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NONEXISTENCE RESULTS AND CONVEX HULL PROPERTY
FOR MAXIMAL SURFACES IN MINKOWSKI THREE-SPACE

ROSA MARIA BARREIRO CHAVES AND LEONOR FERRER

We study properly immersed maximal surfaces with nonempty boundary
and singularities in three-dimensional Minkowski space. We use the max-
imum principle and scaling arguments to obtain nonexistence results for
these surfaces when the boundary is planar. We also give sufficient condi-
tions for such surfaces to satisfy the convex hull property.

1. Introduction

In recent years, maximal hypersurfaces in a Lorentzian manifold — that is, space-
like submanifolds of codimension one with zero mean curvature — have been the
object of considerable interest. Such hypersurfaces, and in general those having
constant mean curvature, have a special significance in classical relativity [Marsden
and Tipler 1980].

When the ambient space is the flat Minkowski space Ln+1, Calabi [1970] (for
n≤ 3) and Cheng and Yau [1976] (for arbitrary dimension) proved that a complete
maximal hypersurface is necessarily a spacelike hyperplane. This result remains
valid if we replace the completeness hypothesis by properness; see [Fernández and
López 2004b]. Therefore, it does not make sense to consider global problems on
regular maximal hypersurfaces in Ln+1. Interesting problems are then those that
deal with hypersurfaces with nonempty boundary or having certain type of singu-
larities. In this line, Bartnik and Simon [1982/83] obtained results on the existence
and regularity of spacelike solutions to the boundary value problem for the mean
curvature operator in Ln+1, and Kobayashi [1984] investigated surfaces with cone-
like singularities. Estudillo and Romero [1992] defined a class of maximal surfaces
with singularities of other types and studied criteria for such a surface to be a plane.
On the other hand, Klyachin and Mikyukov [1993] have tackled the problem of ex-
istence of solutions to the maximal hypersurface equation in Ln+1 with prescribed
boundary conditions and a finite number of singularities. Fernández, López and
Souam [Fernández et al. 2005] proved that a complete embedded maximal surface

MSC2000: primary 53C50; secondary 53C42, 53C80.
Keywords: maximal surfaces.
Research partially supported by MCYT-FEDER grant number MTM2004-00160.
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2 ROSA MARIA BARREIRO CHAVES AND LEONOR FERRER

with a finite set of singularities is an entire graph over any spacelike plane and that
this family of maximal graphs has a structure of moduli space. We also mention
the work of Umehara and Yamada [2006] where topological obstructions to the
existence of this type of surfaces are given.

Maximal surfaces in L3 and minimal surfaces in Euclidean space are closely
related. Both are solutions of variational problems, namely they are local maxima
(minima) for the area functional. Both admit a Weierstrass representation (see
[Kobayashi 1983] for maximal surfaces). The maximal surface equation and the
minimal surface equation are both quasilinear elliptic equations and therefore enjoy
a maximum principle. But contrary to the minimal case, solutions to the maximal
surface equation can have isolated singularities, that is to say, points where the
solution is not differentiable. Such points correspond to possible degeneracy of
the ellipticity of the maximal surface equation. Geometrically at these singular
points the Gauss curvature blows up, the Gauss map has no well-defined limit and
the surface is asymptotic to the light cone.

In the minimal case, the maximum principle has been used by Schoen [1983],
Hoffman and Meeks [1990], Meeks and Rosenberg [1993], López and Martı́n
[2001], and others to derive remarkable results. In this paper we apply the maxi-
mum principle and scaling arguments to properly immersed maximal surfaces with
nonempty boundary and isolated singularities in L3. We get two types of results:
nonexistence results for properly immersed maximal surfaces with singularities
and planar boundary contained in a timelike or lightlike plane, and results general-
izing the convex hull property for such surfaces. Recall that a surface satisfies the
convex hull property if it lies in the convex hull of its boundary. Although compact
maximal surfaces in L3 satisfy this property, since they have nonpositive euclidean
Gauss curvature (see [Osserman 1971/72]), this is not true if compactness is not
assumed. We give sufficient conditions for a properly immersed maximal surface
(not necessarily compact and with singularities) to satisfy the convex hull property.

Organization of paper. Section 2 contains the necessary notations and definitions,
a description of the behavior of maximal surfaces around an isolated singularity,
and a discussion of the maximal surfaces we use as barriers: Lorentzian catenoids,
maximal surfaces of Riemann and Scherk type, and spacelike planes. We finish
the section giving a first generalization of the convex hull property to compact
maximal surfaces with singularities.

In Section 3 we obtain nonexistence results for properly immersed maximal
surfaces with singularities and boundary contained in a timelike plane. Letting

C+ = {(x1, x2, x3) ∈ R3
| x2

1 + x2
2 − x2

3 ≤ 0, x3 ≥ 0}

be the positive solid half-cone, we show:
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Theorem A. There exists no connected properly immersed maximal surface M
such that M ⊂ {(x1, x2, x3) ∈ R3

| x2 ≥ 0, −ax2 + x3 ≥ 0} and ∂M ⊂ C+ ∩

{(x1, x2, x3) ∈ R3
| x2 = 0}, for a ∈ ]−1, 1[.

This theorem holds even if we allow certain singularities (see Theorem 3.5).
Section 4 is devoted to the study of properly immersed maximal surfaces whose

boundary is contained in a spacelike plane. Consider any region V of the form

V = {(x1, x2, x3) ∈ R3
| x3 ≥ 0, −ax2+ x3 ≤ 0, x1+ bx2+ c ≥ 0},

with a ∈ ]0, 1[ and b, c ∈ ]−∞,∞[.

Theorem B. Let M be a connected properly immersed maximal surface contained
in V and such that ∂M lies in a spacelike plane. Then M is a planar region.

This result, too, holds even if we allow certain singularities (see Theorem 4.2
and Corollary 4.3). In the proof we construct a barrier surface ad hoc using the
aforementioned Bartnik and Simon existence result. Theorem B is still valid if we
replace V by C+ (see Proposition 4.4).

Finally, in Section 5 we exploit the results of the preceding sections to give
nonexistence results for properly immersed maximal surfaces with the boundary
on a lightlike plane. We also prove:

Theorem C. Any connected properly immersed maximal surface with singularities
contained either in V or C+ lies in the convex hull of its boundary and some of its
singularities.

Propositions 5.3 and 5.4 provide a precise formulation of this result.

2. Preliminaries

We denote by L3 the three dimensional Lorentz–Minkowski space (R3, 〈 , 〉), where
the inner product corresponds to the form dx2

1 + dx2
2 − dx2

3 . A nonzero vector
v ∈ R3 is called spacelike, timelike or lightlike if 〈v, v〉 is positive, negative or
zero, respectively. The vector (0, 0, 0) is considered spacelike. We say that a
plane in L3 is spacelike, timelike or lightlike if the induced metric is Riemannian,
nondegenerate and indefinite or degenerate, respectively. We also say that an affine
plane in L3 is spacelike, timelike or lightlike if it is parallel to a spacelike, timelike
or lightlike vector plane.

The light cone at y = (y1, y2, y3) ∈ L3 is defined as

C(y)= {x ∈ L3
| 〈x − y, x − y〉 = 0}.

We also set C+(y) = C(y)∩ {x3 ≥ y3} and C−(y) = C(y)∩ {x3 ≤ y3}. Observe
that lightlike vectors in L3 lie in the light cone C((0, 0, 0)).
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Further, set H2
= H2

+
∪H2
−

, where H2
+
= {x ∈ L3

| 〈x, x〉 = −1} ∩ {x3 ≥ 0} and
H2
−
= {x ∈ L3

| 〈x, x〉 = −1} ∩ {x3 ≤ 0}.
Consider the stereographic projection σ :C − {|z| = 1}→H2 for H2, given by

(2-1) σ(z)=
(

2 Im z
|z|2− 1

,
2 Re z
|z|2− 1

,
|z|2+ 1
|z|2− 1

)
,

where C= C∪ {∞} and σ(∞)= (0, 0, 1).
An immersion X : M → L3 is spacelike if the tangent plane at any point is

spacelike. In this case M must be orientable, that is to say, the Gauss map N is
globally well defined and N (M) lies in one of the components of H2.

A maximal immersion is a spacelike immersion X : M → L3 whose mean cur-
vature vanishes. In this case X (M) is said to be a maximal surface in L3. Using
isothermal parameters compatible with a fixed orientation N :M→H2, M acquires
a natural conformal structure, and the map g=σ−1

◦N is meromorphic. Moreover,
there exists a holomorphic 1-form 83 on M such that the 1-forms

(2-2) 81 =
i
2

(1
g
− g

)
83,82 =−

1
2

(1
g
+ g

)
83

are holomorphic, and together with83, have no real periods on M and no common
zeros. Up to a translation, the immersion is given by

(2-3) X = Re
∫
(81,82,83).

The induced Riemannian metric ds2 on M is given by ds2
= λ(du2

+dv2), where
z = u+ iv is a conformal parameter and

λ= 1
2

(
|81|

2
+ |82|

2
− |83|

2)
=

(
|83|

2

(
1
|g|
− |g|

))2

.

Since M is spacelike, we have |g| 6= 1 on M and we can assume |g|< 1.
Conversely, let M , g and 83 be a Riemann surface, a meromorphic map on M

and a holomorphic 1-form on M . If |g(p)| 6=1 for all p∈M , and if the 1-forms81,
82, 83 defined as above are holomorphic, have no real periods and no common
zeros, then the conformal immersion X defined in (2-3) is maximal and its Gauss
map is σ ◦ g. We call (M, g,83) the Weierstrass representation of X . For more
details see [Kobayashi 1983].

A maximal surface in L3 can be represented locally as a graph x3 = u(x1, x2) of
a smooth function u such that u2

x1
+ u2

x2
< 1 and

(2-4) (1− u2
x1
)ux2x2 + 2ux1ux2ux1x2 + (1− u2

x2
)ux1x1 = 0.

The maximum principle for elliptic quasilinear equations then gives rise to:
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Maximum principle for maximal surfaces. Let S1 and S2 be two maximal sur-
faces in L3 which intersect tangentially at a point p ∈ S1∩ S2. Suppose that ui , for
i = 1, 2 denotes the function defining Si around p and that u1 ≥ u2 (we say S1 is
above S2 or S2 is below S1). Then S1 = S2 locally around p.

Maximal surfaces with singularities. If in a maximal immersion X : M → L3

we allow points q ∈ M where the induced metric is not Riemannian we say that
X (respectively, X (M)) has singularities and q (respectively, X (q)) is called a
singular point. The different kinds of isolated singularities of maximal surfaces
and the behavior of maximal surfaces around these points are well known; see
[Kobayashi 1984; Ecker 1986; Miklyukov 1992; Fernández et al. 2005]. We recall
the necessary material.

Let D be an open disc and X : D→ L3 a maximal immersion with a singular
point in q ∈ D. There are two possibilities: either N extends continuously to q (q
is a spacelike singular point) or not (q is a lightlike singular point).

In the second case D − {q} with the induced metric is conformally equivalent
to {z ∈ C, 0 < r < |z| < 1} and X extends to a conformal map X : Ar → L3 with
X (S1) = X (q) = p, where Ar = {z ∈ C, r < |z| ≤ 1} and S1

= {z ∈ C, |z| = 1}.
Denote by J (z) = 1/z the inversion about S1. Then Schwarz reflection allows us
to assert that X extends analytically to Br = {z ∈ C, r < |z| < 1/r} and satisfies
X ◦ J = −X + 2p. Therefore if (g,83) are the Weierstrass data of the extended
immersion we have J ∗(8k) = −8k for k = 1, 2, 3, where J ∗(8k) denotes the
pullback of 8k under J : if 8k = fk dz then J ∗(8k) = −z−2( fk ◦ J ) dz. Thus
g◦ J = 1/g and consequently |g| = 1 on S1. Let5 be a spacelike plane containing
p = X (S1) and label π : L3

→ 5 as the Lorentzian orthogonal projection. If n
(always even) is the number of zeros of 83 on S1 and m denotes the degree of the
map g : S1

→ S1, we have:

Lemma 2.1 [Fernández et al. 2005]. There exists a small closed disc U in 5
centered at p such that (π ◦ X)−1(p)∩ V = S1 and (π ◦ X) : V −S1

→ U − {p}
is a covering of m + 1

2 n sheets, where V is the annular connected component of
(π ◦ X)−1(U ) containing S1.

As a consequence, X is an embedding around q if and only if m = 1 and n = 0.
In this case the point p= X (S1) is said to be a conelike singularity of the maximal
surface X (D). Moreover, for r0 close enough to 1, X (Ar0) is the graph of a function
u over5. Locally, conelike singularities are points where the function defining the
graph is not differentiable and correspond to possible degeneracy of the equation
(2-4). Moreover, the graph of u is either above 5 and asymptotic to C+(p) or
below5 and asymptotic to C−(p), and the point p is called a downward or upward
pointing conelike singularity, respectively.
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(b)

(a)

(d)

(c)

Figure 1. Different types of isolated singularities. (a) A down-
ward pointing conelike singularity (m= 1, n= 0). (b) a downward
pointing lightlike singularity with m = 2, n = 0. (c) a lightlike
singularity with m = 1, n = 2. (d) a spacelike singularity with
n = 2.

Lemma 2.2. Let D be an open disc and X : D→ L3 a maximal immersion with a
lightlike singular point in q ∈ D. Set p = X (q). The neighborhoods U and V of
Lemma 2.1 can be chosen so that:

(i) If p is a lightlike singularity with n = 0, then X (V ) is either over 5 and
asymptotic to C+(p) or below 5 and asymptotic to C−(p) (see Figure 1a,b).

(ii) If , on the contrary, p is a lightlike singularity with n > 0, there exist points of
X (V ) in both sides of the plane5. In particular there exist a pair of curves α,
β in V starting at q such that X (α)−{p} is over 5 and asymptotic to C+(p)
and X (β)−{p} is below 5 and asymptotic to C−(p) (see Figure 1c).

Proof. Up to a Lorentzian isometry we can assume5= {x3= 0} and p= (0, 0, 0).
Let X : Ar→R3 be a conformal reparametrization of the maximal immersion with
X (S1)= p and consider U , V as in Lemma 2.1. A thoughtful reading of the proof
of Lemma 2.1 in [Fernández et al. 2005] will convince the reader that the same
arguments prove (i).
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For the proof of (ii) we use again the ideas of the same lemma. The Weierstrass
data can be written in a neighborhood of S1 as

(2-5) g(z)= zm, 83(z)= i

∏n
j=1(z− a j )

zn/2+1 f (z) dz,

where a1, . . . , an are the zeros of 83 on S1 (with multiplicity) and f is a nonva-
nishing holomorphic function. Recall that the multiplicity of the zero of 83 at ai

coincides with the number of nodal curves of the harmonic function x3 meeting
at ai minus one. By the maximum principle there are no domains bounded by
nodal curves and x3 changes sign when crossing a nodal curve. Since n ≥ 2 there
are points of X (V ) in both sides of 5 and there exist at least a pair of domains
0,0′ ⊂ V bounded by a pair of nodal curves of x3, a piece of ∂V −S1 and a point
or a piece of S1, such that x3(X (0)) > 0 and x3(X (0′)) < 0.

To conclude we prove that the image of all the curves ρθ (s) = seiθ , for θ ∈
K = [0, 2π ]−{arg(a1), . . . , arg(an)}, is asymptotic to the cone C(p). Taking into
account (2-5) we can write

X (ρθ (s))= Re
∫ s

1

i
∏n

j=1(te
iθ
− a j )

tn/2+1(eiθ )n/2
f (teiθ )

×

(
i
2
(
e−imθ

tm − tmeimθ ),−
1
2
(
e−imθ

tm + tmeimθ ), 1
)

dt.

Since J ∗(83)=−83, we deduce that

Im

(
i
∏n

j=1(e
iθ
− a j )

(eiθ )
n
2

f (eiθ )

)
= 0.

Using this it is straightforward to see that

lim
s→1

∥∥∥∥ X (ρθ (s))
x3(X (ρθ (s)))

−
(
sin(mθ),− cos(mθ), 1

)∥∥∥∥
1
= 0,

where ‖ · ‖1 is the C1 norm in C1(K ,R3). Therefore, we can consider a pair of
curves α ∈ 0 and β ∈ 0′ satisfying the requirements of statement (ii). �

Definition 2.3. A point p as in Lemma 2.2(i) is called a downward or upward
pointing lightlike singularity, as the case may be. We also call it a general conelike
singularity.

If D is an open disc and X : D→ L3 is a maximal immersion with a spacelike
singular point in q ∈ D, the local behavior at the singularity is similar to the case
of minimal surfaces in R3 (see [Dierkes et al. 1992; Estudillo and Romero 1992;
Fernández et al. 2005]): X is not a topological embedding, D−{q}with the induced
metric is conformally equivalent to {z∈C |0< |z|<1}, the Weierstrass data (g,83)
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extend analytically to q , |g(q)| < 1 and 8 = (81,82,83) has a zero at q. Up to
a Lorentzian isometry we can assume that the tangent plane of X (D) at p= X (q)
is 5 = {x3 = 0} and p = (0, 0, 0). The Weierstrass data of the immersion can be
written as

g(z)= zm f (z), 83(z)= zm+n dz,

where m > 0, n is the order of the zero of 8 at q and f is a holomorphic function
with f (0) 6= 0. Up to a rotation around the axis x3, we can assume Im( f (0))= 0.
From here it is easy to derive that the asymptotic behavior of the immersion around
the singularity is in polar coordinates

X (seiθ )=

(
−sn+1

2 f (0)(n+1)
sin((n+1)θ)+ O(sn+2),

−sn+1

2 f (0)(n+1)
cos((n+1)θ)+ O(sn+2),

sm+n+1

m+ n+1
cos((m+n+1)θ)

)
,

where by O(sn+2) we denote a function such that s−n−2O(sn+2) is bounded as
s→ 0. Therefore, it is clear that X has a branch point at q of order n in the sense
of [Gulliver et al. 1973].

Lemma 2.4 [Gulliver et al. 1973, Lemma 2.12]. Let X : D → L3 be a maximal
immersion with a spacelike singular point at q ∈ D. Set p = X (q) and let be S
an embedded surface in L3 with p ∈ S. Suppose that for a neighborhood V of q,
X (V ) lies on one side of S. Then the tangent plane to S at p coincides with the
tangent plane to X (D) at p.

Remark 2.5. In the case of spacelike singularities, we always assume that the
immersion X : D→ L3 is not a branched covering of an embedded surface; that is
to say, q is not a false branch point. See [Gulliver et al. 1973].

Finally, we mention a property of maximal surfaces with singularities (see for
example [Fernández and López 2004a]).

Lemma 2.6. Let X : M→ L3 be a maximal immersion with isolated singularities.
Then for all q ∈ M there exists a neighborhood V , such that X (V )− {X (q)} is
contained in the exterior of C(X (q)).

Remark 2.7. Let S be an embedded surface and p ∈ S. If the tangent plane of S
at p is spacelike then S can be written in a neighborhood of p as the graph of a
function h on a domain� of the plane {x3=0}. Let M be another surface (possibly
with singularities) and denote by π the orthogonal projection on {x3 = 0}. In this
context, we say that M lies above S in a neighborhood of p if x3(p′) ≥ h(x1, x2)

for all (x1, x2)∈� and p′ ∈M∩π−1(x1, x2). Naturally, M lies below S if x3(p′)≤
h(x1, x2) instead.
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Maximal surfaces with boundary. Let S′ be a maximal surface, possibly with
isolated singularities. Consider S ⊂ S′ such that the topological boundary of S
in S′ is nonempty and piecewise C1. Then S is called a maximal surface with
boundary; the topological boundary of S in S′ is called the boundary of S, written
∂S. The interior of S is Int S = S− ∂S. Our definition allows singularities on the
boundary of S.

Since the components of a maximal immersion are harmonic functions, the in-
tersection of such an S with any plane 5 having ∂S entirely to one side is a union
of piecewise analytic curves, and each connected component of S−(S∩5) is itself
a maximal surface with boundary.

We say that S is a properly immersed maximal surface with boundary if, in the
preceding situation, S′ is a maximal surface properly immersed in L3.

Theorem [Fernández and López 2004b]. Let M be a properly immersed maximal
surface with boundary such that, except for a compact set, it is contained in the
region {x ∈ L3

| 〈x, x〉 ≥ ε}, for ε > 0. Then M is relative parabolic, it is to say,
bounded harmonic functions on M are determined uniquely by their values at the
boundary and the interior isolated singularities.

(Note that in [Fernández and López 2004b] the definition of a maximal surface
with boundary is more general than in this paper.)

Corollary 2.8. Let M be a connected properly immersed maximal surface with
boundary such that M ⊂ {(x1, x2, x3) ∈R3

| 0≤ x3 ≤ k} and the boundary and the
singularities are contained in {(x1, x2, x3) ∈ R3

| x3 = k}, for k > 0. Then M is a
planar region.

Barrier surfaces. For any v ∈ R3
−{(0, 0, 0)} and y ∈ R3, define

H(y, v)= {x ∈ R3
| 〈v, x − y〉e = 0},

H+(y, v)= {x ∈ R3
| 〈v, x − y〉e ≥ 0},

H−(y, v)= {x ∈ R3
| 〈v, x − y〉e ≤ 0},

where 〈 , 〉e is the Euclidean metric on R3. Next, for θ ∈ [−π4 ,
π
4 ] and t ∈ R, set

5θ t = H
(
(0, 0, t), (0,−tan θ, 1)

)
,

5+θ t = H+
(
(0, 0, t), (0,−tan θ, 1)

)
,

5−θ t = H−
(
(0, 0, t), (0,−tan θ, 1)

)
.

In the case of t = 0 we write simply 5θ instead of 5θ0, and so on.
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We also consider, for α ∈ ]−π4 ,
π
4 [,

6α = H
(
(0, 0, 0), (0, 1,−tanα)

)
,

6+α = H+
(
(0, 0, 0), (0, 1,−tanα)

)
,

6−α = H−
(
(0, 0, 0), (0, 1,−tanα)

)
.

Observe that5π/4,t and5−π/4,t are lightlike planes, while the5θ t are spacelike
planes for θ ∈ ]−π4 ,

π
4 [. Also, for any θ ∈ ]−π4 ,

π
4 [, there is an orthochronous

hyperbolic rotation fs of L3 of the form

fs

 x1

x2

x3

=
 1 0 0

0 cosh s sinh s
0 sinh s cosh s

 x1

x2

x3

 ,
which preserves (individually) the light half-cones C+((0, 0, 0)) and C−((0, 0, 0))
and satisfies fs(5θ )=50. Analogously, for θ ∈]−π4 ,

π
4 [, there is an orthochronous

isometry f̃s of L3 composed of an orthochronous hyperbolic rotation fs and a ver-
tical translation, and such that f̃s(5

+

θ t)=5
+

0 and f̃s(5
−

θ t)=5
−

0 , so also f̃s(5θ t)=

50. As for the 6α, they are timelike planes and there is an orthochronous hyper-
bolic rotation fs of L3 that preserves the light half-cones and satisfies fs(6α)=60.
For more details about these isometries of L3, see [Fernández and López 2004a].

Now we present the maximal surfaces that we use as barriers.

Lorentzian catenoids. The (vertical) Lorentzian catenoid Ca is the maximal sur-
face given on D− {0} = {z ∈ C | 0 < |z| ≤ 1} by the Weierstrass data g = z and
83 = a dz/z (see figure for the case a = 1). We can express Ca as the graph of the
radially symmetric function

u(r)=−
∫ r

0

a
√

t2+ a2
dt, r > 0.

Let C = {Ca, a ∈ ]0,∞[} be the family of such catenoids. Lorentzian catenoids
have been used as barriers for applications of the maximum principle in [Bartnik
and Simon 1982/83] and [Ecker 1986].
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Maximal surfaces of Riemann type. R. López, F. J. López and R. Souam studied
in [López et al. 2000] the set of maximal surfaces in L3 that are foliated by pieces
of circles. From among them, we take the one-parameter family of Riemann-
type maximal surfaces. This is a family of singly periodic maximal surfaces that
plays the same role that Riemann’s minimal examples play in Euclidean space, and
whose fundamental piece is a graph over a spacelike plane, having one planar end
and two conelike singularities:

We recall the Weierstrass representation of one-half of a fundamental piece of
such surfaces. For r ∈ ]1,∞[, consider the four-punctured torus

N= {(z, w) ∈ C∗×C | w2
= z(z2

+ 2r z+ 1)}

and define in the z-plane

s0 = {z ∈ C | |z| = 1}, s1 = [r1, 0[× {0}, s2 = ]−∞, r2]× {0},

where r1 =−r+
√

r2− 1 and r2 =−r−
√

r2− 1. Observe that r2 <−1< r1 < 0.
Define N ⊂ N as the connected component of z−1

(
C−

⋃2
i=0 si

)
containing the

point ( 1
2 ,

√
5
8 +

1
2r
)
.

Finally set M = N , the closure of N in N.
For brevity, when z(z2

+ 2r z+ 1) ∈ R+, we set

z+ = (z,+
√

z(z2+ 2r z+ 1)), z− = (z,−
√

z(z2+ 2r z+ 1)).

On M we consider the Weierstrass data g = z and 83 = dz/w and the 1-forms
8 j , j = 1, 2 given by (2-2). The lift γ of s0 to M generates H1(M,Z). It is not
difficult to see that 81 is exact and that 82, 83 have no real periods on γ , so we
can consider the maximal immersion X = (X1, X2, X3)= Re

∫ z
z0
(81,82,83).

Denote by γ1 the lift to M of s1. It is not hard to prove that X (γ1) is a line
parallel to {x2 = x3 = 0}. The set of singularities of the immersion is the trace of
γ , and the image of these points under the immersion X is a single point, which we
label Pr . We can choose z0 so that X (γ1)= {x2 = x3 = 0} and Pr

= (0, Pr
2 , Pr

3 ).
Let 2(r) ∈ [−π, π[ be the angle between (0, 1, 0) and the vector Pr , given by

cos2(r)=
Pr

2√
(Pr

2 )
2+ (Pr

3 )
2
, sin2(r)=

Pr
3√

(Pr
2 )

2+ (Pr
3 )

2
.
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To use the surfaces of this family as barriers, we study the function 2(r). We have
2(r)= arctan (h(r)/d(r)), where

h(r)= X3(−1−)− X3(r1)= X3(1+)− X3(0), d(r)= X2(−1−)− X2(r1).

Hence

h(r)= Re
∫
−1−

r1

83 =

∫ r1

−1

dt√
t (t2+ 2r t + 1)

,

h(r)= Re
∫ 1+

0
83 =

∫ 1

0

dt√
t (t2+ 2r t + 1)

,(2-6)

d(r)= Re
∫
−1−

r1

82 =−
1
2

∫ r1

−1

(1+ t2) dt

t
√

t (t2+ 2r t + 1)
.

Since h and d are positive functions, 2(r) lies in ]0, π2 [. Moreover,

(2-7) d(r)= rh(r)+ I (r),

where

(2-8) I (r)=
1
2

∫ r1

−1

√
t (t2+ 2r t + 1) dt

t2 .

From (2-7) and (2-8) we see that limr→12(r)= π
4 and limr→+∞2(r)= 0. From

(2-6) we observe that

(2-9) h′(r)=
∫ 1

0

−t2dt
(t (t2+ 2r t + 1))3/2

.

On the other hand, from (2-7) and (2-8) the derivative of d respect to r is

(2-10) d ′(r)= rh′(r)+ 3
2 h(r).

According to (2-7) and (2-10) we have

2′(r)=
h′(r) d(r)− h(r) d ′(r)

h(r)2+ d(r)2
=

I (r)h′(r)− 3
2 h(r)2

h(r)2+ d(r)2
.

Taking into account (2-8) and (2-9) we get2′(r)< 0, so2 is a one-to-one function
2 : ]1,∞[→ ]0, π4 [.

For δ ∈ ]0, π4 [ we shall denote by Rδ the maximal surface with boundary defined
in L3 by the above immersion for r =2−1(δ) (see figure at the top of next page).
We also set

R= {Rδ | δ ∈ ]0, π4 [}.

Finally, we need to prove that Rδ⊂5−δ ∩{x3≥0}. It is not difficult to see that the
point {0} is a planar end of the surface asymptotic to the plane {x3= 0}. Therefore,
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Rδ for δ = 0.595881.

X3 is bounded on M . From Corollary 2.8 we deduce that Rδ⊂{x3≥ 0}. Moreover,
from the above facts there exists t > 0 such that Rδ ⊂5−δt . The maximum principle
allows us to assert that Rδ ⊂5−δ .

Maximal surfaces of Scherk type. This family of singly periodic maximal surfaces
of Scherk type was studied in depth in [Fernández and López 2004a], although an
example had already appeared in [Kobayashi 1984]. For b ∈ ]0, 1[, consider the
maximal surface given on D−{b,−b} by the Weierstrass data g(z)= i z and

83(z)=
z dz

(z2− b2)(b2z2− 1)
.

The surface is a graph over a spacelike plane, it is invariant under translation by(
0, π/(2b(b2

+1)), 0
)
, and each fundamental piece of it has a conelike singularity.

Up to translation we can assume that one of these singularities is at (0, 0, 0), and
then all the conelike singularities lie on the line {x1 = x3 = 0}. The ends are
asymptotic to the totally geodesic horizontal half-cylinder ∂Wδ, where

Wδ = {(x1, x2, x3) ∈ R3
| −tan δ x1+ x3 ≥ 0, tan δ x1+ x3 ≥ 0},

for δ = arctan
(
2b/(1+ b2)

)
∈ ]0, π4 [; for this reason we denote this Scherk-type

surface by Sδ. By Corollary 2.8, Sδ lies entirely in Wδ.

The convex hull property. We now prove that a compact maximal surface, even
one with isolated singularities, satisfies the convex hull property, that is, it lies in the
convex hull of its boundary plus singularities. We will need the following version
of the maximum principle for maximal surfaces with singularities. We would like
to point out that the proof is inspired in the work [Gulliver et al. 1973].

Proposition 2.9. Let X :D→L3 be a maximal immersion with an isolated singular
point in q ∈ D. Set p = X (q) and let S be an embedded maximal surface (without
singularities) in L3 with p ∈ S.
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(i) If X (D) is above S, then p is a downward pointing lightlike singularity.

(ii) If X (D) is below S, then p is an upward pointing lightlike singularity.

Proof. We prove (i); the proof of part (ii) is similar. Suppose first that p is a lightlike
singularity but not downward pointing. Denote by 5 the tangent plane to S at p
that is a spacelike plane. From Lemma 2.2 we obtain a curve in X (D) asymptotic
to C−(p). Since S is asymptotic to5 in a neighborhood of p we deduce that there
are points of X (D) below S and this contradicts our assumptions.

Now assume p is a spacelike singularity. By Lemma 2.4, the tangent plane to
X (D) at p coincides with the tangent plane to S at p. Denote this plane by 5
and by π the Lorentzian orthogonal projection on 5. Up to a Lorentzian isometry
we can suppose that p = (0, 0, 0) and 5 =50. Consider a disk 1 in 5 centered
at (0, 0) such that S is the graph of a function h on 1 and 1 ⊂ π(X (D)). Set
M = X (V ), where V is the connected component of (π ◦ X)−1(1) containing q.
If ∂(M)∩h(1) 6=∅, we have an interior regular point in X (D)∩S. By applying the
maximum principle we obtain M = h(1) and then h(1) must contain a spacelike
singularity. Taking into account Remark 2.5 we get a contradiction.

Suppose then that ∂M lies strictly above h(1). Then there exists θ ∈ ]−π4 , 0[
sufficiently small and f an hyperbolic rotation in L3 such that f (5) = 5θ and
f (∂M) remains strictly above h(1). Note that the tangent plane to the maximal
surface f (M) at (0, 0, 0) is5θ and thus we can assert that there are points of f (M)
below h(1). Translating in the positive x3-direction, we find a last contact point
with h(1)which must be an interior regular point. As in the previous case, by using
the maximum principle we obtain that h(1) coincides with the translate of f (M)
by some vector (0, 0, t0), for t0 > 0. From Lemma 2.6 we see that π−1(0, 0, 0)
intersects this translate at (0, 0, t0). But this implies (0, 0, t0) = (0, 0, 0), again a
contradiction. �

Proposition 2.10. Let M be a compact maximal surface with isolated singularities.
Then M lies in the convex hull of ∂M and its general conelike singularities.

Proof. Let A be the set of general conelike singularities. If M is contained in a
plane the result is obvious. Assume M is not flat and consider v ∈ S2 and y ∈ R3

such that (∂(M)∪ A)⊂ H+(y, v). We prove that M ⊂ H+(y, v).
We proceed by contradiction. Suppose that M ∩

(
H−(y, v)− H(y, v)

)
6= ∅.

Let M ′ be a connected component of M ∩ H−(y, v); then M ′ does not contain
general conelike singularities.

First, assume v is a timelike vector, that is, H(y, v) is a spacelike plane. There
exists an interior point p ∈ M ′ such that M ′ is contained in the slab determined
by the parallel planes H(p, v) and H(y, v). Therefore we can use Proposition 2.9
to infer that p is a regular point of M ′. Using the maximum principle we find
M ′ = H(p, v), a contradiction.
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Analogously, if v is either spacelike or lightlike, we can deduce the existence
of an interior point p ∈ M ′ such that M ′ is contained in the slab determined by
the parallel planes H(p, v) and H(y, v). If p were a spacelike singularity, Lemma
2.4 implies H(p, v) is the tangent plane to M ′ at p, contradicting |g(q)| < 1.
Assume p is a lightlike singularity. Up to a Lorentzian isometry we can assume
that p = (0, 0, 0) and

• H(p, v)=6θ and M ′ ⊂6−α if v is spacelike,

• H(p, v)=5π/4 and M ′ ⊂5+π/4 if v is lightlike.

By Lemma 2.6, M ′ is in the exterior of C((0, 0, 0)). Consider π , the Lorentzian
orthogonal projection onto 50. It is easy to prove that the preceding conditions
imply that π(M ′)⊂ (50−{(0, y, 0) | y ∈ R}) in a neighborhood of (0, 0, 0). This
contradicts Lemma 2.1. Therefore, since p is not a singular point we infer that
H(y, v) is the tangent plane to M ′ at p, in contradiction with the fact that M is
spacelike. �

Remark 2.11. Proposition 2.10 holds even if M cannot be extended to an open
maximal surface M ′.

3. Maximal surfaces whose boundary is contained in a timelike plane

Recall that we defined

C+ = {(x1, x2, x3) ∈ R3
| x2

1 + x2
2 − x2

3 ≤ 0, x3 ≥ 0}.

For θ ∈ ]0, π4 [ and δ, δ′ ∈ ]0, π[, we also define the convex region

V (θ, δ, δ′)=5+0 ∩5
−

θ ∩ H+
(
(0, 0, 0), (1,−cot δ, cot θ(cot δ− cot δ′))

)
.

This is the convex hull of the half-lines with origin in (0, 0, 0) and directions
(1, 0, 0), (cot δ, 1, 0) and (cot δ′, 1, tan θ) (see figure).

Let τt denote the translation along the vector (0, 0, t), where t ∈ R.
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Proposition 3.1. Let α ∈ ]−π4 ,
π
4 [ be arbitrary. Suppose M is a connected, prop-

erly immersed maximal surface contained in 5+π/4 ∩6
+
α , such that ∂M ⊂ 6α. If

there is a point p0 ∈ ∂M minimizing x3 on ∂M , there must be some downward
pointing lightlike singularity in the interior of M.

Proof. After applying an orthochronous hyperbolic rotation fs of L3, we can as-
sume α = 0.

Let M be as in the hypothesis of the proposition and define t̂ = x3(p0). For any
θ ∈ [0, π4 [, consider the set

Iθ = {t ∈ [0, t̂ ] | M ⊂5+θ t }.

Since Iθ contains 0, it is nonempty. Suppose there is no singularity in Int M as in
the conclusion; we shall prove that Iθ = [0, t̂ ], and from there we will derive a
contradiction.

We may assume t̂ > 0, the case t̂ = 0 being obvious. Clearly Iθ is closed; we
show that it is open. If t ∈ Iθ then [0, t] ⊂ Iθ . We claim that if t ∈ Iθ ∩ [0, t̂[,
there exists ε > 0 such that [t, t+ε[ ⊂ Iθ . If not, we have two possibilities: either

(a) there is an interior point p of M in the plane 5θ t , or

(b) M is asymptotic to 5θ t at infinity.

In case (a), p is not a singularity, for if it were, it would be downward pointing by
Proposition 2.9(i), contrary to assumption. But if p is not a singularity, the interior
maximum principle implies that M and 5θ t coincide, in contradiction with the
inequality x3(p0)= t̂ > t .

In case (b), we can assume M∩5θ t =∅; otherwise there exists an interior point
of M in 5θ t and we may apply the previous argument. Consider an orthochronous
isometry f of L3 such that f (5θ t)=50 and f (5+θ t)=5

+

0 . Set M̃ = f (M). Then
we have a properly immersed maximal surface M̃ ⊂ 5+0 asymptotic to 50 and
disjoint from it.

Since the immersion is proper and (0, 0, 0) 6∈ M̃ we can find ε > 0 sufficiently
small so that the ball B(ε) of radius ε around (0, 0, 0) is disjoint from M̃ . Hence,
there exists ε′ ∈ ]0, ε[ and a0 > 0 small enough such that τε′(Ca0) ⊂ B(ε)∪5−0 .
Now define

A = {a ∈ ]0, a0] | τε′(Ca)∩ M̃ =∅}.

Clearly, a0 ∈ A and we can consider the infimum a′ of A. We claim that a′ = 0.
Assume on the contrary that a′ > 0. Since τε′(Ca) and M̃ do not have a contact
at infinity, there exists an interior point p of M̃ in τε′(Ca′). Taking into account
Proposition 2.9(i) and the assumed absence of singularities, we see that p is a
regular point of M̃ . Applying the maximum principle, we obtain M̃ = τε′(Ca′), in
contradiction with ∂ M̃ ⊂60 ∩5

+

0 .
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We have shown that if the conclusion of the theorem fails, then Iθ is open
and Iθ = [0, t̂ ]. Hence M ⊂ 5+

θ t̂ for all θ ∈ [0, π4 [ and thus M ⊂ 5+
π/4,t̂ . Now

consider p0: if it is not a singular point in ∂M , the fact that p0 ∈ ∂(M)∩5π/4,t̂ and
M ⊂5+

π/4,t̂ ∩6
+

0 implies that the tangent plane p0 is lightlike of timelike, which
is a contradiction. If instead p0 is a singular point, Lemma 2.6 implies that around
p0 the surface is in the exterior of C(p0), which again contradicts M ⊂5+

π/4,t̂ . �

Corollary 3.2. There exists no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M⊂
C+ ∩6+α and ∂M ⊂6α, for any α ∈ ]−π4 ,

π
4 [.

Proof. This follows immediately from Proposition 3.1. �

Corollary 3.3. There exists no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M⊂
C+ and ∂M lies in the intersection of C+ with a timelike plane P.

Proof. Assume that there exists such a maximal surface and consider a connected
component M ′ of M−(M∩ P). Up to an elliptic rotation and a translation we can
assume the timelike plane is the plane 6α, for α ∈ ]−π4 ,

π
4 [, M ′ ⊂ C+ ∩6+α and

∂M ′ ⊂6α. An immediate application of Corollary 3.2 to M ′ leads to a contradic-
tion. �

Theorem 3.4. There exists no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M⊂
Wδ ∩6

+
α and ∂M ⊂6α ∩C+, for δ ∈ ]0, π4 [, α ∈ ]−

π
4 ,

π
4 [.

Proof. Consider the isometry fε of L3 with tanh ε = tan π
8 . It is not difficult to see

that fε(M)⊂5+π/8 ∩Wδ′ ∩6
+

α′ and ∂ fε(M)⊂6α′ ∩C+, where

tanα′ =
tanα+ tan π

8

tan π
8 tanα+ 1

,

tan δ′ =min{tan π
8 , cosh ε tan δ(tan π

8 tanα+ 1)}.

For simplicity of notation we consider M ⊂5+π/8∩Wδ∩6
+
α and ∂M ⊂6α∩C+.

