∈ V r .

(2) vnw = 0 if n � 0, where v ∈ V and w ∈ M .

(3) YM(1, z)= idM .

(4) For u ∈ V r and v ∈ V , the g-twisted Jacobi identity holds:

(2-1) z−1
0 δ

( z1−z2
z0

)
YM(u, z1)YM(v, z2)− z−1

0 δ
( z2−z1

−z0

)
YM(v, z2)YM(u, z1)

= z−1
2

( z1−z0
z2

)−r/T
δ
( z1−z0

z2

)
YM(Y (u, z0)v, z2).

Compare the coefficients of z−l−1
0 z−m−1

1 z−n−1
2 in both sides of (2-1) for u ∈ V r ,

v ∈ V s , l ∈ Z, m ∈
r
T + Z, and n ∈

s
T + Z. Then we obtain

(2-2)
∞∑

i=0

(
m
i

)
(ul+iv)m+n−i =

∞∑
i=0

(−1)i
(

l
i

)(
ul+m−ivn+i − (−1)lvl+n−i um+i

)
.

In the case l = 0, this reduces to

(2-3) [um, vn] =

∞∑
i=0

(
m
i

)
(uiv)m+n−i .

The Virasoro element ω is contained in V 0. Let L(n)= ωn+1 for n ∈ Z. Then

[L(m), L(n)] = (m − n)L(m + n)+ 1
12(m

3
− m)δm+n,0(rankV ),

d
dz

YM(v, z)= YM(L(−1)v, z)

for v ∈ V ; see [Dong et al. 1998a, (3.8), (3.9)].
An important consequence of (2-1) is the associativity formula

(2-4) (z0+z2)
k+r/T YM(u, z0+z2)YM(v, z2)w= (z2+z0)

k+r/T YM(Y (u, z0)v, z2)w

(see [Dong et al. 1998a, (3.5)]), where u ∈ V r , v∈ V ,w∈ M , and k is a nonnegative
integer such that zk+r/T YM(u, z)w ∈ M[[z]].

Let (M, YM) and (N , YN ) be weak g-twisted V -modules. A homomorphism of
M to N is a linear map f : M → N such that f YM(v, z)= YN (v, z) f for all v ∈ V .

Let N be the set of nonnegative integers.
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Definition 2.2. A 1
T N-graded weak g-twisted V -module M is a weak g-twisted

V -module with a 1
T N-grading M =

⊕
n∈

1
T N M(n) such that

(2-5) vm M(n) ⊂ M(n+wt(v)−m−1)

for any homogeneous vectors v ∈ V .

A 1
T N-graded weak g-twisted V -module here is called an admissible g-twisted

V -module in [Dong et al. 1998a]. Without loss we can shift the grading of a 1
T N-

graded weak g-twisted V -module M so that M(0) 6= 0 if M 6= 0. We call such an
M(0) the top level of M .

Definition 2.3. A g-twisted V -module M is a weak g-twisted V -module with a
C-grading M =

⊕
λ∈C Mλ, where Mλ = {w ∈ M | L(0)w = λw}. Moreover, each

Mλ is a finite dimensional space and for any fixed λ, Mλ+n/T = 0 for all sufficiently
small integers n.

A g-twisted V -module is sometimes called an ordinary g-twisted V -module. By
[Dong et al. 1998a, Lemma 3.4], any g-twisted V -module is a 1

T N-graded weak
g-twisted V -module. Indeed, assume that M is a g-twisted V -module. For each
λ ∈ C with Mλ 6= 0, let λ0 = λ+ m/T be such that m ∈ Z is minimal subject to
Mλ0 6= 0. Let 3 be the set of all such λ0 and let M(n) =

⊕
λ∈3 Mn+λ. Then M(n)

satisfies the condition in Definition 2.2. Thus we have the following inclusions.

{g-twisted V -modules} ⊂ {
1
T N-graded weak g-twisted V -modules}

⊂ {weak g-twisted V -modules}

Definition 2.4. A vertex operator algebra V is said to be g-rational if every 1
T N-

graded weak g-twisted V -module is semisimple, that is, a direct sum of simple
1
T N-graded weak g-twisted V -modules.

Let M be a weak g-twisted V -module. The next lemma is a twisted version of
[Li 2001, Lemma 3.12]. In fact, using the associativity formula (2-4) we can prove
it by essentially the same argument as in [Li 2001].

Lemma 2.5. Let u ∈ V r , v ∈ V s , w ∈ M , and k be a nonnegative integer such that
zk+r/T YM(u, z)w ∈ M[[z]]. Let p ∈

r
T + Z, q ∈

s
T + Z, and N be a nonnegative

integer such that zN+1+qYM(v, z)w ∈ M[[z]]. Then

(2-6)
u pvqw =

N∑
i=0

∞∑
j=0

(
p−k−r/T

i

)(
k+r/T

j

)
(u p−k−r/T −i+ jv)q+k+r/T +i− jw.

Conversely, (u pv)qw can be written as a linear combination of some vectors of
the form uiv jw.
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Lemma 2.6. Let u ∈ V r , v ∈ V s , w ∈ M. Then for p ∈ Z and q ∈
r+s

T + Z, the
vector (u pv)qw is a linear combination of uiv jw with i ∈

r
T + Z and j ∈

s
T + Z.

Proof. Let X = span{uiv jw | i ∈
r
T +Z, j ∈

s
T +Z}. We use (2-2). Take m ∈

r
T +Z

such that um+iw = 0 for i ≥ 0. Let N ∈ Z be such that uN+iv = 0 for i > 0.
If p > N , then u pv = 0 and the assertion is trivial. Assume that p ≤ N . For
j = 0, 1, . . . , N − p, let l = p + j and n = q − m − j in (2-2). Then

∞∑
i=0

(
m
i

)
(u p+ j+iv)q− j−iw =

∞∑
i=0

(−1)i
(

p + j
i

)
u p+m+ j−ivq−m− j+iw.

The right hand side of this equation is contained in X . Consider the left hand side
for each of j = N − p, N − p −1, . . . , 1, 0. Then we see that (uNv)q−N+pw ∈ X ,
(uN−1v)q−N+p+1w ∈ X , . . . , and (u pv)qw ∈ X . �

For subsets A, B of V and a subset X of M , set A · X = span{unw | u ∈ A, w ∈

X, n ∈
1
T Z} and A · B = span{unv | u ∈ A, v ∈ B, n ∈ Z}. Then it follows from

(2-6) that A · (B · X)⊂ (A · B) · X (see also [Yamauchi 2004, (2.2)]). For a vector
w ∈ M , this in particular implies that V ·w is a weak g-twisted V -submodule of
M . If w is an eigenvector for L(0), then V ·w is a direct sum of eigenspaces for
L(0). Each eigenspace is not necessarily of finite dimension. Thus V ·w is not a
g-twisted module in general. This subject was discussed in [Abe et al. 2004; Buhl
2002; Yamauchi 2004]. We will review it later in this section.

Zhu [1996] introduced an associative algebra A(V ) called the Zhu algebra for a
vertex operator algebra V , which plays a crucial role in the study of representations
for V . Later, Dong, Li and Mason [Dong et al. 1998a] constructed an associative
algebra Ag(V ) called the g-twisted Zhu algebra in order to generalize Zhu’s theory
to g-twisted representations for V . The definition of Ag(V ) is similar to that of
A(V ). Let V , g, T , and V r be as before. Roughly speaking, Ag(V ) = V/Og(V )
is a quotient space of V with a binary operation ∗g. It is in fact an associative
algebra with respect to ∗g. If r 6= 0, then V r

⊂ Og(V ). Thus Ag(V ) = (V 0
+

Og(V ))/Og(V ). For the case g = 1, see (5-1) in Section 5.
A certain Lie algebra V [g] was considered in [Dong et al. 1998a]. Any weak

g-twisted V -module is a module for the Lie algebra V [g] (see Lemma 5.1 of that
reference). Moreover, for a V [g]-module M , the space �(M) of lowest-weight
vectors with respect to V [g] was defined. If M is a weak g-twisted V -modules,
then �(M) is the set of w ∈ M such that vwt(v)−1+nw = 0 for all homogeneous
vectors v ∈ V and 0 < n ∈

1
T Z. The map v 7→ o(v) for homogeneous vectors

v ∈ V 0 induces a representation of the associative algebra Ag(V ) on �(M), where
o(v)= vwt(v)−1. If M is a 1

T N-graded weak g-twisted V -module, then the top level
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M(0) is contained in �(M). In the case where M is a simple 1
T N-graded weak g-

twisted V -module, M(0) =�(M) and M(0) is a simple Ag(V )-module (see [Dong
et al. 1998a, Proposition 5.4]).

For any Ag(V )-module U , a certain 1
T N-graded V [g]-module M(U ) such that

M(U )(0) = U was defined (see [Dong et al. 1998a, (6.1)]). Let W be the subspace
of M(U ) spanned by the coefficients of

(z0 + z2)
wt(u)−1+δr +r/T YM(u, z0 + z2)YM(v, z2)w

− (z2 + z0)
wt(u)−1+δr +r/T YM(Y (u, z0)v, z2)w

for all homogeneous u ∈ V r , v ∈ V , w ∈ U (see [Dong et al. 1998a, (6.3)]). Set
M̄(U ) = M(U )/U (V [g])W , which is a quotient module of M(U ) by the V [g]-
submodule generated by W .

The following results will be necessary in Sections 3 and 5.

Theorem 2.7 [Dong et al. 1998a, Theorem 6.2]. M̄(U ) is a 1
T N-graded weak g-

twisted V -module such that its top level M̄(U )(0) is equal to U and such that it has
the following universal property: for any weak g-twisted V -module M and any ho-
momorphism ϕ : U →�(M) of Ag(V )-modules, there is a unique homomorphism
ϕ̄ : M̄(U )→ M of weak g-twisted V -modules which is an extension of ϕ.

Let J be the sum of all 1
T N-graded V [g]-submodules of M(U ) which intersect

trivially with U . Since M(U )(0)=U , it is a unique 1
T N-graded V [g]-submodule of

M(U ) being maximal subject to J∩U =0. The principal point is that U (V [g])W ⊂

J . Set L(U )= M(U )/J .

Theorem 2.8 [Dong et al. 1998a, Theorem 6.3]. L(U ) is a 1
T N-graded weak g-

twisted V -module such that �(L(U ))∼= U as Ag(V )-modules.

Remark 2.9. If M is a 1
T N-graded weak g-twisted V -module and ϕ : U → M(0) is

a homomorphism of Ag(V )-modules, then the homomorphism ϕ̄ : M̄(U ) → M
of weak g-twisted V -modules in Theorem 2.7 preserves the 1

T N-grading. In-
deed, M̄(U ) = span{vnU | v ∈ V, n ∈

1
T Z} by (2-6), since M̄(U ) is generated

by U as a 1
T N-graded weak g-twisted V -module. By (2-5), vwt(v)−1−n M̄(U )(0) ⊂

M̄(U )(n) for any homogeneous v ∈ V and n ∈
1
T Z. Since M̄(U )(0) = U , it fol-

lows that M̄(U )(n) is spanned by vwt(v)−1−nU for all homogeneous v ∈ V . Now,
ϕ̄(vwt(v)−1−nU ) = vwt(v)−1−nϕ̄(U ) is contained in vwt(v)−1−n M(0) ⊂ M(n). Hence
ϕ̄(M̄(U )(n)) ⊂ M(n) as required. In the case where both of M̄(U ) and M are
ordinary g-twisted V -modules, ϕ̄ becomes a homomorphism of ordinary g-twisted
V -modules since ϕ̄ commutes with L(0).
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Lemma 2.10. Let U be an Ag(V )-module. Let S be a 1
T N-graded weak g-twisted

V -module such that it is generated by its top level S(0) and such that S(0) is iso-
morphic to U as an Ag(V )-module. Then there is a surjective homomorphism
S → L(U ) of weak g-twisted V -modules which preserves the 1

T N-grading.

Proof. By Theorem 2.7 and Remark 2.9, an isomorphism ϕ : U → S(0) of Ag(U )-
modules can be extended to a surjective homomorphism ϕ̄ : M̄(U )→ S of weak
g-twisted V -modules which preserves the 1

T N-grading. The kernel Ker ϕ̄ of ϕ̄
intersects trivially with M̄(U )(0) and so is contained in

⊕
0<n∈

1
T N M̄(U )(n). Let I

be a 1
T N-graded V [g]-submodule of M(U ) such that Ker ϕ̄= I/U (V [g])W . Then

I ∩ U = 0. This implies that I ⊂ J . Hence L(U ) = M(U )/J is a homomorphic
image of M(U )/I ∼= S. �

Theorem 2.11 [Dong et al. 1998a, Theorem 7.2]. L is a functor from the category
of simple Ag(V )-modules to the category of simple 1

T N-graded weak g-twisted
V -modules such that � ◦ L = id and L ◦�= id.

Theorem 2.12 [Dong et al. 1998a, Theorem 8.1]. Let V be a g-rational vertex
operator algebra.

(1) Ag(V ) is a finite dimensional semisimple associative algebra.

(2) V has only finitely many isomorphism classes of simple 1
T N-graded weak g-

twisted V -modules.

(3) Every simple 1
T N-graded weak g-twisted V -module is an ordinary g-twisted

V -modules.

In case of g = 1, the above argument reduces to the untwisted case. In particular,
Ag(V ) is identical with the original Zhu algebra A(V ) if g = 1.

There is an important intrinsic property of a vertex operator algebra, namely,
the C2-cofiniteness. Let C2(V ) = span{u−2v | u, v ∈ V }. More generally, we set
C2(M)= span{u−2w | u ∈ V, w∈ M} for a weak V -module M . If the dimension of
the quotient space V/C2(V ) is finite, V is said to be C2-cofinite. Similarly, a weak
V -module M is said to be C2-cofinite if M/C2(M) is of finite dimension. The
notion of C2-cofiniteness of a vertex operator algebra was first introduced by Zhu
[1996]. The subspace C2(M) of a weak V -module M was studied in [Li 1999b].
We refer the reader to [Nagatomo and Tsuchiya 2005] also.

Theorem 2.13 [Dong et al. 2000, Proposition 3.6]. If V is C2-cofinite, then Ag(V )
is of finite dimension.

If V =
⊕

∞

n=0 Vn and V0 = C1, then V is said to be of CFT type. Here Vn denotes
the homogeneous subspace of weight n, that is, the eigenspace of L(0)= ω1 with
eigenvalue n.
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Theorem 2.14 [Yamauchi 2004, Lemma 3.3]. Suppose V is C2-cofinite and of
CFT type. Choose a finite dimensional L(0)-invariant and g-invariant subspace U
of V such that V = U + C2(V ). Let W be a weak g-twisted V -module generated
by a vector w. Then W is spanned by the vectors of the form u1

−n1
u2

−n2
· · · uk

−nk
w

with n1 > n2 > · · · > nk > −N and ui
∈ U , i = 1, 2, . . . , k, where N ∈

1
T Z is a

constant such that umw = 0 for all u ∈ U and m ≥ N.