We claim that (0, 0, 0) 6∈ ∂M and so ∂M ⊂ 5+0 − 50. If not, we deduce
from Lemma 2.6 that around (0, 0, 0) the maximal surface M is in the exterior
of C((0, 0, 0)), but this contradicts ∂M ⊂ C+.

Now consider the Scherk-type maximal surface Sδ/2 (page 13) asymptotic to
the boundary of the region Wδ/2. We will prove that Sδ/2 ∩ M = ∅. It is clear
that there exist t0 ∈ ]−∞, 0] and t1 ∈ ]0,∞[ such that τt0(Sδ/2) ∩ M = ∅ and
τt1(Sδ/2)∩M 6=∅. Therefore, we can define

t̂ = infimum
{
t ∈ ]t0,∞[

∣∣ τt(Sδ/2)∩M 6=∅
}
.
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Suppose t̂ ≤ 0. Observe that, since M ⊂5+π/8 ∩Wδ ∩6
+
α , ∂M ⊂ C+−{(0, 0, 0)}

and Sδ/2∩C+= {(0, 0, 0)}, then τt̂(Sδ/2) and M can have a contact point neither at
infinity nor at the boundary. Hence there exists an interior point of M in τt̂(Sδ/2).
Taking into account our assumptions on the singularities and Proposition 2.9(i)
we deduce that this point is not a singularity. Then, by applying the maximum
principle we get that M and τt̂(Sδ/2) coincide which contradicts the hypothesis on
∂M . Thus t̂ > 0 and Sδ/2 ∩M =∅.

Now consider Sλδ/2, the homothetic shrinking of Sδ/2 by λ, λ≥ 1. We shall prove
that Sλδ/2 ∩ M = ∅ for all λ ≥ 1. Suppose on the contrary that there exists λ′ ≥ 1
such that Sλ

′

δ/2 ∩M 6=∅. We set

λ̂= infimum
{
λ ∈ ]1,∞[

∣∣ Sλδ/2 ∩M 6=∅
}
.

Clearly Sλ̂δ/2 and M do not touch either at infinity or at the boundary. Therefore
there must exist an interior point of M in Sλ̂δ/2. Again using Proposition 2.9(i) and
our hypothesis on the singularities we deduce that this point is not a singularity
and so by applying the maximum principle we obtain that Sλ̂δ/2 and M coincide.
But this contradicts our assumptions on ∂M .

Thus Sλδ/2∩M =∅ for all λ≥ 1. Taking into account that Sδ/2 is asymptotic to
C+((0, 0, 0)) near the conelike singularity (0, 0, 0), we deduce that M ⊂ C+ and
the Corollary 3.2 finishes the proof. �

Theorem 3.5. There exist no connected properly immersed maximal surface M
without downward pointing lightlike singularities in the interior and such that M⊂
5+θ ∩6

+
α and ∂M ⊂6α ∩C+, for θ, α ∈ ]−π4 ,

π
4 [.

Proof. Suppose there exists such an M . We observe that if θ ≤ 0 or α < 0 we can
consider an orthochronous hyperbolic rotation fs such that fs(M)⊂5+θ ′∩6

+

α′ and
∂ fs(M)⊂6α′ ∩C+ for some θ ′ ∈ ]0, π4 [, α

′
∈ [0, π4 [. As in the previous theorem,

for the sake of simplicity of notation we assume M ⊂5+θ ∩6
+
α and ∂M ⊂6α∩C+,

for θ ∈ ]0, π4 [, α ∈ [0,
π
4 [.
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Since ∂M⊂6α∩C+ we have that there exists p0 ∈ ∂M such that x3(p0)≤ x3(p)
for all p ∈ ∂M . As in the preceding theorem it is easy to see that p0 6= (0, 0, 0)
and so λ = x3(p0) > 0. Then, reasoning as in Proposition 3.1 we can conclude
M ⊂5+θλ ∩6

+
α .

Denote by R̃δ the Riemann type maximal example that results after applying
an elliptic rotation of π

2 along the axis x3 on Rδ for any δ ∈ ]0, π4 [. We assert
that M ∩ R̃δ = ∅. Observe that we can consider t0 ≤ 0 and t1 ∈ R such that
τt0(R̃δ)∩M =∅ and τt1(R̃δ)∩M 6=∅. Now define

t̂ = infimum
{
t ∈ ]t0,∞[

∣∣τt(R̃δ)∩M 6=∅
}
.

Suppose t̂ ≤ 0. Note that τt̂(R̃δ) and M can have a contact point neither at infinity
nor at the boundary. Hence there exists an interior point of M in τt̂(R̃δ). Making
use of Proposition 2.9(i) and taking into account our assumptions on singularities,
we deduce that the point is not a singularity. Therefore, by applying the maximum
principle we get that τt̂(R̃δ) and M coincide. But this contradicts our hypothesis
on ∂M . Thus t̂ > 0 and R̃δ ∩M =∅.

Consider now R̃λδ the homothetic shrinking of R̃δ by λ, λ>0. Next we prove that
R̃λδ ∩M =∅ for all λ≥ 1. Assume that there exists λ′ > 1 such that R̃λ

′

δ ∩M 6=∅.
We define

λ̂= infimum
{
λ ∈ ]1, λ′[

∣∣R̃λδ ∩M 6=∅
}
.

Observe that R̃λ
′

δ and M do not touch either at infinity or at the boundary for all
λ≥1. Therefore there is an interior point of M in R̃λ

′

δ . Using again our assumptions
on singularities and Proposition 2.9(i) we deduce that the point is not a singularity.
Then by applying the maximum principle we obtain that R̃λ

′

δ and M coincide, which
contradicts our hypothesis on ∂M . The same argument proves that R̃λδ ∩ M = ∅
for all λ≤ 1.

Analogously, considering R̂δ the Riemann type maximal example that results
after applying a rotation of −π2 along the axis x3 on Rδ for any δ ∈ ]0, π4 [, we
obtain R̂λδ ∩M =∅ for all λ ∈ R.

Furthermore, it is not difficult to prove that

(5+θ ∩6
+

α )−

(⋃
λ∈R

R̃λδ ∪
⋃
λ∈R

R̂λδ

)
⊂ {(x1, x2, x3) ∈R3

| −tan δ x1+ x2+ x3 ≥ 0}

∩ {(x1, x2, x3) ∈ R3
| tan δx1+ x2+ x3 ≥ 0}.

Taking this into account, we can assert

M⊂ (5+θ ∩6
+

α )∩{(x1, x2, x3)∈R3
|−tan δ x1+x2+x3≥0, tan δ x1+x2+x3≥0}.

A direct computation shows that

5+θ ∩ {(x1, x2, x3) ∈ R3
| −tan δ x1+ x2+ x3 ≥ 0, tan δ x1+ x2+ x3 ≥ 0} ⊂Wδ′,
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where δ′ ∈ ]0, π4 [ is given by tan δ′ = tan δ tan θ/(1+ tan θ). Then Theorem 3.4
concludes the proof. �

To finish this section, we analyze the case of maximal surfaces whose boundary
is contained in a timelike plane but not necessarily in C+.

Proposition 3.6. There exists no connected properly immersed maximal surface
M with at least one connected component of ∂M contained in the intersection
6+α ∩6

+

−α ∩ {(x1, x2, x3) ∈ R3
| x1 = 0}, where α ∈ ]0, π4 [.

Proof. Let B a connected component of ∂M satisfying

B ⊂6+α ∩6
+

−α ∩ {(x1, x2, x3) ∈ R3
| x1 = 0},

where α ∈ ]0, π4 [. The function x2 has at least one minimum on B, and this mini-
mum cannot be a singularity. Then, the tangent vector to the boundary at this point
is vertical and therefore the tangent plane of the maximal surface at this point is
timelike, which is contrary to our assumptions. �

Corollary 3.7. There exists no connected properly immersed maximal surface M
contained in V (θ, δ, δ′) with ∂M contained in a timelike plane.

Proof. From the hypothesis it is not difficult to see that there exists an isometry
of L3 that sends the timelike plane to the plane {(x1, x2, x3) ∈ R3

| x1 = 0} and in
particular the image of ∂M lies in 6+α ∩6

+

−α∩{(x1, x2, x3)∈R3
| x1= 0} for some

α ∈ ]0, π4 [. The result is then a consequence of Proposition 3.6. �

4. Maximal surfaces whose boundary is contained in a spacelike plane

We now obtain, using the maximum principle, other results about maximal surfaces
whose boundary is contained in a spacelike plane but that cannot be inferred from
the theorem of Fernández and López quoted on page 9. We start with a result
similar to Corollary 2.8.

Proposition 4.1. Let M be a connected properly immersed maximal surface with-
out downward pointing lightlike singularities in the interior such that

M ⊂ {(x1, x2, x3) ∈ R3
| 0≤ x3 ≤ k} and ∂M ⊂ {(x1, x2, x3) ∈ R3

| x3 = k},

for k > 0. Then M is a planar region.

Proof. We proceed by contradiction. Assume that there exists t ≥ 0 such that
M ⊂ 5+0t but M 6⊂ 5+0t ′ for any t < t ′. We claim that M ∩ 50t = ∅. If not,
there exists an interior point p of M in 50t . Then, from Proposition 2.9(i) and our
assumptions on singularities, we deduce that p is a regular point. It then follows
from the maximum principle that M =50t , contradicting the hypothesis on ∂M .
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Since M is properly immersed and M ∩50t = ∅ we can find ε > 0 such that
the ball of radius ε about (0, 0, t) does not meet M . Hence, there are constants
ε′ ∈ ]0, ε[ and a0 > 0 sufficiently small such that τt+ε′(Ca0) is contained in 5−0t
and also in the ball of radius ε around (0, 0, t). Now define

A = {a ∈ ]0, a0] | τt+ε′(Ca)∩M =∅}.

Clearly, a0 ∈ A and we can consider the infimum a′ of A. We claim a′=0. Assume
on the contrary that a′> 0. Then as τt+ε′(Ca) and M do not have a contact either at
infinity or at the boundary, we infer that there is an interior point of M in τt+ε′(Ca′).
Taking into account Proposition 2.9(i) and our assumptions on the singularities we
infer that the interior point is not a singularity and then, by applying the interior
maximum principle we obtain M = τt+ε′(Ca′) which contradicts the hypothesis on
∂M .

Therefore, a′= 0 and so M ⊂5+0t+ε′ contradicting our assumption at the begin-
ning of the proof. �

Theorem 4.2. Let M be a connected properly immersed maximal surface without
upward pointing lightlike singularities in the interior such that M ⊂ V (θ, δ, δ′)
and ∂M ⊂50. Then M is a planar region.

Proof. Up a translation we can assume that

M ∩ (5θ ∪ H
(
(0, 0, 0), (1,−cot δ, cot θ(cot δ− cot δ′))

)
=∅.
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Now we observe that

τ−1(H
2
+
)∩5θ ∩ V (θ, δ, δ′)= α1,

τ−1(H
2
+
)∩ H((0, 0, 0), (1,−cot δ, cot θ(cot δ− cot δ′)))∩ V (θ, δ, δ′)= α2,

where α1 and α2 are regular curves. The union of these curves is a continuous
curve of τ−1(H

2
+
) and the tangent vectors to these curves at the point (0, 0, 0) are

contained in the plane 50 and are linearly independent.
Since τ−1(H

2
+
) is a spacelike surface, it is well-known (see Theorem 4.1 in

[Bartnik and Simon 1982/83]) that there exists S a maximal surface (it is even a
graph on the x3-plane) spanned by the curve α1 ∪ α2. Note that the tangent plane
of S at (0, 0, 0) is the plane 50. On the other hand, using Proposition 2.10 and
Remark 2.11, we see that S is contained in the convex hull of its boundary and
thus S ⊂ V (θ, δ, δ′).

Now, we denote by Sλ the homothetic shrinking of S by λ, λ > 0. As M is
properly immersed it is possible to find λ0 > 0 such that Sλ0 ∩ M = ∅. Next we
prove that Sλ ∩ M = ∅ for all λ > 0. Assume that there exists λ′ > 0 such that
Sλ
′

∩M 6=∅. We denote by

λ̂= infimum
{
λ ∈ ]λ0, λ

′
]
∣∣ Sλ ∩M 6=∅

}
.

Observe that Sλ and M do not contact at the boundary for all λ>0. Therefore there
is an interior point of M in Sλ̂. It follows from Proposition 2.9(ii) and the conditions
on the singularities that the contact point is not a singularity. Then, by applying
the maximum principle we obtain Sλ = M which contradicts the assumptions on
∂M .

Hence, taking into account that the tangent plane of S at (0, 0, 0) is50 we obtain

V (θ, δ, δ′)−
⋃
λ∈R

Sλ ⊂50,

from which we deduce that M ⊂50. �

Corollary 4.3. Let M be a connected properly immersed maximal surface without
general conelike singularities in the interior such that M ⊂ V (θ, δ, δ′) and ∂M is
contained in a spacelike plane. Then M is a planar region.

Proof. Let 5 be the spacelike plane such that ∂M ⊂5 and M ′ a connected com-
ponent of M− (M ∩5). Denote by 5+ the half-space determined by 5 such that
M ′ ⊂5+. Then, it is not difficult to see that there exists an isometry of L3, f, that
verifies f (5) = 50 and f (V (θ, δ, δ′)∩5+) ⊂ V (θ̂ , δ̂, δ̂′), for some θ̂ , δ̂ and δ̂′.
Therefore, the corollary follows from Theorem 4.2. �

By contrast:
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Proposition 4.4. Let M be a connected properly immersed maximal surface with-
out general conelike singularities in the interior such that M ⊂ C+ and ∂M is
contained in a spacelike plane. Then M is a planar region.

Proof. Our hypotheses imply that ∂M is compact. We consider the intersection of
M with all the timelike planes H(y, v) such that ∂M ⊂ H+(y, v). By applying
Corollary 3.3 to the connected components of M contained in H−(y, v) we obtain
that M ⊂ H+(y, v) for all the timelike planes described above. Then M is also
compact and Proposition 2.10 proves that M is a planar region. �

5. Maximal surfaces whose boundary is contained in a lightlike plane and
the convex hull property

As a consequence of the previous sections we deduce the following results for
maximal surfaces whose boundary is contained in a lightlike plane.

Proposition 5.1. There exists no connected properly immersed maximal surface M
without general conelike singularities in the interior and such that M ⊂ V (θ, δ, δ′)
and ∂M is contained in a lightlike plane.

Proof. Suppose there exists such an M . Let 5 be the lightlike plane such that
∂M ⊂5. Then, we can consider the pencil of planes through the line L =5∩50,
that is, the set of planes sharing the line L . Since M cannot be flat, it is possible to
find a spacelike or timelike plane in the pencil that intersects M transversally. But
Corollaries 4.3 and 3.7 lead to a contradiction in each case. �

Proposition 5.2. There exists no connected properly immersed maximal surface
M without general conelike singularities in the interior and such that M ⊂ C+ and
∂M is contained in a lightlike plane.

Proof. This can be demonstrated like Proposition 5.1, but using Proposition 4.4
and Corollary 3.3. �

As we saw in Section 2, a compact maximal surface lies in the convex hull of
its boundary and the set of its general conelike singularities. This is not true for
noncompact maximal surfaces in general. However, Theorem 4.2 and Proposition
4.4 can be seen as a convex hull type property. We have proved that if certain
conditions are satisfied then the surfaces lie in the convex hull of their boundary.
In the remainder of the section, we use the results obtained in the previous sections
to give a generalization of these results. More precisely:

Proposition 5.3. Any connected properly immersed maximal surface contained in
V (θ, δ, δ′) lies in the convex hull of its boundary and its general conelike singular-
ities.
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Proof. Let M be a minimal surface satisfying the hypotheses of the proposition and
denote by A the set of general conelike singularities of M . If M is contained in a
plane the result is obvious. Assume then that M is not flat and consider v ∈S2 and
y ∈ R3 such that (∂(M)∪ A) ⊂ H+(y, v). We have to prove that M ⊂ H+(y, v)
too.

We proceed by contradiction, and suppose that M∩
(
H−(y, v)− H(y, v)

)
6=∅.

Let M ′ be a connected component of M ∩ H−(y, v).
If v is spacelike, so H(y, v) is a timelike plane, Corollary 3.7 leads to a contra-

diction.
If v is timelike, so H(y, v) is spacelike, the assumption that M ′ is not flat con-

tradicts Corollary 4.3.
Finally, if v is lightlike, so is the plane H(y, v), and Proposition 5.1 gives a

contradiction. �

Proposition 5.4. Any connected properly immersed maximal surface contained in
C+ lies in the convex hull of its boundary and its general conelike singularities.

Proof. The proof is obtained as for the preceding proposition, using Corollary 3.3
and Propositions 5.2 and 4.4. �
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ENERGY AND TOPOLOGY OF SINGULAR UNIT VECTOR
FIELDS ON S3

PABLO M. CHACÓN AND GIOVANNI DA SILVA NUNES

The energy of unit vector fields on odd-dimensional spheres is a functional
that has a minimum in dimension 3 and an infimum in higher dimensions.
Vector fields with isolated singularities arise naturally in the study of this
functional. We consider the class of fields in S3 having two antipodal singu-
larities. We prove a lower bound, attained for the radial vector field, for the
energy of this class of fields in terms of the indices of the singularities. A
similar inequality is not to be expected in other dimensions.

1. Introduction

Let (Mn+1, g) be a compact oriented Riemannian manifold without boundary. We
denote by ∇ the Levi-Civita connection and by ν the volume form. Given a unit
vector field Ev on M , the energy of Ev is (see [Wiegmink 1995])

(1) E(Ev) =
1
2

∫
M
‖∇Ev‖2ν + 1

2(n+1) vol M.

This integral (times a constant) is also known as the total bending of Ev or the
vertical energy of Ev as a section of the tangent bundle. The integrand 1

2‖∇Ev‖
2 is

called the energy density of Ev.
The absolute minimum of the energy functional is 1

2(n+1) vol M , attained for
vector fields whose integral curves are geodesic and such that the orthogonal distri-
bution Ev⊥ is integrable and totally geodesic. Such vector fields, called parallel, are
rare because if M admits a unit parallel vector field then M is locally a Riemannian
product.

The simplest spaces to be studied are spheres.

Theorem 1 [Brito 2000]. Hopf vector fields are the only unit vector fields on S3 to
minimize E.

MSC2000: primary 53C20; secondary 57R25, 58C25.
Keywords: energy of vector field, index of vector field.
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By a Hopf vector field we mean a unit vector field tangent to the classical Hopf
fibration. In dimensions 5 and higher, Hopf vector fields are unstable critical points
of E; see [Wood 2000; Gil-Medrano and Llinares-Fuster 2001].

The radial vector field VR plays a fundamental role in the study of the energy.
It is defined, relative to fixed antipodal points N , S ∈ Sn+1, as the unit vector field
tangent to the geodesics from N to S. It has {N , S} as its only singularities.

Theorem 2 [Brito and Walczak 2000]. The energy of any unit vector field Ev with
isolated singularities on Sn+1, n ≥ 2, satisfies the inequality

E(Ev)≥
n2
+ n− 1

2(n− 1)
vol Sn+1,

and if n ≥ 3, equality holds if and only if Ev = VR .

The existence of a global energy-minimizing unit vector field was left open at
that time. This question has since been solved:

Theorem 3 [Borrelli et al. 2003]. The infimum of E among all smooth, globally
defined unit vector fields on sphere S2k+1, for k ≥ 2, is

4k2
+ 2k− 1

2(2k− 1)
vol S2k+1.

In fact, the proof of Theorem 3 in [Borrelli et al. 2003] shows a family of unit
vector fields whose energy converges to E(VR).

More results on energy can be found, for example, in [Berndt et al. 2003;
Boeckx et al. 2002; Brito and Salvai 2004; Chacón and Naveira 2004; Gil-Medrano
et al. 2004; Gil-Medrano and Hurtado 2004; González-Dávila and Vanhecke 2002;
Wiegmink 1996].

From Theorem 1 and 3 it follows that the energy on S2k+1 has a minimum only
in dimension 3. It is easy to see that on S3 Hopf vector fields and radial vector
fields have the same energy. Thus vector fields with singularities appear naturally
in the study of the energy of global unit vector fields.

In this paper we relate the energy and topology of vector fields with singularities.
More precisely, we prove:

Theorem 4. Let Ev be a unit vector field on S3 with exactly two antipodal singular-
ities of index ±k with k ∈ N. Then

E(Ev)≥
(
|2k− 1| + 3

2

)
vol(S3).

The radial vector field VR satisfies the equality in Theorem 4. The indices of
VR at N and S are respectively +1 and −1. For vector fields with indices ±2, we
do not know if there is a vector field for which equality obtains in Theorem 4.
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A similar result is not expected for higher-dimensional spheres. The energy
density of Ev has degree 2. The index of the singularity of a vector field on Sn+1

is defined through a map from Sn to Sn . The underlying technique in proving
Theorem 4 is to relate the energy density (of degree 2) to an integral of a n-form
of Sn that gives the index. For n = 2, all these objects are comparable but not for
higher dimensions; the n-form of the index will not provide the energy density.

2. Notation and definitions

On S3, take two antipodal points {N , S}, determining the northern and southern
hemispheres. Consider a vector field Ev on S3 such that Ev(N ) = Ev(S) = 0 and
‖Ev(p)‖ = 1 for p /∈ {N , S}. The energy of Ev is defined in (1).

We fix an orientation for S3 and choose an oriented orthonormal local frame
{e1, e2, e3} on S3

\ {N , S} such that e3 = Ev. The corresponding dual 1-forms are
denoted by {θ1, θ2, θ3}. The connection forms of the Levi-Civita connection ∇ of
S3 will be denoted by ωi j :

ωi j (X)= g(∇X ei , e j ) for i, j = 1, 2, 3,

where X is a vector in the corresponding tangent space.
On S3

\{N , S} the field Ev determines a subbundle Ev⊥ of T S3 formed by the vec-
tors orthogonal to Ev. The second fundamental form of Ev⊥, possibly nonsymmetric,
is given by the coefficients hi j =ω j3(ei ) for i, j = 1, 2. The energy density of Ev is

1
2‖∇Ev‖

2
=

1
2

( 2∑
i, j=1

h2
i j +

2∑
i=1

a2
i

)
,

where the ai are the components of the acceleration of Ev:

∇e3 Ev =∇Ev Ev = a1e1+ a2e2.

3. Proof of Theorem 4

Since S3 has Euler characteristic zero, the sum of the indices of Ev at the singularities
must be zero. If the singularities of Ev have index zero, Theorem 4 follows from
Theorem 2. We may therefore assume that Ev has nontrivial singularities.

We may also assume that N is the singularity with index +k and S is the sin-
gularity with index −k. For simplicity, we also assume that N = (0, 0, 0, 1) ∈ R4

and S = (0, 0, 0,−1) ∈ R4.
Consider the 2-form on S3

\{N , S} given by ω13∧ω23. It is not hard to see that

(2) ω13 ∧ω23 = (h11h22− h12h21)θ1 ∧ θ2

+ (h12a1− h11a2)θ1 ∧ θ3+ (h22a1− h21a2)θ2 ∧ θ3.
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This form is independent of the oriented frame chosen (satisfying e3 = Ev). Let

Sθ =
{
(x, y, z, t) ∈ S3

| t = sin θ
}
≡ S2(cos θ)

be the “parallel of latitude” in S3 determined by θ ∈ (−π/2, π/2). The field Ev has
no singularities on any Sθ . Let α ∈ [0, π/2] be the angle between Ev and T Sθ . Note
that cosα and sinα are well-defined functions on Sθ . Take an oriented orthonormal
local frame {e1, e2, Ev} such that e1 ∈ T Sθ . We choose the orientation on the parallel
Sθ given by the normal vector field VR (pointing downward). Depending on the
index of the singularity, along a fix parallel Sθ near the singularity, the field Ev can
cross the plane T Sθ several times, or equivalently VR and Ev can be on the same or
on different sides of T S3 in relation with T Sθ . We define ε1 = −1 if T Sθ leaves
VR and Ev on different sides and ε1 = 1 otherwise. Next set

(3) ẽ = sinα e2+ ε2 cosα Ev,

where ε2 = 1 if T Sθ separates e2 and Ev on different sides of T S3 and ε2 = −1
otherwise. Then {e1, ε1ẽ} is an oriented local frame of Sθ . When e2 ∈ T Sθ , we
have cosα = 0 and the value of ε2 is irrelevant. For the special case Ev ∈ T Sθ ,
we have sinα = 0, and the oriented frame of Sθ is {e1,−Ev} when e2 agrees with
VR or {e1, Ev} when e2 = −VR . Observe that although the positions of Ev, VR , T Sθ
and e2 can change, the frame {e1, ε1ẽ} is a C∞ local frame of Sθ (not global but
differentiable).

If i : Sθ → S3 is the inclusion map, we have the 2-form i∗(ω13 ∧ ω23) on Sθ .
Using (2), we can evaluate

i∗(ω13 ∧ω23)(e1, ε1ẽ)= ε1ω13 ∧ω23(e1, sin(α)e2+ ε2 cos(α)Ev)

= ε1 sinα(h11h22− h12h21)+ ε1ε2 cosα(h12a1− h11a2).

This value depends only on Ev.
We next compute

2∑
i, j=1

h2
i j +

2∑
i=1

a2
i

= (sinα )2h2
11+ h2

22+ (sinα )2h2
21+ h2

12
+(ε2 cosα )2h2

21+ a2
1 + (ε2 cosα )2h2

11+ a2
2

≥ 2|sinα h11h22| + 2|sinα h21h12| + 2|ε2 cosα h21a1| + 2|ε2 cosα h11a2|

≥ 2|sinα (h11h22− h12h21)| + 2|ε2 cosα (h21a1− h11a2)|

≥ 2
∣∣sinα (h11h22− h12h21)+ ε2 cosα (h12a1− h11a2)

∣∣
= 2

∣∣i∗(ω13 ∧ω23)(e1, ẽ)
∣∣= 2

∣∣i∗(ω13 ∧ω23)(e1, ε1ẽ)
∣∣
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(recall that x2
+ y2
≥ 2|xy| for x, y ∈ R). In this way, we can bound the integral

in (1) from below by

∫
S3
‖∇Ev‖2ν =

∫
S3

( 2∑
i, j=1

h2
i j +

2∑
i=1

a2
i

)
ν ≥

∫ π/2

−π/2

∫
Sθ

2
∣∣i∗(ω13 ∧ω23)(e1, ε1ẽ)

∣∣ν
=

∫ π/2

0

∫
Sθ

2
∣∣i∗(ω13 ∧ω23)(e1, ε1ẽ)

∣∣νθ dθ

+

∫ 0

−π/2

∫
Sθ

2
∣∣i∗(ω13 ∧ω23)(e1, ε1ẽ)

∣∣νθ dθ,

where νθ is the volume form of Sθ . Therefore,

(4)
∫

S3
‖∇Ev‖2ν ≥

∣∣∣∣2 ∫ π/2

0

∫
Sθ

i∗(ω13 ∧ω23)(e1, ε1ẽ)νθ dθ
∣∣∣∣

+

∣∣∣∣2 ∫ 0

−π/2

∫
Sθ

i∗(ω13 ∧ω23)(e1, ε1ẽ)νθ dθ
∣∣∣∣.

The integral over (0, π/2) in (4) is related to the index of Ev at N and the integral
over (−π/2, 0) is related to the index of Ev at S. We consider the first integral.

By the structure equations of S3, the form ω13∧ω23+θ1∧θ2 is closed and hence

(5) d(ω13 ∧ω23)=−d(θ1 ∧ θ2).

To integrate the first term of (4), we consider the region of S3 defined by

Aφψ = {(x, y, z, t) ∈ S3
| sinφ ≤ t ≤ sinψ},

where 0≤ φ < ψ ≤ π/2.
By Stokes’ Theorem and the appropriate orientation of Aφψ we know that

(6)
∫

Aφψ
d(ω13 ∧ω23)=

∫
Sψ

i∗(ω13 ∧ω23)−

∫
Sφ

i∗(ω13 ∧ω23).

On the other hand, by (5) and Stokes’ Theorem we have

(7)
∫

Aφψ
d(ω13 ∧ω23)=−

∫
Aφψ

d(θ1 ∧ θ2)=

∫
Sφ

i∗(θ1 ∧ θ2)−

∫
Sψ

i∗(θ1 ∧ θ2).

We can calculate the value of i∗(θ1 ∧ θ2):

(8) i∗(θ1 ∧ θ2)(e1, ε1ẽ)= ε1(θ1 ∧ θ2)(e1, sin(α)e2+ ε2 cos(α)Ev)= ε1 sinα.
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So, for any φ, 0≤ φ < π/2, by (6), (7) and (8) we obtain

(9)
∫

Sφ
i∗(ω13 ∧ω23)=

∫
Sψ

i∗(ω13 ∧ω23)+

∫
Sψ

i∗(θ1 ∧ θ2)−

∫
Sφ

i∗(θ1 ∧ θ2)

=

∫
Sψ

i∗(ω13 ∧ω23)+

∫
Sψ
ε1 sinανψ −

∫
Sφ
ε1 sinανφ

≥

∫
Sψ

i∗(ω13 ∧ω23)− vol Sψ − vol Sφ.

From the definition of the index and the fact that the degree of a map f : Sψ→S2

is equal to (vol S2)−1
∫

Sψ
f ∗η, where η is a volume form of S2, we obtain an integral

expression for the index of Ev at the singularity N :

(10) lim
ψ→ π

2

∫
Sψ

i∗(ω13 ∧ω23)= 4πk.

From (9) and (10) we obtain
∫

Sφ
i∗(ω13 ∧ω23)≥ 4πk− 4π(cosφ)2. Now, inte-

grating on the northern hemisphere we have

(11) 2
∫ π/2

0

∫
Sθ

i∗(ω13 ∧ω23)(e1, ε1ẽ)νθ dθ

≥ 2
∫ π/2

0

(
4πk− 4π cos2 θ

)
dθ = 4π2k− 2π2 > 0.

Taking absolute values in (11) we obtain

(12)
∣∣∣∣2 ∫ π/2

0

∫
Sθ

i∗(ω13 ∧ω23)(e1, ε1ẽ)νθ dθ
∣∣∣∣≥ |4π2k− 2π2

|.

For the second integral of (4) we work in a similar way. Now the index of Ev at
S is −k < 0 and the aim is to obtain an inequality equivalent to (11) in such a way
that we know the sign of both sides of the inequality.

For −π/2≤ φ < ψ ≤ 0, the inequality
∫

Sφ
i∗(ω13∧ω23)≥

∫
Sψ

i∗(ω13∧ω23)−

vol Sψ − vol Sφ in (9) still holds. Now, the index of Ev at S is given by

(13) lim
φ→−π/2

∫
Sφ

i∗(ω13 ∧ω23)=−4πk.

From this and the inequality in (9) we obtain −4πk ≥
∫

Sψ
i∗(ω13 ∧ ω23) −

4π(cosψ)2. So, on the southern hemisphere we have

2
∫ 0

−π/2

∫
Sθ

i∗(ω13 ∧ω23)(e1, ε1ẽ)νθ dθ

≤ 2
∫ 0

−π/2

(
−4πk+ 4π cos2 θ

)
dθ =−4π2k+ 2π2 < 0.
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For the absolute value we get the bound

(14)
∣∣∣∣2 ∫ 0

−π/2

∫
Sθ

i∗(ω13 ∧ω23)(e1, ε1ẽ)νθ dθ
∣∣∣∣≥ |− 4π2k+ 2π2

|

= |4π2k− 2π2
|.

Finally, the energy of Ev follows from (4), (12) and (14) that is bounded by:

E(Ev)≥ 1
2

∣∣4π2k− 2π2∣∣+ 1
2

∣∣4π2k− 2π2∣∣+ 3
2 vol S3

≥
1
2

∣∣4π2k+ 4π2k− 4π2∣∣+ 3
2 vol S3

=
(
|2k− 1| + 3

2

)
vol S3.

This completes the proof of Theorem 4. �

Remarks. (1) When Ev = VR , equality is attained in Theorem 4. This can be
shown by direct computation, but also by reproducing the proof with the following
considerations: the acceleration of VR is zero, V⊥R is integrable and umbilical, and
the angle α is equal to π/2.

(2) In a sense, the assumption of Theorem 4 about the quantity and the antipodal
position of the singularities is a necessary restriction. It is possible to construct
a sequence of unit vector fields, each with an arbitrary number of singularities in
free positions, whose energy converges to the energy of the radial vector field VR .
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SINGULAR ANGLES OF WEAK LIMITING METRICS UNDER
CERTAIN INTEGRAL CURVATURE BOUNDS

QING CHEN, XIUXIONG CHEN AND WEIYONG HE

We prove that a nonvanishing weak limit of Riemannian metrics in surfaces
with an integral curvature bound admits only weak cusp singularities. The
result is useful toward generalizing classical uniformization theory to sur-
faces with boundary.

1. Introduction

Classical uniformization theorem says that in a compact Riemann surface without
boundary there is a constant curvature metric in any conformal class of metrics.
There have been many attempts to generalize this theory to surfaces with boundary.
The main focus, started by the independent work of Troyanov [1991] and McOwen
[1988], has been to study the existence or nonexistence of constant curvature met-
rics in surfaces with conical singularities. Much work has followed since; see, for
example, [Chen and Li 1991; Chang and Yang 1988; Luo and Tian 1992].

The disadvantage of this classical approach is that the Gaussian curvature is a
second-order differential operator of the metric, while the condition of prescribing
conical singularities is equivalent to prescribing both the metric and its derivatives
near the set of singular points at infinitesimal level. Thus, the constant curva-
ture equation with prescribed conical singularities is an overdetermined elliptic
equation. In general, one should not expect to get a clear-cut statement about the
existence (or nonexistence) of solutions.

We now describe another approach. Given a compact Riemann surface � and
a Hermitian metric g0 on �, any metric g on � is said to be conformal to g0 if
there exists a smooth function e2ϕ such that g= e2ϕg0 on �. Define the variational
space G(�) to be the set of all metrics that are conformal to g0 and agree with g0

on ∂� up to first derivatives. For each g ∈ G(�), define the energy functional

E(g)=
∫
�

K 2 dg,

MSC2000: primary 53C20; secondary 53C23.
Keywords: Riemannian metric, weak limit, singular angle.
Qing Chen was supported by the NCFT Program of the Ministry of Education of China. Xiuxiong
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where K is the Gaussian curvature of g. The problem is to minimize this functional
with the area constraint

A(g)=
∫
�

dg = const.

A critical point of this functional is called an extremal Hermitian metric; see
[Calabi 1982]. The Euler–Lagrange equation is

4g K + K 2
= C,

where we have, in a local system,

−4ϕ = K e2ϕ if g = e2ϕ
|dz|2.

By a theorem of Calabi, any metric solving this Euler–Lagrange equation on a sur-
face without boundary must have constant scalar curvature. This result conforms
with the classical uniformization theorem.

One of us (X. Chen) has been using the approach just described, namely the
study of the variational problem of minimizing E(g) in G(�) with fixed area, with
the goal of generalizing uniformization results to surfaces with boundary. Some of
the ideas go back to E. Calabi (private communications).

To attack this variational problem, one first studies the weak compactness of
any subset of metrics in G(�) with finite energy and area. Generally speaking, for
a sequence of metrics {gn, n ∈ N} with finite energy and area, there exists a weak
limit metric g such that gn converges to g weakly in any compact subset away
from a finite set of singular points. An important feature of the limit is the bubbling
phenomenon, first observed by Sacks and Uhlenbeck in 1979, when they studied the
existence theorem for harmonic maps between two spheres [Uhlenbeck 1982]. The
key observation was that the noncompactness is associated with the concentration
of the energy density at isolated bubble points. Around each such point, one can
define a weak singular angle in the approximation sense (see Definition 2 below).
If the weak singular angle is 0, it is called a weak cusp singular point. An intriguing
question is that whether all points is weak cusp singular points if the weak limit
metric g 6= 0. In this paper, we will prove (see Section 2 for terminology and
notation):

Theorem 1.1. Let {gn} be a sequence of conformal metrics in domain � with
finite area and finite energy. There exist a subsequence of {gn}, a limit met-
ric g0 and a finite set of bubble points {p1, p2, . . . , pm} such that gn ⇀ g0 in
H 2,2

loc (�\{p1, p2, . . . , pm}). If g0 6= 0(ϕ0 6= −∞), then g0 has a weak cusp singu-
larity at each bubble point pi . There is no ghost vertex in the bubble-tree decom-
position.

This motivates the following classification result:
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Theorem 1.2 [Chen 1999]. Let � be a surface without boundary and let g be
an extremal Hermitian metric in �\{p1, . . . , pn} with finite energy and area, and
having only weak cusp singularities at all singular points.

(1) If χ(�)6 0, then K is a negative constant.

(2) If n > 3 and χ(�)= 2 (that is, � is a sphere), then K is a negative constant.

(3) If n = 2 and χ(�)= 2, there exists no extremal Hermitian metric.

(4) If n = 1 and χ(�)= 2, there exists a unique extremal Hermitian metric deter-
mined by total area, and the metric must be rotationally symmetric.

These results are critical for the generalization of uniformization theory to a
surface with boundary.

The main result was stated in [Chen 1998a; 1999] without proof and was used
crucially in [Chen 2001], in deriving the long-time existence of the Calabi flow
in Riemannian surfaces. At present, there is strong interest in the Calabi flow for
general Kähler manifolds. Clarification of this important technical step will likely
be indicative of what happens in more general settings.

2. The problem from an analytic viewpoint

In a coordinate chart (D, z), any metric g can be written as

g = e2ϕ(dx2
+ dy2),

and the curvature function is
K =−

4ϕ

e2ϕ .

A metric is said to have finite area C1 and finite energy C2 if

(2-1)
∫

D
e2ϕ dx dy 6 C1 and

∫
D

(4ϕ)2

e2ϕ dx dy 6 C2.

A sequence of metrics {gn}, where gn = e2ϕn (dx2
+ dy2), is said to have finite

area C1 and finite energy C2 if each ϕn satisfies (2-1). From now on we will always
use either {ϕn} or {gn} to denote a sequence of metrics with finite area and finite
energy.

For any subdomain � in D, relabel the energy and area for a conformal param-
eter function as

(2-2) Ac(ϕ,�)=

∫
�

e2ϕ dx dy, Kc(ϕ,�)=

∫
�

(4ϕ)2

e2ϕ dx dy.

A “zero metric” should have zero area and zero energy. Since the zero metric has
a conformal parameter function identically equal to−∞, we define Ac(−∞, �)=

Kc(−∞, �)= 0. For notational convenience, define Ĥ 2,2
loc (�)= H 2,2(�)∪{−∞}.
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A sequence of functions {ϕn} ∈ H 2,2(�) is said to converge weakly to a function
ϕ0 in Ĥ 2,2

loc (�) if one of two mutually exclusive alternatives holds:

1 (Vanishing case): If ϕ0 ≡ −∞, then ϕn → −∞ uniformly in any relatively
compact subdomain of �.

2 (Nonvanishing case): If ϕ0 ∈ H 2,2(�), then ϕn ⇀ϕ0 weakly in H 2,2
loc (�).

Consequently, a sequence of Riemannian metrics {gn}∈H 2,2(�) converges weakly
to a limit metric g0 in H 2,2

loc (�) if and only if either

1 gn→ 0 everywhere (and g0 ≡ 0), or

2 ϕn ⇀ϕ0 in H 2,2
loc (�), where gn = e2ϕn gbk and g0 = e2ϕ0 gbk, for gbk a smooth

background metric in �.

Definition 2.1. A point p is said to be a bubble point of {ϕn} if , for any r > 0,

lim inf
n→∞

∫
Dr (p)

4(ϕn)
2

e2ϕn
dx dy > α > 0 and lim inf

n→∞

∫
Dr (p)

e2ϕn dx dy > β > 0,

where Dr (p) is a coordinate disk centered at p with radius r .

The largest possible numbers α and β are the concentration weights of the energy
function and area function at point p.

For convenience we restate here the three main theorems from [Chen 1998b].
Their proofs can be found there.

Theorem 2.2. Let {ϕn, n ∈ N} be a sequence of metrics in H 2,2(D) with finite
area C1 and energy C2. There exists a subsequence {ϕn j , j ∈ N} of {ϕn}, a finite
number of bubble points {p1, p2, . . . , pm} with respect to {ϕn j , j ∈ N} (where
0 6 m 6

√
C1C2/(4π)), and a metric ϕ0 ∈ Ĥ 2,2

loc (D \{p1, p2, . . . , pm}) such that

ϕn j ⇀ϕ0 in Ĥ 2,2
loc (D \{p1, p2, . . . , pm}).

Theorem 2.3 (Bubbles on bubbles). Let {ϕn} be a sequence of metrics in D with
finite area C1 and finite energy C2. Suppose that p = 0 is the only bubble point in
D, that it has area concentration Ap and energy concentration K p, and that there
exists a metric ϕ0 ∈ Ĥ2,2(D \{p}) such that ϕn ⇀ϕ0 in Ĥ2,2(D \{p}). A sequence
of numbers {δn ↘ 0} can be chosen to renormalize the sequence of metrics as
φn(x, y)= ϕn(δnx, δn y)+ log δn , for n ∈ N.

There exists a subsequence {ϕn j , j ∈N} of {ϕn}, a finite number of bubble points
{q1, q2, . . . , qm} with respect to the subsequence of metrics {φn j } (where 0 6 m 6√

Ap K p/(4π2)), and a metric φ0 ∈ Ĥ 2,2(S2
\{∞, q1, q2, . . . , qm}) such that

φn j ⇀φ0 ∈ Ĥ 2,2
loc (S

2
\{∞, q1, q2, . . . , qm}).

If φ0 ≡−∞ (vanishing case), then m > 2 and p is a bubble point of {φn j , j ∈N}.
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Theorem 2.4 (Bubble tree). The limit of any locally weakly convergent sequence
of metrics {gk, k ∈ N} in G(�) encompasses the following data:

(1) A finite rooted tree T , possibly reduced to just the base vertex f .

(2) The base vertex f ∈ T is a limit metric in � with a finite number of bubble
points {pi } deleted; the edge emanating from the base vertex is {pi }.

(3) Any other vertex fs is a limit metric defined on S2
\{∞, psi }; the edges ema-

nating from this vertices are {psi }.

(4) For each pair of vertex fs1 and fs2 bounding a common edge in T , they are
tenuously connected at the pair of respective singular points. The number of
vertices whose valence 6= 2, is bounded from above by

√
C1C2. The depth of

the tree is also finite in a reasonable sense. Each vertex f I = fi1i2···ik has the
property that, if it vanishes in any point in its domain, it vanishes everywhere;
in this case we call it a ghost vertex. The number of ghost vertices is finite.

Definition 2.5. Around each bubble point, define the weak singular angle

α = lim
r→0

∫
∂Dr (p)

kgdsg = lim
r→0

lim
n→∞

∫
∂Dr (p)

kgn dsgn

if the limit is well defined. Here kg and kgn are geodesic curvatures of g and gn .

The weak angle does exist, as we shall see in the next section, and has some
interesting properties. From now on, we will always assume that {gn} converges,
by substituting a convergent subsequence if necessary.

If the weak singular angle is zero, the bubble point p is called a weak cusp
singularity. Our purpose is to prove:

Main Theorem 2.6. Let {gn} be a sequence of conformal metrics in � with
finite area and finite energy. There exists a subsequence of {gn}, a limit met-
ric g0 and a finite set of bubble points {p1, p2, . . . , pm} such that gn ⇀ g0 in
H 2,2

loc (�\{p1, p2, . . . , pm}) (following the notations of Theorem 1.1). If g0 6= 0,
then g0 has a weak cusp singularity at each bubble point pi , and there is no ghost
vertex in the bubble-tree decomposition.

3. Asymptotic geometry of singular points

In this section, we introduce the blowing-up process and the definition of a neck.
We also prove several lemmas that are essential to our main theorem.

Definition 3.1. For any metric ϕ with finite area C1 and energy C2 in D \{0}, set

ϕ̄(r)=
1

2π

∫ 2π

0
ϕ(r cos θ, r sin θ) dθ.
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Lemma 3.2 [Chen 1998b]. Suppose ϕ is a metric with finite area C1 and energy
C2 in D \{0}.

(1) lim
r→0

(ϕ(r cos θ, r sin θ)+ log r)=−∞.

(2) lim
r→0

ϕ̄r (r) r exists and is finite.

(3) There exists constants λ ∈ (0, 1) and C3,C4 such that

1
λ
(ϕ̄(r)+ log r)+C3 ≤ ϕ(r cos θ, r sin θ)+ log r ≤ λ(ϕ̄(r)+ log r)+C4.

Similarly, one can prove:

Corollary 3.3. Suppose φ is a metric in R2
\ D̄r0(0) with finite area C1 and energy

C2, where D̄r0(0) is a closed disk with radius r0.

(1) lim
r→∞

(φ(r cos θ, r sin θ)+ log r)=−∞.

(2) lim
r→∞

φ̄r (r)r exists and is finite.

(3) There exists constants µ ∈ (0, 1) and C5,C6 such that

1
µ
(ϕ̄(r)+ log r)+C5 ≤ ϕ(r cos θ, r sin θ)+ log r ≤ µ(ϕ̄(r)+ log r)+C6.

Lemma 3.4 [Chen 1998b]. Let {ϕn} be a sequence of metrics with finite area C1

and energy C2. There exists a constant ε0 such that if

max
r6ρ
|∂Dr |gn = max

r6ρ

∫ 2π

0
eϕn(r cos θ,r sin θ)r dθ 6 ε0 for all n ∈ N,

then {ϕn} has no bubble points in D.

We can now explain the blowing-up process. To simplify the problem, let {gn =

eϕn (dx2
+ dy2)} be a sequence of metrics in D with finite area and finite energy,

converging to a limit metric g = eϕ0(dx2
+ dy2) 6= 0, and having {0} as its only

bubble point. Following Lemma 3.2, we have

lim
r→0

max
06θ62π

(ϕ0(r cos θ, r sin θ)+ log r)=−∞.

Then there exists r1 > 0 such that

max
06θ62π

(ϕ0(r cos θ, r sin θ)+ log r)� 0 for all r ≤ r1.

If n is large enough, the convergence implies that

max
06θ62π

(ϕn(r1 cos θ, r1 sin θ)+ log r1)� 0 for all n > N ;
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equivalently, if the length of the circle |z| = r1 is very small, then

|∂Dr1 |gn =

∫ 2π

0
eϕn(r1 cos θ,r1 sin θ)r1 dθ ≤ ε for all n > N .

According to Lemma 3.4, if ε is small enough, for each n > N we can choose δn

such that

|∂Dr |gn =

∫ 2π

0
eϕn(r cos θ,r sin θ)r dθ < ε for all r with r1 ≥ r > δn,

and

|∂Dδn |gn =

∫ 2π

0
eϕn(δn cos θ,δn sin θ) δn dθ = ε.

Renormalize this sequence of metrics as

φn(z)= ϕ(δn z)+ log δn for all |z|<
1
δn

and
g̃n(z)= e2φn(z)|dz|2 = gn(δn z).

The theorems in Section 2 assert that there is a subsequence {g̃n j } of metrics {g̃n},
a limit metric g̃ and finitely many bubble points {q1, q2, . . . , qm} such that either

g̃ ≡ 0(φn j →−∞) or g̃n j ⇀ g̃

in Ĥ 2,2
loc (S

2
\{∞, q1, q2, . . . , qm}).

Choose r2 big enough that {q1, q2, . . . , qm} ⊂ Dr2 . The annulus bounded by
the two circles |z| = r1 and |z| = r2 δn is called the neck of the blowing-up
process and denoted by Neck(r1, r2). The blowing up procedure or the renor-
malization procedure depends only on the filter size ε > 0 (once a coordinate
system is fixed). Since gn ⇀ g0 in Ĥ 2,2

loc (D \{p}), the surface (g0, D \{p}) and
(g̃0, S2

\{∞, q1, q2, . . . , qm}) are called tenuously connected at p and at z =∞.

Lemma 3.5. If the limit metric g is nonzero, the weak angle α exists and is finite,
and α > 0.

Proof. In polar coordinates (r, θ), we have

α= lim
r→0

∫
∂Dr (p)

kg dsg=
1

2π
lim
r→0

∫ 2π

0
(∂rϕ(r cos θ, r sin θ)r+1) dθ= lim

r→0
ϕ̄′(r)+1.

According to Lemma 3.2, the weak angle exists and is finite. Now we only have to
prove α≥0. Assume α<0. By the preceding equality we know that ϕ̄r (r)r+1<0
for r small enough, say for r < r0; that is,

ϕ̄r (r)+
1
r
< 0 when r < r0.
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Then, for 0< r1 < r2 < r0,

0>
∫ r2

r1

(
ϕ̄r (r)+

1
r

)
= (ϕ̄(r)+ log r)|r2

r1 = (ϕ̄(r2)+ log r2)− (ϕ̄(r1)+ log r1).

Letting r1→ 0, since ϕ̄(r1)+ log r1→−∞, it follows that

0>
∫ r2

r1

(
ϕ̄r (r)+

1
r

)
= (ϕ̄(r2)+ log r2)− (ϕ̄(r1)+ log r1)→∞,

which is a contradiction. �

Definition 3.6. Let {ϕn} be a sequence of metrics in D with finite area C1 and
finite energy C2. Suppose that p = 0 is the only bubble point in D in the blowing-
up process just described in Lemma 3.4. We define the out angle β around p in
Neck(r1, r2) as

β = lim
r2→∞

lim
n→∞

∫
∂Dr2δn (p)

kgn dsn

if the limit exists, where kgn is the geodesic curvature.

Lemma 3.7. In the notations in Lemma 3.4, if the (renormalized) limit metric φ0

is not −∞, the out angle β exists and is finite. Furthermore, β 6 0.

Proof. By the definition of β, we have

β = lim
r2→∞

lim
n→∞

∫
∂Dr2δn (p)

kgn dsn = lim
r2→∞

lim
n→∞

∫
∂Dr2 (p)

kg̃n ds̃n.

If the limit metric g̃0 does not vanish, that is, if φ0 6= −∞, we have

β =− lim
r2→∞

∫
∂Dr2

kg̃0ds̃0.

By Lemma 3.2, β is well defined and finite. Just as the argument in the proof of
Lemma 3.7, we can then prove that β 6 0. �

Remark 3.8. The out angle β (more precisely, its negative) can be regarded as the
weak angle at {∞} in the blowing-up process.

When the limit metric vanishes, the weak angle can still be defined:

Lemma 3.9. If a sequence of metrics {gn = eϕn (dx2
+ dy2)} on D has vanishing

limit metric and {0} as its only bubble point, the weak angle at {0} exists and finite.

Proof. It suffices to show the existence of the limit

α = lim
r→0

lim
n→∞

∫
∂Dr (p)

kgn dsgn = lim
r→0

lim
n→∞

∫ 2π

0
(∂rϕn r + 1) dθ.
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But for any 0< r1 < r2,∣∣∣∣∫ 2π

0
(∂rϕn(r2 cos θ, r2 sin θ)r2+1) dθ−

∫ 2π

0
(∂rϕn(r1 cos θ, r1 sin θ)r1+1) dθ

∣∣∣∣
=

∫ r2

r1

∫ 2π

0
∂r (∂rϕn r) dθ dr =

∫ r2

r1

∫ 2π

0
4ϕn dθ dr

6
∫ r2

r1

∫ 2π

0

(4ϕn)
2

e2ϕn
dθ dr

∫ r2

r1

∫ 2π

0
e2ϕn dθ dr

= Kn(r1, r2)An(r1, r2),

which tends to 0 as n→∞. Hence the limit exists and α is defined. �

4. Proof of the main theorem

In the neck of the blowing-up process (page 41), the sequence of metrics has an
average property around concentric circles:

Lemma 4.1 (Max-min inequality). Let {gn = e2ϕn (dx2
+ dy2)} be a sequence

of metrics with finite area and finite energy, converging weakly to a limit metric
g = e2ϕ(dx2

+ dy2) in H 2,2
loc (D \{0}) and having {0} as its only bubble point. In

Neck(r1, r2), there exists a constant c ∈ (0, 1), independent of r , such that

c 6

∣∣∣∣maxθ (ϕn(r cos θ, r sin θ)+ log r)
minθ (ϕn(r cos θ, r sin θ)+ log r)

∣∣∣∣ 6 1.

Proof. Renormalize the sequence of metrics around p = {0} as

φn(z)= ϕ(δn z)+ log δn,

g̃n(z)= e2φn(z)|dz|2 = gn(δn z).

Lemma 3.2 yields, for the limit metrics ϕ and φ,

λ−1(ϕ̄(r)+ log r)+C3 ≤ ϕ(r cos θ, r sin θ)+ log r ≤ λ(ϕ̄(r)+ log r)+C4,

µ−1(φ̄(r)+ log r)+C5 ≤ φ(r cos θ, r sin θ)+ log r ≤ µ(φ̄(r)+ log r)+C6,

with λ,µ ∈ (0, 1). For r1 small enough and n, r2 big enough, we then have

(4-1) λ−1(ϕ̄n(r1)+ log r1)+C3 ≤ ϕn(r1 cos θ, r1 sin θ)+ log r1

≤ λ(ϕ̄n(r1)+ log r1)+C4,

µ−1(φ̄n(r2)+ log r2)+C5 ≤ φn(r2 cos θ, r2 sin θ)+ log r2

≤ µ(φ̄n(r2)+ log r2)+C6,
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where C3,C4,C5,C6 are independent of r . This last pair of inequalities leads to

µ−1(ϕ̄n(r2 δn)+ log(r2δn)+C5 ≤ ϕn(r2δn cos θ, r2δn sin θ)+ log(r2δn)

≤ µ(ϕ̄n(r2 δn)+ log(r2 δn))+C6.

Combining this with (4-1), one obtains, still for r1 small enough and n, r2 big
enough,

λ2

2
6

∣∣∣∣maxθ (ϕn(r1 cos θ, r1 sin θ)+ log r1)

minθ (ϕn(r1 cos θ, r1 sin θ)+ log r1)

∣∣∣∣6 1

and
µ2

2
6

∣∣∣∣maxθ (ϕn(r2δn cos θ, r2 δn sin θ)+ log(r2δn))

minθ (ϕn(r2 δn cos θ, r2δn sin θ)+ log(r2δn))

∣∣∣∣6 1.

Thus the max-min inequality holds at the two boundary circles.
Set u =− log r =− log

√
x2+ y2 and θ = tan−1(y/x). The domain D\{0} be-

comes an infinite annulus {(u, θ) :0<u 6∞, −π6θ6π} via this transformation.
Let

ξ(u, θ)= ϕ(e−u cos θ, e−u sin θ)− u , ξn(u, θ)= ϕn(e−u cos θ, e−u sin θ)− u

and define4u,θ =∂
2
u+∂

2
θ . For any small r1=e−u0 >0, define ϕ̃(v, θ)=ξ(v+u0, θ)

and ϕ̃n(v, θ)= ξn(v+ u0, θ). Then

−4v,θ ϕ̃ = K (v+ u0, θ)e2ϕ̃ for all (v, θ) ∈ D̃,

−4v,θ ϕ̃n = Kn(v+ u0, θ)e2ϕ̃n for all (v, θ) ∈ D̃,

where D̃ = [−1, 1] × S1. There exists a constant C such that ϕ̃, ϕ̃n 6 C for n
big enough; thus the right-hand sides of both equalities are uniformly bounded in
L2(D̃).

Define ω,ωn by{
−4ω = K (v+ u0, θ)e2ϕ̃,

ω|∂ D̃ = 0,

{
−4ωn = Kn(v+ u0, θ)e2ϕ̃n ,

ωn|∂ D̃ = 0.

Then ‖ω‖L∞, ‖ωn‖L∞ are uniformly bounded from above; the bound is actually
independent of u0, since L2 norm of ϕ̃(v, θ) and ϕ̃n(v, θ) in D̃ converge uniformly
to 0 as n→∞ and u→∞.

The function hn = ϕ̃n − ωn is harmonic. Consider the two concentric circles
v1=0 (|z|=r1), v2= log r1−log r2δn (|z|=r2 δn). For any circle v3= log r1−log r3

(|z| = r3) between the two, set

Mn(v)=max
v

hn(v, θ), mn(v)=min
v

hn(v, θ).
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Apply Hadamard’s Three-Circle Theorem to obtain

Mn(v3)6

Mn(v1)
(
log(v2+ u0)− log(v3+ u0)

)
+ Mn(v2)

(
log(v3+ u0)− log(v1+ u0)

)
log(v2+ u0)− log(v3+ u0)

and

mn(v3)>

mn(v1)
(
log(v2+ u0)− log(v3+ u0)

)
+ mn(v2)

(
log(v3+ u0)− log(v1+ u0)

)
log(v2+ u0)− log(v3+ u0)

.

Since the max-min inequality holds at the two boundary circles, we obtain

Mn(v1)=maxθ hn(0, θ)= maxθ (ϕ̃n(0, θ)−ωn(0, θ))6 maxθ ϕ̃n(0, θ)+C,

mn(v1) = minθ hn(0, θ) = minθ (ϕ̃n(0, θ)− ωn(0, θ)) > minθ ϕ̃n(0, θ)−C,

where C is the uniform bound of ‖ωn‖L∞ . By the definition of ϕ̃n(0, θ), we have

maxθ ϕ̃n(0, θ)=maxθ (ϕn(r1 cos θ, r1 sin θ)+ log r1)

6 1
2λ

2 minθ (ϕn(r1 cos θ, r1 sin θ)+ log r1)=
1
2λ

2 minθ ϕ̃n(0, θ).

This implies
Mn(v1)6 1

2λ
2mn(v1)+ 2C.

Similarly, we obtain
Mn(v2)6 1

2µ
2mn(v2)+ 2C.

For any v3 ∈ (v1, v2), the inequality at the top of this page implies

Mn(v3)6 1
2 min(λ2, µ2)mn(v3)+ 4C;

thus
max
θ
ϕ̃n(v3, θ)6 1

2 min(λ2, µ2)minθ ϕ̃n(v3, θ)+ 6C,

and so

max
θ
(ϕn(r3, θ)+ log r3)6 1

2 min(λ2, µ2)minθ (ϕn(r3, θ)+ log r3)+ 6C.

Because ϕ+ log r →−∞ when r → 0, and C is independent of r , we see that if
r1 small enough and n big enough, then

minθ (ϕn(r3, θ)+ log r3)6 max
θ
(ϕn(r3, θ)+ log r3)6 c minθ (ϕn(r3, θ)+ log r3)

for any r3 ∈ (r2δn, r1), where c ∈ (0, 1) is a constant. This immediately implies
that the max-min inequality holds in Neck(r1, r2). �
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Proof of Main Theorem 2.6. Case 1: The renormalized limit metric φ does not
vanish. According to the definition of the weak angle and the out angle, for r1

small enough and r2, n large enough we have∣∣∣∣∫
|z|=r1

kgn dsn −α

∣∣∣∣< ε, ∣∣∣∣∫
|z|=r2δn

kgn dsn −β

∣∣∣∣< ε.
By Lemmas 3.7 and 3.9, we have α > 0 and β 6 0. If α > 0, there exists a circle
|z| = r3,n such that ∫

|z|=r3,n

kgn dsn =
α

2
,

and we can assume that r3,n is maximal satisfying this condition. Define

ϕ̄(r)=
1

2π

∫ 2π

0
ϕ(r cos θ, r sin θ) dθ,

ϕ̄n(r)=
1

2π

∫ 2π

0
ϕn(r cos θ, r sin θ) dθ.

Then

(4-2)
∫ ∫

r3,n6|z|6r1

α

2
e2ϕ̄n r dr dθ 6

1
2

∫ 2π

0

∫ r1

r3,n

e2ϕ̄n r
∫
|z|=r

kgn dsn dr dθ

= π

∫ r1

r3,n
e2ϕ̄n r(∂r ϕ̄n r + 1)dr

= π

∫ r1

r3,n
e2(ϕ̄n+log r)

(
∂r ϕ̄n +

1
r

)
dr

=
π

2
e2(ϕ̄n+log r)

∣∣∣r1

r3,n
.

Using the max-min inequality (Lemma 4.1), one easily gets

(4-3) e2(ϕ̄n+log r)
|r1 6

(
1

2π

∫ 2π

0
e(ϕn+log r)|r1 dθ

)1/c

,

where c ∈ (0, 1) is the constant in the max-min inequality. Since∫ 2π

0
e(ϕn+log r)|r1 dθ < ε

(from the blowing up process), inequalities (4-2) and (4-3) then imply∫ ∫
r3,n6|z|6r1

α

2
e2ϕ̄n r dr dθ→ 0.
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If α > 0, then ∫ ∫
r3,n6|z|6r1

e2ϕ̄n r dr dθ→ 0

as r1→ 0, r2→∞ and n→∞. Using the max-min inequality again, we obtain∫ ∫
r3,n6|z|6r1

e2ϕn r dr dθ→ 0.

On the other hand, for the annulus bounded by two concentric circle |z| = r1

and |z| = r3,n , we apply the Gauss–Bonnet Theorem to get

(4-4)
∫
|z|=r1

kgn dsn −

∫
|z|=r3,n

kgn dsn +

∫
r3,n6|z|6r1

Kn dgn = 0,

while (∫
r3,n6|z|6r1

Kn dgn

)2

6
∫

r3,n6|z|6r1

K 2
n dgn

∫
r3,n6|z|6r1

dgn

and ∫
r3,n6|z|6r1

dgn =

∫ ∫
r3,n6|z|6r1

e2ϕn r dr dθ→ 0.

This means that
∫

r3,n6|z|6r1
Kn dgn→ 0. Taking the limit in (4-4), we get α− 1

2α=

0, a contradiction. Thus we have proved that α = 0 in this case.

Case 2: The renormalized limit metric φ0 vanishes. If the out angle β is nonposi-
tive, we apply the Gauss–Bonnet theorem directly:∫

|z|=r1

kgn dsn −

∫
|z|=r2 δn

kgn dsn +

∫
r2δn6|z|6r1

Kn dgn = 0.

Since the limit metric vanishes,∫
r2δn6|z|6r1

Kn dgn→ 0.

Taking the limit in the last equality, we have α−β = 0, so α = β = 0.
If β > 0, we consider the bubble tree decomposition. The renormalized limit

metric φ has two bubble points at least, by Theorem 1.2. Assume the bubble points
are {q1, q2, . . . , qm}, with m > 2, and the weak angle at qi is αi . Let hn = g̃n be
the renormalized metrics, and take disks Dr (i)(qi ) around qi with radius r (i) such
that ∣∣∣∣αi −

∫
∂Dr(i) (qi )

khn dsn

∣∣∣∣< ε
for n big enough, and a fixed small ε. Set

�= Dr2(p) \
⋃

16i6m
Dr (i)(qi )
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(before renormalization, the disk is Dr2δn (p)). Now apply to the Gauss–Bonnet
Theorem to �:

(4-5)
∫
|z|=r2

khn dsn −

m∑
i=1

∫
|z|=r (i)

khn dsn +

∫
�

Kndhn =−(m− 1).

Because {hn} → 0, An(�)=
∫
�

dhn→ 0 when n→∞ , we have(∫
�

Kndhn

)2

6
∫
�

K 2
n dhn

∫
�

dhn→ 0.

Taking limits in (4-5) we get
∑m

i=1 αi = m − 1+ β. Thus there must exist some
i with 1 6 i 6 m such that αi > 0. We can assume α1 > 0, and consider a pair
of angles {α1, β1} (where β1 is the out angle at the point q1) and the blowing-up
process around {q1}. If β1 6 0, then by the argument above we have α1 = 0, a
contradiction. If β1 > 0, we argue as in the case β > 0: we get a new pair of
angles {α11, β11} at the bubble point q11 in the blowing-up process around q1, such
that α11 > 0. If β11 6 0, there is a contradiction. If β11 > 0, then we apply the
blowing-up once more. Since β > 0, the limit metric of renormalization is zero
and the limit metric is a ghost vertex in the bubble tree. Thus, if α > 0, we get an
infinite series of ghost vertices in the bubble tree. But we know that there are only
finitely ghost vertices in the bubble tree, so we reach a contradiction. This proves
that α is zero in this case too, as desired. �
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ON AHLFORS’ SCHWARZIAN DERIVATIVE AND KNOTS

MARTIN CHUAQUI

We extend Ahlfors’ definition of the Schwarzian derivative for curves in
euclidean space to include curves on arbitrary manifolds, and give applica-
tions to the classical spaces of constant curvature. We also derive in terms
of the Schwarzian a sharp criterion for a closed curve in R3 to be unknotted.

1. Introduction

This paper is a continuation of [Chuaqui and Gevirtz 2004], in which we developed
sharp bounds on the real part of Ahlfors’ [1988] Schwarzian derivative for curves
C in Rn which imply that C is simple. We begin with a geometrically simpler
definition of the Schwarzian for such curves, the real part S1 f of which coincides
with that of Ahlfors. This approach has the advantage of suggesting a Schwarzian
for curves in arbitrary manifolds, the results we obtain strongly suggesting that its
real part, at least, is appropriately defined. After our discussion of the Schwarzian
for curves in the general manifold context we focus on the particular cases of
hyperbolic n-space Hn and the n-sphere Sn and derive the relationship between
S1 f as calculated with respect to the metrics on Hn and Sn on the one hand, and
with respect to the euclidean metric on the underlying ball and Rn

∪ {∞}, on the
other. Using these calculations together with results of [Chuaqui and Gevirtz 2004]
we obtain a very short proof of a theorem of C. Epstein [1985] to the effect a
curve in Hn is necessarily simple if the absolute value of its geodesic curvature
is everywhere bounded by 1; we also prove the theorem’s spherical counterpart.
Lastly, we derive a sharp bound on S1 f which implies that the corresponding curve
is unknotted.

2. Preliminaries

Let f : (a, b)→Rn be a C3 curve with f ′ 6= 0, and let X ·Y stand for the euclidean
inner product of vectors X, Y in Rn . Set |X |2 = X · X . As pointed out in [Chuaqui

MSC2000: primary 53A04, 53A30; secondary 53A55.
Keywords: Schwarzian derivative, simple curve, conformal metric, knot.
The author was partially supported by Fondecyt Grant # 1030589 and by MECESUP PROJECT PUC
0103.
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and Gevirtz 2004], the real part of Ahlfors’ Schwarzian, defined by

S1 f =
f ′ · f ′′′

| f ′|2
− 3

( f ′ · f ′′)2

| f ′|4
+

3
2
| f ′′|2

| f ′|2
,

can be written in terms of the velocity v = | f ′| and the curvature k of the trace of
f as

(1) S1 f =
(
v′

v

)′
−

1
2

(
v′

v

)2
+

1
2
v2k2,

and this expression is invariant under Möbius transformations of Rn
∪ {∞}. Our

main result in that paper was:

Theorem 1. Let p= p(x) be a continuous real-valued function on an open interval
I such that any nontrivial solution of u′′+ pu = 0 has at most one zero on I . Let
f : I → Rn be a C3 curve with f ′ 6= 0. If S1 f ≤ 2p, then f is one-to-one on I
and admits a spherically continuous extension to the closed interval, which is also
one-to-one unless the trace of f is a circle, in which case S1 f ≡ 2p.

Although the formal expression on the right side of (1) is meaningful in the
context of manifolds, its appropriateness is made apparent by the following con-
siderations. Let T denote the tangent vector along the trace of f , and let ∇ stand
for usual covariant differential operator on M . Then ∇T T corresponds to f ′′.
We regard the 2-dimensional subspace spanned by T and ∇T T as the complex
plane C (the orientation being irrelevant), so that T = a = a(t) and ∇T T = b(t)
are complex-valued functions of the parametrizing variable t ∈ I . Following the
classical definition of the Schwarzian, given by(

f ′′

f ′

)′
−

1
2

(
f ′′

f ′

)2

,

we are led to consider the complex function

(2)
(b

a

)′
−

1
2

(b
a

)2

as the manifold analogue of the Schwarzian. A straightforward calculation shows
that the real part of the expression in (2) coincides with (1).

Let Hn denote the hyperbolic n-space with constant sectional curvature −1, for
which we use the standard model Bn

= {x ∈ Rn
: |x |< 1} with metric tensor gh =

4(1−|x |2)−2g, where g is the euclidean metric. Let Sn stand for the n-dimensional
sphere, as modeled by Rn

∪ {∞} with the metric ge = 4(1+ |x |2)−2g; here the
sectional curvature is 1. Both are special cases of a domain � ⊂ Rn endowed
with a conformal metric tensor, that is, a metric tensor of the form ḡ = e2ϕ(x)g.
In this generality one can relate the Schwarzian corresponding to the resulting
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manifold M with the standard euclidean Schwarzian defined on � itself. To do so
one needs to determine how the velocity and curvature of a curve change under
conformal changes of metric. Any object (velocity, curvature, covariant derivative,
etc.) associated with the manifold M will be distinguished from the corresponding
object in the underlying� by a bar. Thus, let v, k denote the velocity and curvature
on � so that v̄, k̄ are their counterparts on M . Obviously, v̄ = eϕv, from which
routine calculations yield

(3)
(
v̄′

v̄

)′
−

1
2

(
v̄′

v̄

)2

=

(
v′

v

)′
−

1
2

(
v′

v

)2
+ v2 Hess(ϕ)(t, t)+ v2k(gradϕ · n)− 1

2 v
2(gradϕ · t)2,

where t and n are the euclidean unitary tangent and normal vectors to the curve,
Hess(ϕ) is the (euclidean) Hessian bilinear form and grad is the standard gradient.

In order to derive the relationship between k and k̄ one needs to know how
the covariant derivative changes under conformal changes of metric. The classical
formula is

(4) ∇X Y =∇X Y + (gradϕ · X)Y + (gradϕ · Y )X − (X · Y ) gradϕ.

The curvature k̄ is determined by the equation

∇ t̄ t̄ = k̄n̄,

where t̄ = e−ϕt and n̄ = e−ϕn. Using (4) one obtains

∇ t̄ t̄ = e−2ϕ (kn+ (gradϕ · t)t − gradϕ) .

After taking the euclidean norm of both sides we get

k̄2
= e−2ϕ (k2

− (gradϕ · t)2− 2k(gradϕ · n)+ |gradϕ|2
)
,

and using (3) we have

(5) S1 f = S1 f + v2 Hess(ϕ)(t, t)− v2(gradϕ · t)2+
v2

2
|gradϕ|2.

The terms on the right-hand side depending on ϕ are best expressed in terms of the
Schwarzian tensor B(ϕ) of the metric ḡ with respect to g, as defined in [Osgood
and Stowe 1992] by

B(ϕ)= Hess(ϕ)− dϕ⊗ dϕ−
1
n
(1ϕ− |gradϕ|2)g.



54 MARTIN CHUAQUI

Then (5) can be rewritten as

(6) S1 f = S1 f + v2 B(ϕ)(t, t)+ v
2

n
1ϕ+

n−2
2n

v2
|gradϕ|2

= S1 f + v2 B(ϕ)(t, t)− v
2

2
scal ḡ

n(n−1)
e2ϕ,

where scal ḡ is the scalar curvature of the metric ḡ, that is, the sum of the sec-
tional curvatures of any complete set orthogonal 2-planes of the tangent space at
a given point. The Schwarzian tensor appears in the work of Osgood and Stowe
as a suitable generalization of the classical Schwarzian derivative when studying
conformal local diffeomorphisms between Riemannian manifolds, or more gen-
erally, when studying metrics on a given manifold that are conformally related.
They show that conformal changes of metric with vanishing Schwarzian tensor,
called Möbius changes of metric, are rare on arbitrary manifolds. On euclidean
space, nevertheless, Möbius changes can be described completely and include, in
particular, the hyperbolic and the spherical metric. In other words, B(ϕ)= 0 when
eϕ is either 2(1− |x |2)−1 or 2(1+ |x |2)−1.

Since scal ḡ =−n(n−1) when ḡ = gh we obtain from (6)

(7) Sh
1 f = S1 f +

v2

2
e2ϕ.

For the spherical metric we have scal(ḡ)= n(n− 1), hence (6) gives

(8) Ss
1 f = S1 f −

v2

2
e2ϕ.

We use (7) to give a very short proof of this result:

Theorem 2 [Epstein 1985]. Let γ ⊂ Hn be a curve with geodesic curvature
bounded in absolute value by 1. Then γ is simple.

Proof. Let f : (−l, l)→ γ be a hyperbolic arclength parametrization. Note that
the value l =∞ is possible. Then vh ≡ 1, so that Sh

1 f = k2
h/2. But since v= e−ϕ =

(1− |x |2)/2 it follows from (7) that

S1 f =
k2

h − 1
2
≤ 0.

By appealing to Theorem 1 with the choice p(x)≡ 0, we conclude that γ is simple.
�

In the same vein, we can use (8) to derive the corresponding simplicity criterion
for curves on Sn .
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Theorem 3. Let γ ⊂ Sn be a curve of length l ≤ 2π and geodesic curvature ks

satisfying

k2
s ≤

4π2
− l2

l2 .

Then γ is simple except when it is a circle of constant curvature
√

4π2− l2/ l.

Proof. We proceed as before and consider f : [0, l] → γ , a spherical arclength
parametrization. Then Ss

1 f = k2
s /2 and vs = (1+ |x |2)/2, so (8) gives

S1 f =
1+ k2

s

2
≤

2π2

l2 .

This time we apply Theorem 1 with p(x) ≡ π2/ l2 to conclude that f ((0, l)) is
simple. The extended curve f ([0, l]) remains simple unless it is a circle, of constant
curvature

√
4π2− l2/ l. �

3. Knots

Theorem 4. Let f : [−1, 1)→ R3 parametrize a simple closed curve in R3. If
the periodic continuation of f is C3 and S1 f (t) ≤ 2π2 for all t ∈ (−1, 1), then
f ([−1, 1)) is unknotted.

Proof. The idea is to show that, if knotted, the curve 0= f ([−1, 1]) can be laid out
to form a planar, closed, nonsimple curve for which the real part of the Schwarzian
has not increased. The process used to do this is based on the following ideas,
developed by Brickell and Hsiung [1974] in the course of their proof of the Fary–
Milnor theorem.

For p ∈ R3 we define the shell C p of 0 with vertex p to be the developable
surface made up of all segments [p, q] with q 6= p on 0. The indicatrix of C p,
denoted by Ip, is the curve on S2

= {u ∈ R3
: |u| = 1} traced by the vectors

(q−p)/|q−p|; its length l(Ip) is called the total angle of Ip. A key fact established
by Brickell and Hsiung is that 0 is unknotted if l(Ip)< 3π for all p ∈0. The proof
of this uses Crofton’s formula ∫

n(G)dG = 4l(Ip)

giving the length of Ip in terms of the number n(G) of intersection points of Ip

with great circles G ⊂ S2. The integral is performed over S2, after identifying a
point on the sphere with the normal direction of a plane containing a great circle.
The authors show that n(G) ≥ 1 for all G and that {G : n(G) = 2} has measure
zero [Brickell and Hsiung 1974, Lemma 8, p. 188]. Since the measure of the entire
set of great circles is 4π , if l(Ip) < 3π then {G : n(G) = 1} must have positive
measure. Hence there exists at least one great circle G with n(G)=1, which means
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there exists one plane through the point p intersecting 0 at exactly one other point
q 6= p. Such a plane is called transversal to 0. The curve 0 has the transversal
property if for any p ∈ 0 there exists a plane through p transversal to 0.

Theorem [Brickell and Hsiung 1974, Lemma 6, p. 191]. Let C be a closed smooth
curve embedded in hyperbolic or euclidean space of dimension three. If C has the
transversal property then C is a trivial knot.

We conclude from this discussion that if 0 is a knot there is a point p ∈ 0 for
which l(Ip) ≥ 3π . The two cases l(Ip) > 3π and l(Ip) = 3π require a slightly
different analysis. Suppose first that l(Ip)>3π . As we move p to a point p′ slightly
away from 0, the number l(Ip′) varies continuously, except for a jump increment
by π . Hence there exists p′ /∈ 0 for which l(Ip′) > 4π . On the other hand, since
l(Ir ) is a continuous function of r ∈R3

\0 and since l(Ir )→ 0 as |r |→∞, we can
find p0 /∈0 such that l(Ip0)= 4π . We now lay out the shell C p0 isometrically onto
the plane so that 0 traces out a closed curve γ that is not simple. To do this, let
0 = 0(s) be an arclength parametrization, 0 ≤ s ≤ L , and set r(s) = |0(s)− p0|.
We lay out 0 onto the plane curve γ given by z = z(s) = r(s)eiθ(s), where the
function θ is chosen so that |z′(s)| = 1, or equivalently

|r ′(s)+ ir(s)θ ′(s)| = 1.

The function

θ(s)=
∫ s

0

√
1− (r ′(t))2

r(t)
dt

has this property. The point p0 corresponds to z = 0 /∈ γ , and the polar angle
θ = θ(s) increases at the same rate as the spatial angle of the rays [p0, 0(s)] at the
vertex p0. Because l(Ip0) = 4π it follows that γ is a closed curve with winding
number 2 with respect to the origin.

If, on the other hand, l(Ip) = 3π , we let p0 = p and lay out 0 as before.
We may assume that p0 = 0(0). Since the point p0 belongs to 0, the curve γ
obtained is closed because r(s)→ 0 as s → 0+ and as s → L−. Also, because
0 possesses a tangent at p0, it is easy to see that the integrand in the equation
for θ(s) above behaves like h(s)/

√
s(L−s), where h is continuous on [0, L]. In

other words, γ (s)= z(s) is a planar curve passing through z = 0 with the property
that θ(s) = arg{z(s)} is increasing and has total variation of 3π . A variant of the
argument principle allowing for zeros on the curve (see [Nehari 1952, p. 131],
for instance) implies that γ cannot be simple: the point 0 ∈ γ contributes π to the
total variation of argument and therefore γ must in addition wind around the origin
once.

In either case, let g : [−1, 1)→R2 be the induced parametrization of γ defined
on the original interval of definition of f . We claim that S1g ≤ S1 f . First, vg =



ON AHLFORS’ SCHWARZIAN DERIVATIVE AND KNOTS 57

|g′| = | f ′| = v f because the laying-out process preserves arclength. Secondly, the
term involving the curvature does not increase because the curvature of γ is equal
to the curvature of 0 relative to the surface C p0 , that is, equal to the length of the
projection of the curvature vector of 0 in R3 onto the tangent plane to the shell.
We see from (1) that S1g ≤ S1 f .

Since γ is not simple, it can be subdivided into closed curves γ1, γ2 that are
differentiable except at the point where γ self-intersects. Because g is periodic,
one can find intervals [a, b] and [c, d] of total length 2 such that

(i) g1 = g|[a,b] : [a, b] → γ1 and g2 = g|[c,d] : [c, d] → γ2, and

(ii) the parametrizations g1, g2 are C3 on the open subintervals.

This sketch represents the case when p0 /∈ 0 together with the corresponding
nonsimple curve g:

Γ

P0

γ1 γ 2

We will show that both γ1 and γ2 are circles and that and each subinterval [a, b],
[c, d] has length 1. In effect, it follows from Theorem 1 that the optimal C constant
for a univalence criterion S1h≤C on an open interval of length d is C=2π2/d , and
that the extended curve can be closed only if it is a circle and S1h≡2π2/d . Because
S1g1, S1g2 are bounded above by 2π2 on the open intervals and the curves γ1 and
γ2 are closed, we conclude that the length of each subinterval [a, b], [c, d] cannot
be less than 1. Because the total length is 2, each subinterval must have length
1, and since γ1 and γ2 are closed, they must be circles with S1g1 = S1g2 ≡ 2π2.
Hence S1g ≡ 2π2, which can only happen if S1 f ≡ 2π2 and the curvature of γ
remains the same as that of 0. Hence 0 is an asymptotic curve, that is, the normal
curvature vanishes at each point of 0. Because the segments [p0, q] on the shell
C p0 are lines of curvature with corresponding principal curvature equal to zero, it
follows that either 0 lies entirely on one such segment or else the shell is planar.
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In the first case, 0 could not be closed, and in the second, it could not be knotted.
This contradiction proves the theorem. �

4. Example

In this final section we will show with that the assumption in Theorem 4 that the
periodic continuation of f be smooth is essential. We will construct a closed curve
f : [−1, 1]→R3 with S1 f ≤ 2π2 on (−1, 1), whose image is a knot that is not of
class C3 at f (1)= f (−1). The function f will be a Möbius transformation of the
following curve g.