Theorem 2.15 [Yamauchi 2004, Corollaries 3.8 and 3.9]. Suppose V is C2-cofinite
and of CFT type. Then the following assertions hold.
(1) Every weak g-twisted V -module is a 1

T N-graded weak g-twisted V -module.
(2) Every simple weak g-twisted V -module is a simple ordinary g-twisted V -

module.

Remark 2.16. Suppose V is C2-cofinite and of CFT type. Let M be a weak g-
twisted V -module and w1, . . ., wk be eigenvectors of L(0) in M . Then the weak
g-twisted V -submodule W generated by w1, . . ., wk is an ordinary g-twisted V -
module. Indeed, W is a direct sum of eigenspaces for L(0) and each homogeneous
subspace is of finite dimension by Theorem 2.14.

For the untwisted case, that is, the case g = 1, we refer the reader to [Abe et al.
2004; Buhl 2002; Dong et al. 1997; Li 1999b]. A spanning set for a vertex operator
algebra was first studied in [Gaberdiel and Neitzke 2003, Proposition 8].

3. The fixed point subalgebra (V√
2A2

)τ

In this section we fix notation. We tend to follow the notation in [Dong et al. 2004;
Kitazume et al. 2000a; Kitazume et al. 2003] unless otherwise specified. We also
recall certain properties of the lattice vertex operator algebra V√

2A2
associated with

√
2 times an ordinary root lattice of type A2 and its subalgebras (see [Dong et al.

2004; Kitazume et al. 2000a; Kitazume et al. 2003; Kitazume et al. 2000b]).
Let α1, α2 be the simple roots of type A2 and set α0 =−(α1+α2). Thus 〈αi , αi 〉=

2 and 〈αi , α j 〉 = −1 if i 6= j . Set βi =
√

2αi and let L = Zβ1 + Zβ2 be the lattice
spanned by β1 and β2. We denote the cosets of L in its dual lattice L⊥

= {α ∈

Q ⊗Z L | 〈α, L〉 ⊂ Z} as follows.

L0
= L , L1

=
−β1 +β2

3
+ L , L2

=
β1 −β2

3
+ L ,

L0 = L , La =
β2

2
+ L , Lb =

β0

2
+ L , Lc =

β1

2
+ L ,

L(i, j)
= L i + L j

for i = 0, a, b, c and j = 0, 1, 2, where {0, a, b, c} ∼= Z2 ×Z2 is Klein’s four-group.
Note that L(i, j), i ∈ {0, a, b, c}, j ∈ {0, 1, 2} are all the cosets of L in L⊥ and
L⊥/L ∼= Z2 × Z2 × Z3.
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We adopt the standard notation for the vertex operator algebra (VL , Y ( · , z))
associated with the lattice L (see [Frenkel et al. 1988]). In particular, h = C ⊗Z L
is an abelian Lie algebra, ĥ = h ⊗ C[t, t−1

] ⊕ Cc is the corresponding affine Lie
algebra, M(1) = C[α(n) ; α ∈ h, n < 0], where α(n) = α ⊗ tn, is the unique
simple ĥ-module such that α(n)1 = 0 for all α ∈ h and n > 0 and c = 1. As a
vector space VL = M(1)⊗ C[L] and for each v ∈ VL , a vertex operator Y (v, z)=∑

n∈Z vnz−n−1
∈ End(VL)[[z, z−1

]] is defined. The vector 1 = 1 ⊗ 1 is called the
vacuum vector. In our case 〈α, β〉 ∈ 2Z for any α, β ∈ L . Thus the twisted group
algebra C{L} of [Frenkel et al. 1988] is naturally isomorphic to the ordinary group
algebra C[L].

There are exactly 12 inequivalent simple VL -modules, which are represented
by VL(i, j) , i = 0, a, b, c and j = 0, 1, 2 (see [Dong 1993]). We use the symbol
eα, α ∈ L⊥ to denote a basis of C{L⊥

}.
We consider the following three isometries of (L , 〈·, ·〉).

τ : β1 → β2 → β0 → β1,

σ : β1 → β2, β2 → β1,

θ : βi → −βi , i = 1, 2.

(3-1)

Note that τ is fixed-point-free and of order 3. The isometries τ, σ , and θ of L can
be extended linearly to isometries of L⊥. Moreover, the isometry τ lifts naturally
to an automorphism of VL :

α1(−n1) · · ·α
k(−nk)eβ 7−→ (τα1)(−n1) · · · (τα

k)(−nk)eτβ .

By abuse of notation, we denote it by τ also. We can consider the action of τ on
VL(i, j) in a similar way. We apply the same argument to σ and θ . Our purpose
is the classification of simple modules for the fixed point subalgebra V τ

L = {v ∈

VL | τv = v} of VL by the automorphism τ .
For a simple VL -module (U, YU ), let (U ◦ τ, YU◦τ ) be a new VL -module such

that U ◦τ = U as vector spaces and YU◦τ (v, z)= YU (τv, z) for v ∈ VL [Dong et al.
2000]. Then U 7→ U ◦ τ induces a permutation on the set of simple VL -modules.
If U and U ◦ τ are equivalent VL -modules, U is said to be τ -stable. The following
lemma is a straightforward consequence of the definition of VL(i, j) .

Lemma 3.1. (1) VL(0, j) , j = 0, 1, 2 are τ -stable.
(2) VL(a, j) ◦ τ = VL(c, j) , VL(c, j) ◦ τ = VL(b, j) , and VL(b, j) ◦ τ = VL(a, j) , j = 0, 1, 2.

A family of simple twisted modules for lattice vertex operator algebras was
constructed in [Dong and Lepowsky 1996; Lepowsky 1985]. Following Dong and
Lepowsky, three inequivalent simple τ -twisted VL -modules (V j

L (τ ), Y τ ( · , z)), j =

0, 1, 2 were studied in [Dong et al. 2004; Kitazume et al. 2003]. By the preceding
lemma and [Dong et al. 2000, Theorem 10.2], we know that (V j

L (τ ), Y τ ( · , z)),
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j = 0, 1, 2, are all the inequivalent simple τ -twisted VL -modules. Similarly, there
are exactly three inequivalent simple τ 2-twisted VL -modules (V j

L (τ
2), Y τ

2
( · , z)),

j = 0, 1, 2.
We use the same notation for (V j

L (τ ), Y τ ( · , z)) and (V j
L (τ

2), Y τ
2
( · , z)) as in

[Dong et al. 2004, Section 4]. Thus

V j
L (τ )= S[τ ] ⊗ Tχ j ,

where Tχ j , j = 0, 1, 2, is the one-dimensional representation of a certain central
extension of L affording the character χ j . Let

h1 =
1
3(β1 + ξ 2β2 + ξβ0), h2 =

1
3(β1 + ξβ2 + ξ 2β0).

Then τhi =ξ
i hi , 〈h1, h1〉=〈h2, h2〉=0, and 〈h1, h2〉=2. Moreover, βi =ξ

i−1h1+

ξ 2(i−1)h2, i =0, 1, 2. As a vector space, S[τ ] is isomorphic to a polynomial algebra
with variables h1(1/3 + n), h2(2/3 + n), n ∈ Z<0. The isometry τ acts on S[τ ] by
τh j = ξ j h j . We define the action of τ on Tχ j to be the identity. The weight in
S[τ ] is given by wt hi (i/3 + n) = −i/3 − n, i = 1, 2 and wt 1 = 1/9. The weight
of any element of Tχ j is defined to be 0. Note that the weight in V j

L (τ ) is identical
with the eigenvalue for the action of the coefficient of z−2 in the τ -twisted vertex
operator Y τ (ω, z), where ω denotes the Virasoro element of VL .

The simple τ 2-twisted VL -modules (V j
L (τ

2), Y τ
2
( · , z)), j = 0, 1, 2 are

V j
L (τ

2)= S[τ 2
] ⊗ Tχ ′

j
,

where Tχ ′
j
, j = 0, 1, 2, are the one-dimensional representations of a certain central

extension of L affording the character χ ′

j . Moreover, S[τ 2
] is isomorphic to a

polynomial algebra with variables h′

1(1/3 + n), h′

2(2/3 + n), n ∈ Z<0 as a vector
space, where h′

1 = h2 and h′

2 = h1. Thus τ 2h′

i = ξ i h′

i , i = 1, 2. The action of τ
on S[τ 2

] is given by τh′

i = ξ 2i h′

i , i = 1, 2. The action of τ on Tχ ′
j

is defined to be
the identity. The weight in S[τ 2

] is given by wt h′

i (i/3 + n) = −i/3 − n, i = 1, 2
and wt 1 = 1/9. The weight of any element of Tχ ′

j
is defined to be 0. The weight

in V j
L (τ

2) is identical with the eigenvalue for the action of the coefficient of z−2

in the τ 2-twisted vertex operator Y τ
2
(ω, z).

By Lemma 3.1, [Dong and Mason 1997, Theorem 4.4], and [Dong and Yam-
skulna 2002, Theorem 6.14],

VL(0, j)(ε)= {v ∈ VL(0, j) | τv = ξ εv}, j, ε = 0, 1, 2

are inequivalent simple V τ
L -modules. For each of j = 0, 1, 2, we have that VL(i, j) ,

i = a, b, c are equivalent simple V τ
L -modules. Moreover, VL(c, j) , j = 0, 1, 2 are

inequivalent simple V τ
L -modules. From [Miyamoto and Tanabe 2004, Theorem 2],
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it follows that

V j
L (τ )(ε)= {v ∈ V j

L (τ ) | τv = ξ εv}, j, ε = 0, 1, 2

are inequivalent simple V τ
L -modules. Similar assertions hold for simple τ 2-twisted

modules, namely,

V j
L (τ

2)(ε)= {v ∈ V j
L (τ

2) | τ 2v = ξ εv}, j, ε = 0, 1, 2

are inequivalent simple V τ
L -modules. In this way we obtain 30 simple V τ

L -modules.
These 30 simple V τ

L -modules are inequivalent by [Miyamoto and Tanabe 2004,
Theorem 2]. We summarize the result as follows.

Lemma 3.2. The following 30 simple V τ
L -modules are inequivalent.

(1) VL(0, j)(ε), j, ε = 0, 1, 2,

(2) VL(c, j) , j = 0, 1, 2,

(3) V j
L (τ )(ε), j, ε = 0, 1, 2,

(4) V j
L (τ

2)(ε), j, ε = 0, 1, 2.

We consider the structure of V τ
L in detail. Set

x(α)= e
√

2α
+ e−

√
2α, y(α)= e

√
2α

− e−
√

2α, w(α)=
1
2α(−1)2 − x(α)

for α ∈ {±α0,±α1,±α2} and let

ω =
1
6

(
α1(−1)2 +α2(−1)2 +α0(−1)2

)
,

ω̃1
=

1
5

(
w(α1)+w(α2)+w(α0)

)
, ω̃2

= ω− ω̃1,

ω1
=

1
4w(α1), ω2

= ω̃1
−ω1.

Then ω is the Virasoro element of VL and ω̃1, ω̃2 are mutually orthogonal con-
formal vectors of central charge 6/5, 4/5 respectively. The subalgebra Vir(ω̃i )

generated by ω̃i is isomorphic to the Virasoro vertex operator algebra of given
central charge, namely, Vir(ω̃1) ∼= L(6/5, 0) and Vir(ω̃2) ∼= L(4/5, 0). Moreover,
ω̃1 is a sum of two conformal vectors ω1 and ω2 of central charge 1/2 and 7/10
respectively and ω1, ω2 and ω̃2 are mutually orthogonal. Note that ω̃2 was denoted
by ω3 in [Dong et al. 2004; Kitazume et al. 2000a; Kitazume et al. 2003; Kitazume
et al. 2000b]. Such a decomposition of the Virasoro element of a lattice vertex
operator algebra into a sum of mutually orthogonal conformal vectors was first
studied in [Dong et al. 1998b].

Set

M i
k = {v ∈ VL i | (ω̃2)1v = 0}, W i

k = {v ∈ VL i | (ω̃2)1v =
2
5v}, i = 0, a, b, c,
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M j
t = {v ∈ VL j | (ω1)1v = (ω2)1v = 0},

W j
t = {v ∈ VL j | (ω1)1v = 0, (ω2)1v =

3
5v}, j = 0, 1, 2.

Then M0
k and M0

t are simple vertex operator algebras. Moreover, {M i
k, W i

k ; i =

0, a, b, c} and {M j
t , W j

t ; j = 0, 1, 2} are complete sets of representatives of iso-
morphism classes of simple modules for M0

k and M0
t , respectively (see [Kitazume

et al. 2000a; Kitazume et al. 2000b; Lam and Yamada 2000]). As Vir(ω1) ⊗

Vir(ω2)-modules,

M0
k

∼=
(
L(1

2 , 0)⊗ L( 7
10 , 0)

)
⊕

(
L(1

2 ,
1
2)⊗ L 7

10 ,
3
2)

)
,

Ma
k

∼= Mb
k

∼= L( 1
2 ,

1
16)⊗ L( 7

10 ,
7

16),

Mc
k

∼=
(
L(1

2 ,
1
2)⊗ L( 7

10 , 0)
)
⊕

(
L( 1

2 , 0)⊗ L( 7
10 ,

3
2)

)
,

W 0
k

∼=
(
L(1

2 , 0)⊗ L( 7
10 ,

3
5)

)
⊕

(
L( 1

2 ,
1
2)⊗ L( 7

10 ,
1

10)
)
,

W a
k

∼= W b
k

∼= L( 1
2 ,

1
16)⊗ L( 7

10 ,
3

80),

W c
k

∼=
(
L(1

2 ,
1
2)⊗ L( 7

10 ,
3
5)

)
⊕

(
L(1

2 , 0)⊗ L( 7
10 ,

1
10)

)
,

(3-2)

and as Vir(ω̃2)-modules,

M0
t

∼= L( 4
5 , 0)⊕ L(4

5 , 3), M1
t

∼= M2
t

∼= L( 4
5 ,

2
3),

W 0
t

∼= L(4
5 ,

2
5)⊕ L( 4

5 ,
7
5), W 1

t
∼= W 2

t
∼= L( 4

5 ,
1
15).

(3-3)

Furthermore,

(3-4) VL(i, j) ∼= (M i
k ⊗ M j

t )⊕ (W i
k ⊗ W j

t )

as M0
k ⊗ M0

t -modules. In particular,

(3-5) VL ∼= (M0
k ⊗ M0

t )⊕ (W 0
k ⊗ W 0

t ).

Note that M j
t = {v ∈ VL j | (ω̃1)1v= 0} and that M0

k , W 0
k and M j

t , j = 0, 1, 2 are
τ -invariant. However, W j

t , j = 0, 1, 2 are not τ -invariant.
The fusion rules for M0

k and M0
t were determined in [Lam and Yamada 2000]

and [Miyamoto 2001], respectively. They are

(3-6) M i
k × M j

k = M i+ j
k , M i

k × W j
k = W i+ j

k , W i
k × W j

k = M i+ j
k + W i+ j

k

for i, j = 0, a, b, c and

(3-7) M i
t × M j

t = M i+ j
t , M i

t × W j
t = W i+ j

t , W i
t × W j

t = M i+ j
t + W i+ j

t

for i, j = 0, 1, 2.
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The following two weight-three vectors are important.