Let g : (−1, 1)→ C. We write

(9) S1g =
(
v′

v

)′
−

1
2

(
v′

v

)2

+
1
2

k2v2
= 2q +

1
2

k2v2.

We will make S1g ≤ 2π2 everywhere on the open interval, but with different
weights for the terms 2q = (v′/v)′−(1/2)(v′/v)2 and k2v2/2. Intuitively, the term
q determines how fast one traverses the curve, while the second term determines
the shape.

Let δ > 0 be small. On [−1
2 + δ,

1
2 − δ] the curve g will have q ≡ 0, v ≡ 1

and k ≡ 2π . In other words, on this interval g describes almost a complete circle.
We define g on ( 1

2 − δ, 1) = (1
2 − δ,

1
2 + δ] ∪ (

1
2 + δ, 1), and on (−1,−1

2 + δ) in
a symmetric way. On (1

2 − δ,
1
2 + δ] we increase the value of q smoothly; this

produces an increment in v, which forces us to decrease the value of k. We will do
this in a way that

(10)
∫ 1

2+δ

1
2−δ

kv dx =
∫

k ds = 2πδ.

Because of the symmetry on [−1
2 − δ,−

1
2 + δ) we will have

∫ 1
2+δ

−
1
2−δ

kv dx =

(∫
−

1
2+δ

−
1
2−δ

+

∫ 1
2−δ

−
1
2+δ

+

∫ 1
2+δ

1
2−δ

)
kv dx = 2π.

On the remaining interval ( 1
2 + δ, 1) we will decrease k sharply to 0, shifting all

the weight to q ≡π2. Therefore, g will map this interval to a straight line. We will
show that this can done in a way that the value of v′/v at x = 1

2+δ is large enough
to allow the parametrization of a straight line with S1g = 2π2 on an interval of
length 1

2 − δ to reach the point at infinity.
The details are as follows:
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(I) The interval
( 1

2−δ,
1
2+δ

]
: We see from (9) that kv=

√
4π2− 4q = 2π

√
1− h,

where h = q/π2. From (10) we seek h = h(x) ∈ [0, 1] such that∫ 1
2+δ

1
2−δ

√
1− h dx = δ.

If we shift the interval in question to (0, 2δ], we can choose h, for example, so that√
1− h(x)= 1−

x
2δ
,

that is,

h(x)=
x
δ
−

( x
2δ

)2
.

(This choice requires only to be smoothed out at the endpoints of the interval.)
With this, ∫ 2δ

0

√
1− h dx = 2δ−

1
2δ
(2δ)2

2
= δ.

Observe that

(11)
∫ 2δ

0
h dx =

∫ 2δ

0

(
x
δ
−

( x
2δ

)2
)

dx =
(2δ)2

2δ
−
(2δ)3

3(2δ)2
=

4δ
3
,

a fact that will be important ahead.

(II) The term v′/v: Let y = v′/v. Then

(12) y′ = 2q + 1
2 y2
= 2π2h+ 1

2 y2.

For convenience, once more we replace the interval ( 1
2 − δ,

1
2 + δ] by (0, 2δ]. The

initial condition for (12) is y(0) = 0. We want to know whether y(2δ) (which
corresponds to the original value of v′/v at 1

2 + δ) is sufficiently large so that the
parametrization of a straight line with velocity v = e

∫
y dx reaches the point at

infinity before time 1
2 − δ.

The parametrization of a straight line with Schwarzian identically equal to 2π2

reaches the point at infinity in time exactly 1
2 if its initial velocity has v′ = 0. To

verify this we consider the differential equation

w′ = 2π2
+

1
2w

2, w(0)= 0,

which has the solution w(x)= 2π tan(πx). The corresponding parametrization of
the straight is then given by 1

π
tan(πx), which indeed becomes infinite at x = 1

2 .
Now we need to verify that the solution y of (12) has

(13) y(2δ) > w(δ).
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By integrating (12) we see from (11) that

y(2δ) > 2π2
∫ 2δ

0
h dx =

8π2δ

3
,

while
w(δ)= 2π2δ+ O(δ3),

so that (13) will hold if δ is small enough. Thus g reaches the point at infinity
symmetrically at 1− ε and −1+ ε, for some ε = O(δ). In order to rectify the fact
that g is defined only on (−1+ ε, 1− ε), we consider the scaled parametrization
g((1−ε)x) defined on (−1, 1), the Schwarzian of which is equal to (1−ε)2S1g<
2π2. We keep the notation g for the scaled curve; its trace together with the knot
to be produced are shown in the following figure.

In the final step we produce a knot on g with a very small cost in S1g. The knot
can be accomplished by replacing a small portion of one of the arcs at the point of
self-intersection of g by a very thin tubular neighborhood, along which the new arc
of g will go around once. Although this procedure introduces torsion, S1g does not
depend on it. It is easy to see that both the modified curvature and velocity remain
arbitrarily close to their original values as long as the tubular neighborhood is thin
enough. To finish the construction, we consider some Möbius transformation T
for which f = T (g) lies in the finite plane.
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ON ISOPERIMETRIC SURFACES IN GENERAL RELATIVITY

JUSTIN CORVINO, AYDIN GEREK,
MICHAEL GREENBERG AND BRIAN KRUMMEL

We obtain the isoperimetric profile for the standard initial slices in the
Reissner–Nordstrom and Schwarzschild anti-de Sitter spacetimes, follow-
ing recent work of Bray and Morgan on isoperimetric comparison. We then
discuss these results in the context of Bray’s isoperimetric approach to the
Penrose inequality.

1. Introduction

One of the major recent developments in mathematical relativity is the resolution
of the Riemannian case of the Penrose conjecture, by Huisken and Ilmanen [2001]
and by Bray [2001]. Bray had obtained earlier partial results in his thesis [1997]
by using isoperimetric surface techniques. As a key step, Bray established that the
isoperimetric profile of the time-symmetric Schwarzschild initial data (of positive
mass) is given by the radially symmetric spheres, the method of proof of which has
been codified in [Bray and Morgan 2002]. The main idea is that one can deduce
the isoperimetric profile of a given metric if one can construct an appropriate map
to a model space (for instance, Euclidean space or hyperbolic space) in which the
profile is known. We obtain below as a direct corollary the isoperimetric profile for
the Reissner–Nordstrom initial data. We then carry out an extension of the method
to derive the isoperimetric profile for the Schwarzschild anti-de Sitter (AdS) data;
unlike the previous two families, which are asymptotically flat, Schwarzschild AdS
is asymptotically hyperbolic. In all these cases, the spaces are rotationally sym-
metric, and the rotationally symmetric spheres give the isoperimetric profile. For
contrast, in the negative mass Schwarzschild, the analogous family of spheres is
unstable, as we discuss below.

We will review Bray’s isoperimetric surface approach to the Penrose inequality
and discuss its extension to certain asymptotically flat solutions of the Einstein–
Maxwell constraint equations. We also include computations relevant to a form
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of the Penrose inequality for a class of asymptotically hyperbolic spaces. For
background and references on the Penrose inequality, see [Bray 2002; Bray and
Chruściel 2004]; for recently announced work by Huisken which explores the rela-
tion between isoperimetric inequalities and the mass of asymptotically flat metrics,
see [Huisken 2005; 2006].

2. Preliminaries

We recall the isoperimetric problem and introduce the families of metrics (Schwarz-
schild, Reissner–Nordstrom, and Schwarzschild AdS) whose isoperimetric profiles
we will discuss.

Isoperimetric problems. The isoperimetric problem is the classical problem of
how to enclose a given volume V with a surface of least area. In Euclidean and
hyperbolic space, homogeneity allows one to conclude that if a volume V can be
enclosed with a surface of area A, a volume V0 < V can be enclosed with an area
A0 < A. In general spaces, one can pose an isoperimetric problem to find the
minimum area that encloses a volume of at least V . It is a classical result that in
Euclidean and hyperbolic spaces, the most efficient way to enclose a volume V is
by using a sphere [Chavel 1993; Howards et al. 1999]. We will in fact consider the
problem of minimizing volume against a (two-sided) hypersurface 60; that is, we
consider the problem of finding least-area enclosures in the homology class of 60

of net volume (at least) V with 60.

The metrics of interest. We will focus on three families of spherically symmetric
metrics which appear as constant time slices in well-known solutions of the Ein-
stein equations of general relativity. Let S2 be the two-dimensional sphere and let
d�2 be the standard round metric on the unit two-sphere. Each of the following
metrics is defined on the smooth manifold (r0,+∞)×S2, where m> 0, and r0> 0
is specified below:

(1) Schwarzschild metric:(
1− 2m

r

)−1
dr2
+ r2 d�2, r0 = 2m.

(2) Schwarzschild AdS metric:(
1+ r2

−
2m
r

)−1
dr2
+ r2 d�2, where r0 satisfies 1+ r2

0 −
2m
r0
= 0.

(3) Reissner–Nordstrom metric:(
1− 2m

r
+

Q2

r2

)−1
dr2
+ r2d�2,
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where m2 > Q2 and r0 is the larger solution of

1−
2m
r0
+

Q2

r2
0
= 0.

The parameter m measures the deviation (in the third example, the top-order devi-
ation) of the metrics from the model Euclidean or hyperbolic metrics. It is called
the mass, and indeed it has an interpretation in terms of the energy of isolated
gravitational systems [Bray 2002; Bray and Chruściel 2004]. See the Appendix for
useful formulas (Christoffel symbols, curvatures) for these metrics. Each metric
extends to r0, where there is a minimal sphere (horizon) Sr0 . This minimal sphere
is in fact totally geodesic, and the metrics can be smoothly reflected across the
horizon (using inversion in the horizon sphere with respect to the metric distance
along radial geodesics) to produce complete metrics with two ends. These metrics
are conformally flat; for example, the extended Schwarzschild metric in appropriate
coordinates is precisely

(
1+m/(2r)

)4
δ, where δ is the Euclidean metric. In these

coordinates the horizon is located at r = m/2, and the inversion r 7→ m2/(4r) is
an isometry.

The Schwarzschild metric with m > 0 can be isometrically embedded into the
Euclidean space R4 as the set {(x, y, z, w) : r = w2/(8m) + 2m}, where r2

=

x2
+ y2
+ z2. To see this, we look for an embedding which in terms of spherical

coordinates on Schwarzschild is of the form (r, ω) 7→ (rω, ξ(r)) ∈ R4. Using the
above form of the Schwarzschild metric, we see that the map is an isometry if and
only if (ξ ′(r))2+ 1= (1− 2m/r)−1, which can be rewritten (choosing ξ ′(r) > 0)
as

ξ ′(r)=

√
2m

r−2m
.

We note that ξ(r)=
√

8m(r − 2m) does indeed satisfy this equation. Interestingly
enough, this derivation breaks down for m < 0; however (as was pointed out to
us by Greg Galloway and Hubert Bray), the same idea can be pushed through
in the negative mass case to obtain an isometric embedding of the negative mass
Schwarzschild into Minkowski space.

The Einstein constraint equations. The three families of metrics above give par-
ticular solutions to the Einstein constraint equations, as we now recall. The Einstein
equations for the corresponding four-dimensional Lorentzian spacetimes (S, ḡ)
in which these three-dimensional Riemannian spaces embed as totally geodesic
spacelike slices are Ric(ḡ) = 0, Ric(ḡ) = −3ḡ, and Ric(ḡ) − 1

2 R(ḡ)ḡ = 8πT ,
respectively, where T is the stress-energy tensor of a Maxwell field [Wald 1984].
Consider in general any spacetime (S, ḡ) satisfying one of these Einstein equa-
tions; then the Gauss and Codazzi equations (together with the Einstein equation)
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imply constraint equations on the geometry (intrinsic and extrinsic) of spacelike
slices. If g is the induced metric and II the second fundamental form (with trace
H ) of a spacelike slice, then using the Einstein equation along with the Gauss
equation, we obtain the Hamiltonian constraint, which in the first two cases yields
R(g)−‖II‖2+ H 2

= 0 and R(g)−‖II‖2+ H 2
=−6, respectively. In the totally

geodesic case (II = 0), these constraints reduce to the condition of constant scalar
curvature R(g) = 0 or R(g) = −6, respectively; in the case of a maximal slice
(H = 0), the constraints imply the inequalities R(g)≥ 0 and R(g)≥−6. Similarly,
the (totally geodesic) Einstein–Maxwell constraint equations for a metric g and
an electromagnetic field E are given by the Hamiltonian constraint R(g) = 2|E |2

coupled with the Maxwell field equation divg E=0. If we let er be the unit outward
radial vector, and couple the field E= (Q/r2)er to the Reissner–Nordstrom metric,
we produce a solution to the Einstein–Maxwell constraints.

On the isoperimetric inequality and the mass. In Euclidean space, the isoperimet-
ric inequality for a closed surface6 of area A enclosing a volume V can be written
V ≤ A3/2/(6

√
π), with equality precisely when 6 is a round sphere. We compare

this to Schwarzschild, where (using Corollary 3.5) it is easy to compute the volume
V (σ ) enclosed by the isoperimetric sphere of area σ . In fact, if we use the confor-
mally flat coordinates for Schwarzschild, in which the metric is (1+m/(2r))4δ,
we have

A(Sr )= 4πr2
(

1+ m
2r

)4
.

Thus
A(Sr )

3/2

6
√
π
=

4π
3

r3
(

1+ 3m
r
+mO

( 1
r2

))
.

The net volume enclosed by Sr has the expansion

4π
∫ r

m/2

(
1+ m

2t

)6
t2 dt = 4π

3
r3
(

1+ 9m
2r
+mO

( 1
r2

))
.

From this it is easy to see that the volume enclosed by the isoperimetric sphere of
area σ has the expansion

V (σ )=
σ 3/2

6π1/2

(
1+

(3
√
π)m
√
σ
+mO

( 1
σ

))
.

This is yet another quantitative way in which the mass m measures the deviation
of the geometry from that of Euclidean, which is explored in the recent work of
Huisken [2005; 2006].
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3. Isoperimetric profiles by comparison

We review the isoperimetric comparison theorem of Bray and Morgan and apply
it to the Schwarzschild and Reissner–Nordstrom spaces. Let I ⊂ R be an inter-
val. Suppose we have a rotationally symmetric model space M0 = I × S2 with
the twisted product metric dr2

+ ϕ2
0(r) d�2 for which we know the isoperimetric

surfaces are the radially symmetric spheres Sc = {r = c}. We consider another
rotationally symmetric space M= I×S2 with the metric dr2

+ϕ2(r) d�2. Bray and
Morgan showed that under certain geometric conditions, the isoperimetric surfaces
in M are also the radially symmetric spheres. We now recall their argument, which
as in [Bray and Morgan 2002] can be more generally applied to twisted products
I × N with a closed manifold fiber N .

Let F : M → M0 map radially symmetric spheres in M to radially symmetric
spheres in M0, so that F(r, ω)= (ψ(r), ω). We assume that ψ is increasing, so that
F is orientation-preserving. We define the area stretch AS6 for a surface 6 ⊂ M
by the equation F∗(dAF(6)) = AS6 dA6 , where dA6 and dAF(6) are the area
forms of 6 ⊂ M and F(6)⊂ M0, respectively. The volume stretch VS is defined
similarly by F∗(dVM0)=VS dVM , where dVM and dVM0 are the volume forms of
M and M0, respectively. By symmetry, VS depends only on r . Finally, let A(6) be
the area of the surface 6 ⊂ M , and let A0(60) be the area of the surface 60⊂ M0.

Let a = A(Sr1)/A0(F(Sr1)). Suppose the map F can be constructed so that the
area stretch under F satisfies AS6 ≤ 1/a, so the volume stretch satisfies VS(r)≤ b
for r < r1, and VS(r) ≥ b for r > r1. Now suppose there were a surface 6 ⊂ M
bounding nonnegative net volume against Sr1 (that is, 6 bounds no less volume
against Sr0 than Sr1 does), so that6 has the same or less surface area as Sr1 . We will
show that in fact A(6)= A(Sr1), which will then imply that Sr1 is an isoperimetric
surface. Since the volume stretch for r > r1 is no less than the volume stretch for
r < r1, the net volume bounded by F(6) contained in {r >ψ(r1)} is no less than
the net volume bounded by F(6) contained in {r < ψ(r1)}. Thus the net volume
bounded by F(6) is greater than or equal to the volume bounded by F(Sr1). Since
the area stretch AS6 ≤ 1/a = A0(F(Sr1))/A(Sr1), and A(6)≤ A(Sr1), we obtain

A0(F(6))=
∫

F(6)
dAF(6) =

∫
6

F∗dAF(6) =

∫
6

AS6 dA6

≤
1
a

A(6)= A0(F(Sr1))
A(6)
A(Sr1)

≤ A0(F(Sr1)).

Since F(Sr1)= Sψ(r1) is an isoperimetric surface in M0, F(6) and F(Sr1)must thus
bound the same amount of volume and have the same surface areas, A0(F(6))=
A0(F(Sr1)). Thus the inequalities above must be equalities, and we see that indeed
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A(6) = A(Sr1). Therefore we have shown by comparison that Sr1 is an isoperi-
metric surface in M ; if we have uniqueness for the isoperimetric surfaces, we can
go further to assert 6 = Sr1 .

To put this observation to work, one identifies concrete geometric conditions
that allow such a map F to be constructed. Indeed the main theorem in [Bray and
Morgan 2002] is stated in geometric terms from which the following is readily
established as a corollary. We note that the comparison space M0 for this corollary
is Euclidean space, so the comparison metric is dr2

+ r2 d�2.

Theorem 3.1 [Bray and Morgan 2002]. Consider a rotationally symmetric three-
manifold M = I × S2 with the metric dr2

+ ϕ2(r) d�2. Suppose (1) ϕ′ is non-
decreasing for all r , and (2) 0 ≤ ϕ′ ≤ 1 for all r ≥ r0. Then for all r ≥ r0,
the radially symmetric spheres Sr minimize surface area among smooth surfaces
enclosing the same volume with Sr0 , where volume inside {r < r0} is counted as
negative. Furthermore, these spheres are unique minimizers if ϕ′(r) < 1.

Condition (1) holds if and only if M has nonpositive radial Ricci curvature.
For any r , condition (2) holds if and only if Sr has nonnegative (inward) mean
curvature and M has nonnegative tangential sectional curvature, or equivalently,
Sr has nonnegative Hawking mass.

We take the mean curvature to be the trace of the second fundamental form (the
sum of the principal curvatures), not the average of the principal curvatures as in
[Bray and Morgan 2002]. We recall the Hawking mass of a surface 6 is

m H (6)=

√
A(6)
16π

(
1− 1

16π

∫
6

H 2 dA
)
.

We will see the Hawking mass play a role in the Penrose inequality below; in fact,
the underlying motivation for the Huisken–Ilmanen inverse mean curvature flow is
the monotonicity of the Hawking mass under the flow [Geroch 1973].

We are interested in spaces (M, g) with M = I ×S2 and with g = f (r) dr2
+

r2 d�2, where f is a positive function. The metrics which we study here, in both
the forms given above and for the metrics suitably extended by reflection, all have
this form. In order to apply Theorem 3.1 to such spaces, we note:

Lemma 3.2. The metric g= f (r) dr2
+r2d�2 can be written as a twisted product

metric g = dt2
+ϕ2(t) d�2, where ϕ(t) > 0.

Proof. The result is equivalent to dt =
√

f (r) dr , for r = ϕ(t). We integrate to find
t = t (r); by the equation t is increasing, and we write the inverse as r = ϕ(t). �

Theorem 3.3. Consider the space M = I ×S2 with metric g = f (r) dr2
+r2d�2.

Suppose f ′(r)≤0 for all r and f (r)≥1 for r ≥ r0. Then every sphere of revolution
Sr for r ≥ r0 minimizes perimeter among smooth surfaces enclosing fixed volume
with Sr0 , uniquely if f (r) > 1 for r ≥ r0.
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Proof. It suffices to show that M satisfies the conditions for Theorem 3.1, in par-
ticular that M has nonpositive radial Ricci curvature, Sr has nonnegative mean
curvature (with respect to the inward unit normal), and M has nonnegative tan-
gential sectional curvature. For indices, let (1, 2, 3) represent (r, φ, θ). We find
R12= R13= 0 and R11= f ′/(r f ) (see the Appendix), so the radial Ricci curvature
is nonpositive if and only if f ′≤ 0. We know that HSr = 2/(r

√
f ) > 0 as required.

We compute the sectional curvature K of the plane containing ∂φ and ∂θ as

K =
g33 R3

232

g22g33− (g23)2
=

(
1− 1

f (r)

)
r2 sin2 φ

r2r2 sin2 φ− 02
= r−2

(
1− 1

f (r)

)
Thus K ≥ 0 if and only if f ≥ 1. The spheres Sr are uniquely minimizing provided
f > 1. �

Remark 3.4. It is often convenient to consider the function 1/ f instead of f . If
h= 1/ f , f ′=−h′/h2, so f ′≤ 0 if and only if h′≥ 0. To check if f ≥ 1, we check
if h ≤ 1 and similarly for strict inequality, in which case the tangential sectional
curvature is strictly positive.

The Schwarzschild profile. We let g be the Schwarzschild metric with m > 0,
which we recall has the form (1−2m/r)−1 dr2

+ r2 d�2 on (2m,+∞)×S2. We
recall the following result from [Bray 1997], proved as in [Bray and Morgan 2002].

Corollary 3.5 [Bray 1997]. In the Schwarzschild metric with positive mass m > 0,
every sphere of revolution Sr for r ≥ 2m uniquely minimizes perimeter among
smooth surfaces enclosing fixed volume with the horizon S2m .

Proof. Let h(r)= 1−2m/r . We note h(r)= 1−2m/r < 1 for positive mass. Also,
h′(r) = 2m/r2 > 0, so by Theorem 3.3, every sphere of revolution Sr for r ≥ 2m
uniquely minimizes perimeter among smooth surfaces enclosing fixed volume with
the horizon S2m . �

Remark 3.6. Of course if we consider the full Schwarzschild space with reflection
symmetry, then uniqueness is with respect to one chosen end. Similar considera-
tions apply to Reissner–Nordstrom and Schwarzschild AdS below.

The Reissner–Nordstrom profile. Let g be the Reissner–Nordstrom metric, which
on (r0,∞)×S2 takes the form g = h(r)−1 dr2

+ r2 d�2, with

h(r)= 1−
2m
r
+

Q2

r2 .

We shall assume m2 > Q2, so that h has two positive roots, and we take r0 to be
the larger of the two. Then r0 > m > Q2/m.
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Corollary 3.7. In Reissner–Nordstrom with m2 > Q2, every sphere of revolution
Sr for r ≥ r0 uniquely minimizes perimeter among smooth surfaces enclosing fixed
volume with Sr0 .

Proof. We have h(r) < 1 for r > Q2/(2m). We also have h′(r)= 2m/r2
−2Q2/r3,

so that h′(r) ≥ 0 for r ≥ Q2/m. Both conditions of Theorem 3.3 hold for r ≥ r0,
so every sphere of revolution Sr for r ≥ r0 uniquely minimizes perimeter among
smooth surfaces enclosing fixed volume with Sr0 . �

4. Isoperimetric profile for Schwarzschild AdS

We now let the comparison space M0 be hyperbolic three-space with hyperbolic
metric (1+r2)−1 dr2

+r2 d�2. Consider M= (r0,∞)×S2 with the Schwarzschild
AdS metric g=

(
1+ r2

− 2m/r
)−1 dr2

+r2 d�2. We will construct a comparison
map F :M→M0 given by F(r, ω)= (ψ(r), ω) to show that the radially symmetric
spheres are the isoperimetric surfaces in Schwarzschild AdS space.

We will be concerned with two particular types of area stretches. The first one
encodes the area stretch for a radially symmetric sphere, F∗(dAF(Sr ))=AS1 dASr :

AS1(r)=

∫
S2
ψ2(r)dAS2∫

S2
r2 dAS2

=
ψ2(r)

r2 .

For example, in the previous section, we had AS1 = 1/a.
The second stretch factor encodes the area stretch for an annular surface 6 =

J ×S1 (J ⊂ (r0,+∞)), obtained by flowing some great circle S1 (with element
of arclength ds) along the radial direction field ∂r , F∗(dAF(6))= AS2 dA6:

AS2(r)=

d
dr

∫ ψ(r)

ψ(r0)

∫
S1
ρ(1+ ρ2)−1/2 ds dρ

d
dr

∫ r

r0

∫
S1
ρ(1+ ρ2

− 2m/ρ)−1/2 ds dρ
=
ψ(r)(1+ψ2(r))−1/2ψ ′(r)

r(1+ r2− 2m/r)−1/2 .

The volume stretch VS, where F∗(dVM0)= VS dVM , is given by

VS(r)=

d
dr

∫ ψ(r)

ψ(r0)

∫
S2
ρ(1+ρ2)−1/2 dAS2 dρ

d
dr

∫ r

r0

∫
S2
ρ2(1+ρ2

−2m/ρ)−1/2 dAS2 dρ
=
ψ2(r)(1+ψ2(r))−1/2ψ ′(r)

r2(1+r2−2m/r)−1/2 .

Note that VS=
√

AS1AS2.

Lemma 4.1. The area stretch AS6 for any surface does not exceed the maximum
of AS1 and AS2.
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Proof. By dimension considerations, if 6 is any smooth surface, Tp6 contains at
least one tangent direction to the radial sphere through p. We let E1 be such a unit
vector; let E2 be an orthogonal unit vector tangent to the radial sphere, and let E3

be the unit outward radial vector. There exist α and β with α2
+ β2

= 1 so that
αE2+βE3 ∈ Tp6. We have by orthogonality

AS6 = dAF(6)(F∗(E1), αF∗(E2)+βF∗(E3))=
∣∣F∗(E1)

∣∣ ∣∣αF∗(E2)+βF∗(E3)
∣∣

=
ψ(r)

r

√
α2ψ(r)

2

r2 +β2 (ψ
′(r))2((1+ψ(r))−1

(1+ r2− 2m/r)−1 .

Thus AS2
6 = α

2AS2
1+β

2AS2
2, from which the claim follows. �

As above, we will produce a map F : M → M0 with the following properties:
at r = r1, the area stretch AS1(r1) = 1/a and the volume stretch VS(r1) = b, for
some a, b > 0; for all 6, AS6 ≤ 1/a; VS(r) ≥ b for r > r1, and VS(r) ≤ b
for r < r1. By the lemma, it suffices to show that AS1,AS2 ≤ 1/a everywhere.
(The construction in [Bray and Morgan 2002] uses only the parameter a, in which
case VS(r1) = 1/a; this suffices for the asymptotically flat cases above, but we
require slightly more flexibility in constructing the map F in the asymptotically
hyperbolic case, and so we introduce the parameter b.) As above, it follows that
for any competitor surface6 bounding at least as much volume as Sr1 with equal or
less surface area, the image F(6) will bound no less volume with no more surface
area than F(Sr1). (In hyperbolic space M0, we can shrink F(6) to produce a
surface 6′ bounding the same volume as F(Sr1) with less or equal surface area.)
But the radially symmetric spheres are isoperimetric surfaces in hyperbolic space
M0, so all previously mentioned area and volume inequalities must be equalities;
hence radially symmetric spheres are isoperimetric surfaces in M . Furthermore,
if the maximal area stretch is strictly tangential (AS2 < 1/a), radially symmetric
spheres are the unique isoperimetric surfaces in M .

Theorem 4.2. In Schwarzschild AdS, every sphere of revolution Sr uniquely mini-
mizes perimeter among smooth surfaces enclosing fixed volume with Sr0 .

Proof. First we consider r1 > 2m. Let a = 1− 2m/r1 < 1, and define F using
ψ(r)= a−1/2r for all r ≥ r0. Then AS1 = 1/a everywhere. Also

AS2(r)=

√
1+ r2− 2m/r

a
√

1+ a−1r2
.

Hence AS2(r)< 1/a is equivalent to 1−2mr−3< 1/a. Since 1−2mr−3< 1< 1/a
for all r > 0, the maximal area stretch equals AS1 = 1/a, is strictly tangential, and
occurs on Sr1 .
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At at r = r1, we have AS2(r1) = a−1/2, while AS2(r)→ a−1/2 as r →∞. We
have

d
dr

(
1+r2

−2m/r
1+a−1r2

)
=
(2r+2m/r2)(1+a−1r2)−(1+r2

−2m/r)(2a−1r)
(1+a−1r2)2

=
2(a−1)r3

+6mr2
+2am

ar2(1+a−1r2)2
.

The cubic numerator has a positive local minimum at r = 0 and one other critical
point at some r > 0, so in particular it has only one root (which is positive). Thus
AS2 has a unique maximum on the set r ≥ r0. Since AS2 decreases to a−1/2 as
r→∞, the maximum occurs on (r1,∞), and on this interval

AS2(r) > AS2(r1)= a−1/2.

Hence VS(r) =
√

AS1(r)AS2(r) ≤ a−1/2 a−1/2
= 1/a for r ≤ r1, and VS(r) =

√
AS1(r)AS2(r)≥ a−1/2 a−1/2

= 1/a for r ≥ r1. Since areas and volumes stretch
in the required manner, Sr are the unique isoperimetric surfaces for r > 2m.

Now suppose r1 ≤ 2m. Choose a ∈ (0, 1) and let ψ(r)= a−1/2r for all r ≥ r0.
Then AS1 = 1/a and AS2 < 1/a everywhere as before. Note that at r = r1,
AS2(r1) < a−1/2 since 1− 2m/r1 ≤ 0. As before, AS2 has a unique maximum
for r ≥ r0 and AS2 decreases to a−1/2 as r→∞. Hence the maximum occurs for
some rmax > r1, and AS2 is increasing on (r0, rmax). Thus the volume stretch VS=
a−1/2AS2 is also increasing on (r0, rmax), and so VS(r)≤ b := VS(r1) for r < r1,
and VS(r)≥ b for r ∈ [r1, rmax ]. Furthermore, b=VS(r1)=

√
AS1(r1)AS2(r1) <

1/a, so for r > rmax , VS(r)=
√

AS1(r)AS2(r)≥1/a>b. Since areas and volumes
stretch in the required manner, Sr are the unique isoperimetric surfaces for r ≤ 2m.

�

5. Remarks on the negative mass Schwarzschild

If we let the mass m be negative in the formula (1−2m/r)−1 dr2
+r2 d�2 for the

Schwarzschild metric, we obtain an inextendible metric with no minimal sphere.
The coordinates are only singular at the origin; in fact the metric is incomplete,
as radial geodesics have finite length as r → 0+, but the Ricci tensor blows up
on approach to the origin. The Bray–Morgan construction for the positive-mass
Schwarzschild does not extend to the negative mass case; in fact we will show
below that radial spheres are unstable.

Instability of the radial spheres. We consider now the variations of area and vol-
ume enclosed by the coordinate spheres, and compute the second variation of area
with respect to volume-preserving perturbations. The variation formulas are stan-
dard [Chavel 1993; Taylor 1996]. We note that H below is the trace of the second
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fundamental form computed with respect to the inward unit normal −ν, which
accounts for a sign difference from some versions of the variation formulas.

We consider a smooth family of surfaces 6t obtained from 6 = 60 using the
variation field given by V (x, t) = η(x, t)ν(x, t). Then we have the first variation
A′(t)=

∫
6t

Hη dA, and the second variation

A′′(0)=
∫
6

(
η
(
−16η− η‖II‖2− ηRic(ν, ν)

)
+ H

∂η

∂t
+ H 2η2

)
dA.

The first variation of volume V (t) inside 6t is given by V ′(t) =
∫
6t
η dA, so the

second variation is V ′′(t)=
∫
6t
(Hη2

+ ∂η/∂t) dA.
The radial spheres6= Sr have constant mean curvature, and hence they are crit-

ical points for the area functional with respect to volume-preserving perturbations.
Indeed, from the variation of volume formula, we have 0=V ′(0)=

∫
6
η dA, which

implies that A′(0)= 0 too. If we now consider the second variation at Sr , since the
mean curvature H is constant we have 0 = H V ′′(0) =

∫
Sr
(H 2η2

+ H∂η/∂t) dA.
Thus the second variation formula simplifies; if we also apply the divergence the-
orem to the first term, we then have

A′′(0)=
∫

Sr

(
|∇

6η|2− η2
‖II‖2− η2 Ric(ν, ν)

)
dA.(5-1)

From the Appendix we have ν=
√

1− 2m/r ∂r , Ric(ν, ν)=−2m/r3 and ‖II‖2=
(2/r2)(1− 2m/r). When we plug this into the preceding equation we get

A′′(0)=
∫

Sr

(
|∇

6η|2− η2 2
r2

(
1− 3m

r

))
dA.

It is well known [Axler et al. 1992] that the lowest nonzero eigenvalue λ1 for
the Laplacian on a round two-sphere S2

κ of curvature κ is λ1= 2κ , with eigenspace
spanned by the restriction of the coordinate functions x , y, z to the sphere (iso-
metrically embedded in R3 centered at the origin): e.g., 1S2

κ
(x)=−2κx . We now

invoke the Poincaré inequality we obtain from the decomposition of L2(6) by the
eigenspaces of the Laplacian [Chavel 1993]: λ1

∫
6
η2 dA ≤

∫
6
|∇

6η|2 dA, for all
η with

∫
6
η dA = 0; equality holds precisely for functions in the λ1-eigenspace.

Applying this with 6 = Sr we have λ1 = 2/r2, so that

A′′(0)≥
∫

Sr

6m
r3 η

2 dA,(5-2)

with equality if and only if η is in the λ1-eigenspace. We see from this that in
the positive mass Schwarzschild case, the second variation must be positive for
(nontrivial) volume-preserving deformations (which we knew already from the
isoperimetric profile) . But in the negative mass case, we see that for η a coordinate
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function, the right-hand side of (5-2) is negative. We note that η(x, t)= x does not
satisfy V ′′(0)= 0. To satisfy this condition, we can let η0(x, t)= x+αt , where α is
a constant chosen precisely so that V ′′(0)=0. Then η0 generates a deformation that
preserves volume to second order; from here it is not hard to modify the variation
by a scaling to preserve volume, and so that the corresponding η has first-order
Taylor expansion η0. Another way to see that the spheres do not minimize area for
a given volume is by considering the variation η0ν. Since this variation leaves the
volume unchanged to second-order in t , the change in volume is O(t3). Now, the
volume V (Sr ) enclosed by the radial spheres satisfies

dV (Sr )

dr
=

4πr2
√

1− 2m/r
> 0,

so the radius r(t) of the radial sphere with volume V (t) is such that (r(t)− r) =
O(t3). So the area A(Sr(t))= A(Sr )+ O(t3), and thus A′′(0) < 0 implies that for
some C and small t>0, the area A(t) of6t satisfies A(t)< A(Sr )−Ct2< A(Sr(t)).
This should not be surprising by considering the growth of the volume for small r :

V (Sr )= 4π
∫ r

0
t2

√
1

1− 2m/t
dt < 4π

∫ r

0
t2
√

t
2|m|

dt = O(r7/2).

This volume growth is slower than for the Euclidean metric dr2
+ r2d�2, but the

radial spheres have the same area as in the Euclidean metric, so that it is more effi-
cient to slide them off-center. It might be interesting to consider the isoperimetric
problem in this singular space, and whether optimizing shapes tend to singular
varieties that go through the singular point.

6. The Penrose inequality from isoperimetric techniques

The Riemannian Penrose inequality is a lower bound on the ADM mass of an
asymptotically flat metric of nonnegative scalar curvature in terms of the areas of
certain horizons. There are a host of partial results, including the isoperimetric
approach of [Bray 1997], and then there are the proofs of [Huisken and Ilmanen
2001] and [Bray 2001]. We state the version from the latter reference.

Theorem 6.1 (Penrose Inequality). Let (M, g) be asymptotically flat with R(g)≥0.
Let m be the ADM mass of an end, and let A be the total surface area of the
outermost minimal spheres with respect to this end. Then m ≥

√
A/(16π).

Various analogues of this inequality have been sought [Bray and Chruściel 2004],
including asymptotically hyperbolic versions and versions with charge. We discuss
an example each for both types, to illustrate that the beautiful arguments of Bray
[1997] which connect the isoperimetric profiles to the Penrose inequality extend
to the context of the isoperimetric profiles obtained above.
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Variation of area along an isoperimetric profile. We again consider the isoperi-
metric problem of minimizing area for volume V between a horizon and competitor
surfaces in the homology class of the horizon. We assume we have an isoperimetric
profile 6(V ), each surface of which is connected. The objective in the next sec-
tions will be to establish that a mass function m(V ) associated with the Hawking
mass function m H (6(V )) determined by the isoperimetric profile is nondecreasing,
for which we now derive a key inequality. We compute the variation of the area
function A(V ) of the profile, where we employ the harmless abuse of notation,
A(V ) := A(6(V )), and we note that A(0) = A(60). The area function of the
isoperimetric profile may not be smooth in V , so that this fact is established in a
weak but sufficient form. To be precise, for each V0 > 0, we let AV0(V ) be the
area of the surface obtained by flowing 6(V0) in the outward normal direction at
unit speed until the volume enclosed with the horizon is V . AV0 will be smooth
for V near V0. Moreover, AV0(V0)= A(V0) and AV0(V ) ≥ A(V ). Thus if A were
smooth, then A′(V0) = A′V0

(V0) and A′′(V0) ≤ A′′V0
(V0); so an inequality for the

derivatives of AV0 at V0 can be interpreted as a weak (distributional) inequality for
the derivatives of A. We let 6t

V0
be the surface obtained by flowing 6(V0) for time

t , and let V (t) be the volume this surfaces encloses with the horizon. Then, by the
equations of variation (as recalled in the preceding section), we have

d
dt
(AV0(V (t)))=

∫
6t

V0

H dA,
dV
dt
= AV0(V (t)),

so that

d
dV

(AV0(V ))= A′V0
(V )=

∫
6t

V0

H dA

AV0(V (t))
.

By the second variation of area formula we obtain (since η = 1)

AV0(V0)
2 A′′V0

(V0)=

∫
6(V0)

(
−‖II‖2−Ric(ν, ν)+ H 2) dA.

Taking the trace of the Gauss equation gives Ric(ν, ν)= 1
2 R−K+ 1

2(H
2
−‖II‖2),

where R = R(g) is the scalar curvature of the ambient three-space and K is the
Gauss curvature of the surface. We obtain

AV0(V0)
2 A′′V0

(V0)=

∫
6(V0)

(
−

1
2 R+ K − 1

2 H 2
−

1
2‖II‖

2) dA.

Since 6(V0) has only one component by assumption,∫
6(V0)

K dA = 2πχ(6(V0))≤ 4π
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by the Gauss–Bonnet theorem. Since ‖II‖2 ≥ 1
2 H 2, we arrive at the inequality

AV0(V0)
2 A′′V0

(V0)≤ 4π +
∫
6(V0)

(− 1
2 R− 3

4 H 2) dA,(6-1)

which we apply below.

Penrose inequality for some solutions of the Einstein–Maxwell constraints. We
now discuss the Penrose Inequality in the context of a certain class of solutions
to the Einstein–Maxwell constraints. As noted in [Weinstein and Yamada 2005],
in the case of a connected horizon, the Huisken–Ilmanen proof can be carried
through to prove the Penrose inequality that we discuss below, under less restrictive
assumptions. We also remark that Weinstein and Yamada [2005] showed that for
multiple-component horizons, a natural related Penrose inequality fails.

Proposition 6.2. Assume (M, g, E) is an asymptotically flat solution of the Ein-
stein–Maxwell constraints R(g) = 2|E |2, divg(E) = 0, which outside a compact
set agrees with Reissner–Nordstrom data on the exterior of a ball, with mass m
and charge Q, and m > |Q|. Suppose furthermore that M has only one horizon
60 and admits a connected isoperimetric profile (with respect to 60) 6(V ), so
that for sufficiently large V , 6(V ) is a spherically symmetric sphere in Reissner–
Nordstrom. Then

m ≥

√
A(60)

16π
+

Q2

2r0
=

1
2

(
r0+

Q2

r0

)
,

where r0 is defined by A(60)= 4πr2
0 .

Proof. We have established the isoperimetric profile for Reissner–Nordstrom in
Corollary 3.7. We discuss the calculations that relate the mass to the Hawking
mass of the isoperimetric surfaces for the model. Since solutions (g, E) of the
Einstein–Maxwell constraints have nonnegative scalar curvature R(g)= 2|E |2, we
have from (6-1)

AV0(V0)
2 A′′V0

(V0)≤ 4π −
∫
6(V0)

(|E |2+ 3
4 H 2) dA

= 4π − 3
4 H 2 AV0(V0)−

∫
6(V0)

|E |2 dA.

Since E is divergence-free, the flux integral
∫
6

E iνi dA is a homological invari-
ant, and thus is just 4πQ. The preceding inequality thus yields (using Cauchy–
Schwarz)

AV0(V0)
2 A′′V0

(V0)≤ 4π − 3
4 H 2 AV0(V0)−

(4πQ)2

A(V0)
.
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Since A′V0
(V0)= H , this can, as noted above, be interpreted as a weak formulation

of

A′′(V )≤
4π

A(V )2
−

3A′(V )2

4A(V )
−
(4πQ)2

A(V )3
.

Equivalently, for F = A3/2 we have

(6-2) F ′′(V )≤
36π − F ′(V )2− 144π2 Q2 F(V )−2/3

6F(V )
.

We will work with the mass function m(V ), defined by

m(V )=
F(V )1/3

144π3/2

(
36π − F ′(V )2

)
+
√
π Q2 F(V )−1/3.

If F(V ) were smooth, we would have

m′(V )=
1
3 F ′(V )(F(V ))−2/3

144π3/2

×
(
(36π − (F ′(V ))2)− 6F(V )F ′′(V )−

√
πQ2(F(V ))−2/3).

In view of (6-2), and since F(V ) is nondecreasing (there being only one horizon),
m(V ) is a nondecreasing function. Actually this statement requires some care
to prove, since the function F(V ) may fail to be smooth, so one would need to
check directly that m′(V )≥ 0 in the sense of distributions, that is, by pairing with
appropriate test functions. We omit the details.

If Q = 0, the mass function is the Hawking mass of the isoperimetric surface
bounding a volume V , since F ′(V )= 3

2 A(V )1/2 A′(V )= 3
2 A(V )1/2 H implies

m(V )=
A(V )1/2

144π3/2

(
36π − 9

4 A(V )H 2)
+
√
π Q2 F(V )−1/3

=

√
A(V )
16π

(
1−

∫
6(V )

H 2

16π

)
+
√
π Q2 F(V )−1/3.

Since H = 0 at the horizon, we have

m(0)=

√
A(0)
16π
+

Q2

2r0
.

For V sufficiently large 6(V ) is a radial sphere Sr in Reissner–Nordstrom, so
m(V ) is the Hawking mass of Sr plus the charge term:

m(V )=

√
4πr2

16π

(
1− 4πr2 1− 2m/r + Q2/r2

4πr2

)
+

Q2

2r
= m.
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Hence m = lim
V→+∞

m(V )≥ m(0), giving us a Penrose Inequality with charge:

m ≥

√
A(0)
16π
+

Q2

2r0
=

1
2

(
r0+

Q2

r0

)
. �

We now briefly sketch how to use this result to conclude the Penrose inequality
holds for more general asymptotically flat solutions (M, g, E) of the Einstein–
Maxwell constraints. We cite a condition (C1) from [Bray 1997]: there is only one
horizon, and for V > 0, if one or more isoperimetric surfaces exists for this volume
V , then at least one of these surfaces has only one component. This condition is not
required in [Bray 2001], [Huisken and Ilmanen 2001], for which if there is more
than one horizon, one considers the outermost horizons in any end. We have an ap-
proximation result from [Corvino≥2007] which allows us to normalize the asymp-
totics: asymptotically flat solutions (M, g, E) of the Einstein–Maxwell constraints
admit approximations by data which agree with suitable Reissner–Nordstrom data
in each end, where the perturbation is localized near infinity. Assuming condition
(C1) holds after this perturbation, one shows that the isoperimetric surfaces 6(V )
exist and agree with those of Reissner–Nordstrom for sufficiently large V . The
proof of these claims should actually follow from the proofs in [Bray 1997] for
the Schwarzschild case; much of the construction relies on the geometry being
asymptotically flat and spherically symmetric near infinity, and a main technical
theorem which is used in the proof is an inequality in Euclidean space, which
carries over to Schwarzschild (as used by Bray) and Reissner–Nordstrom for large
radii by perturbation. Since the Penrose inequality

m ≥

√
A(0)
16π
+

Q2

2r0

in this case also follows from [Huisken and Ilmanen 2001], we omit the technical
details.

On the Penrose inequality for asymptotically Schwarzschild AdS spaces. We now
show that the analogous mass function m(V ) (if it exists) will be nondecreasing
in an asymptotically Schwarzschild AdS space. In general, the mass of asymptoti-
cally hyperbolic spaces is more subtle than for asymptotically flat spaces; compare
[Chruściel and Herzlich 2003; Wang 2001; Zhang 2004]. We are only discussing
below a class of asymptotically hyperbolic spaces with a spherical infinity and with
special asymptotics.

In the next proposition, we mean by horizon that60 has (inward) mean curvature
H = 2 [Bray and Chruściel 2004].

Proposition 6.3. Assume (M, g) is a three-manifold with R(g) ≥ −6, which out-
side a compact set is isometric to an exterior of a ball in Schwarzschild AdS space
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of mass m > 0. Suppose furthermore that M has only one horizon 60 and admits a
connected isoperimetric profile (with respect to 60) 6(V ), so that for sufficiently
large V ,6(V ) is the spherically symmetric sphere in Schwarzschild AdS of volume
V . Then

m ≥

√
A(60)

16π
.

Proof. Schwarzschild AdS is asymptotic to hyperbolic three-space, so the defini-
tions and computations change slightly from above. We begin by putting R(g) ≥
−6 into inequality (6-1) to obtain

AV0(V0)
2 A′′V0

(V0)≤3AV0(V0)+4π−
∫

6(V0)

3
4 H 2 dA=3AV0(V0)+4π− 3

4 H 2 AV0(V0).

Hence

A′′V0
(V0)≤

3
AV0(V0)

+
4π

AV0(V0)2
−

3A′V0
(V0)

2

4AV0(V0)
.

Since by definition A(V0) = AV0(V0) and A(V ) ≤ AV0(V ), we have the weak
inequality

A′′(V )≤
3

A(V )
+

4π
A(V )2

−
3A′(V )2

4A(V )
,

or equivalently, for F = A3/2,

(6-3) F ′′(V )≤
27F(V )2/3+ 36π − F ′(V )2

6F(V )
.

We modify the Hawking mass in this setting with one extra term which accounts
for the nonminimal horizon, so we get a corresponding m(V ) for the isoperimetric
surfaces as follows:

m(V )=

√
A(V )
16π

(
1+

A(V )
4π
−

∫
6(V )

H 2

16π
dA
)

=
A(V )1/2

16π3/2

(
4π + A(V )− 1

4 A(V )(A′(V ))2
)

=
F(V )1/3

16π3/2

(
4π + F(V )2/3− 1

4 F(V )2/3( 2
3 F(V )−1/3 F ′(V ))2

)
=

F(V )1/3

144π3/2

(
36π + 9F(V )2/3− F ′(V )2

)
.

The reason for the modification is that since the (inward) mean curvature of 60 is
2, we again have m(0)=

√
A(0)/(16π).
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Since (6-3) holds (and again, F(V ) is nondecreasing since there is only one
horizon), we have the distributional inequality

m′(V )=
2

144π3/2 F(V )1/3 F ′(V )
(
−F ′′(V )+

36π + 27F(V )2/3− F ′(V )2

6F(V )

)
≥ 0.

For V sufficiently large, m(V ) is the Hawking mass of some radially symmetric
sphere Sr =6(V ) and thus

m(V )=

√
4πr2

16π

(
1+

4πr2

4π
−

4πr2

16π
4(1+ r2

− 2m/r)
r2

)
= m.

Hence

m = lim
V→+∞

m(V )≥ m(0)=

√
A(0)
16π

,

giving us the desired Penrose Inequality. �

7. Conclusions

We conjecture that there exists a reasonable class of spaces with R(g)≥−6 which
are asymptotically Schwarzschild AdS for which the above analysis will yield a
Penrose Inequality. We hope to report on this in a future work. Although the class
would be limited in several respects, it is interesting problem, following the work
of Bray and in light of the recent work of Huisken [2005; 2006], to understand
better the relationship of the mass to the isoperimetric properties of the space.

We mention that foliations near infinity of constant mean curvature (CMC) have
appeared in the context of relativity; see [Huisken and Yau 1996; Metzger 2004;
Qing and Tian 2004; Ye 1996]. It is tempting to conjecture that these uniquely
determined foliations near infinity by constant mean curvature spheres give the
isoperimetric profiles.

Appendix: Metric formulas

Consider a metric of the form

g = f (r) dr2
+ r2 d�2

= f (r) dr2
+ r2 dφ2

+ r2 sin2(φ) dθ2,

with f (r) > 0. We collect here the basic geometric formulas which we apply to
our three families of metrics above. We use the Einstein summation convention
below, and the indices (1, 2, 3) correspond to the variables (r, φ, θ).
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Christoffel symbols. We display the metric and its inverse in matrix form:

(gi j )=

 f (r) 0 0

0 r2 0

0 0 r2 sin2 φ

 , (gi j )=


1

f (r)
0 0

0 1
r2 0

0 0 1
r2 sin2 φ

 .

We recall the formula 0k
i j =

1
2 gmk(g jm,i+gmi, j−gi j,m) for the Christoffel symbols.

We can simplify our calculations by making two observations. Since gi j and gi j

are diagonal, we have 0k
i j =

1
2 gkk(g jk,i + gki, j − gi j,k), and 0k

i j = 0 when i , j , and
k are all distinct. For reference here are the nonzero Christoffel symbols:

01
11 =

1
2 g11(g11,1+ g11,1− g11,1)=

f ′(r)
2 f (r)

,

01
22 =

1
2 g11(g21,2+ g12,2− g22,1)=−

r
f (r)

,

01
33 =

1
2 g11(g31,3+ g13,3− g33,1)=−

r sin2 φ

f (r)
,

02
33 =

1
2 g22(g32,3+ g23,3− g33,2)=− sinφ cosφ,

02
12 = 0

2
21 =

1
2 g22(g22,1+ g21,2− g12,2)=

1
r
,

03
13 = 0

3
31 =

1
2 g33(g33,1+ g31,3− g13,3)=

1
r
,

03
23 = 0

3
32 =

1
2 g33(g33,2+ g32,3− g23,3)= cotφ.

Second fundamental form and mean curvature of radial spheres Sr . We com-
pute the second fundamental form and mean curvature of the coordinate spheres
of constant r . Let Z N be the normal projection of a vector Z . We have

B(∂φ, ∂φ)= (∇∂φ∂φ)
N
= (01

22∂r +0
2
22∂φ +0

3
22∂θ )

N
=−

r
f (r)

∂r ,

B(∂φ, ∂θ )= (∇∂φ∂θ )
N
= (01

23∂r +0
2
23∂φ +0

3
23∂θ )

N
= 0,

B(∂θ , ∂θ )= (∇∂θ ∂θ )
N
= (01

33∂r +0
2
33∂φ +0

3
33∂θ )

N
=−

r sin2 φ

f (r)
∂r .

Let N = −ν denote the inward unit normal vector field to Sr . Then g(∂r , N ) =
−‖∂r‖ = −

√
f (r), so the second fundamental form II, defined by II(V,W ) =

g(B(V,W ), N ), is given by

II(∂φ, ∂φ)=
r

√
f (r)

, II(∂φ, ∂θ )= 0, II(∂θ , ∂θ )=
r sin2(φ)
√

f (r)
.
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Thus the mean curvature for Sr , which is constant by symmetry, is

HSr = gφφ II(∂φ, ∂φ)+ gθθ II(∂θ , ∂θ )=

(
r/
√

f (r)
r2 +

(r sin2 φ)/
√

f (r)

r2 sin2 φ

)

=
2

r
√

f (r)
.

Ricci and scalar curvature. We use the formulas

Ri j = Rl
il j andRl

ik j = 0
l
i j,k −0

l
ik, j +0

m
i j0

l
km −0

m
ik0

l
jm .

A simple computation shows that the Ricci tensor is diagonal in this coordinate
system, and the diagonal entries are given by

R11 = R1
111+ R2

121+ R3
131 = 0+

f ′(r)
2r f (r)

+
f ′(r)

2r f (r)
,

R22 = R1
212+ R2

222+ R3
232 =

r f ′(r)
2 f (r)2

+ 0+
(

1− 1
f (r)

)
,

R33 = R1
313+ R2

323+ R3
333 = sin2(φ)

(
r f ′(r)
2 f (r)2

+

(
1− 1

f (r)

)
+ 0

)
.

Thus we find that the scalar curvature is

R(g)= gi j Ri j = g11 R11+ g22 R22+ g33 R33 =
2 f ′(r)
r f (r)2

+
2
r2 −

2
r2 f (r)

.

Acknowledgements

We thank Hubert Bray for several conversations about, and his encouragement for,
this project. We also thank the National Science Foundation and Lafayette College
for sponsoring the REU program in the Summer of 2005, at which much of the
work for this project was completed. Corvino thanks Frank Morgan for advice
on, and inspiration for, running an undergraduate research program in differential
geometry.

References

[Axler et al. 1992] S. Axler, P. Bourdon, and W. Ramey, Harmonic function theory, Graduate Texts
in Mathematics 137, Springer, New York, 1992. MR 93f:31001 Zbl 0765.31001

[Bray 1997] H. L. Bray, The Penrose inequality in general relativity and volume comparison theo-
rems involving scalar curvature, Ph.D. thesis, Stanford University, 1997.

[Bray 2001] H. L. Bray, “Proof of the Riemannian Penrose inequality using the positive mass theo-
rem”, J. Differential Geom. 59:2 (2001), 177–267. MR 2004j:53046 Zbl 1039.53034

[Bray 2002] H. L. Bray, “Black holes, geometric flows, and the Penrose inequality in general rela-
tivity”, Notices Amer. Math. Soc. 49:11 (2002), 1372–1381. MR 2003j:83052 Zbl 02115028



ON ISOPERIMETRIC SURFACES IN GENERAL RELATIVITY 83
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IRREDUCIBLE REPRESENTATIONS FOR THE ABELIAN
EXTENSION OF THE LIE ALGEBRA OF DIFFEOMORPHISMS

OF TORI IN DIMENSIONS GREATER THAN 1

CUIPO JIANG AND QIFEN JIANG

We classify the irreducible weight modules of the abelian extension of the
Lie algebra of diffeomorphisms of tori of dimension greater than 1, with
finite-dimensional weight spaces.

1. Introduction

Let Wν+1 be the Lie algebra of diffeomorphisms of the (ν+1)-dimensional torus.
If ν = 0, the universal central extension of the complex Lie algebra W1 is the
Virasoro algebra, which, together with its representations, plays a very important
role in many areas of mathematics and physics [Belavin et al. 1984; Dotsenko and
Fateev 1984; Di Francesco et al. 1997]. The representation theory of the Virasoro
algebra has been studied extensively; see, for example, [Kac 1982; Kaplansky and
Santharoubane 1985; Chari and Pressley 1988; Mathieu 1992].

If ν ≥ 1, however, the Lie algebra Wν+1 has no nontrivial central extension
[Ramos et al. 1990]. But Wν+1 has abelian extensions whose abelian ideals are the
central parts of the corresponding toroidal Lie algebras; see [Berman and Billig
1999], for example. There is a close connection between irreducible integrable
modules of the toroidal Lie algebra and irreducible modules of the abelian ex-
tension L; see [Berman and Billig 1999; Eswara Rao and Moody 1994; Jiang
and Meng 2003], for instance. In fact, the classification of integrable modules of
toroidal Lie algebras and their subalgebras depends heavily on the classification
of irreducible representations of L and its subalgebras. See [Billig 2003] for the
constructions of the abelian extensions for the group of diffeomorphisms of a torus.

In this paper we study the irreducible weight modules of L, for ν ≥ 1. If V is
an irreducible weight module of L some of whose central charges c0, . . . , cν are
nonzero, one can assume that c0, . . . , cN are Z-linearly independent and cN+1 =

· · · = cν = 0, where N ≥ 0. We prove that if N ≥ 1, then V must have weight
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spaces which are infinite-dimensional. So if all the weight spaces of V are finite-
dimensional, N vanishes. We classify the irreducible modules of L with finite-
dimensional weight spaces and some nonzero central charges. We prove that such
a module V is isomorphic to a highest weight module. The highest weight space
T is isomorphic to an irreducible (Aν+Wν)-module all of whose weight spaces
have the same dimension, where Aν is the ring of Laurent polynomials in ν com-
muting variables, regarded as a commutative Lie algebra. An important step is to
characterize the Aν-module structure of T . It turns out that the action of Aν on T
is essentially multiplication by polynomials in Aν . Therefore T can be identified
with Larsson’s construction [1992] by a result in [Eswara Rao 2004]. That is, T is
a tensor product of glν-module with Aν .

When all the central charges of V are zero, we prove that the abelian part acts
on V as zero if V is a uniformly bounded L-module. So the result in this case is
not complete.

Throughout the paper, C, Z+ and Z− denote the sets of complex numbers, pos-
itive integers and negative integers.

2. Basic concepts and results

Let Aν+1 = C[t±1
0 , t±1

1 , . . . , t±1
ν ] (ν ≥ 1) be the ring of Laurent polynomials in

commuting variables t0, t1, . . . , tν . For n= (n1, n2, . . . , nν)∈Zν , n0∈Z, we denote
tn0
0 tn1

1 · · · t
nν
ν by tn0

0 tn . Let K̃ be the free Aν+1-module with basis {k0, k1, . . . , kν}
and let dK̃ be the subspace spanned by all elements of the form

ν∑
i=0

ri t
r0
0 tr ki , for (r0, r)= (r0, r1, . . . , rν) ∈ Zν+1.

Set K = K̃/dK̃ and denote the image of tr0
0 tr ki still by itself. Then K is spanned

by the elements {tr0
0 tr kp | p = 0, 1, . . . , ν, r0 ∈ Z, r ∈ Zν} with relations

(2-1)
ν∑

p=0

rptr0
0 tr kp = 0.

Let D be the Lie algebra of derivations on Aν+1. Then

D=

{ ν∑
p=0

f p(t0, t1, . . . , tν)dp | f p(t0, t1, . . . , tν) ∈Aν+1

}
,

where dp = tp∂/∂tp, p = 0, 1, . . . , ν. From [Berman and Billig 1999] we know
that the algebra D admits two nontrivial 2-cocycles with values in K:

τ1(t
m0
0 tmda, tn0

0 tndb)=−namb

ν∑
p=0

m ptm0+n0
0 tm+nkp,
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τ2(t
m0
0 tmda, tn0

0 tndb)= manb

ν∑
p=0

m ptm0+n0
0 tm+nkp.

Let τ = µ1τ1 + µ2τ2 be an arbitrary linear combination of τ1 and τ2. Then the
corresponding abelian extension of D is

L= D⊕K,

with the Lie bracket

(2-2) [tm0
0 tmda, tn0

0 tnkb] = natm0+n0
0 tm+nkb+ δab

ν∑
p=0

m ptm0+n0
0 tm+nkp,

[tm0
0 tmda, tn0

0 tndb] = natm0+n0
0 tm+ndb−mbtm0+n0

0 tm+nda

+ τ(tm0
0 tmda, tn0

0 tndb).

The sum

h=
( ν⊕

i=0
Cki

)
⊕

( ν⊕
i=0

Cdi

)
is an abelian Lie subalgebra of L. An L-module V is called a weight module if

V =
⊕
λ∈h∗

Vλ,

where Vλ = {v ∈ V | h · v = λ(h)v for all h ∈ h}. Denote by P(V ) the set of all
weights. Throughout the paper, we assume that V is an irreducible weight module
of L with finite-dimensional weight spaces. Since V is irreducible, we have

ki |V = ci ,

where the constants ci , for i = 0, 1, . . . , ν, are called the central charges of V .

Lemma 2.1. Let A = (ai j ) (0 ≤ i, j ≤ ν) be a (ν+1)× (ν+1) matrix such that
det A = 1 and ai j ∈ Z. There exists an automorphism σ of L such that

σ(t m̄k j )=

ν∑
p=0

apj t m̄ AT
kp, σ (t m̄d j )=

ν∑
p=0

b j pt m̄ AT
dp, 0≤ j ≤ ν,

where t m̄
= tm0

0 tm , B = (bi j )= A−1.

3. The structure of V with nonzero central charges

In this section, we discuss the weight module V which has nonzero central charges.
It follows from Lemma 2.1 that we can assume that c0, c1, . . . , cN are Z-linearly
independent, i.e., if

∑N
i=0 ai ci = 0, ai ∈ Z, then all ai (i = 0, . . . , N ) must be zero,
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and cN+1 = cN+2 = · · · = cν = 0, where N ≥ 0. For m̄ = (m0,m), denote tm0
0 tm

by t m̄ as in Lemma 2.1. It is easy to see that V has the decomposition

V =
⊕

m̄∈Zν+1

Vm̄,

where Vm̄ = {v ∈ V | di (v) = (γ0(di )+ mi )v, i = 0, 1, . . . , ν}, with γ0 ∈ P(V )
a fixed weight, and m̄ = (m0,m1, . . . ,mν) ∈ Zν+1. If V has finite-dimensional
weight spaces, the Vm̄ are finite-dimensional, for m̄ ∈ Zν+1.

In Lemmas 3.1–3.6 we assume that V has finite-dimensional weight spaces.

Lemma 3.1. For p ∈ {0, 1, . . . , ν} and 0 6= t m̄kp ∈L, if there is a nonzero element
v in V such that t m̄kpv = 0, then t m̄kp is locally nilpotent on V .

Lemma 3.2. Let tm0
0 tmkp ∈ L be such that m̄ = (m0,m) 6= 0̄, and there exists

0 ≤ a ≤ N such that ma 6= 0 if N < p ≤ ν. If tm0
0 tmkp is locally nilpotent on V ,

then dim Vn̄ > dim Vn̄+m̄ for all n̄ ∈ Zν+1.

Proof. Case 1: p ∈ {0, 1, . . . , N }. We first prove that dim Vn̄ ≥ dim Vn̄+m̄ for all
n̄ ∈Zν+1. Suppose dim Vn̄ =m, dim Vn̄+m̄ = n. Let {w1, w2, . . . , wn} be a basis of
Vn̄+m̄ and {w′1, w

′

2, . . . , w
′
m} a basis of Vn̄ . We can assume that ma 6= 0 for some

0≤ a ≤ ν distinct from p, where m̄ = (m0,m)= (m0,m1, . . . ,mν). Since t m̄kp is
locally nilpotent on V and Vn̄+m̄ is finite-dimensional, there exists k > 0 such that
(t m̄kp)

k Vn̄+m̄ = 0. Therefore

(t−m̄da)
k(t m̄kp)

k(w1, w2, . . . , wn)= 0.

On the other hand, by induction on k, we can deduce that

(t−m̄da)
k(t m̄kp)

k
=

k∑
i=0

k! k!
i ! (k− i)! (k− i)!

mi
aci

p(t
m̄kp)

k−i (t−m̄da)
k−i .

Therefore

t m̄kp

( k−1∑
i=0

k! k!
i ! (k−i)! (k−i)!

mi
aci

p(t
m̄kp)

k−1−i (t−m̄da)
k−1−i

)
t−m̄da(w1,w2, . . . ,wn)

=−k!mk
ack

p(w1, w2, . . . , wn).

Assume that( k−1∑
i=0

k! k!
i ! (k− i)! (k− i)!

mi
aci

p(t
m̄kp)

k−1−i (t−m̄da)
k−1−i

)
t−m̄da(w1, w2, . . . , wn)

= (w′1, w
′

2, . . . , w
′

m)C,

with C ∈ Cm×n , and that

(3-1) t m̄kp(w
′

1, w
′

2, . . . , w
′

m)= (w1, w2, . . . , wn)B,
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with B ∈ Cn×m . Then

BC =−k!mk
ack

p I.

This implies that m ≥ n. So dim Vn̄ ≥ dim Vn̄+m̄ for all n̄ ∈ Zν+1. Also, by (3-1)
and the fact that r(B) = n, we know that m > n if and only if there exists v ∈ Vn̄

such that t m̄kp · v = 0. Since t m̄kp is locally nilpotent on V , there exist an integer
s ≥ 0 and w ∈ Vn̄+sm̄ such that

(t m̄kp) ·w = 0.

Therefore (t−m̄kp)t m̄kp · w = t m̄kp(t−m̄kp · w) = 0. If t−m̄kp · w = 0, by the
proof above, dim Vn̄+sm̄−m̄<dim Vn̄+sm̄ , contradicting the fact that dim Vn̄+sm̄−m̄≥

dim Vn̄+sm̄ . Therefore (t−m̄kp)
r
·w 6= 0 for all r ∈ N. Since

(t−m̄kp)
s t m̄kp ·w = t m̄kp(t−m̄kp)

s
·w = 0

and (t−m̄kp)
s
·w ∈ Vn̄ , it follows that there is a nonzero element v in Vn̄ such that

t m̄kp · v = 0. Thus n < m.

Case 2: N < p ≤ ν. The proof is similar to that of case 1, but we have to consider
t−m̄dp and t m̄kp instead and use the Z-linear independence of c1, . . . , cN . �

Lemma 3.3. Let 0 6= t m̄kp ∈ L and 0 6= t n̄kp ∈ L be such that (m0, . . . ,m N ) 6= 0,
(n0, . . . , nN ) 6= 0 if N < p ≤ ν, where m̄ = (m0,m1, . . . ,mν).

(1) If t m̄kp is locally nilpotent on V , t m̄kq is locally nilpotent for q = 0, 1, . . . , ν.

(2) If both 0 6= t m̄kp and 0 6= t n̄kp are locally nilpotent on V , then t m̄+n̄kp is
locally nilpotent.

(3) If 0 6= t m̄+n̄kp is locally nilpotent on V and (m0 + n0, . . . ,m N + nN ) 6= 0 if
N < p ≤ ν, then t m̄kp or t n̄kp is locally nilpotent.

Lemma 3.4. For 0 ≤ p ≤ ν, let 0 6= t m̄kp ∈ L be such that (m0, . . . ,m N ) 6= 0,
where m̄ = (m0,m1, . . . ,mν). Then t m̄kp or t−m̄kp is locally nilpotent on V .

Proof. The proof occupies the next few pages. We first deal with the case 0≤ p≤N .
Without losing generality, we can take p = 0.

Suppose the lemma is false. By Lemma 3.2, for any r̄ ∈ Zν+1 we have

dim Vr̄+m̄ = dim Vr̄ = dim Vr̄−m̄, t m̄k0Vr̄ = Vr̄+m̄, t−m̄k0Vr̄ = Vr̄−m̄ .

Fix r̄ = (r0, r) ∈ Zν+1 such that Vr̄ 6= 0. Let {v1, . . . , vn} be a basis of Vr̄ and set

vi (km̄)=
1
c0

tkm̄k0 · vi , i = 1, 2, . . . , n,
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where k ∈ Z \ {0}. Then {v1(km̄), v2(km̄), . . . , vn(km̄)} is a basis of Vr̄+km̄ . Let
B(0)
−m̄,m̄ , B(0)m̄,−m̄ ∈ Cn×n be such that

1
c0

t m̄k0(v1(−m̄), v2(−m̄), . . . , vn(−m̄))= (v1, v2, . . . , vn)B
(0)
m̄,−m̄,

1
c0

t−m̄k0(v1(m̄), v2(m̄), . . . , vn(m̄))= (v1, v2, . . . , vn)B
(0)
−m̄,m̄ .

Since t m̄k0 and t−m̄k0 are commutative, it is easy to deduce that

B(0)m̄,−m̄ = B(0)
−m̄,m̄ .

By Lemma 3.1, B(0)m̄,−m̄ is an n× n invertible matrix.

Claim. B(0)m̄,−m̄ does not have distinct eigenvalues.

Proof. Set c = 1/c0. To prove the claim, we need to consider ct m̄k0ct−m̄k0− λ id,
where λ ∈ C∗. As in the proof of Lemma 3.1, we can deduce that if there is a
nonzero element v in V such that (ct m̄k0ct−m̄k0−λ id)v = 0, then ct m̄k0ct−m̄k0−

λ id is locally nilpotent on V . On the other hand, we have

(ct m̄k0ct−m̄k0− λ id)l(v1, v2, . . . , vn)= (v1, v2, . . . , vn)(B
(0)
m̄,−m̄ − λ id)l .

Therefore the claim holds. �

For p ∈ {1, 2, . . . , ν}, let C p
m̄,0̄
,C p

m̄,−m̄ ∈ Cn×n be such that

t m̄kp(v1, v2, . . . , vn)= (v1(m̄), . . . , vn(m̄))C
(p)
m̄,0̄
,

t m̄kp(v1(−m̄), . . . , vn(−m̄))= (v1, v2, . . . , vn)C
(p)
m̄,−m̄ .

Since

1
c0

t−m̄k0t m̄kp(v1, v2, . . . , vn)= t m̄kp
1
c0

t−m̄k0(v1, v2, . . . , vn),

we have

(3-2) C (p)
m̄,−m̄ = B(0)

−m̄,m̄C (p)
m̄,0̄
.

Furthermore, by the fact that

1
c0

t m̄k0
1
c0

t−m̄k0t m̄kp(v1, v2, . . . , vn)= t m̄kp
1
c0

t m̄k0
1
c0

t−m̄k0(v1, v2, . . . , vn)

and

t m̄kq
1
c0

t−m̄k0t m̄kp = t m̄kp
1
c0

t−m̄k0t m̄kq ,
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we deduce that

(3-3) B(0)
−m̄,m̄C (p)

m̄,0̄
= C (p)

m̄,0̄
B(0)
−m̄,m̄, C (p)

m̄,0̄
C (q)

m̄,0̄
= C (q)

m̄,0̄
C (p)

m̄,0̄
, 1≤ p, q ≤ ν.

Hence there exists D ∈Cn×n such that {D−1 B(0)
−m̄,m̄ D, D−1C (p)

m̄,0̄
D | 1≤ p≤ ν} are

all upper triangular matrices. If we set

(w1, w2, . . . , wn)= (v1, v2, . . . , vn)D

and
wi (km̄)=

1
c0

tkm̄k0wi , 1≤ i ≤ n, k ∈ Z \ {0},

then
1
c0

tkm̄k0(w1(−m̄), w2(−m̄), . . . , wn(−m̄))= (w1, . . . , wn)D−1 B(0)
−m̄,m̄ D,

t m̄kp(w1, w2, . . . , wn)= (w1(m̄), . . . , wn(m̄))D−1C (p)
m̄,0̄

D.

So we can assume that B(0)
−m̄,m̄ , C (p)

m̄,0̄
, and C (p)

m̄,−m̄ , for 1 ≤ p ≤ ν are all invertible
upper triangular matrices. Furthermore, because(

t m̄kp
1
c0

t−m̄k0− λ id
)l
(v1, v2, . . . , vn)= (v1, v2, . . . , vn)(C

(p)
m̄,−m̄ − λ id)l,

the argument used in the proof of the claim shows that C (p)
m̄,−m̄ also does not have

distinct eigenvalues. For 1≤ p ≤ N , set

B(p)m̄,−m̄ =
1
cp

C (p)
m̄,−m̄

and for 0≤ p ≤ N denote by λp the eigenvalue of B(p)m̄,−m̄ .
Let A(a)

km̄,0̄
and A(a)k1m̄,k2m̄ , for 0≤ a ≤ ν and k, k1, k2 ∈ Z \ {0}, be such that

tkm̄da(v1, v2, . . . , vn)

tk1m̄da(v1(k2m̄), v2(k2m̄), . . . , vn(k2m̄))

= (v1(km̄), v2(km̄), . . . , vn(km̄))A(a)
km̄,0̄

,

= (v1(k1m̄+ k2m̄), . . . , vn(k1m̄+ k2m̄))A(a)k1m̄,k2m̄ .

Case 1: ν > 1. Since t m̄k0 = tm0
0 t m̄k0 6= 0, it follows that there exists 1 ≤ a ≤ ν

such that ma 6= 0, where m = (m1,m2, . . . ,mν). Let b ∈ {1, . . . , ν} be such that
a 6= b. Consider

(3-4) [t−m̄da,
1
c0

t m̄k0] = ma
1
c0

k0, [t−m̄da, t m̄kb] = makb.

Case 1.1: There exists b ∈ {0, 1, . . . , ν} such that b 6= 0, a and cb = 0. Then

A(a)
−m̄,m̄ = B(0)m̄,−m̄ A(a)

−m̄,0̄
+ma I, A(a)

−m̄,m̄C (b)
m̄,0̄
= C (b)

m̄,−m̄ A(a)
−m̄,0̄

.
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By (3-2) and (3-3),

A(a)
−m̄,0̄
+ma B(0)m̄,−m̄

−1
= C (b)

m̄,0̄
A(a)
−m̄,0̄

C (b)
m̄,0̄

−1
.

But the sum on the left-hand side cannot be similar to A(a)
−m̄,0̄

, since ma 6= 0 and
B(0)m̄,−m̄

−1
is an invertible upper triangular matrix and does not have different eigen-

values. Thus this case is excluded.

Case 1.2: cb 6= 0 for all b ∈ {0, 1, . . . , ν}, b 6= 0, a. By (3-4) and (3-2), we have

B(0)m̄,−m̄ A(a)
−m̄,0̄

B(0)m̄,−m̄
−1
+ma B(0)m̄,−m̄

−1
−ma B(b)m̄,−m̄

−1

= B(0)m̄,−m̄C (b)
m̄,0̄

A(a)
−m̄,0̄

C (b)
m̄,0̄

−1
B(0)m̄,−m̄

−1
.

(I) There exists b 6= 0 and a such that λ0 6= λb. Then ma B(0)m̄,−m̄
−1
−ma B(b)m̄,−m̄

−1
is

an invertible upper triangular matrix and does not have different eigenvalues. As
in case 1.1, we deduce a contradiction.

(II) λ0 = λb for all b ∈ {1, . . . , ν} distinct from a.
(II.1) Suppose first that ca = 0 (in this case N = ν − 1, a = ν) or ca 6= 0 and

λa = λ0 (in this case N = ν). Since
∑ν

p=0 m pt m̄kp = 0, we have

ν∑
p=0

m pt m̄kp
1
c0

t−m̄k0 = 0.

So
ν∑

p=0
m pC (p)

m̄,−m̄ = 0, and therefore
ν∑

p=0

m pcp = 0,

which contradicts the assumption that c0, . . . , cN are Z-linearly independent.
(II.2) Now suppose ca 6= 0, λa 6= λ0 and there exists b 6= 0 and a such that

mb 6= 0. We deduce a contradiction as in case 1.2(I) by interchanging a by b.
(II.3) Suppose ca 6= 0, λa 6= λ0 and mb = 0 for all b ∈ {1, . . . , ν} distinct from

a. Then m0c0λ0 +macaλa = 0. The proof of this case is the same as in case 2.2
below.

Case 2.: ν = 1. In this case a = 1.

Case 2.1: ca = 0. Since [t−m̄d0, t m̄k0] = [t−m̄k0, t m̄d0] = 0, we have

A(0)
−m̄,m̄ = B(0)m̄,−m̄ A(0)

−m̄,0̄
, A(0)m̄,−m̄ = B(0)

−m̄,m̄ A(0)
m̄,0̄
.

Therefore

[t−m̄d0, t m̄d0](v1, v2, . . . , vn)= (v1, v2, . . . , vn)B
(0)
−m̄,m̄

[
A(0)
−m̄,0̄

, A(0)
m̄,0̄

]
.
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At the same time, we have

[t−m̄d0, t m̄d0] = 2m0d0+m2
0(−µ1+µ2)(m0k0+m1k1),

where τ = µ1τ1+µ2τ2 as above. So

(3-5) B(0)
−m̄,m̄[A

(0)
−m̄,0̄

, A(0)
m̄,0̄
]=
(
2m0(γ0(d0)+r0)+m2

0(−µ1+µ2)(m0c0+m1c1)
)
I,

where γ0 is the weight fixed above. Since γ0 is arbitrary, we can choose it such
that

2m0(γ0(d0)+ r0)+m2
0(−µ1+µ2)(m0c0+m1c1) 6= 0.

But B(0)
−m̄,m̄ is an invertible triangular matrix and does not have different eigenval-

ues, in contradiction with (3-5).
Case 2.2: ca 6= 0. Since

[t−m̄d0, t m̄k0] = −m1k1, [t−m̄d1, t m̄k0] = m1k0 and

[t m̄d0, t−m̄k0] = m1k1, [t m̄d1, t−m̄k0] = −m1k0,

we have

[k0t−m̄d0+ k1t−m̄d1, t m̄k0] = [k0t m̄d0+ k1t m̄d1, t−m̄k0] = 0.

Therefore

k0 A(0)
−m̄,m̄ + k1 A(1)

−m̄,m̄ = B(0)m̄,−m̄

(
k0 A(0)
−m̄,0̄
+ k1 A(1)

−m̄,0̄

)
,

k0 A(0)m̄,−m̄ + k1 A(1)m̄,−m̄ = B(0)
−m̄,m̄

(
k0 A(0)

m̄,0̄
+ k1 A(1)

m̄,0̄

)
,

and

[k0t−m̄d0+ k1t−m̄d1, k0t m̄d0+ k1t m̄d1](v1, . . . , vn)

= (v1, . . . , vn)B
(0)
m̄,−m̄

[
k0 A(0)
−m̄,0̄
+ k1 A(1)

−m̄,0̄
, k0 A(0)

m̄,0̄
+ k1 A(1)

m̄,0̄

]
.

At the same time, we have

[k0t−m̄d0+ k1t−m̄d1, k0t m̄d0+ k1t m̄d1]

= 2(m0c0+m1c1)(c0d0+ c1d1)− (m0c0+m1c1)
3(µ1−µ2) id .

Since c0 and c1 are Z-linearly independent, we know that m0c0+m1c1 6= 0. As in
case 2.1, we deduce a contradiction.

This concludes the first part of the proof. We next turn to the second major case,
N < p ≤ ν.

If N ≥ 1 or N = 0, we have (m1, . . . ,mν) 6= 0, and the lemma follows from the
first part and Lemma 3.3. Otherwise, let t m̄kp = tm0

0 kp. Set L0=
⊕

m0∈Z Ctm0
0 d0⊕

Ck0 and W = U (L0)v, where v ∈ Vs̄ is a homogeneous element. Since c0 6= 0,
the sets {dim W(n0,0)+s̄ | n0 ∈ Z} are not uniformly bounded. But if neither tm0

0 kp
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nor t−m0
0 kp is locally nilpotent, then t0kp and t−1

0 kp are not locally nilpotent. So
by Lemmas 3.2 and 3.1, dim V(n0,0)+s̄ = dim Vs̄ for all n0 ∈ Z, which is impossible
since dimV(n0,0)+s̄ ≥ dim W(n0,0)+s̄ . This proves Lemma 3.4 �

For 0≤ p ≤ N , consider the direct sum⊕
m p∈Z

Ctm p
p dp⊕Ckp,

which is a Virasoro Lie subalgebra of L. Since cp 6= 0, it follows from [Mathieu
1992] that there is a nonzero vp ∈ Vr̄ for some r̄ ∈ Zν+1 such that

(3-6) tm p
p dpvp = 0 for all m p ∈ Z+

or

(3-7) tm p
p dpvp = 0 for all m p ∈ Z−.

Lemma 3.5. If vp ∈ Vr̄ satisfies (3-6), the sets

{tm p
p kq | m p ∈ Z+, q = 0, 1, 2, . . . , ν, q 6= p}

are all locally nilpotent on V . Likewise for (3-7), with Z+ replaced by Z−.

Proof. We only prove the first statement. Suppose it is false; then by Lemma 3.3
tpkq is not locally nilpotent on V for some q ∈ {0, 1, . . . , ν}, q 6= p. By Lemma
3.4, t−1

p kq is locally nilpotent. Therefore there exists k ∈ Z+ such that

(t−1
p kq)

k−1vp 6= 0, (t−1
p kq)

kvp = 0.

So
t2
pdp(t−1

p kq)
kvp =−ktpkq(t−1

p kq)
k−1vp + (t−1

p kq)
k t2

pdpvp

=−ktpkq(t−1
p kq)

k−1vp = 0.