J = w(α1)0w(α2)−w(α2)0w(α1)

= −
1
6

(
β1(−2)(β2 −β0)(−1)+β2(−2)(β0 −β1)(−1)+β0(−2)(β1 −β2)(−1)

)
− (β2 −β0)(−1)y(α1)− (β0 −β1)(−1)y(α2)− (β1 −β2)(−1)y(α0),

K = −
1
9
(β1 −β2)(−1)(β2 −β0)(−1)(β0 −β1)(−1)

+ (β2 −β0)(−1)x(α1)+ (β0 −β1)(−1)x(α2)+ (β1 −β2)(−1)x(α0).

Let M(0) = (M0
k )
τ

= {u ∈ M0
k | τu = u}. The vertex operator algebra M(0)

was studied in [Dong et al. 2004]. Among other things, the classification of simple
modules, the rationality and the C2-cofiniteness for M(0) were established. It is
known that M(0) is a W3 algebra of central charge 6/5 with the Virasoro element
ω̃1. In fact, M(0) is generated by ω̃1 and J . The following equations hold [Dong
et al. 2004, (3.1)].

J5 J = −84 · 1,
J4 J = 0,

J3 J = −420ω̃1,

J2 J = −210(ω̃1)0ω̃
1,

J1 J = 9(ω̃1)0(ω̃
1)0ω̃

1
− 240(ω̃1)−1ω̃

1,

J0 J = 22(ω̃1)0(ω̃
1)0(ω̃

1)0ω̃
1
− 120(ω̃1)0(ω̃

1)−1ω̃
1.

(3-8)

Let L1(n) = (ω̃1)n+1 and J (n) = Jn+2 for n ∈ Z, so that the weight of these
operators is wt L1(n)= wt J (n)= −n. Then

(3-9) [L1(m), L1(n)] = (m − n)L1(m + n)+
m3

− m
12

·
6
5

· δm+n,0,

(3-10) [L1(m), J (n)] = (2m − n)J (m + n),

(3-11) [J (m), J (n)]

= (m−n)
(
22(m+n+2)(m+n+3)+35(m+2)(n+2)

)
L1(m+n)

−120(m−n)
( ∑

k≤−2

L1(k)L1(m+n−k)+
∑

k≥−1

L1(m+n−k)L1(k)
)

−
7

10 m(m2
−1)(m2

−4)δm+n,0.

The vertex operator algebra M0
t is known as a 3-State Potts model. It is a W3

algebra of central charge 4/5 with the Virasoro element ω̃2 and is generated by
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ω̃2 and K . Both of ω̃2 and K are fixed by τ , so that τ is the identity on M0
t . The

rationality of M0
t was established in [Kitazume et al. 2000b] and the C2-cofiniteness

of M0
t follows from [Buhl 2002]. By a direct calculation, we can verify that

K5K = 104 · 1,
K4K = 0,

K3K = 780ω̃2,

K2K = 390(ω̃2)0ω̃
2,

K1K = −27(ω̃2)0(ω̃
2)0ω̃

2
+ 480(ω̃2)−1ω̃

2,

K0K = −46(ω̃2)0(ω̃
2)0(ω̃

2)0ω̃
2
+ 240(ω̃2)0(ω̃

2)−1ω̃
2.

(3-12)

Let L2(n)= (ω̃2)n+1 and K (n)= Kn+2 for n ∈ Z. Then

(3-13) [L2(m), L2(n)] = (m − n)L2(m + n)+
m3

− m
12

·
4
5

· δm+n,0,

(3-14) [L2(m), K (n)] = (2m − n)K (m + n),

(3-15) [K (m), K (n)]

= −(m−n)
(
46(m+n+2)(m+n+3)+ 65(m+2)(n+2)

)
L2(m+n)

+240(m−n)
( ∑

k≤−2

L2(k)L2(m+n−k)+
∑

k≥−1

L2(m+n−k)L2(k)
)

+
13
15 m(m2

−1)(m2
−4)δm+n,0.

Remark 3.3. Let Ln = L1(n), Wn =
√

−1/210J (n), and c = 6/5. Then the
commutation relations above coincide with (2.1) and (2.2) of [Bouwknegt et al.
1996]. The same commutation relations also hold if we set Ln = L2(n), Wn =

K (n)/
√

390, and c = 4/5.

Let us review the 20 inequivalent simple M(0)-modules studied in [Dong et al.
2004]. Among those simple M(0)-modules, eight of them appear in simple M0

k -
modules, namely,

M(ε)= {u ∈ M0
k | τu = ξ εu}, W (ε)= {u ∈ W 0

k | τu = ξ εu}

for ε = 0, 1, 2, Mc
k and W c

k . The remaining 12 simple M(0)-modules appear in
simple τ -twisted or τ 2-twisted VL -modules. Let

MT (τ )(ε)= {u ∈ V 0
L (τ ) | (ω̃

2)1u = 0, τu = ξ εu},

WT (τ )(ε)= {u ∈ V 0
L (τ ) | (ω̃

2)1u =
2
5 u, τu = ξ εu}.
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Then MT (τ )(ε), WT (τ )(ε), ε = 0, 1, 2 are inequivalent simple M(0)-modules.
Similarly,

MT (τ
2)(ε)= {u ∈ V 0

L (τ
2) | (ω̃2)1u = 0, τ 2u = ξ εu},

WT (τ
2)(ε)= {u ∈ V 0

L (τ
2) | (ω̃2)1u =

2
5 u, τ 2u = ξ εu}

for ε = 0, 1, 2 are inequivalent simple M(0)-modules. In [Dong et al. 2004], it
was shown that M(ε), W (ε), Mc

k , W c
k , MT (τ )(ε), WT (τ )(ε), MT (τ

2)(ε), and
WT (τ

2)(ε), ε = 0, 1, 2 form a complete set of representatives of isomorphism
classes of simple M(0)-modules.

Let us describe the structure of the fixed point subalgebra V τ
L . By the definition

of M(0) and M0
t , we see that V τ

L ⊃ M(0)⊗ M0
t . Since both of M(0) and M0

t are
rational, M(0)⊗ M0

t is also rational. Thus VL(ε)= {u ∈ VL | τu = ξ εu}, ε= 0, 1, 2
can be decomposed into a direct sum of simple modules for M(0) ⊗ M0

t . Any
simple module for M(0)⊗ M0

t is of the form A ⊗ B, where A and B are simple
modules for M(0) and M0

t , respectively. By (3-5), it follows that B ∼= M0
t or

W 0
t . Moreover, VL(ε) contains the simple M(0)-modules M(ε) and W (ε). The

eigenvalues of (ω̃1)1 in M(ε) (resp. W (ε)) are integers (resp. of the form 3/5+n,
n ∈ Z), while the eigenvalues of (ω̃2)1 in M0

t (resp. W 0
t ) are integers (resp. of the

form 2/5 + n, n ∈ Z). Since the eigenvalues of ω1 = (ω̃1)1 + (ω̃2)1 in VL are
integers, we conclude that

(3-16) VL(ε)∼= (M(ε)⊗ M0
t )⊕ (W (ε)⊗ W 0

t )

as M(0)⊗ M0
t -modules, ε = 0, 1, 2. In particular,

(3-17) V τ
L

∼= (M(0)⊗ M0
t )⊕ (W (0)⊗ W 0

t ).

From now on we set M0
= M(0)⊗ M0

t and W 0
= W (0)⊗ W 0

t . Thus V τ
L =

VL(0)∼= M0
⊕ W 0. Let

P = y(α1)+ y(α2)+ y(α0).

Then we can verify that (ω̃1)n P = (ω̃2)n P = 0 for n ≥ 2, (ω̃1)1 P = (8/5)P , and
(ω̃2)1 P = (2/5)P . Moreover, Jn P = Kn P = 0 for n ≥ 2. Thus W 0 is a simple M0-
module with P a highest-weight vector of weight (8/5, 2/5). The vertex operator
algebra V τ

L is generated by ω̃1, ω̃2, J , K and P .

Theorem 3.4. V τ
L is a simple C2-cofinite vertex operator algebra.

Proof. We know that M(0) and M0
t are C2-cofinite. Thus M0 is also C2-cofinite.

Since W 0 is generated by P as an M0-module, it follows from [Buhl 2002] that
V τ

L is C2-cofinite. By [Dong and Mason 1997, Theorem 4.4], V τ
L is simple. �
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Following the outline of the argument in [Dong et al. 2004; Kitazume et al.
2003], we discuss the structure of the simple τ -twisted VL -modules V j

L (τ ), j =

0, 1, 2 as τ -twisted M0
k ⊗ M0

t -modules. Furthermore, we correct an error in [Dong
et al. 2004; Kitazume et al. 2003] concerning a decomposition of V j

L (τ ) for j =

1, 2. We first consider V 0
L (τ ). Let 0 6= v ∈ Tχ0 and 1 be the identity of S[τ ]. Then

1 ⊗ v ∈ S[τ ] ⊗ Tχ0 = V 0
L (τ ). Since M0

t ⊂ V τ
L , we can decompose V 0

L (τ ) into a
direct sum of simple M0

t -modules. By a direct calculation, we can verify that

(ω̃2)1(1 ⊗ v)= 0, (ω̃2)1(h2(−
1
3)⊗ v)=

2
5 h2(−

1
3)⊗ v.

Thus we see that M0
t and W 0

t appear as direct summands. Since V 0
L (τ ) is simple

as a τ -twisted VL -module, (3-5) and the fusion rule W 0
t × W 0

t = M0
t + W 0

t (see
(3-7)) imply that any simple M0

t -submodule of V 0
L (τ ) is isomorphic to M0

t or W 0
t .

Hence

(3-18) V 0
L (τ )

∼= (M0
T (τ )⊗ M0

t )⊕ (W 0
T (τ )⊗ W 0

t )

as τ -twisted M0
k ⊗ M0

t -modules, where

M0
T (τ )= {u ∈ V 0

L (τ ) | (ω̃
2)1u = 0},

W 0
T (τ )= {u ∈ V 0

L (τ ) | (ω̃
2)1u =

2
5 u}.

The τ -twisted M0
k -modules M0

T (τ ) and W 0
T (τ ) are simple. Indeed, if N is a τ -

twisted M0
k -submodule of M0

T (τ ), then N ⊗M0
t is a τ -twisted M0

k ⊗M0
t -submodule

of M0
T (τ )⊗ M0

t . By (2-6), VL · (N ⊗ M0
t ) = span{an(N ⊗ M0

t ) | a ∈ VL , n ∈ Q}

is a τ -twisted VL -submodule of V 0
L (τ ). The fusion rule W 0

t × M0
t = W 0

t and (3-5)
imply that VL · (N ⊗ M0

t ) is contained in (N ⊗ M0
t )⊕ (W

0
T (τ )⊗W 0

t ). Since V 0
L (τ )

is a simple τ -twisted VL -module, we conclude that M0
T (τ ) is a simple τ -twisted

M0
k -module.
Because of the fusion rule W 0

t × W 0
t = M0

t + W 0
t , we can not apply a similar

argument to W 0
T (τ ). Note that there are at most two inequivalent simple τ -twisted

M0
k -modules by [Dong et al. 2004, Lemma 4.1] and [Dong et al. 2000, Theorem

10.2]. Note also that a weight in M0
T (τ ) or in W 0

T (τ )means an eigenvalue of (ω̃1)1.
First several terms of the characters of M0

T (τ ) and W 0
T (τ ) can be calculated easily

from (3-18) (see [Dong et al. 2004]).

ch M0
T (τ )= q1/9

+ q1/9+2/3
+ q1/9+1

+ q1/9+4/3
+ · · · ,

ch W 0
T (τ )= q2/45

+ q2/45+1/3
+ q2/45+2/3

+ q2/45+1
+ · · · .

Suppose W 0
T (τ ) is not a simple τ -twisted M0

k -module. Let N be the τ -twisted
M0

k -submodule of W 0
T (τ ) generated by the top level of W 0

T (τ ). Then the top level
of N is a one dimensional space of weight 2/45. If N is not a simple τ -twisted M0

k -
module, then the sum U of all proper τ -twisted M0

k -submodules of N is a unique
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maximal τ -twisted M0
k -submodule of N . The quotient N/U is a simple τ -twisted

M0
k -module whose top level is of weight 2/45. Denote the top level of U by Uλ,

where the weight λ is 2/45+n/3 for some 1 ≤ n ∈ Z. Consider the τ -twisted Zhu
algebra Aτ (M0

k ) of M0
k . Since Uλ is a finite dimensional Aτ (M0

k )-module, we can
choose a simple Aτ (M0

k )-submodule S of Uλ. By [Dong et al. 1998a, Proposition
5.4 and Theorem 7.2], there is a simple 1

3 N-graded weak τ -twisted M0
k -module R

with top level Rλ being isomorphic to S as an Aτ (M0
k )-module. It follows from

[Yamauchi 2004, Corollary 3.8] that R is in fact a simple τ -twisted M0
k -module.

Here we note that M0
k is C2-cofinite and of CFT type by its structure (3-2). Since

the top levels of M0
T (τ ), N/U , and R have different weight, they are inequivalent

simple τ -twisted M0
k -modules. If N is a simple τ -twisted M0

k -module, then it is
not equal to W 0

T (τ ) by our assumption. The quotient W 0
T (τ )/N is a τ -twisted M0

k -
module and the weight of its top level, say µ is 2/45 + m/3 for some 1 ≤ m ∈ Z.
By a similar argument as above, we see that there is a simple τ -twisted M0

k -module
whose top level is of weight µ. Hence we have three inequivalent simple τ -twisted
M0

k -modules in both cases. This contradicts the fact that there are at most two
inequivalent simple τ -twisted M0

k -modules. Thus W 0
T (τ ) is a simple τ -twisted

M0
k -module.
Next, let 0 6= v ∈ Tχ j , j = 1, 2. From the definition of V j

L (τ ) in [Dong et al.
2004; Kitazume et al. 2003], we can calculate that

(ω̃2)1(1 ⊗ v)=
1

15(1 ⊗ v), (ω̃2)1u j
=

2
3 u j ,

where u j
= h1(−

2
3)⊗v−(−1) j

√
−3h2(−

1
3)

2
⊗v. Thus M1

t or M2
t and W 1

t or W 2
t

appear as M0
t -submodules of V j

L (τ ). In order to distinguish M1
t and M2

t (resp. W 1
t

and W 2
t ), we need to know the action of K2 on these vectors (see [Kitazume et al.

2000b]). By a direct calculation, we can verify that

K2(1 ⊗ v)= −(−1) j 2
9(1 ⊗ v), K2u j

= (−1) j 52
9 u j .

Hence M3− j
t and W 3− j

t appear in V j
L (τ ) for j = 1, 2. Let

M j
T (τ )= {u ∈ V j

L (τ ) | (ω̃
2)1u =

2
3 u},

W j
T (τ )= {u ∈ V j

L (τ ) | (ω̃
2)1u =

1
15 u}, j = 1, 2.

Then, V j
L (τ )

∼= (M j
T (τ ) ⊗ M3− j

t ) ⊕ (W j
T (τ ) ⊗ W 3− j

t ) as τ -twisted M0
k ⊗ M0

t -
modules for j = 1, 2. Moreover, M j

T (τ ) and W j
T (τ ), j = 1, 2 are simple τ -twisted

M0
k -modules.
Recall that there are at most two inequivalent simple τ -twisted M0

k -modules.
Looking at the smallest weight of M j

T (τ ) and W j
T (τ ), we see that the M j

T (τ ),
j =0, 1, 2 are equivalent, and the W j

T (τ ), j =0, 1, 2 are equivalent, but M0
T (τ ) and
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W 0
T (τ ) are not equivalent. For simplicity, set MT (τ )= M0

T (τ ) and WT (τ )=W 0
T (τ ).

Then

V 0
L (τ )

∼= (MT (τ )⊗ M0
t )⊕ (WT (τ )⊗ W 0

t ),

V j
L (τ )

∼= (MT (τ )⊗ M3− j
t )⊕ (WT (τ )⊗ W 3− j

t ), j = 1, 2,
(3-19)

as τ -twisted M0
k ⊗ M0

t -modules.
The structure of the simple τ 2-twisted VL -module V j

L (τ
2), j = 0, 1, 2 as a τ 2-

twisted M0
k ⊗ M0

t -module is similar to that of the case for V j
L (τ ). Let 0 6= v ∈ Tχ ′

0
and let 1 be the identity of S[τ 2

]. Then

(ω̃2)1(1 ⊗ v)= 0, (ω̃2)1(h′

2(−
1
3)⊗ v)=

2
5 h′

2(−
1
3)⊗ v

and so

V 0
L (τ

2)∼= (M0
T (τ

2)⊗ M0
t )⊕ (W 0

T (τ
2)⊗ W 0

t )

as τ 2-twisted M0
k ⊗ M0

t -modules, where

M0
T (τ

2)= {u ∈ V 0
L (τ

2) | (ω̃2)1u = 0},

W 0
T (τ

2)= {u ∈ V 0
L (τ

2) | (ω̃2)1u =
2
5 u}.

By a similar argument as in the τ -twisted case, we can show that M0
T (τ

2) and
W 0

T (τ
2) are inequivalent simple τ 2-twisted M0

k -modules.
Take a nonzero v in Tχ ′

j
, j = 1, 2. Then

(ω̃2)1(1 ⊗ v)=
1
15(1 ⊗ v), (ω̃2)1v

j
=

2
3v

j ,

where v j
= h′

1(−
2
3)⊗ v− (−1) j

√
−3 h′

2(−
1
3)

2
⊗ v. Furthermore,

K2(1 ⊗ v)= (−1) j 2
9(1 ⊗ v), K2v

j
= −(−1) j 52

9 v
j .

Hence V j
L (τ

2)∼= (M j
T (τ

2)⊗M j
t )⊕(W

j
T (τ

2)⊗W j
t ) as τ 2-twisted M0

k ⊗M0
t -modules

for j = 1, 2, where

M j
T (τ

2)= {u ∈ V j
L (τ

2) | (ω̃2)1u =
2
3 u},

W j
T (τ

2)= {u ∈ V j
L (τ

2) | (ω̃2)1u =
1
15 u}, j = 1, 2.

As in the τ -twisted case, the M j
T (τ

2), j = 0, 1, 2 are equivalent and the W j
T (τ

2),
j = 0, 1, 2 are equivalent. Set MT (τ

2)= M0
T (τ

2) and WT (τ
2)= W 0

T (τ
2). Then

(3-20) V j
L (τ

2)∼= (MT (τ
2)⊗ M j

t )⊕ (WT (τ
2)⊗ W j

t ), j = 0, 1, 2,

as τ 2-twisted M0
k ⊗ M0

t -modules.
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Remark 3.5. The weight-three vector K was denoted by different symbols in
previous papers, namely, vt , v3, and q were used in [Dong et al. 2004], [Kitazume
et al. 2003], and [Kitazume et al. 2000b], respectively. They are related as follows:
K = −2

√
2vt = −2

√
2v3

= 2
√

2q . Thus, in the proof of [Kitazume et al. 2003,
Proposition 6.8] (v3)2 should act on the top level of V j

L (τ ) as a scalar multiple
of (−1) j/9

√
2 for j = 1, 2. Moreover, (6.46) of [Kitazume et al. 2003] and the

equation for V j
L (τ ) on page 265 of [Dong et al. 2004] should be replaced with

Equation (3-19). This correction does not affect the results in the latter paper.
However, certain changes are necessary in [Kitazume et al. 2003] along with the
correction.

Note that

MT (τ
i )(ε)= {u ∈ MT (τ

i ) | τ i u = ξ εu},

WT (τ
i )(ε)= {u ∈ WT (τ

i ) | τ i u = ξ εu}

for i = 1, 2, ε = 0, 1, 2. Another notation was used in [Kitazume et al. 2003],
namely,

MT (τ
i )ε =

⊕
n∈1/9+ε/3+Z

(MT (τ
i ))n, WT (τ

i )ε =

⊕
n∈2/45+ε/3+Z

(WT (τ
i ))n,

where Un denotes the eigenspace of U with eigenvalue n for (ω̃1)1. The two sets
of notation are related by

(3-21) MT (τ
i )ε = MT (τ

i )(2ε), WT (τ
i )ε = WT (τ

i )(2ε− 1).

Likewise,(
V

Tχ j
L (τ )

)ε
=

⊕
n∈1/9+ε/3+Z

(
V

Tχ j
L (τ )

)
n,

(
V

Tχ j
L (τ 2)

)ε
=

⊕
n∈1/9+ε/3+Z

(
V

Tχ j
L (τ 2)

)
n

of [Kitazume et al. 2003, (7.16)] are denoted here by

(3-22) (V j
L (τ ))

ε
= V j

L (τ )(2ε), (V j
L (τ

2))ε = V j
L (τ

2)(2ε)

for j = 0, 1, 2 and ε = 0, 1, 2, where Un is the eigenspace of U with eigenvalue n
for ω1.

By (3-3), the minimal eigenvalues of (ω̃2)1 on M0
t and W 0

t are 0 and 2/5, re-
spectively, while those on M j

t and W j
t , j = 1, 2, are 2/3 and 1/15, respectively.

Hence it follows from (3-19) that

(V 0
L (τ ))

ε ∼= (MT (τ )
ε
⊗ M0

t )⊕ (WT (τ )
ε−1

⊗ W 0
t ),

(V j
L (τ ))

ε ∼= (MT (τ )
ε+1

⊗ M3− j
t )⊕ (WT (τ )

ε
⊗ W 3− j

t ), j = 1, 2,
(3-23)
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as M0-modules for ε = 0, 1, 2, where M0
= M(0)⊗ M0

t . Similarly,

(V 0
L (τ

2))ε ∼= (MT (τ
2)ε ⊗ M0

t )⊕ (WT (τ
2)ε−1

⊗ W 0
t ),

(V j
L (τ

2))ε ∼= (MT (τ
2)ε+1

⊗ M j
t )⊕ (WT (τ

2)ε ⊗ W j
t ), j = 1, 2,

(3-24)

as M0-modules for ε = 0, 1, 2 (see [Kitazume et al. 2003, (7.17)]).
The following fusion rules of simple M(0)-modules will be necessary for the

study of simple V τ
L -modules.

W (0)× Mc
k = W c

k ,

W (0)× W c
k = Mc

k + W c
k ,

W (0)× M(ε)= W (ε),

W (0)× W (ε)= M(ε)+ W (ε),

W (0)× MT (τ
i )(ε)= WT (τ

i )(ε),

W (0)× WT (τ
i )(ε)= MT (τ

i )(ε)+ WT (τ
i )(ε)

(3-25)

for i =1, 2 and ε=0, 1, 2. In fact, the first four fusion rules, that is, the fusion rules
among simple M(0)-modules appearing in untwisted simple VL -modules, can be
found in [Tanabe 2005]. The last two fusion rules involve simple M(0)-modules
that appear in τ i -twisted simple VL -modules. Their proofs can be found in the
Appendix.

Fusion rules possess certain symmetries. Let M i , i = 1, 2, 3 be modules for a
vertex operator algebra V . Then by [Frenkel et al. 1993, Propositions 5.4.7 and
5.5.2]

dim IV

(
M3

M1 M2

)
= dim IV

(
M3

M2 M1

)
= dim IV

(
(M2)′

M1 (M3)′

)
,

where (M i )′ is the contragredient module of M i . Recall that the contragredient
module (U ′, YU ′) of a V -module (U, YU ) is defined as follows. As a vector space
U ′

=
⊕

n(Un)
∗ is the restricted dual of U and YU ′( · , z) is determined by

〈YU ′(a, z)v, u〉 = 〈v, YU (ezL(1)(−z−2)L(0)a, z−1)u〉

for a ∈ V , u ∈ U , and v ∈ U ′.
In our case M(0) is generated by the Virasoro element ω̃1 and the weight-three

vector J . Moreover, 〈L1(0)v, u〉 = 〈v, L1(0)u〉 and 〈J (0)v, u〉 = −〈v, J (0)u〉.
Since the 20 simple M(0)-modules are distinguished by the action of L1(0) and
J (0) on their top levels, we know from [Dong et al. 2004, Tables 1, 3, and 4] that
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the contragredient modules of the simple M(0)-modules are as follows.

M(ε)′ ∼= M(2ε), W (ε)′ ∼= W (2ε), ε = 0, 1, 2,

(Mc
k )

′ ∼= Mc
k , (W c

k )
′ ∼= W c

k ,

MT (τ )(ε)
′ ∼= MT (τ

2)(ε), WT (τ )(ε)
′ ∼= WT (τ

2)(ε), ε = 0, 1, 2

(see also [Dong et al. 1998a, Lemma 3.7] and [Tanabe 2005, Section 4.2]).

4. Structure of simple modules

Recall that V τ
L = VL(0)= M0

⊕W 0 with M0
= M(0)⊗ M0

t and W 0
= W (0)⊗W 0

t .
In this section we study the structure of the 30 known simple V τ

L -modules listed
in Lemma 3.2. We discuss decompositions of these simple modules as modules
for M0. Those decompositions have been obtained in [Kitazume et al. 2003]. We
review them briefly. (Some corrections are needed in that paper; see Remark 3.5.)

A vector in a V τ
L -module is said to be of weight h if it is an eigenvector for

L(0)= ω1 with eigenvalue h. We calculate the action of (ω̃1)1, (ω̃2)1, J2, K2, P1,
(J1 P)2, and (K1 P)2 on the top levels of the 30 known simple V τ

L -modules. Recall
that the top level of a module means the homogeneous subspace of the module
of smallest weight. The calculation is accomplished directly from the definition of
untwisted or twisted vertex operators associated with the lattice L and the automor-
phisms τ and τ 2 (see [Dong and Lepowsky 1996; Frenkel et al. 1988; Lepowsky
and Li 2004]). The results in this section will be used to determine the Zhu algebra
A(V τ

L ) of V τ
L in Section 5.

The vectors J1 P and K1 P are of weight 3. Their precise form in terms of the
lattice vertex operator algebra VL is as follows.

J1 P = 2β1(−1)3 + 3β1(−1)2β2(−1)− 3β1(−1)β2(−1)2 − 2β2(−1)3

− 4
(
(β2 −β0)(−1)x(α1)+ (β0 −β1)(−1)x(α2)+ (β1 −β2)(−1)x(α0)

)
=

13
9

(
2β1(−1)3 + 3β1(−1)2β2(−1)− 3β1(−1)β2(−1)2 − 2β2(−1)3

)
− 4K ,

K1 P = 3
(
β1(−2)β2(−1)−β2(−2)β1(−1)

)
−

(
(β2 −β0)(−1)y(α1)+ (β0 −β1)(−1)y(α2)+ (β1 −β2)(−1)y(α0)

)
=

7
2

(
β1(−2)β2(−1)−β2(−2)β1(−1)

)
+ J.

The simple module VL(0). VL(0) = M0
⊕ W 0 as M0-modules. The top level of

VL(0) is C1. By a property of the vacuum vector, all of (ω̃1)1, (ω̃2)1, J2, K2, P1,
(J1 P)2, and (K1 P)2 act as 0 on C1.

The simple module VL(ε), ε = 1, 2. By (3-16), we have

VL(ε)∼= (M(ε)⊗ M0
t )⊕ (W (ε)⊗ W 0

t )
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as M0-modules for ε=1, 2. The top level of VL(ε) is Cv2,ε, where v2,ε
=α1(−1)−

ξ εα2(−1) ∈ W (ε)⊗ W 0
t . We have

(ω̃1)1v2,ε
=

3
5 v2,ε, (ω̃2)1v2,ε

=
2
5 v2,ε, J2v2,ε

= −(−1)ε2
√

−3v2,ε,

K2v2,ε
= 0, P1v2,ε

= 0, (J1 P)2v2,ε
= 0, (K1 P)2v2,ε

= (−1)ε12
√

−3v2,ε.

The simple module VL(0, j)(0), j = 1, 2. For j = 1, 2, (3-4) implies that VL(0, j) is a
direct sum of simple M0-modules of the form A ⊗ B, where A is a simple M(0)-
module and B is a simple M0

t -module isomorphic to M j
t or W j

t . For convenience,
set U j (ε)= VL(0, j)(ε), j = 1, 2, ε = 0, 1, 2. Let

v3, j
= e(−1) j (β1−β2)/3 + e(−1) j (β2−β0)/3 + e(−1) j (β0−β1)/3.