This implies that tpkq is locally nilpotent, a contradiction. �

Lemma 3.6. If vp ∈ Vr̄ satisfies (3-6), the sets

{t m̄kp | m̄ = (m0, . . . ,mν) ∈ Zν+1,m p ∈ Z+}

are all locally nilpotent on V . Likewise for (3-7), with Z+ replaced by Z−.

Proof. Again we only prove the first statement. Without loss of generality, we
assume that p = 0. Let K′ be the subspace of K spanned by elements of K which
are locally nilpotent on V . If tmk0, for any m∈Zν\{0}, is not locally nilpotent on V ,
the lemma holds thanks to Lemmas 3.3 and 3.5. Suppose K′∩{tmk0 |m ∈Zν} 6= {0}.
By Lemmas 3.2, 3.3 and 3.5, if tmk0 ∈ K′, then t−mk0 /∈ K′, and tm0

0 tmk0 ∈ K′ for
all m0 > 0.

Case 1: Suppose tm0
0 t−mk0 ∈ K′ for any tmk0 ∈ K′. Then the lemma is proved.
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Case 2: Suppose there exists 0 6= tmk0 ∈ K′ such that t0t−mk0 /∈ K′. Since m =
(m1, . . . ,mν) 6= 0, we can assume that ma 6= 0 for some a ∈ {1, 2, . . . , ν}. Let Vr̄0

be such that
dim Vr̄0 =min{dim Vs̄ | Vs̄ 6= 0, s̄ ∈ Zν+1

}.

Case 2.1: Assume t i
0t−mk0 /∈ K′ for any i > 0. Let l ∈ Z+ and consider

(3-8)
l∑

i=0

ai t−i
0 t−mk0t i

0t−mk0v = 0,

where v ∈ Vr̄0 \{0}. By Lemma 3.4, {t i
0tmk0, t−i

0 tmk0 | i ∈Z+} ⊆K′. So by Lemma
3.2, we have

t i
0tmk0Vr̄0 = t−i

0 tmk0Vr̄0 = t i
0tmdpVr̄0 = t−i

0 tmdpVr̄0 = 0, i ∈ Z+, 0≤ p ≤ ν.

Let j ∈ {0, 1, . . . , l}. From (3-8) we have

t− j
0 tmdat j

0 tmda(

l∑
i=0

ai t−i
0 t−mk0t i

0t−mk0)v = 0.

Therefore
l∑

i=0

ai (−ma)t
j−i

0 k0(−ma)t
i− j
0 k0v = a j m2

ac2
0v = 0.

So a j = 0, j = 0, 1, . . . , l. This means {t−i
0 t−mk0t i

0t−mk0)v | 0 ≤ i ≤ l} are
linearly independent. Since l can be any positive integer, it follows that Vr̄0−(0,2m)

is infinite-dimensional, a contradiction.

Case 2.2: Assume there exists l ∈ Z+ such that

t l−1
0 t−mk0 /∈ K′, t l

0t−mk0 ∈ K′.

(I) Assume that t l
0t−imk0 ∈ K′ for any i ∈ Z+. Let s > 0 and consider

s∑
i=1

ai t−l
0 t imk0t−imk0v = 0.

Similar to the proof above, we can deduce that Vr̄0−(l,0) is infinite-dimensional, in
contradiction with the assumption that V has finite-dimensional weight spaces.

(II) Assume there exists s1 ∈ Z+ such that

t l
0t−mk0 ∈ K′, t l

0t−2mk0 ∈ K′, . . . , t l
0t−s1mk0 ∈ K′, t l

0t−(s1+1)mk0 /∈ K′.

Then there exist s2, s3, . . . , sk, . . . such that si ≥ s1 for i = 2, 3, . . . , k, . . . and

t il
0 t (−s1−s2−···−si−1−1)mk0 ∈ K′, t il

0 t (−s1−s2−···−si−1−2)mk0 ∈ K′, . . . ,
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t il
0 t (−s1−s2−···−si−1−si )mk0 ∈ K′, t il

0 t (−s1−s2−···−si−1−si−1)mk0 /∈ K′.

Assume that( s1∑
i=1

ai t−l
0 t imk0t−imk0+

s2∑
i=1

as1+i t−2l
0 t (s1+i)mk0t l

0t−(s1+i)mk0

+

s3∑
i=1

as1+s2+i t−3l
0 t (s1+s2+i)mk0t2l

0 t−(s1+s2+i)mk0+ · · ·

+

sk∑
i=1

as1+···+sk−1+i t−kl
0 t (s1+···+sk−1+i)mk0t (k−1)l

0 t−(s1+···+sk−1+i)mk0

)
v = 0.

Let

t jmdat l
0t− jmda, 1≤ j ≤ s1,

t−l
0 t (s1+ j)mdat2l

0 t−(s1+ j)mda, 1≤ j ≤ s2,

. . . ,

t−(k−1)l
0 t (s1+s2+···+sk−1+ j)mdatkl

0 t−(s1+s2+···+sk−1+ j)mda, 1≤ j ≤ sk

act on the two sides of the above equation respectively. By Lemma 3.4, we deduce
that ai = 0, for i = 1, 2, . . . , s1, and that

as1+···+s j−1+i = 0 for i = 1, 2, . . . , s j , 2≤ j ≤ k.

Since k can be any positive integer, it follows that Vr̄0−(l,0) is infinite-dimensional,
which contradicts our assumption. The lemma is proved. �

Lemmas 3.1 through 3.6 immediately yield the following result.

Theorem 3.7. Let V be an irreducible weight module of L such that c0, . . . , cN

are Z-linearly independent and N ≥ 1. Then V has weight spaces that are infinite-
dimensional.

Let

L+ =
ν∑

p=0
t0C[t0, t±1

1 , . . . , t±1
ν ]kp⊕

ν∑
p=0

t0C[t0, t±1
1 , . . . , t±1

ν ]dp,

L− =
ν∑

p=0
t−1
0 C[t−1

0 , t±1
1 , . . . , t±1

ν ]kp⊕
ν∑

p=0
t−1
0 C[t−1

0 , t±1
1 , . . . , t±1

ν ]dp,

L0 =
ν∑

p=0
C[t±1

1 , . . . , t±1
ν ]kp⊕

ν∑
p=0

C[t±1
1 , . . . , t±1

ν ]dp.

Then
L= L+⊕L0⊕L−.
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Definition 3.8. Let W be a weight module of L. If there is a nonzero vector v0 ∈W
such that

L+v0 = 0,W =U (L)v0,

then W is called a highest weight module of L. If there is a nonzero vector v0 ∈W
such that

L−v0 = 0,W =U (L)v0,

then W is called a lowest weight module of L.

From Lemmas 3.2 and 3.6, we obtain:

Theorem 3.9. Let V be an irreducible weight module of L with finite-dimensional
weight spaces and with central charges c0 6= 0, c1 = c2 = · · · = cν = 0. Then V is
a highest or lowest weight module of L.

In the remainder of this section we assume that V is an irreducible weight mod-
ule of L with finite-dimensional weight spaces and with central charges c0 6= 0,
c1 = · · · = cν = 0.

Set

T =

{
{v ∈ V | L+v = 0} ifV is a highest weight module of L,

{v ∈ V | L−v = 0} ifV is a lowest weight module of L.

Then T is a L0-module and

V =U (L−)T or V =U (L+)T .

Since V is an irreducible L-module, T is an irreducible L0-module. T has the
decomposition

T =
⊕
m∈Zν

Tm,

where m = (m1,m2, . . . ,mν), Tm = {v ∈ T | div = (mi +µ(di ))v, 1≤ i ≤ ν} and
µ is a fixed weight of T . As in the proof in [Jiang and Meng 2003; Eswara Rao
and Jiang 2005], we can deduce:

Theorem 3.10. (1) For all m, n ∈ Zν , p = 1, 2, . . . , ν, we have

dim Tm = dim Tn, tmkp · T = 0,

tmk0(v1(n), . . . , vm(n))= c0(v1(m+ n), v2(m+ n), . . . , vn(m+ n)),

tmd0(v1(n), v2(n), . . . , vn(n))= µ(d0)(v1(m+ n), v2(m+ n), . . . , vn(m+ n)),

where {v1(0), . . . , vm(0)} is a basis of T0 and vi (m) =
1
c0

tmk0vi (0), for i = 1, 2,
. . . ,m.
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(2) As an (Aν ⊕Dν)-module, T is isomorphic to

Fα(ψ, b)= V (ψ, b)⊗C[t±1
1 , . . . , t±1

ν ]

for some α = (α1, . . . , αν), ψ , and b, where Aν = C[t±1
1 , . . . , t±1

ν ], Dν is
the derivation algebra of Aν , and V (ψ, b) is an m-dimensional, irreducible
glν(C)-module satisfying ψ(I )= b idV (ψ,b) and

tr dp(w⊗ tm)= (m p +αp)w⊗ tr+m
+

ν∑
i=1

riψ(Ei p)w⊗ tr+m

for w ∈ V (ψ, b).

Let
M = IndL

L++L0
T or M = IndL

L−+L0
T .

Theorem 3.11. Among the submodules of M intersecting T trivially, there is a
maximal one, which we denote by M rad. Moreover V ∼= M/M rad.

4. The structure of V with c0 = · · · = cν = 0

Assume that V is an irreducible weight module of L with finite-dimensional weight
spaces and c0 = · · · = cν = 0.

Lemma 4.1. For any t r̄ kp ∈ K, t r̄ kp or t−r̄ kp is locally nilpotent on V .

Lemma 4.2. If V is uniformly bounded, t r̄ kp is locally nilpotent on V for any
t r̄ kp ∈ K.

Proof. For t r̄ kp ∈ K, by Lemma 4.1, t r̄ kp or t−r̄ kp is nilpotent on Vm̄ for all
m̄ ∈ Zν+1. Since V is uniformly bounded, i.e., max{dim Vm̄ | m̄ ∈ Zν+1

} < ∞,
there exists N ∈ Z+ such that

(t r̄ kpt−r̄ kp)
N V = 0, (t r̄ kpt−r̄ kp)

N−1V 6= 0

If the lemma is false, we can assume that t−r̄ kp is not locally nilpotent on V .
Therefore for any 0 6= v ∈ V , we have t−r̄ kpv 6= 0. So

(t r̄ kp)
N V = 0.

Let t−2r̄ dq ∈ K be such that p 6= q and rq 6= 0. By the fact that [t−2r̄ dq , t r̄ kp] =

rq t−r̄ kp, we deduce that t−r̄ kp(t r̄ kp)
N−1V = 0, a contradiction. �

Lemma 4.3. If there exists 0 6= v ∈ V such that t m̄kpv = 0 for all m̄ ∈ Zν+1 and
0≤ p ≤ ν. Then K(V )= 0.

Proof. This follows from (2-2), since K is commutative and V is an irreducible
L-module. �

Theorem 4.4. If V is uniformly bounded, t r̄ kpV vanishes for any t r̄ kp ∈ K.
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Proof. Let 0 6= ti kp ∈ K. If ti kpV = 0, it is easy to prove that K(V ) = 0. If
ti kpV 6= 0. Since V is uniformly bounded, by Lemma 4.2, there exists l ∈Z+ such
that

(4-1) (ti kpt−1
i kp)

l V = 0, (t1kpt−1
1 kp)

l−1V 6= 0.

If there exists s ∈ Z+ such that (t−1
i kp)

s V = 0, (t−1
i kp)

s−1V 6= 0. By the fact that
[t m̄di , t−1

i kp] = −t−1
i t m̄kp and [t m̄dp, t−1

i kp] = t−1
i t m̄ki , we have

t r̄ kp(t−1
i kp)

s−1V = t r̄ ki (t−r̄ kp)
s−1V = 0 for all r̄ ∈ Zν+1.

If (t−1
i kp)

s V 6= 0 for all s ∈ Z+. Then by (4-1) there is r ≥ 0 such that
(ti kp)

l−i (t−1
i kp)

l+i V = 0 for all 0 ≤ i ≤ r , and (ti kp)
l−r−1(t−1

i kp)
l+r+1V 6= 0.

So for any m̄ ∈ Zν+1, we have

t−m̄di (ti kp)
l−r (t−1

i kp)
l+r+1V = 0, t−m̄dp(ti kp)

l−r (t−1
i kp)

l+r+1V = 0.

Therefore
t r̄ kp(ti kp)

l−r−1(t−1
i kp)

l+r+1V = 0,

t r̄ ki (ti kp)
l−r−1(t−1

i kp)
l+r+1V = 0,

for all r̄ ∈ Zν+1.

Case 1: ν ∈ 2Z++1. By the preceding discussion, there exist nonnegative integers
li and ri , for i = 0, 2, 4, . . . , ν− 1, such that

(tνkν−1)
lν−1(t−1

ν kν−1)
rν−1(tν−2kν−3)

lν−3(t−1
ν−2kν−3)

rν−3 · · · (t1k0)
l0(t−1

1 k0)
r0 V 6= 0

and

t m̄kp(tνkν−1)
lν−1(t−1

ν kν−1)
rν−1(tν−2kν−3)

lν−3(t−1
ν−2kν−3)

rν−3 · · · (t1k0)
l0(t−1

1 k0)
r0 V

vanishes for all 0 ≤ p ≤ ν and m̄ ∈ Zν+1. By Lemma 4.3, the conclusion of the
theorem holds.

Case 2: ν ∈ 2Z. Then there exist nonnegative integers li and ri , for i = 0, 2, 4, . . . ,
ν− 2, such that

W = (tν−1kν−2)
lν−2(t−1

ν−1kν−2)
rν−2(tν−3kν−4)

lν−4(t−1
ν−3kν−4)

rν−4 · · ·(t1k0)
l0(t−1

1 k0)
r0 V

is nonzero and

(4-2) t m̄kpW = 0

for all 0≤ p ≤ ν− 1 and m̄ ∈ Zν+1. By (2-1), we know that

(4-3) t m̄kνW = 0,
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for m̄ ∈ Zν+1 such that mν 6= 0. If there exists t r̄0kν satisfying t r̄0kνW 6= 0, let

Lν = span {tmdi , t m̄dν, tmkν | tm
= tm0

0 tm1
1 · · · t

mν−1
ν−1 , 0≤ i ≤ ν− 1,

m = (m0, . . . ,mν−1) ∈ Zν, m̄ ∈ Zν+1
},

W ′ =U (Lν)W.

Then W ′ 6= 0 and
t m̄kpW ′ = 0, t n̄kνW ′ = 0,

for all 0 ≤ p ≤ ν − 1, m̄ ∈ Zν+1, and n̄ ∈ Zν+1 such that nν 6= 0. If there exists
0 6= tmkν such that tmkνW ′ 6= 0, we have

(t−mkν)l(tmkν)l W ′ = 0 and (t−mkν)l−1(tmkν)l−1W ′ 6= 0

for some l ∈ Z+. As in the preceding proof, we can deduce that there exists a
nonzero v ∈W ′ such that

tnkνv = 0

for all n ∈ Zν . Therefore
t m̄kpv = 0

for all m̄ ∈ Zν+1 and 0≤ p ≤ ν. We have proved that K(V )= 0. �
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HIGHER HOMOTOPY COMMUTATIVITY OF H-SPACES AND
HOMOTOPY LOCALIZATIONS

YUSUKE KAWAMOTO

Dedicated to Professor Takao Matumoto on his sixtieth birthday

In this paper, we prove that the homotopy localization of an ACn-space
is an ACn-space so that the universal map is an ACn-map. This result is
used to study the higher homotopy commutativity of H-spaces with finitely
generated cohomology over the Steenrod algebra A∗

p. Our result shows that
for any prime p, if X is a connected AC p-space whose mod p cohomology
H∗(X; Z/ p) is finitely generated as an algebra over A∗

p, then X has the mod
p homotopy type of a Postnikov H-space.

1. Introduction

The theory of H -spaces has been studied in algebraic topology to understand ho-
motopy properties of Lie groups. Given a prime p, a Z/p-finite H -space is an
H -space whose mod p cohomology is finite dimensional. In recent decades, many
theorems have been proved about Z/p-finite H -spaces [Kane 1988; Lin 1995],
which suggest that they have many similar properties to those of Lie groups.

In this paper, we study an H -space which need not be Z/p-finite but whose
mod p cohomology is finitely generated as an algebra over the Steenrod algebra
A∗p. For example, the n-connected covering X〈n〉 of a Z/p-finite H -space X is not
Z/p-finite for n ≥ 3 but the mod p cohomology is finitely generated as an algebra
over A∗p, by [Castellana et al. 2006, Corollary 4.3]. Eilenberg–Mac Lane spaces
K (Z, n) and K (Z/pi , n) are other examples for n, i ≥ 1.

Using the homotopy localizations of Bousfield [1994] and Dror Farjoun [1996],
Castellana, Crespo and Scherer have studied H -spaces with finitely generated co-
homology over A∗p [Castellana et al. 2007]. In their Theorem 7.3, these authors
proved that if X is such an H -space, the BZ/p-localization L BZ/p(X) is a Z/p-
finite H -space and the homotopy fiber F(φX ) of the universal map φX : X →
L BZ/p(X) is mod p homotopy equivalent to a Postnikov H -space (see Theorem

MSC2000: primary 55P45, 55P48; secondary 55P15, 55P65.
Keywords: higher homotopy commutativity, homotopy localizations, H -spaces, An-spaces,

ACn-spaces.
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5.1). Here an H -space is called Postnikov if the homotopy groups are finitely
generated over the p-adic integers Z∧p which vanish above some dimension, and
mod p homotopy equivalence means homotopy equivalence up to p-completion in
the sense of [Bousfield and Kan 1972].

Moreover, by combining their main result with the mod 2 torus theorem by Hub-
buck [1969] and Lin [1985], Castellana et al. generalized results of Slack [1991]
and Lin and Williams [1991], as follows:

Theorem 1.1 [Castellana et al. 2007, Corollary 7.4]. If X is a connected homotopy
commutative H-space whose mod 2 cohomology H∗(X;Z/2) is finitely generated
as an algebra over A∗2, then X is mod 2 homotopy equivalent to a Postnikov H-
space.

On the other hand, the odd prime version of Theorem 1.1 does not hold. In fact,
Iriye and Kono [1985] showed that for an odd prime p, any connected H -space
is mod p homotopy equivalent to a homotopy commutative H -space. Moreover,
Sp(2)∧3 for p = 3 and (S3)∧p for p ≥ 5 are examples of homotopy commutative
loop spaces which are not Postnikov H -spaces by McGibbon [1984], where Y∧p
denotes the p-completion of a space Y .

To describe an odd prime version of Theorem 1.1, we use the higher homotopy
commutativity of the multiplication. Such notions are first considered by Sugawara
[1960] and Williams [1969] in the case of topological monoids. (The higher ho-
motopy commutativity of the third order in the sense of Williams is illustrated by
the left hexagon in Figure 1.)

Williams’ definition was generalized to the case of An-spaces in [Hemmi and
Kawamoto 2004] (see also [Hemmi 1991]). An An-space with a multiplication
admitting the higher homotopy commutativity of the n-th order is called an ACn-
space. By [Hemmi and Kawamoto 2004, Example 3.2(1)], an AC2-space is the
same as a homotopy commutative H -space. Let X be an A3-space admitting an
AC2-structure. Then by using the associating homotopy M3 : I × X3

→ X and the
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Figure 1. The higher homotopy commutativity of the third order.
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commuting homotopy Q2 : I × X2
→ X , we can define a map Q̃3 : S1

× X3
→ X

illustrated by the right dodecagon in Figure 1. For example, the uppermost edge
represents the commuting homotopy between xy and yx given by Q2(t, x, y)z, and
the next right edge is the associating homotopy between (xy)z and x(yz) given by
M3(t, x, y, z). Then X is an AC3-space if and only if Q̃3 is extended to a map
Q3 : D2

× X3
→ X . In general, X is an ACn-space if and only if there is a family

of maps
{Qi : Di−1

× X i
→ X}1≤i≤n

with the relations in [Hemmi and Kawamoto 2004, Proposition 2.1].
To generalize Theorem 1.1 to the case of any prime p, we first show:

Theorem A. Let A be a topological space and n≥1. If X is an ACn-space, then the
A-localization L A(X) is an ACn-space so that the universal map φX : X→ L A(X)
is an ACn-map.

From Theorem A and [Castellana et al. 2007, Theorem 7.3], we can generalize
the mod p torus theorem stated in [Hemmi and Kawamoto 2004, Corollary 1.1] to
the case of AC p-spaces with finitely generated cohomology over A∗p.

Theorem B. Let p be a prime. If X is a connected AC p-space whose mod p
cohomology H∗(X;Z/p) is finitely generated as an algebra over A∗p, then X is
mod p homotopy equivalent to a Postnikov H-space.

Theorem B is a generalization of Theorem 1.1 to the case of any prime p since
an AC2-space is the same as a homotopy commutative H -space. In the above
theorem, the assumption of AC p-space cannot be relaxed to AC p−1-space. In
fact, by [Hemmi and Kawamoto 2004, Proposition 3.8], the (2m−1)-dimensional
sphere (S2m−1)∧p is an AC p−1-space but not a Postnikov H -space for m ≥ 2.

Moreover, since the loop space of an H -space admits an AC∞-structure by
[Hemmi and Kawamoto 2004, Example 3.2(3)], Theorem B implies:

Corollary 1.2 [Castellana et al. 2007, p. 17]. Let p be a prime. Assume that X is a
connected loop space whose mod p cohomology H∗(X;Z/p) is finitely generated
as an algebra over A∗p. If the classifying space B X is an H-space, then X is mod
p homotopy equivalent to a Postnikov H-space.

There is an example of a Postnikov loop space Y admitting an AC p-structure
such that the classifying space BY is not an H -space by [McGibbon 1989, Example
5]. Corollary 1.2 is a generalization of results from [Aguadé and Smith 1986;
Kawamoto 1999; Lin 1994].

Bousfield [2001] studied the K (n)∗-localizations of Postnikov H -spaces, where
K (n)∗ denotes the Morava K -homology theory for n ≥ 1. By Theorem B and
[Bousfield 2001, Theorem 7.2], we have:
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Corollary 1.3. Let p be a prime and n ≥ 1. If X is a connected AC p-space
whose mod p cohomology H∗(X;Z/p) is finitely generated as an algebra over
A∗p, then the K (n)∗-localization L K (n)∗(X

∧
p ) is mod p homotopy equivalent to the

6n BZ/p-localization L6n BZ/p(X∧p ). In particular, X∧p is K (n)∗-local if and only
if the n-fold loop space �n X∧p is BZ/p-local.

We also generalize [Hemmi and Kawamoto 2007, Theorem B] to the case of
Ap-spaces with finitely generated cohomology over A∗p.

Theorem C. Let p be an odd prime. Assume that X is a connected Ap-space admit-
ting an ACn-structure with n>(p−1)/2 and the mod p cohomology H∗(X;Z/p)
is finitely generated as an algebra over A∗p. If the Steenrod operations P j act on
the indecomposable module Q H∗(X;Z/p) trivially for j ≥ 1, then X is mod p
homotopy equivalent to a finite product of (S1)∧ps, (CP∞)∧ps and BZ/pi s for i ≥ 1.

In Theorem C, the assumption n > (p− 1)/2 is necessary. In fact, by [Hemmi
1991, Theorem 2.4], (S3)∧p is an Ap-space admitting an AC(p−1)/2-structure for
any odd prime p.

Outline of article. In Section 2, we recall the associahedra, the multiplihedra and
the permuto-associahedra. Then we show that the permuto-associahedra are de-
composed by using the multiplihedra in a combinatorial way (see Proposition 2.1).
In Section 3, we give the definition of an ACn-map between ACn-spaces by using
Proposition 2.1 (see Definition 3.1). Section 4 is devoted to the proof of Theorem
A. We show that if φ : X→ Y is an An-map between An-spaces and Y is φ-local,
then φ transmits an ACn-structure from X to Y (see Proposition 4.1). By applying
Proposition 4.1 to the universal map φX : X → L A(X) for the A-localization of
X , we prove Theorem A. In Section 5, we first recall the result of [Castellana
et al. 2007] on H -spaces with finitely generated cohomology over A∗p (Theorem
5.1). From Theorem A, Theorem 5.1 and the results in [Hemmi 1991; Hemmi and
Kawamoto 2004], we prove Theorem B. Next Corollary 1.3 is proved by Theorem
B and the result from [Bousfield 2001] on the K (n)∗-localizations of Postnikov H -
spaces. We finally give the proof of Theorem C by using Theorem A and [Hemmi
and Kawamoto 2007, Theorem B].

The content of the paper was first presented in a conference on algebraic topol-
ogy at Shinshu University in July 2005. The author is grateful to the organizers for
their kind invitation and hospitality.

2. Decompositions of the permuto-associahedra

We first recall the associahedra {Kn}n≥2 of Stasheff and the multiplihedra {Jn}n≥1

of Iwase and Mimura.
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Figure 2. The associahedra K3 and K4.

Stasheff [1963, p. 283] constructed the associahedra {Kn}n≥2 to introduce the
concept of An-space (see Section 3). From the construction, the associahedron Kn

is an (n− 2)-dimensional polytope whose boundary ∂Kn is given by

∂Kn =
⋃
r,s,k

Kk(r, s)

for n ≥ 2, where r, s ≥ 2 with r + s = n + 1 and 1 ≤ k ≤ r . Here the facet
(codimension-one face) Kk(r, s) is homeomorphic to the product Kr × Ks by a
face operator ∂k(r, s) : Kr × Ks → Kk(r, s) with the relations in [Stasheff 1963,
p. 278, 3(a),(b)]. There is a family of degeneracy operators {θ j : Kn→ Kn−1}1≤ j≤n

satisfying the relations in [Stasheff 1963, p. 278, Proposition 3].
The associahedra {Kn}n≥2 are also used in [Stasheff 1970, Definition 11.9] to

define an An-map from an An-space to a topological monoid.
Iwase and Mimura [1989, §2] introduced the multiplihedra {Jn}n≥1 for the pur-

pose of defining an An-map between An-spaces (see Section 3). From the proper-
ties in [Iwase and Mimura 1989, p. 200, (2-a) and (2-b)], the multiplihedron Jn is
an (n− 1)-dimensional polytope whose boundary ∂ Jn is given by

∂ Jn =
⋃
k,r,s

Jk(r, s)∪
⋃

q,r1,...,rq

J (q, r1, . . . , rq)

for n ≥ 1, where r ≥ 1, s ≥ 2 with r + s = n + 1 and 1 ≤ k ≤ r , and 2 ≤ q ≤ n,
r1, . . . , rq≥1 with r1+· · ·+rq=n. As in the case of the associahedra, we have face
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Figure 3. The multiplihedra J2 and J3.
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Figure 4. The permuto-associahedra 02 and 03.

operators δk(r, s) : Jr×Ks→ Jk(r, s) and δ(q, r1, . . . , rq) : Kq× Jr1×· · ·× Jrq→

J (q, r1, . . . , rq) with the relations in (2-c) of the same work. The degeneracy
operators {ξ j : Jn→ Jn−1}1≤ j≤n satisfy the relations in (2-d).

We next recall the permuto-associahedra {0n}n≥1 constructed by Kapranov and
by Reiner and Ziegler. By [Kapranov 1993, Theorem 2.5] and [Reiner and Ziegler
1994, Theorem 2], the permuto-associahedron 0n is an (n−1)-dimensional poly-
tope whose faces are described in a combinatorial way for n ≥ 1 (see also [Ziegler
1995, Definition 9.13, Example 9.14]). In particular, a facet of 0n is represented
by a partition of the sequence n = (1, . . . , n) into at least two parts. Here a par-
tition of n of type (t1, . . . , tl) is an ordered sequence (α1, . . . , αl) consisting of
disjoint subsequences αi of n of length ti with α1 ∪ · · · ∪αl = n. See [Hemmi and
Kawamoto 2004; Ziegler 1995] for the full details of the partitions.

Let0(α1, . . . ,αl) denote the facet of0n corresponding to a partition (α1, . . . ,αl).
The boundary of 0n is given by

(2-1) ∂0n =
⋃

(α1,...,αl )

0(α1, . . . , αl),

where the union covers all partitions (α1, . . . , αl) of n with l ≥ 2. If (α1, . . . , αl)

is of type (t1, . . . , tl), then the facet 0(α1, . . . , αl) is homeomorphic to the product
Kl×0t1×· · ·×0tl by a face operator ε(α1,...,αl ) : Kl×0t1×· · ·×0tl→0(α1, . . . , αl)

with the relations in Proposition 2.1 of [Hemmi and Kawamoto 2004]. Moreover,
there are degeneracy operators {ω j : 0n → 0n−1}1≤ j≤n satisfying the relations in
Proposition 2.3 of the same reference.

In Definition 3.1, we need the following result:

Proposition 2.1. Let n ≥ 1.

(1) The permuto-associahedron 0n is decomposed by

0n =
⋃

(β1,...,βm)

B(β1, . . . , βm),
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where the union covers all partitions (β1, . . . , βm) of n with m ≥ 1.

(2) If (β1, . . . , βm) is a partition of n of type (u1, . . . , um), then B(β1, . . . , βm) is
homeomorphic to the product Jm ×0u1 × · · ·×0um by an operator

ι(β1,...,βm) : Jm ×0u1 × · · ·×0um → B(β1, . . . , βm).

By an inductive argument, we can show:

Lemma 2.2 [Stasheff 1963, p. 288, Proposition 25]. There is a family of homeo-
morphisms {ζm : I × Km→ Jm}m≥2 with the relations

ζm(0, σ )= δ1(1,m)(∗, σ ),

ζm(t, ∂k(r, s)(ρ, σ ))= δk(r, s)(ζr (t, ρ), σ )

for r, s ≥ 2 with r + s = m+ 1 and 1≤ k ≤ r .

Proof of Proposition 2.1. We work by induction on n. Since 01= J1=∗, the result
is clear for n = 1. We put

(2-2) Un = 0n ∪{0}×∂0n I × ∂0n,

where I is the unit interval and {0} × ∂0n is identified with ∂0n ⊂ 0n . It is clear
that Un is homeomorphic to the (n− 1)-dimensional ball.

Let B(n) = 0n ⊂ Un . Then an operator ι(n) : J1 × 0n → B(n) is defined by
ι(n)(∗, τ ) = τ for τ ∈ 0n . If m ≥ 2, then by Lemma 2.2, we can identify Jm with
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Figure 5. The decompositions of 02 and 03.
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I ×Km by ζm : I ×Km→ Jm . Assume that (β1, . . . , βm) is a partition of n of type
(u1, . . . , um) with m ≥ 2. Put

B(β1, . . . , βm)= I ×0(β1, . . . , βm)⊂Un,

and define an operator ι(β1,...,βm) : Jm ×0u1 × · · ·×0um → B(β1, . . . , βm) by

ι(β1,...,βm)(ζm(t, σ ), τ1, . . . , τm)= (t, ε(β1,...,βm)(σ, τ1, . . . , τm)).

Then by (2-1) and (2-2), we have that

Un =
⋃

(β1,...,βm)

B(β1, . . . , βm),

where the union covers all partitions (β1, . . . , βm) of n with m ≥ 1.
By Lemma 2.2, we see that

ζm({1}× Km)=
⋃

q,r1,...,rq

J (q, r1, . . . , rq)

for 2≤ q ≤ m and r1, . . . , rq ≥ 1 with r1+ · · ·+ rq = m. This implies that

(2-3) ∂Un =
⋃

(β1,...,βm)

ι(β1,...,βm)

(( ⋃
q,r1,...,rq

J (q, r1, . . . , rq)

)
×0u1 ×· · ·×0um

)
for 2 ≤ q ≤ m and r1, . . . , rq ≥ 1 with r1 + · · · + rq = m, where (β1, . . . , βm)

are partitions of n of type (u1, . . . , um) with m ≥ 2. If we define face operators
on ∂Un satisfying the relations in [Hemmi and Kawamoto 2004, Proposition 2.1],
then ∂Un is homeomorphic to ∂0n , and it follows that Un is homeomorphic to 0n ,
which implies the required conclusion.

Recall that ∂0n is given by

∂0n =
⋃

(α1,...,αl )

0(α1, . . . , αl),

where the union covers all partitions (α1, . . . , αl) of n with l ≥ 2.
Assume that (α1, . . . , αl) is a partition of n of type (t1, . . . , tl) with l ≥ 2. Then

by inductive hypothesis, we can assume that

0t j =

⋃
(γ j,1,...,γ j,h j )

B(γ j,1, . . . , γ j,h j )

for 1 ≤ j ≤ l, where the union covers all partitions (γ j,1, . . . , γ j,h j ) of (1, . . . , t j )

with h j ≥1. If (γ j,1, . . . , γ j,h j ) is a partition of (1, . . . , t j ) of type (v j,1, . . . , v j,h j ),
then by inductive hypothesis, we have the operator ι(γ j,1,...,γ j,h j ) : Jh j ×0v j,1×· · ·×

0v j,h j
→ B(γ j,1, . . . , γ j,h j ) which is a homeomorphism. Put m = h1 + · · · + hl .
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We give a partition (β1, . . . , βm) of n of type (v1,1, . . . , v1,h1, . . . , vl,1, . . . , vl,hl )

by

βi (t)= α jγ j,i−(h1+···+h j−1)(t)

for h1 + · · · + h j−1 + 1 ≤ i ≤ h1 + · · · + h j and 1 ≤ t ≤ i − (h1 + · · · + h j−1).
Define a face operator ε(α1,...,αl ) : Kl ×0t1 × · · ·×0tl → ∂Un by

ε(α1,...,αl )(σ, ι(γ1,1,...,γ1,h1 )(ρ1, τ1,1, . . . , τ1,h1), . . . , ι
(γl,1,...,γl,hl )(ρl, τl,1, . . . , τl,hl ))

= ι(β1,...,βm)(δ(l, h1, . . . , hl)(σ, ρ1, . . . , ρl), τ1,1, . . . , τ1,h1, . . . , τl,1, . . . , τl,hl ).

By (2-3) and the relation [Iwase and Mimura 1989, p. 201, (c-4)], the face opera-
tor satisfies the relations in [Hemmi and Kawamoto 2004, Proposition 2.1]. This
implies that Un is homeomorphic to 0n , and so we have the required conclusion.
This completes the proof. �

Remark 2.3. The decomposition of 0n in Proposition 2.1 is compatible with the
degeneracy operators {ω j : 0n→ 0n−1}1≤ j≤n . Assume that (β1, . . . , βm) is a par-
tition of n of type (u1, . . . , um) for u1, . . . , um ≥ 1 with u1 + · · · + um = n. Let
1≤ j ≤ n. Then βk(t)= j for some 1≤ k ≤ m and 1≤ t ≤ uk .

(i) If uk ≥ 2, then

ω j ι
(β1,...,βm)(σ, τ1, . . . , τm)= ι

(β̃1,...,β̃m)(σ, τ1, . . . , τk−1, ωt(τk), τk+1, . . . , τm),

where (β̃1, . . . , β̃m) is the partition of (1, . . . , n − 1) of type (u1, . . . , uk−1, uk −

1, uk+1, . . . , um) given by

β̃k(s)=

{
βk(s) if βk(s) < j ,

βk(s+ 1)− 1 if βk(s)≥ j

and for 1≤ i ≤ n with i 6= k,

(2-4) β̃i (s)=

{
βi (s) if βi (s) < j ,

βi (s)− 1 if βi (s) > j .

(ii) If uk = 1, then

ω j ι
(β1,...,βm)(σ,τ1,. . .,τm)= ι

(β̃1,...,β̃k−1,β̃k+1,...,β̃m)(ξk(σ ),τ1,. . .,τk−1,τk+1,. . .,τm),

where (β̃1, . . . , β̃k−1, β̃k+1, . . . , β̃m) is the partition of (1, . . . , n− 1) of type

(u1, . . . , uk−1, uk+1, . . . , um)

given by (2-4) and ξk denotes the degeneracy operator of Jm .
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3. Higher homotopy commutativity

We first recall the higher homotopy associativity of H -spaces and H -maps.
Sugawara [1957] gave a criterion for a topological space to have the homotopy

type of a loop space. Later Stasheff [1963] expanded his definition, and introduced
the concept of An-space by using the associahedra {Ki }i≥2. Let X be an H -space
whose multiplication is given by µ : X × X → X with µ(x, ∗) = µ(∗, x) = x for
x ∈ X . Then an An-form on X is a family of maps {Mi : Ki × X i

→ X}2≤i≤n with
the relations

M2(∗, x, y)= µ(x, y),

Mi (∂k(r,s)(ρ,σ ),x1,...,xi )=Mr (ρ,x1,...,xk−1,Ms(σ,xk,...,xk+s−1),xk+s,...,xi )

for r, s ≥ 2 with r + s = i + 1 and 1≤ k ≤ r , and

Mi (σ, x1, . . . , x j−1, ∗, x j+1, . . . , xi )= Mi−1(θ j (σ ), x1, . . . , x j−1, x j+1, . . . , xi )

for 1≤ j ≤ i .
An A1-space is just a topological space, and an H -space which admits an An-

form is called an An-space for n ≥ 2. From the definition, an A2-space and
an A3-space are an H -space and a homotopy associative H -space, respectively.
Moreover, an A∞-space X has the homotopy type of a loop space admitting the
classifying space B X with �(B X)' X (see [Kane 1988, §6-2]).

It is natural to consider the concept of An-map between An-spaces. Sugawara
[1960] first considered such a concept for a map between topological monoids.
Stasheff [1970] next studied an An-map from an An-space to a topological monoid
by using the associahedra {Ki }i≥2 used for the definition of an An-space.

The full generality was described by Iwase and Mimura [1989] by using the
multiplihedra {Ji }i≥1. Let X and Y be An-spaces with the An-forms {Mi }2≤i≤n

and {Ni }2≤i≤n , respectively. Assume that φ : X → Y is a map. Then an An-form
on φ is a family of maps {Fi : Ji × X i

→ Y }1≤i≤n with the relations

F1(∗, x)= φ(x),

Fi (δk(r,s)(ρ,σ ),x1,...,xi )= Fr (ρ,x1,...,xk−1,Ms(σ,xk,...,xk+s−1),xk+s,...,xi )

for r ≥ 1, s ≥ 2 with r + s = i + 1 and 1≤ k ≤ r ,

Fi (δ(q, r1, . . . , rq)(ρ, σ1, . . . , σq), x1, . . . , xi )

= Nq(ρ, Fr1(σ1, x1, . . . , xr1), . . . , Frq (σq , xr1+···+rq−1+1, . . . , xi ))

for q ≥ 2 and r1, . . . , rq ≥ 1 with r1+ · · ·+ rq = n, and

Fi (ρ, x1, . . . , x j−1, ∗, x j+1, . . . , xi )= Fi−1(ξ j (ρ), x1, . . . , x j−1, x j+1, . . . , xi )

for 1≤ j ≤ i .
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A map which admits an An-form is called an An-map for n ≥ 1. An A1-map is
just a map, and by [Iwase and Mimura 1989, p. 195, P8], an A2-map and an A3-map
are an H -map and an H -map preserving the homotopy associativity, respectively.
Moreover, an A∞-map φ is homotopic to a loop map which induces a map between
the classifying spaces Bφ : B X→ BY with �(Bφ)' φ (see [Kane 1988, §6-4]).

We next recall the higher homotopy commutativity of H -spaces.
Sugawara [1960] gave a criterion for the classifying space of a topological

monoid to have the homotopy type of an H -space. His criterion is a higher ho-
motopy commutativity of the multiplication. Later Williams [1969] considered
another type of higher homotopy commutativity which is weaker than the one of
Sugawara, and defined Cn-spaces.

In [Hemmi and Kawamoto 2004], we generalized the definition of Williams to
the case of An-spaces, and defined ACn-spaces by using the permuto-associahedra
{0i }i≥1. Let X be an An-space with the An-form {Mi }2≤i≤n . Then an ACn-form
on X is a family of maps {Qi : 0i × X i

→ X}1≤i≤n with the relations

(3-1) Q1(∗, x)= x,

(3-2) Qi (ε
(α1,...,αl )(σ, τ1, . . . , τl), x1, . . . , xi )

= Ml(σ, Qt1(τ1, xα1(1), . . . , xα1(t1)), . . . , Qtl (τl, xαl (1), . . . , xαl (tl )))

for a partition (α1, . . . , αl) of i of type (t1, . . . , tl) with l ≥ 2, and

(3-3) Qi (τ,x1,. . .,x j−1,∗,x j+1,. . .,xi )=Qi−1(ω j (τ ),x1,. . .,x j−1,x j+1,. . .,xi )

for 1≤ j ≤ i .
An An-space admitting an ACn-form is called an ACn-space for n ≥ 1. By

Example 3.2(1) in [Hemmi and Kawamoto 2004], X is an AC2-space if and only
if X is a homotopy commutative H -space. Moreover, if X is a topological monoid,
then by Corollary 3.6 of the same work, X is an ACn-space if and only if X is a
Cn-space of Williams [1969].

Williams [1969, Definition 20], also considered the concept of Cn-map between
Cn-spaces. We generalize his definition to the case of maps between ACn-spaces.

Definition 3.1. Let X and Y be ACn-spaces with the ACn-forms {Qi }1≤i≤n and
{Ri }1≤i≤n , respectively. Assume that φ : X → Y is an An-map with the An-form
{Fi }1≤i≤n . Then an ACn-form on φ is a family of maps

{Di : I ×0i × X i
→ Y }1≤i≤n

with the relations

(3-4) D1(t, ∗, x)= φ(x),
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Figure 6. The ACn-forms on φ for n = 2, 3.

(3-5) Di (t, ε(α1,...,αl )(σ, τ1, . . . , τl), x1, . . . , xi )

= Nl(σ, Dt1(t, τ1, xα1(1), . . . , xα1(t1)), . . . , Dtl (t, τl, xαl (1), . . . , xαl (tl )))

for a partition (α1, . . . , αl) of i of type (t1, . . . , tl) with l ≥ 2,

(3-6) Di (0, ι(β1,...,βm)(σ, τ1, . . . , τm), x1, . . . , xi )

= Fm(σ, Qu1(τ1, xβ1(1), . . . , xβ1(u1)), . . . , Qum (τm, xβm(1), . . . , xβm(um)))

for a partition (β1, . . . , βm) of i of type (u1, . . . , um) with m ≥ 1,

(3-7) Di (1, τ, x1, . . . , xi )= Ri (τ, φ(x1), . . . , φ(xi )),

and

(3-8) Di (t, τ, x1, . . . , x j−1, ∗, x j+1, . . . , xi )

= Di−1(t, ω j (τ ), x1, . . . , x j−1, x j+1, . . . , xi )

for 1≤ j ≤ i .

An An-map admitting an ACn-form is called an ACn-map for n ≥ 1. If there is
a family of maps {Di }i≥1 such that {Di }1≤i≤n is an ACn-form on φ for any n ≥ 1,
then φ is called an AC∞-map.

Example 3.2. (1) An AC2-space is the same as a homotopy commutative H -
space by [Hemmi and Kawamoto 2004, Example 3.2(1)]. Then an AC2-map
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is a map between AC2-spaces preserving the homotopy commutativity, and
so it is the same as an HC-map of Zabrodsky [1976, p. 62].

(2) Let φ : X→ Y be a homomorphism for topological monoids X, Y . Then φ is
an ACn-map if and only if φ is a Cn-map of [Williams 1969, Definition 20].

(3) If φ : X → Y is an H -map, then the loop map �φ : �X → �Y is an AC∞-
map.

4. Proof of Theorem A

Let S∗ denote the category of pointed and connected topological spaces having the
homotopy type of CW -complexes. Assume that f : A→ B is a pointed map for
A, B ∈ S∗. According to Dror Farjoun [1996, p. 2, A.1], Z ∈ S∗ is called f -local
if the induced map

f #
: Map∗(B, Z) - Map∗(A, Z)

is a homotopy equivalence. In the case that B = ∗ and f : A → ∗ is the con-
stant map, Z is called A-local, that is, the pointed mapping space Map∗(A, Z) is
contractible.

Bousfield [1994, §2] and Dror Farjoun [1996, §1] constructed the A-localization
L A(X) with the universal map φX : X→ L A(X) for X ∈S∗ (see also [Chachólski
1996, §14]). By [Farjoun 1996, p. 4, A.4], L A(X) is A-local, and by [Bousfield
1994, Theorem 2.10(ii)], φX induces a homotopy equivalence

(4-1) (φX )
#
: Map∗(L A(X), Z) - Map∗(X, Z)

for any A-local space Z (see also [Chachólski 1996, Theorem 14.1]).
To prove Theorem A, we first show:

Proposition 4.1. Let φ : X → Y be an An-map for An-spaces X, Y . If X is an
ACn-space and Y is φ-local, then Y is an ACn-space so that φ is an ACn-map.

Lemma 4.2. Let φ : X→ Y be a map. If Y is φ-local, then we have the homotopy
equivalences

(φn)# : Map∗(Y
n, Y )−→Map∗(X

n, Y )(4-2)

(φ(n))# : Map∗(Y
(n), Y )−→Map∗(X

(n), Y ),(4-3)

where Z (n) denotes the n-fold smash product of Z ∈ S∗ for n ≥ 1.
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Proof. We first show (4-2). From the homotopy commutative diagram of fibrations

Map∗(Y
n, Y )

(φn)#- Map∗(X
n, Y )

Map(Y n, Y )
?

(φn)#- Map(Xn, Y )
?

Y

e
?
============== Y,

e′

?

it is sufficient to show that the middle horizontal map is a homotopy equivalence
for n ≥ 1, where e and e′ are the evaluation maps at the base points.

We work by induction on n. Since Y is φ-local, the result is clear for n= 1. As-
sume that (φn−1)# : Map(Y n−1, Y )→Map(Xn−1, Y ) is a homotopy equivalence.
By [Farjoun 1996, p. 5, A.8, e.2], Map(Y n−1, Y ) is φ-local. From the homotopy
commutative diagram

Map(Y n, Y )
(φn)# - Map(Xn, Y )

Map(Y,Map(Y n−1, Y ))

'

?

Map(X,Map(Xn−1, Y ))

'

?

Map(X,Map(Y n−1, Y ))

' φ#

?
((φn−1)#)#

'

- Map(X,Map(Xn−1, Y )),

wwwwww
we have that (φn)# : Map(Y n, Y )→Map(Xn, Y ) is a homotopy equivalence.

In the case of (4-3), by similar arguments to the case of (4-2) and a homotopy
equivalence

Map∗(Z ∧W,U )'Map∗(Z ,Map∗(W,U ))

for Z ,W,U ∈ S∗, we have the required conclusion. This completes the proof. �

Lemma 4.3. Let φ : Z → W be a homotopy equivalence for Z ,W ∈ S∗, and let
(K , L) be a relative CW -complex.

(1) If there are maps f : K → W and g : L→ Z with φg = f |L , then we have a
map h : K → Z with h|L = g and φh ' f rel L.

(2) If h, k : K→ Z are maps with h|L = k|L and φh ' φk rel L , then h ' k rel L.

Proof of Proposition 4.1. Let {Mi }2≤i≤n and {Ni }2≤i≤n be the An-form on X and
Y , respectively. Since φ : X→ Y is an An-map, there is an An-form {Fi }1≤i≤n on
φ. Moreover, we denote the ACn-form on X by {Qi }1≤i≤n .
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We work by induction on n. By (3-1) and (3-4), the result is clear for n = 1.
Assume that there are ACn−1-forms {Ri }1≤i≤n−1 and {Di }1≤i≤n−1 on Y and φ,
respectively.

Put Vn(Z)= (I ×∂0n∪{0}×0n)× Zn and Wn(Z)= I ×0n× Z [n], where Z [n]

denotes the n-fold fat wedge of Z ∈ S∗ given by

Z [n] = {(z1, . . . , zn) ∈ Zn
| z j = ∗ for some 1≤ j ≤ n}.

Let En : Vn(X)∪Wn(X)→ Y be the map defined by

En(t, ε(α1,...,αl )(σ, τ1, . . . , τl), x1, . . . , xn)

= Nl(σ, Dt1(t, τ1, xα1(1), . . . , xα1(t1)), . . . , Dtl (t, τl, xαl (1), . . . , xαl (tl )))

for a partition (α1, . . . , αl) of n of type (t1, . . . , tl) with l ≥ 2,

En(0, ι(β1,...,βm)(σ, τ1, . . . , τm), x1, . . . , xn)

= Fm(σ, Qu1(τ1, xβ1(1), . . . , xβ1(u1)), . . . , Qum (τm, xβm(1), . . . , xβm(um)))

for a partition (β1, . . . , βm) of n of type (u1, . . . , um) with m ≥ 1 and

En(t,τ, x1, . . . , x j−1,∗, x j+1, . . . , xn)=Dn−1(t,ω j (τ ), x1, . . . , x j−1, x j+1, . . . , xn)

for 1≤ j ≤ n.
Since there is a map Ẽn : I ×0n × Xn

→ Y with Ẽn|Vn(X)∪Wn(X) = En by the
homotopy extension property, we define a map Sn : 0n × Xn

→ Y by

Sn(τ, x1, . . . , xn)= Ẽn(1, τ, x1, . . . , xn).

Let γn : 0n → Map∗(X
n, Y )(φn)#(µn) be the adjoint of Sn , where µn : Y n

→ Y
is the map given by µn(y1, . . . , yn) = (· · · (y1 y2) · · · )yn . If a map κn : ∂0n →

Map∗(Y
n, Y )µn is defined by

κn(ε
(α1,...,αl )(σ, τ1, . . . , τl), y1, . . . , yn)

= Nl(σ, Rt1(τ1, yα1(1), . . . , yα1(t1)), . . . , Rtl (τl, yαl (1), . . . , yαl (tl ))),

then (φn)#(κn) = γn|∂0n , and so by (4-2) and Lemma 4.3 (1), we have a map
λn : 0n→Map∗(Y

n, Y )µn with λn|∂0n = κn and (φn)#(λn)' γn rel ∂0n .
To construct a map Rn : 0n × Y n

→ Y with the relations (3-1)–(3-3), we need
to show that the induced map

(4-4) (φ[n])# : Map∗(Y
[n], Y )νn −→Map∗(X

[n], Y )(φ[n])#(νn)

is a homotopy equivalence, where νn : Y [n]→ Y denotes the composite of µn with
the inclusion ιY : Y [n] → Y n . Since Y is an H -space, it is sufficient to show the
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same homotopy equivalence on the components of the constant maps. Consider
the following homotopy commutative diagram of fibrations:

Map∗(Y
(n), Y )C1

(φ(n))#

'

- Map∗(X
(n), Y )C2

Map∗(Y
n, Y )c

(πY )
#

?
(φn)#

'

- Map∗(X
n, Y )c

(πX )
#

?

Map∗(Y
[n], Y )c

(ιY )
#

?
(φ[n])#- Map∗(X

[n], Y )c,

(ιX )
#

?

where C1={h : Y (n)→ Y | (πY )
#(h)' c} and C2={k : X (n)

→ Y | (πX )
#(k)' c}.

Since the vertical arrows are fibrations, the bottom horizontal arrow is a homotopy
equivalence, which implies (4-4).

Define a map ρn : 0n→Map∗(Y
[n], Y )νn by

ρn(τ )(y1, . . . , y j−1, ∗, y j+1, . . . , yn)= Rn−1(ω j (τ ), y1, . . . , y j−1, y j+1, . . . , yn)

for 1 ≤ j ≤ n. Then (φ[n])#(ιY )#(λn) ' (φ
[n])#(ρn) rel ∂0n , and so by (4-4) and

Lemma 4.3 (2), we have (ιY )#(λn)' ρn rel ∂0n , which implies that there is a map
ψn : I ×0n→Map∗(Y

[n], Y )νn with

ψn(t, τ )=

{
(ιY )

#(λn)(τ ) if (t, τ ) ∈ {0}×0n ∪ I × ∂0n ,

ρn(τ ) if (t, τ ) ∈ {1}×0n .

If a map Gn : Vn(Y )∪Wn(Y )→ Y is given by

Gn(t, τ, y1, . . . , yn)=

{
λn(τ )(y1, . . . , yn) if (t, τ, y1, . . . , yn) ∈ Vn(Y ),

ψn(t, τ )(y1, . . . , yn) if (t, τ, y1, . . . , yn) ∈Wn(Y ),

there is an extension G̃n : I × 0n × Y n
→ Y with G̃n|Vn(Y )∪Wn(Y ) = Gn . Let

Rn : 0n×Y n
→Y be the map defined by Rn(τ, y1, . . . , yn)= G̃n(1, τ, y1, . . . , yn).

Then Rn satisfies the relations (3-1)–(3-3).
Since Rn(10n×φ

n)' Sn rel ∂0n×Xn , we have a map Hn : I×0n×Xn
→Y with

Hn|Vn(X) = En|Vn(X) and Hn(1, τ, x1, . . . , xn) = Rn(τ, φ(x1), . . . , φ(xn)). More-
over, Hn|∂(I×0n)×X [n] = En|∂(I×0n)×X [n] , and so by [Williams 1969, Remark 10],
we can choose a map Dn : I ×0n× Xn

→ Y with Dn|∂(I×0n)×Xn = Hn|∂(I×0n)×Xn

and Dn|Wn(X)= En|Wn(X). Then Dn satisfies the relations (3-4)–(3-8), and we have
the required conclusion. This completes the proof. �

Let φ : X→ Y be a homotopy equivalence. Then Y is φ-local, and so by Propo-
sition 4.1, we have:
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Proposition 4.4. Let X, Y be An-spaces. Assume that φ : X → Y is an An-map
which is a homotopy equivalence. If X is an ACn-space, then Y is an ACn-space
so that φ is an ACn-map.

Remark 4.5. By Proposition 4.4, the property of being an ACn-space is an invari-
ant of An-homotopy type. This is a generalization of [Williams 1969, Proposition
8, Theorem 9] for Cn-spaces in the category of topological monoids.

Proof of Theorem A. If X is an ACn-space, then the A-localization L A(X) is an
An-space so that the universal map φX : X→ L A(X) is an An-map, by [Kawamoto
2002, Theorem 2.1(1)]. Since L A(X) is φX -local by (4-1), we have the required
conclusion by Proposition 4.1. This completes the proof of Theorem A. �

By [Farjoun 1996, p. 26, E.1], the Sm+1-localization L Sm+1(X) of X is the same
as the m-th stage Pm(X) of the Postnikov system of X for m≥ 1, where St denotes
the t-dimensional sphere for t ≥ 1. Then by Theorem A, we have:

Corollary 4.6. Let n ≥ 1. If X is an ACn-space, then the m-th stage Pm(X) of the
Postnikov system of X is an ACn-space so that the projection ρm : X → Pm(X) is
an ACn-map for m ≥ 1.

Let A ∈S∗. Dror Farjoun [1996, §2] constructed the A-colocalization CWA(X)
with the universal map ψX : CWA(X)→ X for X ∈S∗ (see also [Chachólski 1996,
§7]).

Theorem 4.7. Let A ∈ S∗. If X is an ACn-space, then the A-colocalization
CWA(X) is an ACn-space so that the universal map ψX : CWA(X) → X is an
ACn-map.

Let f : Z → W be a pointed map for Z ,W ∈ S∗. According to [Farjoun 1996,
p. 39, A.1], f is called an A-equivalence if the induced map

f# : Map∗(A, Z) - Map∗(A,W )

is a homotopy equivalence. From the proof of [Farjoun 1996, p. 53, E.1], the
universal mapψX : CWA(X)→ X is a CWA(X)-equivalence (see also [Chachólski
1996, p. 614]), and so we can prove Theorem 4.7 from the following result:

Proposition 4.8. Let φ : X → Y be an An-map for An-spaces X, Y . If Y is an
ACn-space and φ is an X-equivalence, then X is an ACn-space so that φ is an
ACn-map.

Proposition 4.8 is proved by similar arguments to the proof of Proposition 4.1,
and so we omit the proof. In the proof of Proposition 4.8, we need the next lemma
instead of Lemma 4.2:
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Lemma 4.9. Let φ : X → Y be a map. If φ is an X-equivalence, then we have the
homotopy equivalences

φ# : Map∗(X
n, X)−→Map∗(X

n, Y ),

φ# : Map∗(X
(n), X)−→Map∗(X

(n), Y )

for n ≥ 1.

Proof. By [Farjoun 1996, p. 46, D.2.2],

E(φ)= {A ∈ S∗ | φ is an A-equivalence}

is a closed class.
Since φ is an X -equivalence, X ∈ E(φ). If A, B ∈ E(φ), then by [Farjoun 1996,

p. 52, D.16], the product A×B ∈E(φ). Since the wedge sum A∨B is represented
by a homotopy colimit, we have A∨ B ∈ E(φ) by [Farjoun 1996, p. 45, D.1] (see
also [Chachólski 1996, Proposition 4.2]), and so A∧ B ∈ E(φ) by [Farjoun 1996,
p. 45, D.1, 3,4]. From these properties, we have Xn, X (n)

∈ E(φ) for n ≥ 1, which
implies the required conclusion. This completes the proof. �

Dror Farjoun [1996, p. 39, A.3] proved that the Sm+1-colocalization CWSm+1(X)
of X ∈ S∗ is the same as the m-connected covering X〈m〉 of X for m ≥ 1, and so
by Theorem 4.7, we have:

Corollary 4.10. Let n ≥ 1. If X is an ACn-space, then the m-connected covering
X〈m〉 of X is an ACn-space so that the inclusion ιm : X〈m〉 → X is an ACn-map
for m ≥ 1.

Remark 4.11. In [Hemmi and Kawamoto 2004], we have shown that the uni-
versal covering inherits the property of being an ACn-space. Corollary 4.10 is a
generalization of Lemma 3.9 of that work to the case of any m ≥ 1.

5. Proofs of Theorems B and C

Theorem 5.1 [Castellana et al. 2007, Theorem 7.3]. Let p be a prime. If X is a
connected H-space whose mod p cohomology H∗(X;Z/p) is finitely generated
as an algebra over A∗p, then there is an H-fibration

(5-1) F(φX ) - X
φX- L BZ/p(X),

where L BZ/p(X) is a connected Z/p-finite H-space and F(φX ) is mod p homotopy
equivalent to a Postnikov H-space.

Remark 5.2. In Theorem 5.1, if H∗(X;Z/p) is finitely generated as an alge-
bra over Z/p, then F(φX ) is mod p homotopy equivalent to a finite product of
(CP∞)∧ps and BZ/pi s for i ≥ 1 by [Broto et al. 2001, Theorem 1.2, Theorem 1.3].
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Proof of Theorem B. By Theorem A and Theorem 5.1, L BZ/p(X) is a connected
Z/p-finite AC p-space so that the universal map φX : X → L BZ/p(X) is an AC p-
map. Then H∗(L BZ/p(X);Z/p) is an exterior algebra generated by odd dimen-
sional generators by [Kane 1988, §12-3, Corollaries A and B]. Let Z be the uni-
versal covering of L BZ/p(X). Then there is an H -fibration

Z - L BZ/p(X) - K (π1(L BZ/p(X)), 1),

where K (π1(L BZ/p(X)), 1) has the mod p homotopy type of a torus. Since Z is a
simply connected Z/p-finite AC p-space by [Hemmi and Kawamoto 2004, Lemma
3.9] and [Kane 1988, §3-1, Theorem B], we have H̃∗(Z;Z/p) = 0 by [Hemmi
and Kawamoto 2004, Theorem A (1)] and [Hemmi 1991, Theorem 1.1]. Then
L BZ/p(X) has the mod p homotopy type of a torus, and so by Theorem 5.1, X is
mod p homotopy equivalent to a Postnikov H -space. This completes the proof of
Theorem B. �

Remark 5.3. From Theorem B, we have the mod p torus theorem stated in [Hemmi
and Kawamoto 2004, Corollary 1.1] since a result of McGibbon and Neisendorfer
[1984] on a conjecture of Serre implies that a connected Postnikov H -space which
is also Z/p-finite has the mod p homotopy type of a torus.

The proof of Corollary 1.3 is given as follows:

Proof of Corollary 1.3. By Theorem B, X is mod p homotopy equivalent to a Post-
nikov H -space. Put Y = X∧p . Then, by [Bousfield 2001, Theorem 7.2], L K (n)∗(Y )
is homotopy equivalent to the (n+ 1)-st stage P̃n+1(Y ) of the modified Postnikov
system of Y given by

(5-2) π j (P̃n+1(Y ))∼=


π j (Y ) for 1≤ j ≤ n,

πn+1(Y )/Tn+1(p) for j = n+ 1,

0 for j > n+ 1,

where Tn+1(p) denotes the p-torsion subgroup of πn+1(Y ). Since �n L K (n)∗(Y ) is
BZ/p-local by (5-2), there is a map f : L6n BZ/p(Y )→ L K (n)∗(Y ) with f φY ' κY ,
where κY : Y → L K (n)∗(Y ) denotes the universal map for the K (n)∗-localization
of Y .

Since �n L6n BZ/p(Y ) is BZ/p-local, there is an H -fibration

F(φL6n BZ/p(Y ))
- L6n BZ/p(Y )

φL6n BZ/p(Y )- L BZ/p(L6n BZ/p(Y )),

by [Castellana et al. 2007, Theorem 3.2], where F(φL6n BZ/p(Y )) is mod p homotopy
equivalent to a Postnikov H -space which satisfies that πn+1(F(φL6n BZ/p(Y ))

∧
p) has

no p-torsion and π j (F(φL6n BZ/p(Y ))
∧
p)= 0 for j > n+ 1.
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By [Farjoun 1996, p. 139, B.6], L BZ/p(L6n BZ/p(Y )) ' L BZ/p(Y ), and by the
proof of Theorem B, we have that L BZ/p(Y ) has the mod p homotopy type of a
torus. Then L6n BZ/p(Y )∧p is K (n)∗-local by (5-2), and so there is a map

g : L K (n)∗(Y )→ L6n BZ/p(Y )∧p

with gκY ' (φY )
∧
p . From the universality of the localizations we see that L K (n)∗(Y )

is mod p homotopy equivalent to L6n BZ/p(Y ). This completes the proof. �

To prove Theorem C, we need a lemma:

Lemma 5.4. Let p be an odd prime. Assume that X is a connected H-space whose
mod p cohomology H∗(X;Z/p) is finitely generated as an algebra over Z/p. If
x ∈ Q H 2pt

(X;Z/p) is a generator of infinite height with t ≥ 2, then P1β(x) 6= 0
in Q H 2pt

+2p−1(X;Z/p) or there is a generator y ∈ Q H 2pt−1
+1(X;Z/p) with

Ppt−1
(y)= β(x) 6= 0 in Q H 2pt

+1(X;Z/p).

Proof. Let X̃ be the universal covering of X . Then there is an H -fibration

X̃
ι - X

ρ - K (π1(X), 1),

where K (π1(X), 1) has the mod p homotopy type of a finite product of (S1)∧ps
and BZ/pi s for i ≥ 1. According to [Browder 1959], the mod p cohomology
H∗(X̃;Z/p) is finitely generated as an algebra over Z/p and

(5-3) ι∗ : Q H s(X;Z/p)→ Q H s(X̃;Z/p)

is an isomorphism if s 6= 2, 2p j
− 1 for j ≥ 1.

Recall that the mod p cohomology of B2Z/p is given by

H∗(B2Z/p;Z/p)∼= Z/p[u, βP1β(u), . . . , βP1tβ(u), . . . ]

⊗3(β(u),P1β(u), . . . ,P1tβ(u), . . . ),

where u ∈ Q H 2(B2Z/p;Z/p) denotes the generator and P1t =Ppt
· · ·P1 for t ≥

0. Let x̃ = ι∗(x) ∈ Q H 2pt
(X̃;Z/p). By [Crespo 2001, Theorem 2.10, Proposition

5.7], there is an H -space Y and an H -fibration

(5-4) X̃ - Y - B2Z/p

such that τ(x̃)=P1t−1β(u)∈ H 2pt
+1(B2Z/p;Z/p) and τ(β(x̃))= βP1t−1β(u)∈

H 2pt
+2(B2Z/p;Z/p) in the spectral sequence associated to the H -fibration (5-4),

where τ : Q H s(X̃;Z/p)→ H s+1(B2Z/p;Z/p) denotes the transgression of the
spectral sequence for s ≥ 2. Then by [Crespo 2001, Theorem 1.5], there is a
generator ỹ ∈ Q H 2pt−1

+1(X̃;Z/p) with

(5-5) τ(ỹ)= βP1t−2β(u) ∈ H 2pt−1
+2(B2Z/p;Z/p)
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or there is a generator z̃ ∈ Q H 2pt
+2p−1(X̃;Z/p) with

(5-6) τ(z̃)= (βP1t−2β(u))p
∈ H 2pt

+2p(B2Z/p;Z/p).

If we have (5-5), then it follows that Ppt−1
(ỹ)= β(x̃) in Q H 2pt

+1(X̃;Z/p) by
the choice of the generators in [Crespo 2001, p. 126] since Ppt−1

(βP1t−2β(u)) =
βP1t−1β(u) by Lemma 3.2 of the same reference. Choose y∈Q H 2pt−1

+1(X;Z/p)
with ι∗(y)= ỹ. Then Ppt−1

(y)= β(x) in Q H 2pt
+1(X;Z/p) by (5-3).

In the case of (5-6), since P1(βP1t−1β(u))= (βP1t−2β(u))p by [Crespo 2001,
Lemma 3.3], we have P1β(x̃) = z̃ in Q H 2pt

+2p−1(X̃;Z/p). Then by (5-3), we
have P1β(x) 6= 0 in Q H 2pt

+2p−1(X;Z/p). This completes the proof. �

Proof of Theorem C. By Theorem A, [Kawamoto 2002, Theorem 2.1(1)] and The-
orem 5.1, we have that L BZ/p(X) is a connected Z/p-finite Ap-space admitting an
ACn-form with n > (p− 1)/2.

If H∗(X;Z/p) is finitely generated as an algebra over A∗p and the operations
P j act on Q H∗(X;Z/p) trivially for j ≥ 1, then we see that H∗(X;Z/p) is
finitely generated as an algebra over Z/p, and so by Remark 5.2, F(φX ) is mod p
homotopy equivalent to a finite product of (CP∞)∧ps and BZ/pi s for i ≥ 1.

Consider the spectral sequence associated to the H -fibration (5-1) whose E2-
term is given by

E∗,∗2
∼= H∗(L BZ/p(X);Z/p)⊗ H∗(F(φX );Z/p).

Let us show that the spectral sequence collapses. If w ∈ Q H 1(F(φX );Z/p) is
a generator, then d2(w) ∈ P H 2(L BZ/p(X);Z/p) by [Kane 1988, §1-6], where
P A denotes the primitive module of A. By [Kane 1988, §12-3, Corollary B],
H∗(L BZ/p(X);Z/p) is an exterior algebra generated by odd dimensional genera-
tors. Since P H 2(L BZ/p(X);Z/p) = 0, we have d2(w) = 0. Assume that there is
a generator u ∈ Q H 2(F(φX );Z/p) with d3(u)= v 6= 0 in Q H 3(L BZ/p(X);Z/p).
Then d3(u p)=P1(v) 6=0 in Q H 2p+1(L BZ/p(X);Z/p) by [Hemmi and Kawamoto
2007, Theorem A (2)], and so by computing the spectral sequence, we have a gener-
ator x ∈ Q H 2pt

(X;Z/p)with t ≥2. Since the operations P j act on Q H∗(X;Z/p)
trivially for j ≥ 1, we have a contradiction by Lemma 5.4. Then the spectral
sequence collapses, and so we have

H∗(X;Z/p)∼= H∗(L BZ/p(X);Z/p)⊗ H∗(F(φX );Z/p).

Since the operations P j act on Q H∗(X;Z/p) trivially for j ≥ 1, they also
act on Q H∗(L BZ/p(X);Z/p) trivially, which implies that L BZ/p(X) has the mod
p homotopy type of a torus by [Hemmi and Kawamoto 2007, Theorem B] and
Remark 5.5. Then there is a map ζ : L BZ/p(X)× F(φX )→ X which induces an
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isomorphism on the mod p cohomology, and so ζ is a mod p homotopy equiva-
lence; compare [Mimura and Toda 1991, p. 157, Corollary 1.6]. This completes
the proof of Theorem C. �

Remark 5.5. In [Hemmi and Kawamoto 2007], all spaces are assumed to be local-
ized at p in the sense of [Bousfield and Kan 1972]. However, the proof of Theorem
B in our paper with Hemmi is also available for Z/p-finite Ap-spaces, even if they
are not localized at p.
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CONDUCTORS AND NEWFORMS FOR SL(2)

JOSHUA M. LANSKY AND A. RAGHURAM

In this paper we develop a theory of newforms for SL2(F) where F is a
nonarchimedean local field whose residue characteristic is odd. This is anal-
ogous to results of Casselman for GL2(F) and Jacquet, Piatetski-Shapiro,
and Shalika for GLn(F). To a representation π of SL2(F) we attach an
integer c(π) that we call the conductor of π . The conductor of π depends
only on the L-packet 5 containing π . It is shown to be equal to the con-
ductor of a minimal representation of GL2(F) determining the L-packet
5. A newform is a vector in π which is essentially fixed by a congruence
subgroup of level c(π). For SL2(F) we show that our newforms are always
test vectors for some standard Whittaker functionals, and, in doing so, we
give various explicit formulae for newforms.

1. Introduction

To introduce the main theme of this paper we recall the following theorem of
Casselman [1973]. Let F be a nonarchimedean local field whose ring of integers
is OF . Let PF be the maximal ideal of OF . LetψF be a nontrivial additive character
of F which is normalized so that the maximal fractional ideal on which it is trivial
is OF .

Theorem (Casselman). Let (π, V ) be an irreducible admissible infinite-dimen-
sional representation of GL2(F). Let ωπ denote the central character of π . Let

0(m)=
{(

a b
c d

)
∈ GL2(OF ) : c ≡ 0 (mod Pm

F )

}
.

Let

Vm =

{
v ∈ V : π

((
a b
c d

))
v = ωπ (d)v, ∀

(
a b
c d

)
∈ 0(m)

}
.

(i) There exists a nonnegative integer m such that Vm 6= (0). If c(π) denotes
the least nonnegative integer m with this property then the epsilon factor

MSC2000: primary 22E50; secondary 22E35, 11S37, 11S40.
Keywords: conductor, newform, SL(2).
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ε(s, π, ψF ) of π is up to a constant multiple of the form q−c(π)s . (Here q
is the cardinality of the residue field of F.)

(ii) For all m ≥ c(π) we have dim Vm = m− c(π)+ 1.

The assertion dim Vc(π) = 1 is sometimes referred to as multiplicity one for
newforms, and the unique vector (up to scalars) in Vc(π) is called the newform for
π . This is closely related to the classical Atkin–Lehner theory of newforms for
holomorphic cusp forms on the upper half-plane [Casselman 1973]. When c(π)=
0, π is a spherical representation and the newform is nothing but the spherical
vector.

Newforms play an important role in the theory of automorphic forms. We cite
two examples to illustrate this. First, the zeta integral corresponding to the newform
is exactly the local L-factor associated to π (see [Jacquet et al. 1981] for instance).
In addition, newforms frequently play the role of test vectors for interesting linear
forms associated to π . For example, the newform is a test vector for an appropriate
Whittaker linear functional. In showing this, explicit formulae for newforms are
quite often needed. For instance, if π is a supercuspidal representation which is
realized in its Kirillov model then the newform is the characteristic function of the
unit group O×F . This observation is implicit in [Casselman 1973] and is explicitly
stated and proved in [Shimizu 1977]. Since the Whittaker functional on the Kirillov
model is given by evaluating functions at 1 ∈ F∗, we get in particular that the
functional is nonzero on the newform. In a related vein, it is shown in [Gross and
Prasad 1991] that test vectors for trilinear forms for representations of GL2(F) are
often built from newforms. (See also [Schmidt 2002], where many of these results
are documented.)

As far as we know, the only other p-adic groups for which there is a theory of
newforms are GLn(F) [Jacquet et al. 1981]; GL2(D) for a p-adic division alge-
bra D, [Prasad and Raghuram 2000]; and GSp4(F) (unpublished work of Brooks
Roberts and Ralf Schmidt). In this paper, we propose a theory of newforms and
conductors for SL2(F).

Let G = SL2(F) where F is a nonarchimedean local field with odd residue
characteristic. Crucial to our study of newforms are certain filtrations of maximal
compact subgroups of G. Let K = K0 = SL2(OF ). Let K ′ = K ′0 = α

−1K0α where
α =

(
$F 0
0 1

)
. Then K0 and K ′0 are, up to conjugacy, the two maximal compact

subgroups of SL2(F). We define filtrations of these maximal compact subgroups
as follows. For m an integer ≥ 1, let

Km =

{(
a b
c d

)
∈ SL2(OF ) : c ≡ 0 (mod Pm

F )

}
and K ′m = α

−1Kmα.
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Let (π, V ) be an irreducible admissible infinite-dimensional representation of
G. Let ωπ be the central character of π , i.e., the character of {±1} such that

π

((
−1 0
0 −1

))
= ωπ (−1)1V .

Let η be any character of O×F such that η(−1) = ωπ (−1). Let c(η) denote the
conductor of η. For any m ≥ c(η), η gives a character of Km and K ′m defined by
η
((

a b
c d

))
= η(d). We define for m ≥ 0

πKm
η :=

{
v ∈ V : π

((
a b
c d

))
v = η(d)v, ∀

(
a b
c d

)
∈ Km

}
.

Note that πKm
η = (0) if m< c(η). The space πK ′m

η is defined analogously. We define
the η-conductor cη(π) of π as

cη(π)=min{m ≥ 0 : πKm
η 6= (0) or πK ′m

η 6= (0)}.

We define the conductor c(π) of π by c(π) = min{cη(π) : η}, where η runs over
characters of F∗ such that η(−1)= ωπ (−1).

We deal with the following basic issues in this paper.

(i) Given an irreducible representation π , we determine its conductor c(π). A very
easy consequence (almost built into the definition) is that the conductor depends
only on the L-packet containing π .

(ii) We identify the conductor with some other invariants associated to the repre-
sentation. For instance, for SL2(F) we show that the conductor of π is same as
the conductor of a minimal representation of GL2(F) determining the L-packet
containing π . We also determine an explicit relation between our conductor and
the notion of depth due to Moy and Prasad (see Section 3.4).

(iii) We determine the growth of the space dim V Km
η as a function of m. This

question is analogous to (ii) of Casselman’s theorem quoted above. Computing
such dimensions is of importance in local level raising. See [Mann 2001].

(iv) We address the question of whether there is a multiplicity one result for new-
forms. It turns out that quite often dim V Kc(π)

η = 1, but this fails in general (see Sec-
tion 4). In these exceptional cases the dimension of the space of newforms is two.

(v) We prove appropriate Whittaker functionals are nonzero on spaces of newforms.
This is of importance in global issues related to newforms. In the proofs, we often
need explicit formulae for newforms in various models for the representations.
These formulae are interesting for their own sake. For example, if ψ is a character
of F of conductor OF and (π, V ) is a ψ-generic supercuspidal representation of G,
then the newform can be taken as the characteristic function of (O×F )

2 where V is
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regarded as a subspace of the Kirillov model of a canonical minimal representation
of GL2(F) which determines the L-packet containing π ; see [Shimizu 1977].

The paper is structured as follows. We briefly summarize preliminaries on rep-
resentations and L-packets of GL2(F) and SL2(F) in Section 2. The main results
of the paper are given in Section 3. In this section, after stating the definitions, we
take up principal series constituents and supercuspidal representations in separate
subsections. We also state results comparing the conductor with other invariants
of representations. In Section 4 we discuss the multiplicity one issue for newforms
for SL2(F).

We now comment briefly on the proofs. A useful preliminary lemma (Lemma
3.1.3) is proved using a variant of an argument of Deligne [1973] based on Kirillov
theory for representations of GL2(F). This lemma bounds the growth of fixed
vectors in representations of SL2(F).

For subquotients of principal series representations and their L-packets, most
of the proofs use Mackey theory, convenient double coset decompositions, and
details regarding restriction of representations from GL2 to SL2. There are a few
surprisingly difficult exceptions. In particular, for the L-packet corresponding to
a quadratic unramified character we use three different realizations of principal
series representations for which a general reference is [Gel’fand et al. 1969].

For supercuspidal representations and their L-packets, we make extensive use of
Kutzko’s construction [1978a; 1978b] of supercuspidal representations of GL2(F),
as well as the analysis of their restrictions to SL2(F) due to Kutzko and Sally
[1983]. In showing that certain vectors are newforms, as in the above mentioned
SL2 version of Shimizu’s result, we use a combination of arguments involving
Kutzko’s constructions, the formal Mellin transforms as in Jacquet–Langlands, and
the local Langlands correspondence for GL2 (see Propositions 3.3.5 and 3.3.9).

We mention some further directions that arise naturally from this work. To
begin with, we hope to show that our theory of newforms and conductors bears
upon known results about local factors for SL2(F). In particular, we believe that
our conductors are closely related to the analytic conductors appearing in certain
epsilon factors. We also believe that an appropriate zeta-integral corresponding to a
newform of a representation is equal to a certain local L-factor for that representa-
tion. As a possible global application we would like to prove using our newforms
that representations (or possibly L-packets) of SL2 have a nice rationality field,
akin to Waldspurger’s [1985] result for GL2.

A companion to this article [Lansky and Raghuram 2004] deals with newforms
for the quasisplit unramified unitary group U (1, 1). It would be of interest to
generalize these results to other groups, namely, to SLn for higher n and for uni-
tary groups in three variables (for instance the quasisplit unramified unitary group
U (2, 1)).
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2. Preliminaries

2.1. Notation. In the following, F will be a fixed nonarchimedean local field
whose residue characteristic is odd. Let O denote its ring of integers and let P

be the maximal ideal of O. Let $ be a uniformizer for F , i.e., P = $O. Let
k = O/P be the residue field of F . Let p be the characteristic of k and denote
by q the cardinality of k. Let ε be an element of O∗\O∗2. We will denote by E a
quadratic extension of F and by ωE/F the quadratic character of F∗ associated to
E/F by local class field theory. Recall that the kernel of ωE/F is NE/F (E∗), the
norms from E∗.

If n is a positive integer, let U n denote the nth filtration subgroup 1+ Pn of
O×, and define U 0

= O×. Let v denote the additive valuation on F∗ which takes
the value 1 on $ . We let | · | denote the normalized multiplicative valuation given
by |x | = q−v(x). If χ is a character of F∗ we define the conductor c(χ) to be the
smallest nonnegative integer n such that χ is trivial on U n . Let ψ be a nontrivial
additive character of F which is assumed to be trivial on O and nontrivial on P−1.
For any a ∈ F the character x 7→ ψ(ax) will be denoted as ψF,a or simply by ψa .

Let G̃ denote the group GL2(F). Let B̃ = T̃ N be the standard Borel subgroup
of upper triangular matrices in G̃ with Levi subgroup T̃ and unipotent radical N .
Let Z̃ be the center of G̃. Let G = SL2(F). Let B = T N be the standard Borel
subgroup of upper triangular matrices in G with Levi subgroup T and unipotent
radical N . Let w be a representative in the normalizer of T for the nontrivial
element of the Weyl group of T . Set K = SL2(O) and K̃ = GL2(O). Let I and Ĩ
respectively be the standard Iwahori subgroups of G and G̃.

The following filtrations of maximal compact subgroups of G will be important
in our study of newforms. Let K−1 = G and K0 = K . Let K ′ = K ′0 = α

−1K0α

where α=
(
$ 0
0 1

)
. Then K0 and K ′0 are, up to conjugacy, the two maximal compact

subgroups of G. For m an integer ≥ 1, recall that Km and K ′m stand for certain
congruence subgroups as defined in the introduction.

In addition to α, we will also make frequent use of the matrices β :=
(

1 0
0 $

)
and

γ :=
(
ε 0
0 1

)
.

For any subsets A, B,C, D ⊂ F we let[
A B
C D

]
=

{(
a b
c d

)
: a ∈ A, b ∈ B, c ∈ C, d ∈ D

}
.

We denote
[

1 P j

0 1

]
by N (P j ) or simply by N ( j). We let N denote the lower tri-

angular unipotent subgroup of G and a similar meaning is given to N (P j ) and
N ( j).