Then v3, j
∈U j (0). Moreover, (ω1)1v3, j

= (ω2)1v3, j
=0 and (ω̃2)1v3, j

= (2/3)v3, j .
Hence v3, j

∈ M j
t and U j (0) contains an M0

t -submodule isomorphic to M j
t . By

the fusion rule M j
t × W 0

t = W j
t of M0

t -modules and [Dong and Lepowsky 1996,
Proposition 11.9], U j (0) contains an M0

t -submodule isomorphic to W j
t also. Thus

U j (0) contains simple M0-submodules of the form A⊗ M j
t and A′

⊗W j
t for some

simple M(0)-modules A and A′.
The minimal weight of VL(0, j) is 2/3. Its weight subspace is of dimension 3 and

spanned by e(−1) j (β1−β2)/3, e(−1) j (β2−β0)/3, and e(−1) j (β0−β1)/3. Thus the weight-2/3
subspace of U j (0) is Cv3, j . Since (ω̃1)1v3, j

= 0 and since only M(0) is the simple
M(0)-module whose minimal weight (= eigenvalue of (ω̃1)1) is 0 by [Dong et al.
2004], we conclude that U j (0) contains a simple M0-submodule isomorphic to
M(0)⊗ M j

t .
The minimal eigenvalue of (ω̃2)1 in W j

t is 1/15. Thus the eigenvalues of (ω̃1)1

on A′ must be of the form 3/5 + n, n ∈ Z. By [Dong et al. 2004], only W (0),
W (1), W (2) are the simple M(0)-modules whose weights are of this form. The
minimal weight of these simple modules are 8/5, 3/5 and 3/5, respectively. Since
the weight-2/3 subspace of U j (0) is one dimensional, we see that U j (0) contains
a simple M0-submodule isomorphic to W (0)⊗ W j

t .
From the fusion rules for M0

t -modules, we obtain the fusion rules

(M(ε)⊗ M0
t )× (M(0)⊗ M j

t )= M(ε)⊗ M j
t ,

(W (ε)⊗ W 0
t )× (M(0)⊗ M j

t )= W (ε)⊗ W j
t

for M0-modules. Hence U j (ε)∼= (M(ε)⊗M j
t )⊕(W (ε)⊗W j

t ) for j = 1, 2 and ε=

0, 1, 2 by (3-4) and (3-16). In particular, VL(0, j)(0)∼= (M(0)⊗ M j
t )⊕(W (0)⊗W j

t )

as M0-modules, j = 1, 2. The top level of VL(0, j)(0) is Cv3, j
⊂ M(0)⊗ M j

t . We
have
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(ω̃1)1v3, j
= 0, (ω̃2)1v3, j

=
2
3 v3, j , J2v3, j

= 0, K2v3, j
= −(−1) j 52

9 v3, j ,

P1v3, j
= 0, (J1 P)2v3, j

= 0, (K1 P)2v3, j
= 0.

The simple module VL(0, j)(ε), j = 1, 2, ε = 1, 2. We have shown above that
VL(0, j)(ε)∼= (M(ε)⊗ M j

t )⊕ (W (ε)⊗ W j
t ) as M0-modules, j = 1, 2, ε = 1, 2. The

top level of VL(0, j)(ε) is Cv4, j,ε, where

v4, j,ε
= e(−1) j (β1−β2)/3 + ξ 2εe(−1) j (β2−β0)/3 + ξ εe(−1) j (β0−β1)/3 ∈ W (ε)⊗ W j

t .

We have

(ω̃1)1v4, j,ε
=

3
5 v4, j,ε, (ω̃2)1v4, j,ε

=
1
15 v4, j,ε, J2v4, j,ε

= −(−1)ε2
√

−3v4, j,ε,

K2v4, j,ε
= (−1) j 2

9 v4, j,ε, P1v4, j,ε
= −(−1) j+ε

√
−3v4, j,ε,

(J1 P)2v4, j,ε
= −(−1) j 24v4, j,ε, (K1 P)2v4, j,ε

= −(−1)ε2
√

−3v4, j,ε.

The simple module VL(c,0) . By (3-4), VL(c,0)
∼= (Mc

k ⊗ M0
t )⊕ (W c

k ⊗ W 0
t ) as M0-

modules. The top level of VL(c,0) is of dimension 2 with basis {v5,1, v5,2
}, where

v5,1
= eβ1/2 − e−β1/2 ∈ Mc

k ⊗ M0
t , v5,2

= eβ1/2 + e−β1/2 ∈ W c
k ⊗ W 0

t . We have

(ω̃1)1v5,1
=

1
2 v5,1, (ω̃1)1v5,2

=
1
10 v5,2, (ω̃2)1v5,1

= 0, (ω̃2)1v5,2
=

2
5 v5,2,

J2v5, j
= 0, K2v5, j

= 0, j = 1, 2, P1v5,1
= −v5,2, P1v5,2

= v5,1,

(J1 P)2v5, j
= 0, (K1 P)2v5, j

= 0, j = 1, 2.

The simple module VL(c, j) , j = 1, 2. By (3-4), we have the isomorphism VL(c, j) ∼=

(Mc
k ⊗M j

t )⊕(W
c
k ⊗W j

t ) as M0-modules, j = 1, 2. The top level of VL(c, j) is Cv6, j ,
where v6, j

= e−(−1) j (β2−β0)/6 ∈ W c
k ⊗ W j

t . We have

(ω̃1)1v6, j
=

1
10 v6, j , (ω̃2)1v6, j

=
1
15 v6, j , J2v6, j

= 0, K2v6, j
= (−1) j 2

9 v6, j ,

P1v6, j
= 0, (J1 P)2v6, j

= (−1) j 2v6, j , (K1 P)2v6, j
= 0.

The simple module V 0
L(τ)(0). By (3-23), we have the isomorphism V 0

L (τ )(0) ∼=

(MT (τ )(0)⊗ M0
t )⊕ (WT (τ )(0)⊗ W 0

t ) as M0-modules. The top level of V 0
L (τ )(0)

is Cv7, where v7
= 1 ⊗ v ∈ MT (τ )(0)⊗ M0

t and 0 6= v ∈ Tχ0 . We have

(ω̃1)1v7
=

1
9 v7, (ω̃2)1v7

= 0, J2v7
=

14
81

√
−3v7, K2v7

= 0,

P1v7
= 0, (J1 P)2v7

= 0, (K1 P)2v7
= 0.

The simple module V 0
L(τ)(1). By (3-23), we have the isomorphism V 0

L (τ )(1) ∼=

(MT (τ )(1)⊗ M0
t )⊕ (WT (τ )(1)⊗ W 0

t ) as M0-modules. The top level of V 0
L (τ )(1)

is of dimension 2 with basis {v8,1, v8,2
}, where

v8,1
= h2(−1/3)2 ⊗ v ∈ MT (τ )(1)⊗ M0

t ,

v8,2
= h1(−2/3) ⊗ v ∈ WT (τ )(1)⊗ W 0

t



ORDER-THREE AUTOMORPHISMS ON A LATTICE VERTEX OPERATOR ALGEBRA 493

and 0 6= v ∈ Tχ0 . We have

(ω̃1)1v8,1
=

( 1
9 +

2
3

)
v8,1, (ω̃2)1v8,1

= 0, J2v8,1
= −

238
81

√
−3v8,1, K2v8,1

= 0,

P1v8,1
= −

4
3 v8,2, (J1 P)2v8,1

=
104

9

√
−3v8,2, (K1 P)2v8,1

= 0,

(ω̃1)1v8,2
=

( 2
45 +

1
3

)
v8,2, (ω̃2)1v8,2

=
2
5 v8,2, J2v8,2

= −
22
81

√
−3v8,2, K2v8,2

= 0,

P1v8,2
= 2v8,1, (J1 P)2v8,2

= −
52
3

√
−3v8,1, (K1 P)2v8,2

= −
20
3

√
−3v8,2.

The simple module V 0
L(τ)(2). By (3-23), we have the isomorphism V 0

L (τ )(2) ∼=

(MT (τ )(2)⊗ M0
t )⊕ (WT (τ )(2)⊗ W 0

t ) as M0-modules. The top level of V 0
L (τ )(2)

is Cv9, where v9
= h2(−1/3)⊗ v ∈ WT (τ )(2)⊗ W 0

t and 0 6= v ∈ Tχ0 . We have

(ω̃1)1v9
=

2
45 v9, (ω̃2)1v9

=
2
5 v9, J2v9

= −
4

81

√
−3v9, K2v9

= 0,

P1v9
= 0, (J1 P)2v9

= 0, (K1 P)2v9
=

4
3

√
−3v9.

The simple module V j
L (τ)(0), j = 1, 2. By (3-23), we have the isomorphism

V j
L (τ )(0)∼= (MT (τ )(2)⊗M3− j

t )⊕(WT (τ )(2)⊗W 3− j
t ) as M0-modules for j =1, 2.

The top level of V j
L (τ )(0) is Cv10, j , where v10, j

= 1 ⊗ v ∈ WT (τ )(2)⊗ W 3− j
t and

0 6= v ∈ Tχ j . We have

(ω̃1)1v10, j
=

2
45 v10, j , (ω̃2)1v10, j

=
1
15 v10, j , J2v10, j

= −
4

81

√
−3v10, j ,

K2v10, j
= −(−1) j 2

9 v10, j , P1v10, j
= (−1) j 1

9

√
−3v10, j ,

(J1 P)2v10, j
= (−1) j 8

9 v10, j , (K1 P)2v10, j
= −

2
9

√
−3v10, j .

The simple module V j
L (τ)(1), j = 1, 2. By (3-23), we have the isomorphism

V j
L (τ )(1)∼= (MT (τ )(0)⊗M3− j

t )⊕(WT (τ )(0)⊗W 3− j
t ) as M0-modules for j =1, 2.

The top level of V j
L (τ )(1) is of dimension 2 with basis {v11, j,1, v11, j,2

}, where

v11, j,1
= h1(−2/3)⊗ v− (−1) j

√
−3h2(−1/3)2 ⊗ v ∈ MT (τ )(0)⊗ M3− j

t ,

v11, j,2
= 2h1(−2/3)⊗ v+ (−1) j

√
−3h2(−1/3)2 ⊗ v ∈ WT (τ )(0)⊗ W 3− j

t

and 0 6= v ∈ Tχ j . We have

(ω̃1)1v11, j,1
=

1
9 v11, j,1, (ω̃2)1v11, j,1

=
2
3 v11, j,1, J2v11, j,1

=
14
81

√
−3v11, j,1,

K2v11, j,1
= (−1) j 52

9 v11, j,1, P1v11, j,1
= −(−1) j 4

9

√
−3v11, j,2,

(J1 P)2v11, j,1
= (−1) j 52

9 v11, j,2, (K1 P)2v11, j,1
= −

28
9

√
−3v11, j,2,

(ω̃1)1v11, j,2
=

( 2
45 +

2
3

)
v11, j,2, (ω̃2)1v11, j,2

=
1

15 v11, j,2,



494 KENICHIRO TANABE AND HIROMICHI YAMADA

J2v11, j,2
=

176
81

√
−3v11, j,2, K2v11, j,2

= −(−1) j 2
9 v11, j,2,

P1v11, j,2
= −(−1) j 8

9

√
−3v11, j,1

+ (−1) j 5
9

√
−3v11, j,2,

(J1 P)2v11, j,2
= (−1) j 104

9 v11, j,1
− (−1) j 200

9 v11, j,2,

(K1 P)2v11, j,2
= −

56
9

√
−3v11, j,1

−
10
9

√
−3v11, j,2.

The simple module V j
L (τ)(2), j = 1, 2. By (3-23), we have the isomorphism

V j
L (τ )(2)∼= (MT (τ )(1)⊗M3− j

t )⊕(WT (τ )(1)⊗W 3− j
t ) as M0-modules for j =1, 2.

The top level of V j
L (τ )(2) is Cv12, j , where v12, j

= h2(−1/3)⊗ v ∈ WT (τ )(1)⊗
W 3− j

t and 0 6= v ∈ Tχ j . We have

(ω̃1)1v12, j
=

( 2
45 +

1
3

)
v12, j , (ω̃2)1v12, j

=
1
15 v12, j , J2v12, j

= −
22
81

√
−3v12, j ,

K2v12, j
= −(−1) j 2

9 v12, j , P1v12, j
= −(−1) j 5

9

√
−3v12, j ,

(J1 P)2v12, j
= (−1) j 8

9 v12, j , (K1 P)2v12, j
=

10
9

√
−3v12, j .

The simple module V 0
L(τ 2)(0). By (3-24), we have the isomorphism V 0

L (τ
2)(0)∼=

(MT (τ
2)(0)⊗M0

t )⊕(WT (τ
2)(0)⊗W 0

t ) as M0-modules. The top level of V 0
L (τ

2)(0)
is Cv13, where v13

= 1 ⊗ v ∈ MT (τ
2)(0)⊗ M0

t and 0 6= v ∈ Tχ ′
0
. We have

(ω̃1)1v13
=

1
9 v13, (ω̃2)1v13

= 0, J2v13
= −

14
81

√
−3v13, K2v13

= 0,

P1v13
= 0, (J1 P)2v13

= 0, (K1 P)2v13
= 0.

The simple module V 0
L(τ 2)(1). By (3-24), we have the isomorphism V 0

L (τ
2)(1)∼=

(MT (τ
2)(1)⊗M0

t )⊕(WT (τ
2)(1)⊗W 0

t ) as M0-modules. The top level of V 0
L (τ

2)(1)
is of dimension 2 with basis {v14,1, v14,2

}, where

v14,1
= h′

2(−1/3)2 ⊗ v ∈ MT (τ
2)(1)⊗ M0

t ,

v14,2
= h′

1(−2/3) ⊗ v ∈ WT (τ
2)(1)⊗ W 0

t ,

and 0 6= v ∈ Tχ ′
0
. We have

(ω̃1)1v14,1
=

( 1
9 +

2
3

)
v14,1, (ω̃2)1v14,1

= 0,

J2v14,1
=

238
81

√
−3v14,1, K2v14,1

= 0,

P1v14,1
= −

4
3 v14,2, (J1 P)2v14,1

= −
104
9

√
−3v14,2, (K1 P)2v14,1

= 0,

(ω̃1)1v14,2
=

( 2
45 +

1
3

)
v14,2, (ω̃2)1v14,2

=
2
5 v14,2,

J2v14,2
=

22
81

√
−3v14,2, K2v14,2

= 0,

P1v14,2
= 2v14,1, (J1 P)2v14,2

=
52
3

√
−3v14,1, (K1 P)2v14,2

=
20
3

√
−3v14,2.
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The simple module V 0
L(τ 2)(2). By Equation (3-24), we have the isomorphism

V 0
L (τ

2)(2) ∼= (MT (τ
2)(2)⊗ M0

t )⊕ (WT (τ
2)(2)⊗ W 0

t ) as M0-modules. The top
level of V 0

L (τ
2)(2) is Cv15, where v15

= h′

2(−1/3)⊗ v ∈ WT (τ
2)(2)⊗ W 0

t and
0 6= v ∈ Tχ ′

0
. We have

(ω̃1)1v15
=

2
45 v15, (ω̃2)1v15

=
2
5 v15, J2v15

=
4

81

√
−3v15, K2v15

= 0,

P1v15
= 0, (J1 P)2v15

= 0, (K1 P)2v15
= −

4
3

√
−3v15.

The simple module V j
L (τ 2)(0), j = 1, 2. By (3-24), we have the isomorphism

V j
L (τ

2)(0)∼= (MT (τ
2)(2)⊗ M j

t )⊕(WT (τ
2)(2)⊗W j

t ) as M0-modules for j = 1, 2.
The top level of V j

L (τ
2)(0) is Cv16, j , where v16, j

= 1 ⊗ v ∈ WT (τ
2)(2)⊗ W j

t and
0 6= v ∈ Tχ ′

j
. We have

(ω̃1)1v16, j
=

2
45 v16, j , (ω̃2)1v16, j

=
1

15 v16, j , J2v16, j
=

4
81

√
−3v16, j ,

K2v16, j
= (−1) j 2

9 v16, j , P1v16, j
= (−1) j 1

9

√
−3v16, j ,

(J1 P)2v16, j
= −(−1) j 8

9 v16, j , (K1 P)2v16, j
=

2
9

√
−3v16, j .

The simple module V j
L (τ 2)(1), j = 1, 2. By (3-24), we have the isomorphism

V j
L (τ

2)(1)∼= (MT (τ
2)(0)⊗ M j

t )⊕(WT (τ
2)(0)⊗W j

t ) as M0-modules for j = 1, 2.
The top level of V j

L (τ
2)(1) is of dimension 2 with basis {v17, j,1, v17, j,2

}, where

v17, j,1
= h′

1(−2/3)⊗ v− (−1) j
√

−3h′

2(−1/3)2 ⊗ v ∈ MT (τ
2)(0)⊗ M j

t ,

v17, j,2
= 2h′

1(−2/3)⊗ v+ (−1) j
√

−3h′

2(−1/3)2 ⊗ v ∈ WT (τ
2)(0)⊗ W j

t

and 0 6= v ∈ Tχ ′
j
. We have

(ω̃1)1v17, j,1
=

1
9 v17, j,1, (ω̃2)1v17, j,1

=
2
3 v17, j,1, J2v17, j,1

= −
14
81

√
−3v17, j,1,

K2v17, j,1
= −(−1) j 52

9 v17, j,1, P1v17, j,1
= −(−1) j 4

9

√
−3v17, j,2,

(J1 P)2v17, j,1
= −(−1) j 52

9 v17, j,2, (K1 P)2v17, j,1
=

28
9

√
−3v17, j,2,

(ω̃1)1v17, j,2
=

( 2
45 +

2
3

)
v17, j,2, (ω̃2)1v17, j,2

=
1

15 v17, j,2,

J2v17, j,2
= −

176
81

√
−3v17, j,2, K2v17, j,2

= (−1) j 2
9 v17, j,2,

P1v17, j,2
= −(−1) j 8

9

√
−3v17, j,1

+ (−1) j 5
9

√
−3v17, j,2,

(J1 P)2v17, j,2
= −(−1) j 104

9 v17, j,1
+ (−1) j 200

9 v17, j,2,

(K1 P)2v17, j,2
=

56
9

√
−3v17, j,1

+
10
9

√
−3v17, j,2.

The simple module V j
L (τ 2)(2), j = 1, 2. By (3-24), we have the isomorphism

V j
L (τ

2)(2)∼= (MT (τ
2)(1)⊗M j

t )⊕(WT (τ
2)(1)⊗W j

t ) as M0-modules for j = 1, 2.
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The top level of V j
L (τ

2)(2) is Cv18, j , where v18, j
=h′

2(−1/3)⊗v∈WT (τ
2)(1)⊗W j

t
and 0 6= v ∈ Tχ ′

j
. We have

(ω̃1)1v18, j
=

( 2
45 +

1
3

)
v18, j , (ω̃2)1v18, j

=
1
15 v18, j , J2v18, j

=
22
81

√
−3v18, j ,

K2v18, j
= (−1) j 2

9 v18, j , P1v18, j
= −(−1) j 5

9

√
−3v18, j ,

(J1 P)2v18, j
= −(−1) j 8

9 v18, j , (K1 P)2v18, j
= −

10
9

√
−3v18, j .

Symmetries by σ . We now consider the automorphisms σ and θ of VL that are
lifts of the isometries σ and θ of the lattice L defined by (3-1). Clearly, στσ = τ 2,
σθ = θσ , and τθ = θτ . Thus σ and θ induce automorphisms of V τ

L of order 2. We
have σ J = −J , σK = −K , σ P = P , θ J = J , θK = −K , and θ P = −P . Hence
σ and θ induce the same automorphism of M0

t and θ is the identity on M(0). Note
also that σ(J1 P)= −J1 P and σ(K1 P)= −K1 P .

From the action of σ on the top level of the 30 known simple V τ
L -modules or

the action of J2, K2, (J1 P)2, and (K1 P)2, we know how σ permutes those simple
V τ

L -modules. In fact, σ transforms VL(c,0) into an equivalent simple V τ
L -module and

interchanges the remaining simple V τ
L -modules as follows.

VL(1)↔ VL(2), VL(0,1)(ε)↔ VL(0,2)(2ε), ε = 0, 1, 2,

VL(c,1) ↔ VL(c,2), V j
L (τ )(ε)↔ V j

L (τ
2)(ε), j, ε = 0, 1, 2.

Note that σhi = ξ 3−i h′

i , i = 1, 2. The top level of V j
L (τ

2)(ε) can be obtained
by replacing hi (i/3 + n) with h′

i (i/3 + n) in the top level of V j
L (τ )(ε) for j, ε =

0, 1, 2. The corresponding action of σ on the simple M(0)-modules was discussed
in [Dong et al. 2004, Section 4.4].

5. Classification of simple modules

We keep the notation in the preceding section. Thus V τ
L = M0

⊕ W 0 with M0
=

M(0)⊗ M0
t and W 0

= W (0)⊗ W 0
t . In this section we show that any simple V τ

L -
module is equivalent to one of the 30 simple V τ

L -modules listed in Lemma 3.2. The
result will be established by considering the Zhu algebra A(V τ

L ) of V τ
L .

First, we review some notation and basic formulas for the Zhu algebra A(V ) of
a vertex operator algebra (V, Y, 1, ω). Define two binary operations

(5-1) u ∗ v =

∞∑
i=0

(
wt u

i

)
ui−1v, u ◦ v =

∞∑
i=0

(
wt u

i

)
ui−2v

for u, v ∈ V with u being homogeneous and extend ∗ and ◦ for arbitrary u ∈ V by
linearity. Let O(V ) be the subspace of V spanned by all u ◦ v for u, v ∈ V . Set
A(V )= V/O(V ). By [Zhu 1996, Theorem 2.1.1], O(V ) is a two-sided ideal with
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respect to the operation ∗. Thus ∗ induces an operation in A(V ). Denote by [v]

the image of v ∈ V in A(V ). Then [u] ∗ [v] = [u ∗ v] and A(V ) is an associative
algebra by this operation. Moreover, [1] is the identity and [ω] is in the center of
A(V ). For u, v ∈ V , we write u ∼ v if [u] = [v]. For ϕ,ψ ∈ End V , we write
ϕ ∼ψ if ϕv ∼ψv for all v ∈ V . We need some basic formulas from [Zhu 1996].

(5-2) v ∗ u ∼

∞∑
i=0

(
wt(u)− 1

i

)
ui−1v,

(5-3)
∞∑

i=0

(
wt(u)+ m

i

)
ui−n−2v ∈ O(V ), n ≥ m ≥ 0.

Moreover (see [Wang 1993]),

(5-4) L(−n)∼ (−1)n
{
(n − 1)

(
L(−2)+ L(−1)

)
+ L(0)

}
, n ≥ 1,

(5-5) [ω] ∗ [u] = [(L(−2)+ L(−1))u],

where L(n)= ωn+1. From (5-4) and (5-5) we have

(5-6) [L(−n)u] = (−1)n(n − 1)[ω] ∗ [u] + (−1)n[L(0)u], n ≥ 1.

If u ∈ V is of weight 2, then u(−n −3)+2u(−n −2)+u(−n −1)∼ 0 by (5-3),
where u(n)= un+1. Hence

(5-7) u(−n)∼ (−1)n
(
(n − 1)u(−2)+ (n − 2)u(−1)

)
for n ≥ 1. Then it follows from (5-1) and (5-2) that

(5-8) u(−n)w ∼ (−1)n
(
− u ∗w+ nw ∗ u + u(0)w

)
for n ≥ 1, w ∈ V . Likewise, if u is of weight 3 and u(n)= un+2, then

(5-9) u(−n)∼ (−1)n+1

·
( 1

2(n−1)(n−2)u(−3)+(n−1)(n−3)u(−2)+ 1
2(n−2)(n−3)u(−1)

)
,

(5-10) u(−n)w∼(−1)n+1(nu(−1)w+(n−1)u(0)w−(n−1)u∗w+
1
2 n(n−1)w∗u

)
,

for n ≥ 1, w ∈ V .
For a homogeneous vector u ∈ V , o(u)= uwt(u)−1 is the weight zero component

operator of Y (u, z). Extend o(u) for arbitrary u ∈ V by linearity. Note that we
call a module in the sense of [Zhu 1996] an N-graded weak module here. If M =

⊕
∞

n=0 M(n) is an N-graded weak V -module with M(0) 6= 0, then o(u) acts on its top
level M(0). Zhu’s theory [1996] says: (1) o(u)o(v) = o(u ∗ v) as operators on the
top level M(0) and o(u) acts as 0 on M(0) if u ∈ O(V ). Thus M(0) is an A(V )-
module, where [u] acts on M(0) as o(u). (2) The map M 7→ M(0) is a bijection
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between the set of isomorphism classes of simple N-graded weak V -modules and
the set of isomorphism classes of simple A(V )-modules.

We return to V τ
L . As in Section 3, we write L i (n) = (ω̃i )n+1, i = 1, 2, J (n) =

Jn+2, and K (n) = Kn+2. The Zhu algebras A(M(0)) and A(M0
t ) were deter-

mined in [Dong et al. 2004] and [Kitazume et al. 2000b], respectively. Since
O(M0) ⊂ O(V τ

L ), the image of M(0) (resp. M0
t ) in A(V τ

L ) is a homomorphic
image of A(M(0)) (resp. A(M0

t )). It is generated by [ω̃1
], [J ] (resp. [ω̃2

], [K ]).
By a direct calculation, we have

(5-11)

P1 P = −16ω̃1
− 6ω̃2,

P0 P = −8(ω̃1)−21 − 3(ω̃2)−21,

P−1 P =
5

273 J1K1 P −
12
7 (ω̃

1)−31 −
18
13(ω̃

2)−31
−

36
7 (ω̃

1)−1(ω̃
1)−11 −

9
13(ω̃

2)−1(ω̃
2)−11 − 16(ω̃1)−1(ω̃

2)−11,

P−2 P =
1

84 J0K1 P +
1

156 J1K0 P −
8
7(ω̃

1)−41 −
12
13(ω̃

2)−41 −
36
7 (ω̃

1)−2(ω̃
1)−11

−
9
13(ω̃

2)−2(ω̃
2)−11 − 8(ω̃1)−2(ω̃

2)−11 − 8(ω̃1)−1(ω̃
2)−21.

Moreover, J2 P = K2 P = 0. Then, using formulas (5-4)–(5-10), we obtain

(5-12) [P] ∗ [P] =
5

273 [J1K1 P] −
36
7 [ω̃1

] ∗ [ω̃1
] −

9
13 [ω̃2

] ∗ [ω̃2
]

− 16[ω̃1
] ∗ [ω̃2

] +
4
7 [ω̃1

] +
6
13 [ω̃2

],

(5-13) [P◦P]=
1
84 [J ]∗[K1 P]−

1
84 [K1 P]∗[J ]+

1
156 [K ]∗[J1 P]−

1
156 [J1 P]∗[K ]

= 0.

It turns out that A(V τ
L ) is generated by [ω̃1

], [ω̃2
], [J ], [K ], and [P] (Corollary

5.11). However, we first prove the following intermediate assertion.

Proposition 5.1. The Zhu algebra A(V τ
L ) is generated by [ω̃1

], [ω̃2
], [J ], [K ], [P],

[J1 P], and [K1 P].

Proof. Recall that L i (n)P =0 for i =1, 2, n ≥1, L1(0)P =
8
5 P , L2(0)P =

2
5 P , and

J (n)P = K (n)P = 0 for n ≥ 0. Thus from the commutation relations (3-9)–(3-11)
and (3-13)–(3-15) we see that W 0 is spanned by the vectors of the form

(5-14) L1(− j1) · · · L1(− jr )L2(−k1) · · · L2(−ks)

· J (−m1) · · · J (−m p)K (−n1) · · · K (−nq)P

with j1 ≥ · · · ≥ jr ≥ 1, k1 ≥ · · · ≥ ks ≥ 1, m1 ≥ · · · ≥ m p ≥ 1, n1 ≥ · · · ≥ nq ≥ 1.
Let v be a vector of this form. Its weight is

j1 + · · · + jr + k1 + · · · + ks + m1 + · · · + m p + n1 + · · · + nq + 2.
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Since V τ
L = M0

⊕W 0 and since the image of M0 in A(V τ
L ) is generated by [ω̃1

],
[ω̃2

], [J ], and [K ], it suffices to show that the image [v] of v in A(V τ
L ) is contained

in the subalgebra generated by [ω̃1
], [ω̃2

], [J ], [K ], [P], [J1 P], and [K1 P]. We
proceed by induction on the weight of v. By formula (5-8) with u = ω̃i , i = 1, 2
and the induction on the weight, we may assume that r = s = 0, that is,

v = J (−m1) · · · J (−m p)K (−n1) · · · K (−nq)P.

Moreover, by formula (5-10) with u = J , we may assume that m1 =· · ·=m p =1.
Since J (m) and K (n) commute, we may also assume that n1 = · · · = nq = 1 by a
similar argument. Then v = J (−1)p K (−1)q P .

Next, we reduce v to the case p ≤ 1. For this purpose, we use a singular vector

(5-15) 5J (−1)2 P + 2496L1(−2)P − 195L1(−1)2 P = 0.

in W (0). Suppose p ≥ 2. Then, since K (−1) commutes with J (m) and L1(n),
(5-15) implies that v = J (−1)p K (−1)q P is a linear combination of

J (−1)p−2L1(−2)K (−1)q P and J (−1)p−2L1(−1)2K (−1)q P.

By (3-10), these two vectors can be written in the form L1(−2)H K (−1)q P and
L1(−1)2 H ′K (−1)q P , where H (resp. H ′) is a polynomial in J (−1) and J (−3)
(resp. J (−1), J (−2), and J (−3)). Then by (5-8) with u = ω̃1 and the induction
on the weight, the assertion holds for v. Hence we may assume that p ≤ 1.

There is a singular vector

(5-16) K (−1)2 P − 210L2(−2)P = 0

in W 0
t . Thus, by a similar argument as above, we may assume that q ≤ 1. Finally,

it follows from (5-12) that [J (−1)K (−1)P] can be written by [ω̃1
], [ω̃2

], and [P]

in A(V τ
L ). The proof is complete. �

We will classify the simple V τ
L -modules using our knowledge of simple modules

for M(0) and M0
t together with fusion rules (3-25) and (3-7). Set

M1 = {M(ε),Mc
k ,MT (τ

i )(ε) | i = 1, 2, ε = 0, 1, 2},

W1 = {W (ε),W c
k ,WT (τ

i )(ε) | i = 1, 2, ε = 0, 1, 2},

M2 = {M j
t | j = 0, 1, 2}, W2 = {W j

t | j = 0, 1, 2}.

Then M1 ∪ W1 (resp. M2 ∪ W2) is a complete set of representatives of isomor-
phism classes of simple M(0)-modules (resp. simple M0

t -modules). A main point
is that the fusion rules of the following form hold.

W (0)× M1
= W 1, W (0)× W 1

= M1
+ W 1,

W 0
t × M2

= W 2, W 0
t × W 2

= M2
+ W 2,

(5-17)
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where M i
∈ Mi , i = 1, 2, and W i

∈ Wi is determined by M i through the fusion
rule W (0)× M1

= W 1 or W 0
t × M2

= W 2.
Recall that M0 is rational, C2-cofinite, and of CFT type. Thus every N-graded

weak M0-module is a direct sum of simple M0-modules. As a result, every N-
graded weak V τ

L -module is decomposed into a direct sum of simple M0-modules,
and in particular L(0) = ω1 acts semisimply on it. Each weight subspace, that is,
each eigenspace for L(0) is not necessarily a finite dimensional space. However,
any simple weak V τ

L -module is a simple ordinary V τ
L -module by [Abe et al. 2004,

Corollary 5.8], since V τ
L is C2-cofinite and of CFT type.

We note that

(5-18) W 0
· W 0

= V τ
L .

Indeed, W 0
·W 0

= span{anb | a, b ∈ W 0, n ∈Z} is an M0-submodule of V τ
L by (2-6).

Since P, J1K1 P ∈ W 0 and ω̃1, ω̃2
∈ M0, (5-11) implies that W 0

· W 0
= M0

⊕ W 0.
Each simple M0-module is isomorphic to a tensor product A ⊗ B of a simple

M(0)-module A and a simple M0
t -module B. We show that only restricted simple

M0-modules can appear in N-graded weak V τ
L -modules.

Lemma 5.2. Let U be an N-graded weak V τ
L -module. Then any simple M0-

submodule of U is isomorphic to M1
⊗ M2 or W 1

⊗ W 2 for some M i
∈ Mi and

W i
∈ Wi , i = 1, 2.

Proof. Suppose U contains a simple M0-submodule S0 ∼= M1
⊗W 2 with M1

∈ M1

and W 2
∈ W2. Let S = V τ

L · S0
= span{anw | a ∈ V τ

L , w ∈ S0, n ∈ Z}. Then (2-6)
implies that S is the N-graded weak V τ

L -submodule of U generated by S0. By the
construction of S, the difference of any two eigenvalues of L(0) in S is an integer.
In fact, S is an ordinary V τ

L -module by Remark 2.16.
If v is a nonzero vector in V τ

L , then vn S0
6= 0 for some n ∈ Z. Indeed, Lemma

2.6 implies that the set {v ∈ V τ
L | vn S0

= 0 for all n ∈ Z} is an ideal of V τ
L . It is in

fact 0, since V τ
L is a simple vertex operator algebra and S0 is a simple M0-module.

Then by the fusion rules (5-17), a simple M0-module isomorphic to W 1
⊗ M2 or

W 1
⊗W 2 must appear in S. However, the difference of the minimal eigenvalues of

L(0) in M1
⊗W 2 and W 1

⊗M2, or in M1
⊗W 2 and W 1

⊗W 2 is not an integer. This
is a contradiction. Thus U does not contain a simple M0-submodule isomorphic
to M1

⊗ W 2. By a similar argument, we can also show that there is no simple
M0-submodule isomorphic to W 1

⊗ M2 in U . Hence the assertion holds. �

Set M ={M1
⊗ M2

| M i
∈ Mi , i = 1, 2} and W ={W 1

⊗W 2
| W i

∈ Wi , i = 1, 2}.
Then each of M and W consists of 30 inequivalent simple M0-modules. The top
level of every simple M0-module is of dimension one.

Lemma 5.3. If U is a simple N-graded weak V τ
L -module whose top level is of

dimension one, then U is isomorphic to one of the 23 known simple V τ
L -modules
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with one dimensional top level, namely, VL(0, j)(ε), j = 0, 1, 2, ε = 0, 1, 2, VL(c, j) ,
j = 1, 2, V j

L (τ )(ε), j = 0, 1, 2, ε = 0, 2, and V j
L (τ

2)(ε), j = 0, 1, 2, ε = 0, 2.

Proof. Since U is a direct sum of simple M0-modules and since the top level,
say Uλ of U is assumed to be of dimension one, it follows from Lemma 5.2 that
Uλ is isomorphic to the top level of M1

⊗ M2 or the top level of W 1
⊗ W 2 as an

A(M0)-module for some M i
∈ Mi , W i

∈ Wi , i = 1, 2. The Zhu algebra

A(M0)∼= A(M(0))× A(M0
t )

is commutative and the action of A(M0) on the top level of M1
⊗ M2 and the top

level of W 1
⊗ W 2 are known. Indeed, we know all possible action of the elements

[ω̃1
], [ω̃2

], [J ], and [K ] of A(V τ
L ) on Uλ. Let [ω̃1

], [ω̃2
], [J ], and [K ] act on Uλ

as scalars a1, a2, b1, and b2, respectively. There are 60 possible such quadruplets
(a1, a2, b1, b2).

Let [P], [J1 P], and [K1 P] act on Uλ as scalars x1, x2, and x3, respectively.
Then it follows from (5-12) that [J1K1 P] acts on Uλ as a scalar

(5-19) 273
5 x2

1 +
1404

5 a2
1 +

189
5 a2

2 +
4368

5 a1a2 −
156
5 a1 −

126
5 a2.

From computer calculations, whose results are presented in an online supple-
ment to this paper,1 and from formulas (5-4)–(5-10), we conclude that the vanish-
ing of [P ◦ (J1 P)] and [P ◦ (K1 P)] imply, respectively,

(5-20) 15b2x1 + 5a2x3 − 2x3 = 0, (15a2 − 1)x2 = 0.

Using (5-19), we can calculate

[(J1 P) ∗ (J1 P)], [(K1 P) ∗ (K1 P)], [(J1 P) ∗ (K1 P)]

in a similar way and verify that the following equations hold.

(5-21) x2
2 =

( 229164
575 a1 −

37856
425 a2 +

1669382
48875

)
x2

1 −
56
85 b2x2 −

4056
115 b1x3 +

348994464
107525 a3

1

+
137149584

9775 a2
1a2 −

1030224
1375 a2

1 +
7064876

9775 a1a2
2 −

40788488
48875 a1a2

+
16160456
537625 a1 −

419184
9775 a3

2 −
200994
48875 a2

2 +
1065516

48875 a2 −
3042
187 b2

1,

(5-22) x2
3 =

(
−

37044
575 a1 −

5684
85 a2 +

741713
97750

)
x2

1

+
28

221 b2x2+
216
115 b1x3−

54559344
107525 a3

1 −
28217448

9775 a2
1a2+

254982
1375 a2

1 −
25042724

9775 a1a2
2

+
26308184

48875 a1a2 −
8127098
537625 a1 −

4775148
25415 a3

2 +
188338017

1270750 a2
2 −

9722139
635375 a2 −

180
187 b2

1,

(5-23)
x2x3 =

(
−

864
5 a2

1 +
1248

25 a1a2 +
1152

5 a2
2 +

5904
125 a1 +

184176
125 a2 −

62112
625

)
x1 − 36b1b2.

1The authors can supply these expressions in machine readable form upon request.

http://pjm.math.berkeley.edu/pjm/2007/230-2/p11.xhtml
http://pjm.math.berkeley.edu/pjm/2007/230-2/p11.xhtml
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We have obtained a system of equations (5-20)–(5-23) for x1, x2, x3. We
can solve this system of equations with respect to the 60 possible quadruplets
(a1, a2, b1, b2). Actually, there is no solution for 37 quadruplets of (a1, a2, b1, b2).
For each of the remaining 23 quadruplets (a1, a2, b1, b2), the system of equations
possesses a unique solution (x1, x2, x3). Furthermore, the 23 sets (a1, a2, b1, b2,

x1, x2, x3) of values determined in this way coincide with the action of [ω̃1
], [ω̃2

],
[J ], [K ], [P], [J1 P], and [K1 P] on the top level of the 23 known simple V τ

L -
modules with one dimensional top level described in Section 4. Since A(V τ

L ) is
generated by these seven elements, this implies that Uλ is isomorphic to the top
level of one of the 23 simple V τ

L -modules listed in the assertion as an A(V τ
L )-

module. Thus the lemma holds by Zhu’s theorem. �

Remark 5.4. We also obtain some equations for x1x2 and x1x3 from [P ∗ (J1 P)]
and [P ∗ (K1 P)]. However, they are not sufficient to determine x1, x2, and x3.

Lemma 5.5. Every N-graded weak V τ
L -module contains a simple M0-submodule

isomorphic to a member of M.

Proof. Suppose false and let U be an N-graded weak V τ
L -module which contains no

simple M0-submodule isomorphic to a member of M. Then by Lemma 5.2, there
is a simple M0-submodule W in U such that W ∼= W 1

⊗ W 2 for some W i
∈ Wi ,

i = 1, 2. The top level of W , say Wλ for some λ ∈ Q, is a one dimensional space.
Take 0 6= w ∈ Wλ and let S = V τ

L ·w = span{anw | a ∈ V τ
L , n ∈ Z}, which is an

ordinary V τ
L -module by (2-6) and Remark 2.16. Since V τ

L = M0
⊕ W 0, it follows

from our assumption and the fusion rules (5-17) that S is isomorphic to a direct
sum of finite number of copies of W as an M0-module. Thus [ω̃1

], [ω̃2
], [J ], and

[K ] act on the top level Sλ of S as scalars, say a1, a2, b1, and b2, respectively. Then
by a similar calculation as in the proof of Lemma 5.3, we see that [P ◦(K1 P)] = 0
implies

(5-24) (15a2 − 1)o(J1 P)= 0

as an operator on the top level Sλ. Recall that [u] ∈ A(V τ
L ) acts on Sλ as o(u) =

uwt(u)−1 for a homogeneous vector u of V τ
L . Furthermore, we can calculate that

o(J1 P)o(P)− o(P)o(J1 P)= 0,

o(K1 P)o(P)− o(P)o(K1 P)=
2
13(15a2 − 1)o(J1 P),

o(J1 P)o(K1 P)− o(K1 P)o(J1 P)=
96
125(15a2−1)(65a1+100a2+441)o(P)

(5-25)

as operators on Sλ.
By (5-24), 15a2 − 1 = 0 or o(J1 P) = 0 and so o(P), o(J1 P), and o(K1 P)

commute each other. Thus the action of A(V τ
L ) on Sλ is commutative. Hence we

can choose a one dimensional A(V τ
L )-submodule T of Sλ. Zhu’s theory tells us that
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there is a simple N-graded weak V τ
L -module R whose top level Rλ is isomorphic

to T as an A(V τ
L )-module. Since dim Rλ = 1, R is isomorphic to one of the 23

simple V τ
L -modules listed in Lemma 5.3. In particular, R contains a simple M0-

submodule M isomorphic to a member of M. Now, consider the V τ
L -submodule

V τ
L ·T of S generated by T . By Lemma 2.10, there is a surjective homomorphism of

V τ
L -modules from V τ

L ·T onto R. Then V τ
L ·T must contain a simple M0-submodule

isomorphic to M . This contradicts our assumption. The proof is complete. �

Lemma 5.6. Let U be an N-graded weak V τ
L -module and M be a simple M0-

submodule of U such that M ∼= M1
⊗M2 as M0-modules for some M i

∈Mi , i =1, 2.
Then V τ

L ·M = span{anu | a ∈ V τ
L , u ∈ M, n ∈ Z} is a simple V τ

L -module. Moreover,
V τ

L · M = M ⊕ W , where W is a simple M0-module isomorphic to W 1
⊗ W 2 and

W i , i = 1, 2 are determined from M i by the fusion rules W (0)× M1
= W 1 and

W 0
t × M2

= W 2 of (5-17).

Proof. By Remark 2.16, V τ
L · M is an ordinary V τ

L -module. Note that V τ
L · M =

(M0
+ W 0) · M = M + W 0

· M . We see that W 0
· M 6= 0 by a similar argument as

in the proof of Lemma 5.2. Actually, W 0
· (W 0

· M) ⊃ (W 0
· W 0) · M = V τ

L · M
(see Lemma 2.6 and (5-18)) implies W 0

· M 6= 0 also. Moreover, W 0
· M is an M0-

module by (2-6). Since M0 is rational, W 0
· M is decomposed into a direct sum of

simple M0-modules, say W 0
· M =

⊕
γ∈0 Sγ . Let W = W 1

⊗W 2, where W i
∈ Wi ,

i = 1, 2 are determined by the fusion rules W (0)× M1
= W 1 and W 0

t × M2
= W 2.

The space IM0
( W

W 0 M

)
of intertwining operators of type

( W
W 0 M

)
is of dimension one

and each Sγ is isomorphic to W .
We want to show that |0| = 1. Suppose 0 contains at least two elements and

take γ1, γ2 ∈ 0, γ1 6= γ2. Let ψ : Sγ2 → Sγ1 be an isomorphism of M0-modules
and pγ : W 0

· M → Sγ be a projection. For a ∈ W 0 and u ∈ M , set

Gγ1(a, z)u = pγ1YU (a, z)u, Gγ2(a, z)u = ψpγ2YU (a, z)u,

where YU (a, z) is the vertex operator of the N-graded weak V τ
L -module U . Then

Gγi ( · , z), i = 1, 2 are nonzero members in the one dimensional space IM0
( W

W 0 M

)
,

so that µGγ1( · , z) = Gγ2( · , z) for some 0 6= µ ∈ C. Let 0 6= v ∈ Sγ1 . Then
v ∈ W 0

· M and so v =
∑

j (a
j )n j u

j for some a j
∈ W 0, u j

∈ M , n j ∈ Z. Take
the coefficients of z−n j −1 in both sides of µGγ1(a

j , z)u j
= Gγ2(a

j , z)u j . Then
µpγ1((a

j )n j u
j ) = ψpγ2((a

j )n j u
j ). Summing up both sides of the equation with

respect to j , we have µpγ1v = ψpγ2v. However, v ∈ Sγ1 implies that pγ1v = v

and pγ2v = 0. This is a contradiction since µ 6= 0 and v 6= 0. Thus |0| = 1 and
W 0

· M ∼= W as required.
If V τ

L · M is not a simple V τ
L -module, then there is a proper V τ

L -submodule N
of V τ

L · M . Since M and W are simple M0-modules, N must be isomorphic to M
or W as an M0-module. Then the top level of N is of dimension one. The simple



504 KENICHIRO TANABE AND HIROMICHI YAMADA

V τ
L -modules with one dimensional top level are classified in Lemma 5.3. Each of

them is a direct sum of two simple M0-modules. However, N is not of such a form.
Thus V τ

L · M is a simple V τ
L -module. �

Lemma 5.7. Let U = M ⊕ W be an M0-module such that M ∼= M1
⊗ M2 and

W ∼= W 1
⊗ W 2 for some M i

∈ Mi and W i
∈ Wi , i = 1, 2. Then U admits at most

one simple V τ
L -module structure.

Proof. Assume that (U, Y1) and (U, Y2) are simple V τ
L -modules such that Yi (a, z)=

Y (a, z) for all a ∈ M0, i = 1, 2, where (U, Y ) is the given M0-module structure.
We denote the vertex operator of V τ

L by Ỹ (v, z) for v ∈ V τ
L . Let pM0 : V τ

L → M0

and pW 0 : V τ
L → W 0 be projections and define I( · , z) and J( · , z) by

I(a, z)b = pM0 Ỹ (a, z)b, J(a, z)b = pW 0 Ỹ (a, z)b

for a, b ∈ W 0. Then by (5-18), I( · , z) and J( · , z) are nonzero intertwining
operators of respective types

( M0

W 0 W 0

)
and

( W 0

W 0 W 0

)
. By the fusion rules (5-17),

the space IM0
( M0

W 0 W 0

)
of M0-intertwining operators of type

( M0

W 0 W 0

)
is of dimen-

sion one. Likewise, dim IM0
( W 0

W 0 W 0

)
= 1. Note that W 0

· M0
⊂ W 0 and that

I(a, z)b + J(a, z)b = Ỹ (a, z)b.
Let pM : U → M and pW : U → W be projections. Define FM

i ( · , z) and
FW

i ( · , z), i = 1, 2 by

FM
i (a, z)w = pM Yi (a, z)w, FW

i (a, z)w = pW Yi (a, z)w

for a ∈ W 0 and w ∈ W . Then FM
i ( · , z) and FW

i ( · , z) are intertwining opera-
tors of type

( M
W 0 W

)
and

( W
W 0 W

)
, respectively. Clearly, FM

i (a, z)w+ FW
i (a, z)w =

Yi (a, z)w. If FM
i ( · , z)=0, then W 0

·W ⊂ W and so V τ
L ·W = M0

·W +W 0
·W ⊂ W .

This is a contradiction, since U is a simple V τ
L -module. Hence FM

i ( · , z) 6= 0. Let

GW
i (a, z)v = Yi (a, z)v

for a ∈W 0, v∈ M . Then GW
i ( · , z) is a nonzero intertwining operator of type

( W
W 0 M

)
by (5-17). The space of M0-intertwining operators IM0

( W
W 0 M

)
of type

( W
W 0 M

)
is of

dimension one by (5-17). Similarly, dim IM0
( M

W 0 W

)
= dim IM0

( W
W 0 W

)
= 1. There-

fore, FM
2 ( · , z)= λFM

1 ( · , z), FW
2 ( · , z)=µFW

1 ( · , z), and GW
2 ( · , z)= γGW

1 ( · , z)
for some λ,µ, γ ∈ C with λ 6= 0 and γ 6= 0.

Now,

Yi (a, z1)Yi (b, z2)v =
(
FM

i (a, z1)+ FW
i (a, z1)

)
GW

i (b, z2)v,

Yi (b, z2)Yi (a, z1)v =
(
FM

i (b, z2)+ FW
i (b, z2)

)
GW

i (a, z1)v,

Yi (Ỹ (a, z0)b, z2)v = Yi (I(a, z0)b, z2)v+ GW
i (J(a, z0)b, z2)v
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for a, b ∈ W 0 and v ∈ M . Taking the image of both sides of the Jacobi identity

(5-26) z−1
0 δ

( z1−z2
z0

)
Yi (a, z1)Yi (b, z2)v− z−1

0 δ
( z2−z1

−z0

)
Yi (b, z2)Yi (a, z1)v

= z−1
2 δ

( z1−z0
z2

)
Yi (Ỹ (a, z0)b, z2)v

under the projection pM , we obtain

(5-27) z−1
0 δ

( z1−z2
z0

)
FM

i (a, z1)G
W
i (b, z2)v−z−1

0 δ
( z2−z1

−z0

)
FM

i (b, z2)G
W
i (a, z1)v

= z−1
2 δ

( z1−z0
z2

)
Yi (I(a, z0)b, z2)v.

Likewise, if we take the image of both sides of (5-26) under the projection pW ,
then

(5-28) z−1
0 δ

( z1−z2
z0

)
FW

i (a, z1)G
W
i (b, z2)v−z−1

0 δ
( z2−z1

−z0

)
FW

i (b, z2)G
W
i (a, z1)v

= z−1
2 δ

( z1−z0
z2

)
GW

i (J(a, z0)b, z2)v.

Comparing Equation (5-28) for i = 1 and i = 2, we have

γ (µ− 1)z−1
2 δ

( z1 − z0

z2

)
GW

1 (J(a, z0)b, z2)v = 0,

since FM
2 ( · , z)=λFM

1 ( · , z), FW
2 ( · , z)=µFW

1 ( · , z), and GW
2 ( · , z)=γGW

1 ( · , z).
Now, z−1

2 δ
( z1−z0

z2

)
= z−1

1 δ
( z2+z0

z1

)
by [Frenkel et al. 1988, Proposition 8.8.5] and so

the above equation is equivalent to the following assertion.

γ (µ− 1)(z2 + z0)
kGW

1 (J(a, z0)b, z2)v = 0 for all k ∈ Z.

This implies that
γ (µ− 1)GW

1 (J(a, z0)b, z2)v = 0,

since GW
1 (J(a, z0)b, z2)v ∈ W ((z0))[[z2, z−1

2 ]]. Then since J( · , z) and GW
1 ( · , z)

are nonzero, we conclude that µ= 1.
Next, we use Equation (5-27). Since I(a, z0)b ∈ M0((z0)), we have

Y1(I(a, z0)b, z2)v = Y2(I(a, z0)b, z2)v

by our assumption. Then it follows from (5-27) for i = 1, 2 that

(λγ − 1)z−1
2 δ

( z1 − z0

z2

)
Y1(I(a, z0)b, z2)v = 0.

Since I( · , z) 6=0 and M is a simple (M0, Y1)-module, a similar argument as above
gives that λγ = 1.
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For a ∈ M0, b ∈ W 0, v ∈ M , and w ∈ W ,

Yi (a+b, z)(v+w)=Yi (a, z)v+Yi (a, z)w+GW
i (b, z)v+

(
FM

i (b, z)+FW
i (b, z)

)
w.

Note that Yi (a, z)v, FM
i (b, z)w ∈ M((z)) and Yi (a, z)w, GW

i (b, z)v, FW
i (b, z)w ∈

W ((z)). Define ϕ : U → U by ϕ(u)= λu if u ∈ M and ϕ(u)= u if u ∈ W . Since
µ= 1 and λγ = 1, we can verify that

Y2(a + b, z)ϕ(v+w)= ϕ
(
Y1(a + b, z)(v+w)

)
.

Thus ϕ is an isomorphism of V τ
L -modules from (U, Y1) onto (U, Y2). This com-

pletes the proof. �

Remark 5.8. The proof of the above lemma is essentially the same as that of [Lam
et al. 2005, Lemma C.3]. Consider the Jacobi identity for a, b ∈ W 0 and w ∈ W
and take the images of both sides of the identity under the projections pM and pW ,
respectively. Then

z−1
0 δ

( z1 − z2

z0

)
FM

i (a, z1)F
W
i (b, z2)w− z−1

0 δ
( z2 − z1

−z0

)
FM

i (b, z2)F
W
i (a, z1)w

= z−1
2 δ

( z1 − z0

z2

)
FM

i (J(a, z0)b, z2)w,

z−1
0 δ

( z1 − z2

z0

)(
GW

i (a, z1)F
M
i (b, z2)+ FW

i (a, z1)F
W
i (b, z2)

)
w

− z−1
0 δ

( z2 − z1

−z0

)(
GW

i (b, z2)F
M
i (a, z1)+ FW

i (b, z2)F
W
i (a, z1)

)
w

= z−1
2 δ

( z1 − z0

z2

)(
Yi (I(a, z0)b, z2)+ FW

i (J(a, z0)b, z2)
)
w.

Each of these two equations gives the identical equations in case of i = 1 and i = 2
provided that µ= 1 and λγ = 1.

Theorem 5.9. There are exactly 30 inequivalent simple V τ
L -modules. They are

represented by the 30 simple V τ
L -modules listed in Lemma 3.2.

Proof. Let U be a simple V τ
L -module. Then by Lemma 5.5, U contains a simple

M0-submodule M isomorphic to a member of M. Since U is a simple V τ
L -module,

Lemma 5.6 implies that U = M⊕W for some simple M0-submodule W isomorphic
to a member of W. In fact, the isomorphism class of W is uniquely determined by
M . By Lemma 5.7, U admits a unique V τ

L -module structure. Since M consists of
30 members, it follows that there are at most 30 inequivalent simple V τ

L -modules.
Hence the assertion holds. �

Theorem 5.10. V τ
L is a rational vertex operator algebra.
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Proof. It is sufficient to show that every N-graded weak V τ
L -module U is a sum of

simple V τ
L -modules. Since M0 is rational, U is a direct sum of simple M0-modules.

Thus by Lemma 5.2, we may assume that U =
( ⊕

γ∈0 Sγ
)
⊕

( ⊕
λ∈3 Sλ

)
, where

Sγ is isomorphic to a member of M and Sλ is isomorphic to a member of W. We
know that V τ

L · Sγ is a simple V τ
L -module by Lemma 5.6. Set N =

∑
γ∈0 V τ

L · Sγ .
Since U/N has no simple M0-submodule isomorphic to a member of M, it follows
from Lemma 5.5 that U = N and the proof is complete. �

Corollary 5.11. The Zhu algebra A(V τ
L ) of V τ

L is a 51 dimensional semisimple
associative algebra isomorphic to a direct sum of 23 copies of the one dimensional
algebra C and 7 copies of the algebra Mat2(C) of 2×2 matrices. Moreover, A(V τ

L )

is generated by [ω̃1
], [ω̃2

], [J ], [K ], and [P].

Proof. Since V τ
L is rational, A(V τ

L ) is a finite dimensional semisimple associative
algebra [Dong et al. 1998a, Theorem 8.1; Zhu 1996, Theorem 2.2.3]. We know
all the simple V τ

L -modules and the action of [ω̃1
], [ω̃2

], [J ], [K ], and [P] on their
top levels in Section 4. Hence we can determine the structure of A(V τ

L ) as in the
assertion. �

Appendix: Some fusion rules for M(0)

We give a proof of the fusion rules

W (0)× MT (τ
i )(ε)= WT (τ

i )(ε),

W (0)× WT (τ
i )(ε)= MT (τ

i )(ε)+ WT (τ
i )(ε),

i = 1, 2, ε = 0, 1, 2 of simple M(0)-modules in (3-25).
Recall that V τ

L
∼= M0

⊕ W 0, where M0
= M(0)⊗ M0

t and W 0
= W (0)⊗ W 0

t .
Set M̂T (τ

i )(ε) = MT (τ
i )(ε)⊗ M0

t and ŴT (τ
i )(ε) = WT (τ

i )(ε)⊗ W 0
t , which are

simple M0-modules. Then

V 0
L (τ )(ε)

∼= M̂T (τ )(ε)⊕ ŴT (τ )(ε),

V 0
L (τ

2)(ε)∼= M̂T (τ
2)(ε)⊕ ŴT (τ

2)(ε)

as M0-modules by (3-23) and (3-24). Denote by Y1( · , z) (resp. Y2( · , z)) the
vertex operator of the simple V τ

L -module V 0
L (τ )(ε) (resp. V 0

L (τ
2)(ε)). Let pM :

V 0
L (τ )(ε)→ M̂T (τ )(ε) and pW : V 0

L (τ )(ε)→ ŴT (τ )(ε) be projections. We also use
the same symbol pM or pW to denote a projection from V 0

L (τ
2)(ε) onto M̂T (τ

2)(ε)

or onto ŴT (τ
2)(ε). We fix i = 1, 2 and ε = 0, 1, 2. For simplicity of notation, set

M̂ = M̂T (τ
i )(ε) and Ŵ = ŴT (τ

i )(ε).
Let FM

i (a, z)w= pM Yi (a, z)w and FW
i (a, z)w= pW Yi (a, z)w for a ∈ W 0 and

w∈ Ŵ . Then FM
i ( · , z) and FW

i ( · , z) are intertwining operators of type
( M̂

W 0 Ŵ

)
and
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W 0 Ŵ

)
, respectively. Likewise, let GW

i (a, z)v = Yi (a, z)v for a ∈ W 0 and v ∈ M̂ .

Then GW
i ( · , z) is an intertwining operator of type

( Ŵ
W 0 M̂

)
, since the fusion rule

W 0
t × M0

t = W 0
t of M0

t -modules implies that W 0
· M̂ = span{an M̂ | a ∈ W 0, n ∈ Z}

is contained in Ŵ . If GW
i ( · , z) = 0, then V τ

L · M̂ = (M0
+ W 0) · M̂ ⊂ M̂ . This

is a contradiction, since V 0
L (τ )(ε) and V 0

L (τ
2)(ε) are simple V τ

L -modules. Thus
GW

i ( · , z) 6= 0. Similarly, FM
i ( · , z) 6= 0. Indeed, if FM

i ( · , z)= 0, then V τ
L ·Ŵ ⊂ Ŵ ,

which is a contradiction. Assume that FW
i ( · , z) = 0. Then W 0

· Ŵ ⊂ M̂ and so
W 0

·(W 0
· Ŵ )⊂ Ŵ . However, W 0

·(W 0
· Ŵ )⊃ (W 0

·W 0) · Ŵ = V τ
L · Ŵ by Lemma

2.6 and (5-18). This contradiction implies that FW
i ( · , z) 6= 0.

Restricting the three nonzero intertwining operators FM
i ( · , z), FW

i ( · , z), and
GW

i ( · , z) to the first component of each of the tensor products W 0
= W (0)⊗ W 0

t ,
M̂ = MT (τ

i )(ε)⊗ M0
t , and Ŵ = WT (τ

i )(ε)⊗W 0
t , we obtain nonzero intertwining

operators of type(
MT (τ

i )(ε)

W (0) WT (τ i )(ε)

)
,

(
WT (τ

i )(ε)

W (0) WT (τ i )(ε)

) (
WT (τ

i )(ε)

W (0) MT (τ i )(ε)

)
for M(0)-modules, respectively.

Let N 2 be one of MT (τ
i )(ε), WT (τ

i )(ε), i = 1, 2, ε= 0, 1, 2 and let N 3 be any
of the 20 simple M(0)-modules. Then the top level N j

(0) of N j is of dimension
one. By [Dong et al. 2004], the Zhu algebra A(M(0)) of M(0) is generated by [ω̃1

]

and [J ]. Moreover, we know the action of o(ω̃1) and o(J ) on N j
(0). Thus, by an

argument as in [Tanabe 2005, pp. 192–193], we can calculate that the dimension of

HomA(M(0))(A(W (0))⊗A(M(0)) N 2
(0), N 3

(0))

is at most one and it is equal to one if and only if the pair (N 2, N 3) is one of

(MT (τ
i )(ε),WT (τ

i )(ε)), (WT (τ
i )(ε),MT (τ

i )(ε)), (WT (τ
i )(ε),WT (τ

i )(ε))

for i = 1, 2, ε = 0, 1, 2. Note that W (0) was denoted by W 0(0)
k in [Tanabe 2005].

Now, the desired fusion rules are obtained by [Li 1999a, Proposition 2.10 and
Corollary 2.13].
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