If H is a closed subgroup of a locally compact unimodular group G and if (σ,W )

is a smooth representation of H, then we let IndG
H(σ ) denote the representation of
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G induced from σ , i.e., the space of locally constant functions f : G→ W such
that for all h ∈H and g ∈ G we have

f (hg)=1−1/2
H (h)σ (h) f (g),

where 1H is the modulus character of H. The group G acts on this space of func-
tions via right translation. We let indG

H(σ ) denote the subrepresentation of IndG
H(σ )

consisting of those functions in IndG
H(σ ) whose supports are compact modulo H.

If π is any irreducible representation of G on which the center of G acts by a
character, we will denote this character by ωπ . The symbol 11 will denote the trivial
representation of the group in context.

For real ζ , let dζe denote the least integer greater than or equal to ζ and bζc =
−d−ζe.

2.2. Some results on GL2(F). We briefly recall Kirillov theory for representa-
tions of GL2(F). For details see [Casselman 1973; Jacquet and Langlands 1970;
Prasad and Raghuram 2000]. Let (π, V ) be an irreducible admissible infinite-
dimensional representation of G̃ = GL2(F). The representation space V may be
uniquely realized as a certain space of functions K (π), where C∞c (F

∗)⊂ K (π)⊂
C∞(F∗). Moreover, the space K (π) consists of locally constant functions on F∗

which vanish outside compact subsets of F and the action of B̃ on K (π) is given
by the formula

(2.2.1)
(
π

(
a b
0 d

)
f
)
(x)= ωπ (d)ψ(d−1bx) f (d−1ax)

for all a, d, x ∈ F∗, for all b ∈ F , and for all f ∈ K (π) (see [Casselman 1973]).
This Kirillov model K (π) has many nice properties, namely:

(i) For all n ∈ N and for all v ∈ V , π(n)φv−φv has compact support in F∗ where
φv is the function in K (π) associated to the vector v ∈ V .

(ii) The space K (π) contains C∞c (F
∗) as a subspace of codimension at most two.

(iii) The C-span of functions in (i) is C∞c (F
∗). Or in other words the Jacquet mod-

ule of π , denoted πN , may be identified as a T̃ module with K (π)/C∞c (F
∗).

(iv) The representation π is supercuspidal if and only if C∞c (F
∗)= K (π).

It is often of interest to know what the newform looks like in the Kirillov model.
If π is a supercuspidal representation of G̃ then the characteristic function of O×

is a newform for π . (This was observed in [Shimizu 1977].) A similar result is
known for supercuspidal representations of GL2(D) [Prasad and Raghuram 2000,
Proposition 5.5]. We prove analogous results for SL2(F) in this paper.
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2.3. L-packets for SL2(F). In this section we collect statements about the struc-
ture of L-packets for G = SL2(F). See [Labesse and Langlands 1979; Gelbart and
Knapp 1982; Kutzko and Sally 1983; Shelstad 1979].

If π̃ is an irreducible admissible representation of G̃, its restriction ResSL2(F)π̃

to G is a multiplicity-free finite direct sum of irreducible admissible representations
π1⊕· · ·⊕πr . On the other hand, if π is any irreducible admissible representation
of G, then there exists an irreducible admissible representation π̃ of G̃ whose
restriction to G contains π . The set {π1, . . . , πr } is an L-packet of G and G̃ acts
transitively on this set. It is known that the cardinality of an L-packet is 1, 2 or 4
[Shelstad 1979].

Given such a pair π̃ and π , let X (π̃)= {χ ∈ F̂∗ : π̃⊗χ ' π̃}, where we identify
a character χ of F∗ with the character χ ◦det of G̃. Let G̃(π)= {g ∈ G̃ : gπ ' π}.
The representation gπ is defined as gπ(x) = π(gxg−1) for all x ∈ G. Clearly, if
χ ∈ X (π̃) then χ , as a character of G̃, is trivial on F∗G. (The center of G̃ is
identified with F∗.) Also F∗G is contained in G̃(π). In fact, given a character χ
of F∗ we have χ ∈ X (π̃) if and only if χ is trivial on G̃(π) [Labesse and Langlands
1979, Lemma 2.8].

3. Newforms for SL2

3.1. Definitions and the growth lemma. We now give our definition of the con-
ductor of a representation of G. Let (π, V ) be an admissible representation of G
admitting a central character which we denote by ωπ .

We let η be any character of O× such that η(−1) = ωπ (−1). Let c(η) denote
the conductor of η. For any m ≥ c(η), η gives a character of Km and K ′m defined
by η

((
a b
c d

))
= η(d).

For any nonnegative integer m, we define

πKm
η :=

{
v ∈ V : π

((
a b
c d

))
v = η(d)v, ∀

(
a b
c d

)
∈ Km

}
.

We note that πKm
η = (0) if m < c(η). The spaces πK ′m

η are defined analogously.
We define the η-conductor cη(π) of π as

(3.1.1) cη(π) :=min{m ≥ 0 : πKm
η 6= (0) or πK ′m

η 6= (0)}.

We define the conductor c(π) of π by

(3.1.2) c(π) :=min{cη(π) : η}

where η runs over characters of O× such that η(−1)=ωπ (−1). Suppose η satisfies
cη(π)= c(π). If

π
Kc(π)
η 6= (0) or π

K ′c(π)
η 6= (0),
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we call a nonzero element of these spaces a newform of π , and πKc(π)
η or π

K ′c(π)
η

itself is then called a space of newforms of π .
The following growth lemma bounds the growth of the dimension of πKm for any

irreducible representation π of G. It uses Kirillov theory for GL2(F). The proof
is modeled on Deligne’s proof [1973] of a similar GL2 statement of Casselman
[1973]. Similar arguments have also been used in the context of GL2(D) in [Prasad
and Raghuram 2000].

Lemma 3.1.3. Let (π̃, V ) be an irreducible admissible representation of G̃. Let
(π, V ) be the restriction of π̃ to G. For any character η of O× such that η(−1) =
ωπ̃ (−1), and for all m ≥max{c(η), 1}, we have dim(πKm

η )− dim(πKm−1
η )≤ 2.

Proof. If V is finite-dimensional, then it is one-dimensional so π is trivial and
dim(πKm

η ) = 0, 1 for all m and we are done. We henceforth assume that V is
infinite dimensional. We also assume that (π̃, V ) is realized in its Kirillov model.

Note that βπKm−1
η ⊂ πKm

η since

βKm−1β
−1
=

[
O× P−1

Pm O×

]
∩ G ⊃ Km

It suffices to show that dim(πKm
η /β(π

Km−1
η ))≤ 2 for m ≥max{c(η), 1}.

Let f ∈ πKm
η . Since f is fixed by N (O)⊂ Km , we get that supp( f )⊂ O. (Recall

that V is in Kirillov model for π̃ .) Indeed, if for x ∈ F∗ we have f (x) 6= 0 then

f (x)=
((

1 a
0 1

)
f
)
(x)= ψ(ax) f (x)

for all a ∈ O which implies that x ∈ O. (Recall that ψ is normalized to be trivial on
O and nontrivial on P−1.) Since T (O)⊂ Km acts via η on f , we get for all y ∈ F∗

and all u ∈ O×

η(u−1) f (y)=
((

u 0
0 u−1

)
f
)
(y)= ωπ̃ (u−1) f (u2 y),

which gives f (u2 y)= (ωπ̃η−1)(u) f (y). This implies that on O×, f is completely
determined by its values on 1 and ε.

Now suppose f ∈ πKm
η is such that supp( f ) ⊂ P. Then we claim that f ∈

β(π
Km−1
η ). For this, we show that β−1 f ∈ πKm−1

η . Note that β−1 f is η-fixed by

β−1Kmβ ⊃

[
O× P

Pm−1 O×

]
∩G
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and so it suffices to show that β−1 f is also fixed by N (O). Thus we need to show
that for all y ∈ F∗ and all a ∈ O((

1 a
0 1

)
β−1 f

)
(y)=

(
β−1 f

)
(y).

This reduces to ψ(ay) f ($ y) = f ($ y), which is true from the assumptions on
the support of f and the normalization on ψ .

Suppose now that f1, f2, f3 ∈ π
Km
η . Then there exist constants a1, a2, a3 such

that supp(a1 f1 + a2 f2 + a3 f3) ⊂ P. By the arguments above, we obtain a1 f1 +

a2 f2+ a3 f3 ∈ β(π
Km−1
η ). This implies that dim(πKm

η /β(π
Km−1
η )) < 3. �

3.2. Principal series representations. Let χ be a character of F∗. Then χ in-
flates to a character of B. Let π(χ) stand for the (unitarily) induced representation
IndG

B (χ). The representation space of π(χ) consists of locally constant complex
valued functions f on G such that for all a ∈ F∗, b ∈ F and g ∈ G, we have

f
((

a b
0 a−1

)
g
)
= |a|χ(a) f (g).

The action of G on such functions is by right translation. It is well known that
π(χ) is reducible if and only if χ is either | · |± or a nontrivial quadratic character.

There is an essential difference between the two kinds of reducibilities. In the
case χ = | · |±, π(χ) is the restriction to G of a reducible principal series represen-
tation of G̃. Hence π(χ) will have two representations in its Jordan–Hölder series,
namely the trivial representation and the Steinberg representation which we will
denote by StG .

If χ is a nontrivial quadratic character, then π(χ) is the restriction to G of an
irreducible principal series representation of G̃ and breaks up as a direct sum of
two irreducible representations, which constitute an L-packet of G. If χ = ωE/F

we denote π(χ) by πE and let πE ' π
1
E ⊕ π

2
E . We denote the L-packet by ξE =

{π1
E , π

2
E }.

To begin, we need a lemma on double coset decompositions to analyze the space
of fixed vectors in principal series representations.

Lemma 3.2.1. Let m ≥ 1 and set xi =
( 1 0
$ i 1

)
and yi =

( 1 0
ε$ i 1

)
for 1≤ i ≤ m− 1.

A complete set of representatives for the double coset space Km\K/B(O) is given
by {1, w, xi , yi }1≤i≤m−1.

Proof. Let k=
(

a b
c d

)
∈ K . The coset representatives are determined by considering

the cases where c is in Pm , where c is in O×, or for 1≤ i ≤m, where v(c)= i and
$ i c−1d is or is not a square. We leave the routine details to the reader. �

Let χ be a character of F∗. Let η be a character of O× such that η(−1)=χ(−1).
Let m ≥ c(η). We note that the space π(χ)Km

η is isomorphic to HomKm (η, π(χ)).
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In light of the Lemma 3.2.1, standard Mackey theory yields for m ≥ 2

(3.2.2) π(χ)Km
η = HomB(O)(η, χ)⊕Homw−1 Kmw∩B(O)(

wη, χ)

⊕

m−1⊕
i=1

Homx−1
i Km xi∩B(O)(

xiη, χ)⊕

m−1⊕
i=1

Homy−1
i Km yi∩B(O)(

yiη, χ).

If m = 1, only the first two terms appear, while if m = 0, only the first appears. We
use this result extensively in the computations of this section.

As mentioned in the introduction, one of the applications of newforms we have
in mind is that they are test vectors for Whittaker functionals. For principal series
representations and in fact all their subquotients we consider the following ψ-
Whittaker functional [Schmidt 2002]. For any function f in a principal series
representation π(χ) we define

(3.2.3) 3ψ f := lim
r→∞

∫
P−r

f
((

0 −1
1 0

)(
1 x
0 1

))
ψ(x) dx,

where the Haar measure dx is normalized such that vol(O)= 1.

Proposition 3.2.4 (Unramified principal series representations). Let χ be an un-
ramified character of F∗ and let π = π(χ) be the corresponding principal series
representation of G. Then c(π) = 0, and moreover, cη(π) = c(π) only when η is
trivial. The dimension of the space of fixed vectors under Km is given by

dimπ(χ)Km =

{
1 if m = 0,

2m if m ≥ 1.

Proof. Note that Lemma 3.2.1 and the fact that G = BK implies that

|Km\G/B| = |Km\K/B(O)| =

{
1 if m = 0,

2m if m ≥ 1.

This, together with (3.2.2) proves the proposition. �

Corollary 3.2.5 (Test vectors for unramified principal series representations). For
an unramified character χ of F∗ such that χ 6= | · |−1, let fnew be any nonzero K -
fixed vector of the representation π(χ). Then we have 3ψ fnew = L(1, χ)−1

6= 0,
where L(s, χ) is the standard local abelian L-factor associated to χ .

Proof. This is a standard computation in the theory of spherical representations.
We merely give a sketch of the details. We can take the newform f = fnew to be
given by

f (g)= χ(a)|a| , g =
(

a ∗
0 a−1

)
k ∈ BK = G.
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We have

3ψ fnew = 1+ lim
r→∞

∫
P−r\O

f
((

x−1
−1

0 x

)(
1 0

x−1 1

))
ψ(x) dx

= 1+
∞∑

m=1

∫
$−m O×

χ(x−1)|x−1
|ψ(x) dx

= (1−χ($)q−1)= L(1, χ)−1
6= 0. �

Proposition 3.2.6 (Steinberg representation). Let StG be the Steinberg representa-
tion of G. Then c(StG)= 1, and moreover, cη(StG)= c(StG) only when η is trivial.
The dimension of the space of fixed vectors under Km is given by

dim(StKm
G )=

{
0 if m = 0,

2m− 1 if m ≥ 1.

Proof. The result follows from Proposition 3.2.4 and (3.2.2). �

Corollary 3.2.7 (Test vectors for the Steinberg representation). Let the Stein-
berg representation StG be realized as the unique irreducible subrepresentation of
π(| · |). Then the ψ-Whittaker functional 3ψ is nonzero on the space of newforms
(StG)new = StK1

G .

Proof. We consider the standard intertwining operator M : π(| · |) → π(| · |−1)

given by

(M f )(g)=
∫

F
f
((

0 −1
1 0

)(
1 x
0 1

)
g
)

dx

for all f ∈ π(| · |) and for all g ∈ G. The representation space of the Steinberg
representation is simply the kernel VM of M [Bump 1997, §4.5].

Note that a function f ∈ π(| · |)K1 is determined by its values on the elements
1, w ∈ G. Let fnew be an element of π(| · |)K1 determined by fnew(1) = q and
fnew(w) = −1. It is easy to see that M fnew = 0 and so fnew is indeed a newform
for the Steinberg representation. A computation very much like that in the proof
of Corollary 3.2.5 shows that 3ψ fnew = −(1+ q−1) 6= 0. We leave the details to
the reader. See also [Schmidt 2002]. �

Proposition 3.2.8 (Ramified principal series representations). Let χ be a ramified
character of F∗. Let π = π(χ) be the corresponding principal series representa-
tion of G. Let c(χ) denote the conductor of χ .

(i) We have c(π) = c(χ) and further cη(π) = c(π) only for those characters η
such that η = χ± on the group of units O×.
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(ii) If χ2
|(O×)2 6= 11 and η = χ±|O× then

dimπ(χ)Km
η =


0 if m < c(χ),

1 if m = c(χ),

2(m− c(χ))+ 1 if m > c(χ).

(iii) If χ2
|(O×)2 = 11 and η = χ±|O× then

dimπ(χ)Km
η =

{
0 if m = 0,

2m if m ≥ 1= c(χ).

Proof. Let η be a character of O× such that η(−1) = χ(−1). Let m ≥ c(η).
We must determine the dimensions of the Hom-spaces in (3.2.2). The space
HomB(O)(η, χ) is nonzero if and only if η = χ−1 as characters of O×. The space
Homw−1 Kmw∩B(O)(

wη, χ) is nonzero if and only if η = χ as characters of O×. For
the summands corresponding to xi we observe that Homx−1

i Km xi∩B(O)(
xiη, χ) 6= (0)

if and only if η = χ on 1+Pmin{i,m−i} and m − i ≥ c(η). An identical statement
holds for the summands corresponding to yi . All the assertions in the proposition
follow easily from these observations. We leave the details to the reader. �

Corollary 3.2.9 (Test vectors for ramified principal series representations). Let χ
be a ramified character of F∗. Let π = π(χ) be the corresponding principal series
representation of G. Assume that π is irreducible. Let m = c(χ) ≥ 1 denote the
conductor of χ . The space of newforms π(χ)new = π(χ)

Kc(χ)
η is one-dimensional

where η is χ restricted to O×, and the Whittaker functional 3ψ is nonzero on this
space of newforms.

Proof. From the proof of Proposition 3.2.8 it follows that a newform may be taken
as the function fnew that is supported on the double coset BwKm and on this coset
it is given by

f
((

t ∗
0 t−1

)
w

(
a b
c d

))
= χ(t)|t |χ(d).

As in the proof of Corollary 3.2.5 it can be shown that 3ψ( fnew)= χ(−1) 6= 0. �

We now consider the L-packets ξE = {π
1
E , π

2
E } where E/F is a quadratic ex-

tension. To begin, we take up the case where E/F is ramified.

Proposition 3.2.10 (Ramified principal series L-packets). Let ξE = {π
1
E , π

2
E } with

E/F ramified. We have c(π1
E)= c(π2

E)= 1. Further, we have for η = ωE/F |O×

dim(π1
E)

Km
η = dim(π2

E)
Km
η =

{
0 if m = 0,

m if m ≥ 1.
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Proof. Let E = F(
√
−λ) where λ is either $ or ε$ . Note that ωE/F is trivial on

λ. Let π̃E be the principal series representation of G̃ unitarily induced from the
character

(
a b
0 d

)
7→ ωE/F (a). Then it is easily seen that π̃E ⊗ ωE/F = π̃E . (Note

that π̃E restricts to the representation π(ωE/F ) = πE = π
1
E ⊕ π

2
E of G.) From

Section 2.3 we get that ωE/F is trivial on G(π1
E). Hence

(
λ 0
0 1

)
∈ G(π1

E), which
implies that γ /∈G(π1

E) or in other words γ conjugates π1
E into π2

E . This also gives
that γ conjugates (π1

E)
Km
η into (π2

E)
Km
η for all m and for all permissible η. Since

(πE)
Km
η = (π

1
E)

Km
η ⊕(π

2
E)

Km
η the proof follows from (i) and (iii) of Proposition 3.2.8

for η = ωE/F on the units. �

Corollary 3.2.11 (Test vectors for ramified principal series L-packets). Let ξE =

{π1
E , π

2
E } with E/F ramified. Then one and only one of the two representations in

the packet is ψ-generic, say π1
E (so π2

E is ψε-generic). The Whittaker functional
3ψ is nonzero on the one-dimensional space of newforms (π1

E)new = (π
1
E)

K1
ωE/F

.
Any ψε-Whittaker functional is nonzero on the one-dimensional space of newforms
for π2

E .

Proof. The assertions for π1
E follow exactly as in the proof of Corollary 3.2.9.

Conjugating by γ proves the assertions for π2
E . �

Proposition 3.2.12 (Unramified principal series L-packet). Let ξE ={π
1
E , π

2
E } with

E/F unramified. Then c(π1
E)= c(π2

E)= 0 and η is trivial as in Proposition 3.2.4.
One and only one of the two representations, say π1

E , has a nonzero vector fixed
by K0. The dimensions of the space of fixed vectors under Km and K ′m for the two
representations are as follows:

(i) For r ≥ 0, dim((π1
E)

Kr )= 2
⌊ r

2

⌋
+ 1= dim((π2

E)
K ′r ).

(ii) For r ≥ 0, dim((π1
E)

K ′r )=max
{
2
⌊ r−1

2

⌋
+ 1, 0

}
= dim((π2

E)
Kr ).

Proof. Recall our notation that π(ωE/F ) = πE = π
1
E ⊕ π

2
E . As in the ramified

principal series L-packets case, we see that α conjugates π1
E to π2

E . The assumption
that it is π1

E which has a nonzero vector fixed under K0 gives all the dimensions
when r = 0. Since K ′1 can be conjugated by an element of G inside K0, and K1

inside K ′0, it follows from Proposition 3.2.4 that all the spaces (π1
E)

K1 , (π1
E)

K ′1,

(π2
E)

K1 and (π2
E)

K ′1 are one-dimensional.
Assume now that πE is realized in the space V of locally constant functions

f ∈ L2(F) such that ωE/F (x)|x | f (x) is constant for sufficiently large x ∈ F . For
this realization [Gel’fand et al. 1969, Chapter 2, §3.1], the action of g=

(
a b
c d

)
∈G

on an f ∈ L2(F) as above is given by((
a b
c d

)
f
)
(x)= ωE/F (bx + d)|bx + d|−1 f ((ax + c)/(bx + d)).
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In this realization, the spherical vector f0 ∈ (π
1
E)

K0 is given by

f0(x)=

{
1 if x ∈ O,

ωE/F (x)|x |−1 if x /∈ O.

We define two elements f1 and f2 by

f1(x)= (β f0) (x)=

{
−q if x ∈ P,

ωE/F (x)|x |−1 if x /∈ P

and

f2(x)=
((

$−1 0
0 $

)
f0

)
(x)=

{
−q if x ∈ P2,

−q−1ωE/F (x)|x |−1 if x /∈ P2.

Note that f1 ∈ (π
2
E)

K1 and f2 ∈ (π
1
E)

K2 . Analogous to f1 we define for every c ∈C

an element f c
1 in πE given by

f c
1 (x)=

{
c if x ∈ P,

ωE/F (x)|x |−1 if x /∈ P.

We claim that for every c the element f c
1 is fixed by K2. This can be seen using the

Iwahori factorization: K2 = N (P2)T (O)N (O). Clearly, both T (O) and N (P2) fix
f c
1 . Moreover, N (O) fixes f c

1 if and only if w f c
1 is fixed by N (O). The observation

that

(w f c
1 )(x)=

{
1 if x ∈ O,

cωE/F (x)|x |−1 if x /∈ O

shows thatw f c
1 is indeed fixed by N (O). Hence, for every c, f c

1 is fixed by K2. Note
that for any fixed c the elements f0, f2, f c

1 are all linearly independent. Further, as
c varies the elements f c

1 span a two-dimensional space. Therefore, we have shown
that dimπ

K2
E is at least 4, and, applying Lemma 3.1.3, we see that the dimension is

at most four, hence equals 4. We now need to determine the dimensions of (π1
E)

K2

and (π2
E)

K2 given that their sum is 4. For this, we need yet another realization of
principal series representations for G. We will show that there is some c such that
f c
1 is in π1

E which will then force dim((π1
E)

K2)= 3 and dim((π2
E)

K2)= 1.
We refer the reader to [Gel’fand et al. 1969, Chapter 2, §3.2] for this third

realization, which is obtained by taking Fourier transforms f̂ of functions f ∈ V
with respect to ψ$−1 . We will let V̂ denote the space of all f̂ as f varies over V .

The representation space of π1
E can be recognized in V̂ as the space of functions

supported only on the norms NE/F (E), and π2
E as that of functions supported

only on nonnorms (see [Gel’fand et al. 1969, Chapter 2, §3.5]). Since E/F is
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unramified, NE/F (E) is the set of elements of F∗ with has even valuation together
with 0, and the nonnorms are those elements with odd valuation.

Computing the Fourier transform of the spherical vector f0 we get that π1
E con-

sists of functions supported on nonnorms. We will show now that there is a c such
that f c

1 has support inside nonnorms. Indeed, the formula for the Fourier transform
of f c

1 is

f̂ c
1 ($

n)=

{
1+ cq−1 if n is odd,

(c− 1)q−1 if n is even.

Hence for c= 1 we get that f c
1 ∈ π

1
E and for c=−q we get that f c

1 ∈ π
2
E . We have

now computed the dimensions of fixed vectors under Kr and K ′r for r = 0, 1, 2.
From this point onwards an induction argument takes over.

If the dimensions are known for all r ≤ 2m then using the fact that K ′r+1 can
be conjugated inside Kr and Kr+1 inside K ′r , we get using Lemma 3.1.3 that all
the spaces (π1

E)
K2m+1 , (π1

E)
K ′2m+1 , (π2

E)
K2m+1 and (π2

E)
K ′2m+1 have dimensions equal

to 2m + 1. Using the same lemma it suffices now to show that the dimension of
(π1

E)
K2m+2 is at least 2m+ 3.

Using (π1
E)

K2m+1+(π1
E)

K ′2m+1 ⊂ (π1
E)

K2m+2 and that the subgroup of G generated
by K2m+1 and K ′2m+1 is K ′2m (which can be seen by Iwahori factorization) we get

dim((π1
E)

K2m+2)≥ dim((π1
E)

K2m+1)+dim((π1
E)

K ′2m+1)

= (2m+1)+(2m+1)−dim
(
(π1

E)
K2m+1∩(π1

E)
K ′2m+1

)
= 4m+2−dim((π1

E)
K ′2m )= 4m+2−(2m−1)= 2m+3. �

Corollary 3.2.13 (Test vectors for unramified principal series L-packet). For E/F
unramified let ξE = {π

1
E , π

2
E }. Then one and only one of the two representations

in the packet is ψ-generic, namely π1
E . Moreover, a ψ-Whittaker functional is

nonzero on the K0-fixed vector in π1
E . The representation π2

E is not ψ ′-generic
for any ψ ′ of conductor O. It is ψ$ -generic and any ψ$ -Whittaker functional is
nonzero on the K ′0-fixed vectors in π2

E .

Proof. The result follows from multiplicity one for Whittaker models, the fact that
α conjugates π1

E to π2
E , and Corollary 3.2.5. �

3.3. Supercuspidal representations. We now consider supercuspidal representa-
tions of G = SL2(F). For this we need some preliminaries on how they are
constructed. A direct approach is found in Manderscheid’s papers [1984]. We,
however, use Kutzko’s construction [1978a; 1978b] of supercuspidal representa-
tions for G̃ and then the results of [Kutzko and Sally 1983] to obtain information
on the supercuspidal representations (L-packets) for G.
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We begin by briefly recalling Kutzko’s construction of supercuspidal represen-
tations of G̃ via compact induction from very cuspidal representations of maximal
open compact-mod-center subgroups. For l ≥ 1, let K̃ (l) = 1 + Pl M2×2(O) be
the principal congruence subgroup of K̃ of level l. Let K̃ (0) = K̃ . Let Ĩ be the
standard Iwahori subgroup consisting of all elements in K̃ that are upper triangular
modulo P. For l≥1 let Ĩ (l)=

[
1+Pl Pl

Pl+1 1+Pl

]
, and let Ĩ (0)= Ĩ . We will let H̃ denote

either Z K̃ or NG̃ Ĩ , while J̃ will denote either K̃ or Ĩ Here NG̃ Ĩ is the normalizer
in G̃ of Ĩ . In either case we let J̃ (l) denote the corresponding filtration subgroup.

Definition 3.3.1 (Kutzko). An irreducible (and necessarily finite-dimensional) rep-
resentation (̃σ ,W ) of H̃ is called a very cuspidal representation of level l ≥ 1 if σ̃
is trivial on J̃ (l) and σ̃ does not contain the trivial character of N (Pl−1).

Remark 3.3.2. One easy consequence of the definition is that, if σ̃ is a very
cuspidal representation of Z K̃ (resp. NG̃ Ĩ ) of level l then HomN (l−1)(11, σ̃ ) =
HomN (l−1)(11, σ̃ )= (0) (resp. HomN (l−1)(11, σ̃ )= HomN (l)(11, σ̃ )= (0)).

We say that an irreducible admissible representation π̃ of G̃ is minimal if for
every character χ of F∗ we have c(π̃) ≤ c(π̃ ⊗ χ), for c(π̃) as in Casselman’s
Theorem (page 127).

Theorem 3.3.3 [Kutzko 1978a; 1978b]. Let π be a minimal irreducible super-
cuspidal representation of G̃. Then π is compactly induced from a very cuspidal
representation σ̃ of one of the two maximal open compact-mod-center subgroups
H̃ of G̃. Moreover, H̃ and the equivalence class of σ are uniquely determined by
π . If the conductor of π is 2l (resp. 2l + 1), then π comes from a very cuspidal
representation of Z K̃ (resp. NG̃ Ĩ ) of level l.

Following Kutzko we use the terminology that a supercuspidal representation of
G̃ is said to be unramified if it comes via compact induction from a representation
of Z K̃ and is said to be ramified otherwise. The theorem assures us that the ramified
ones come via compact induction from representations of NG̃ Ĩ . We now take up
both types of supercuspidal representations and briefly review how they break up
on restriction to G (see [Kutzko and Sally 1983]).

We begin with the unramified case. Let σ̃ be an irreducible very cuspidal rep-
resentation of Z K̃ of level l (≥ 1). Let π̃ be the corresponding supercuspidal
representation of G̃. Let σ = ResK (̃σ ). Then we have ResG(π̃) = indG

K (σ ) ⊕
α
(
indG

K (σ )
)

where α =
(
$ 0
0 1

)
. If l ≥ 2, or if l = 1 and σ is irreducible, then

π = π(σ)= indG
K (σ ) is irreducible, hence so is π ′ =απ . We thus have an unram-

ified supercuspidal L-packet {π, π ′}. If l = 1 and σ is reducible, which happens
when σ̃ comes from the unique (up to twists) cuspidal representation of GL2(Fq)

whose restriction to SL2(Fq) is reducible and in this case it breaks up into the
direct sum of the two cuspidal representations of SL2(Fq) of dimension (q−1)/2.
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Correspondingly, we have σ = σ1⊕σ2, and if we let πi = indG
K (σi ) and π ′i =

α(πi ),
then we obtain the unique supercuspidal L-packet {π1, π

′

1, π2, π
′

2} of G containing
4 elements.

For the ramified case let σ̃ be a very cuspidal representation of NG̃ Ĩ of level
l (≥ 1) and let π̃ be the corresponding supercuspidal representation of G̃. Let
σ = ResI (̃σ ). Then σ = σ1⊕ σ2 for two irreducible representations σi (i = 1, 2)
of I and γ conjugates one to the other, i.e., σ2 =

γσ1. Let πi = indG
I (σi ) and so

π2 =
γπ1. Then the restriction of π̃ to G breaks up into the direct sum of two

irreducible supercuspidal representations as ResG(π̃)= π1⊕π2. We call {π1, π2}

a ramified supercuspidal L-packet of G.

Proposition 3.3.4 (Unramified supercuspidal L-packets of cardinality two). Con-
sider an unramified supercuspidal L-packet {π, π ′} determined by a very cuspidal
representation σ̃ of level l of Z K̃ as above. Then the conductors c(π), c(π ′) are
both equal to 2l. For any character η such that η(−1)= ωπ (−1) we have

(i) πK2l−1
η = π

K ′2l−1
η = (π ′)

K2l−1
η = (π ′)

K ′2l−1
η = (0).

(ii) If c(η)≤ l and l is odd then for all m ≥ 2l

(a) dimπ
K ′m
η = dim(π ′)Km

η = 2
⌈m−2l+1

2

⌉
.

(b) dimπKm
η = dim(π ′)K ′m

η = 2bm−2l+1
2 c.

(iii) If c(η)≤ l and l is even then for all m ≥ 2l

(a) dimπKm
η = dim(π ′)K ′m

η = 2
⌈m−2l+1

2

⌉
.

(b) dimπ
K ′m
η = dim(π ′)Km

η = 2bm−2l+1
2 c.

Proof. The statement about the conductors of π, π ′ follows immediately from (i),
(ii), and (iii). To prove (i) it suffices to prove that HomK2l−1(η, π̃) = (0) where
π̃ = indG̃

Z K̃ (̃σ ) is the unramified supercuspidal representation of G̃ given by the
very cuspidal representation σ̃ of level m. Using Frobenius reciprocity and Mackey
theory [Kutzko 1977] we have

HomK2l−1(η, π̃)= HomG̃(indG̃
K2l−1

(η), IndG̃
Z K̃ (̃σ ))

=

∏
x∈K2l−1\G̃/Z K̃

HomZ K̃∩x−1 K2l−1x(
xη, σ̃ ).

For brevity, let Ix = HomZ K̃∩x−1 K2l−1x(
xη, σ̃ ). For every x we will show that Ix =

(0).
To this end we need a set of representatives for the double cosets. We leave it

to the reader to check that this is given by

K2l−1\G̃/Z K̃ = {n̄(s)h(u)ar : s ∈ P/P2l−1, u ∈ O×, r ≥ 0}

∪ {n̄(t)wh(u)ar : t ∈ O/P2l−1, u ∈ O×, r ≥ 0},
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where n̄(s)=
(

1 0
s 1

)
, h(u)=

(
u 0
0 1

)
and ar = α

r
=
(
$ r 0
0 1

)
.

We begin with the case where x = n̄(s)h(u)ar . If s = 0, then x = h(u)ar , which
implies that N (O)⊂ Z K̃ ∩ x−1K2l−1x and so

Ix ⊂ HomN (O)(
xη, σ̃ )= HomN (O)(11, σ̃ )= (0)

since σ̃ is very cuspidal. If s 6= 0, then x = h(u)ar n̄(u$ r s) = h(u)ar k. Since
n̄(u$ r s) ∈ K̃ we get Ix ' Ih(u)ar , and we are reduced to the case s = 0. Thus
Ix = (0).

Now let x = n̄(t)wh(u)ar . If r ≥ l, then N (Pl−1)⊂ Z K̃ ∩ x−1K2l−1x , and so

Ix ⊂ HomN (Pl−1)(
xη, σ̃ )= HomN (Pl−1)(11, σ̃ )= (0)

by Remark 3.3.2. If r = 0, then x ∈ K , and we have

Ix ' HomK2l−1∩x Z K̃ x−1(η,
x σ̃ )⊂ HomN (O)(11, σ̃ )= (0).

If 0 < r < l and t ∈ Pr , then rewrite x as x = g(u)br k where g(u) = wh(u)w−1

and br = warw
−1 and for some k ∈ K̃ . Here we finish the argument with

Ix ' Hom(g(u)br )−1 K2l−1g(u)br∩Z K̃ (
g(u)brη, σ̃ )⊂ HomN (l−1)(11, σ̃ )= (0).

We are finally left with the case where 0 < r < l and t ∈ O − Pr . For this,
rewrite x as x = yw with y = n̄(t)br g(u). Since w ∈ K̃ , as before, we have that
Ix = (0) if and only if Iy = (0). Let j = j (r, t)=max{0, r − 2v(t)}. Then we get
y−1 N (P j )y ⊂ y−1K2l−1 y ∩ Z K̃ , which gives

Iy ⊂ Homy−1 N (P j )y(
yη, σ̃ )= Homy−1 N (P j )y(11, σ̃ ).

We claim that Homy−1 N (P j )y(11, σ̃ ) = (0). If not there is a nonzero vector v ∈ W
that is fixed by y−1 N (P j )y. Let v′ = σ̃ (n(b))v where b = $ r ut−1

∈ O. Then v′

is fixed by n(b)y−1 N (P j )yn(−b). Note that

n(b)y−1 N (P j )yn(−b)=

{
N (O) if r ≥ 2v(t)

N (P2v(t)−r ) if r < 2v(t).

If r < 2v(t), then 2v(t)− r ≤ l − 1 (by the hypothesis of this case). Hence v′ is
fixed by N (Pl−1), which contradicts that σ̃ is very cuspidal by Remark 3.3.2. This
proves (i).

For the proof of (ii) and (iii), we begin by proving that if l is odd, then (π ′)K2l

has dimension 2, and if l is even, then dim(πK2l )= 2. To this end, let

U =
{(

u 0
0 u−1

)
: u ∈ O×

}
.
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Note that dim σU
η ≥ 2. (Recall that σ = ResK σ̃ . We use the notation σU

η to stand
for the set of all vectors in σ on which U acts via η.) This can be seen as follows.
Let χ be an eigencharacter of N (O) occurring in σ . Since σ̃ is very cuspidal, χ
has conductor l. Let vχ ∈W be a nonzero eigenvector with eigencharacter χ . Let

w1 =
∑

u∈O×/±(1+Pl )

η(u)σ
((

u 0
0 u−1

))
vχ , w2 = σ̃ (γ )w1.

These sums make sense by the hypothesis on η and are nonzero since the summands
lie in distinct eigenspaces. It is easy to see that Cw1⊕Cw2 ⊂ σ

U
η .

For any w ∈ σU
η we define two elements gw ∈ indG

K (σ ) and fw ∈ π̃ given by

gw(x)=

{
σ(x)w if x ∈ K ,

0 if x /∈ K ,
fw(x)= π̃

((
$−l 0

0 1

))
gw.

It is easy to see that K2l acts via η on fw, that the map w 7→ fw is injective, and
finally that fw ∈ π if l is even and fw ∈ π ′ if l is odd. Now applying Lemma 3.1.3,
we get that if l is even, then dimπK2l

η = 2 and (π ′)K2l
η = (0), whereas if l is odd

then dim(π ′)K2l
η = 2 and πK2l

η = (0). (This also shows that dim σU
η = 2.)

Now we use induction to obtain all the dimensions. Let l be even. (We leave the
case of odd l to the reader since it is entirely analogous to the even case.) Since
for every m ≥ 0 we have that Km+2 ⊂ K ′m+1 ⊂ Km up to G-conjugacy, it follows

from Lemma 3.1.3 that the dimensions of the spaces πK2l+1
η , (π ′)K2l+1

η , π
K ′2l+1
η , and

(π ′)
K ′2l+1
η are all equal to 2. In fact, the same argument shows that if we know

the dimensions of η-fixed vectors under K2m and K ′2m , then we would know the
dimensions for those under K2m+1 and K ′2m+1. Let us now suppose that we know
dimπKi

η for i ≤ 2m+ 1. In order to calculate dimπ
K2m+2
η , we claim that

πK2m
η ⊕

(
$−1 0

0 $

)m−l+1

πK2l
η ⊂ π

K2m+2
η .

Clearly, both the summands in the left hand side are contained in the right hand
side. We show that the sum is indeed a direct sum. Let v be a vector in the
intersection of the two subspaces on the left hand side. Then both

K2l and
(
$ 0
0 $−1

)m−l+1
K2m

(
$−1 0

0 $

)m−l+1
,

and hence K2l−1, act via the character η on the vector
(
$ 0
0 $−1

)m−l+1
v. Hence by

(i) we get that v = 0. This implies that

dimπK2m+2
η ≥ 2+ dimπK2m

η = 2+ dimπK2m+1
η
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by the induction hypothesis. Lemma 3.1.3 now says that this is an equality. Con-
jugating by α gives the dimensions for π ′. �

Proposition 3.3.5 (Test vectors for unramified supercuspidal L-packets of car-
dinality two). Let σ̃ be a very cuspidal representation of Z K̃ of level l, which
determines an unramified supercuspidal L-packet {π, π ′} as above. Assume that
π̃ = indG̃

Z K̃ (̃σ ) is realized in its Kirillov model with respect to ψ . Define two
elements φ1 and φε in the Kirillov model as follows:

φ1(x)=

{
1 if x ∈ (O×)2,

0 if x /∈ (O×)2,
φε(x)= π̃(γ )φ1.

Let η = ωπ̃ . We have

(i) Cφ1⊕Cφε = π̃
K2l
η .

(ii) If l is even then πK2l
η = π̃

K2l
η . In addition, π is ψ-generic and any ψ-Whittaker

functional is nonzero on φ1 and vanishes on φε . Furthermore, π ′ is not ψ ′-
generic for any character ψ ′ of conductor O. It is however ψ$ -generic and
any ψ$ -Whittaker functional is nonvanishing on π̃(α−1)φ1 which is a new-
form for π ′.

(iii) If l is odd, then (ii) holds with π and π ′ interchanged.

Proof. We show that K2l acts via η on φ1. Given this, the rest of the assertions
are all quite easy to show using the facts that α conjugates π to π ′, γ conjugates
K2l to itself, and the ψ-Whittaker functional on the ψ-Kirillov model is given by
evaluation at 1.

To prove that K2l acts on φ1 via η, it is enough to prove, as in [Casselman 1973],
that B(O) acts on φ1 via η and that N (O) fixes π̃

(
0 1
−$ 2l 0

)
φ1. The former is easy

to verify using the definition of φ1. To address the latter, note that

π̃

(
0 1
−$ 2l 0

)
φ1 = π̃

((
0 1
−1 0

)(
$ 2l 0

0 1

))
φ1 = π̃(w)τ,

where τ = π̃
(
$ 2l 0

0 1

)
φ1. It follows that τ(x)= φ1($

2l x). To show that N (O) fixes
π̃(w)τ , it suffices to show that the support of the function π̃(w)τ is in O. For this
we need some information on the action of the Weyl group element w on functions
in the Kirillov model. This is given in terms of the formal Mellin transform of
Jacquet and Langlands [1970].

The formal Mellin transform of any function ξ in the Kirillov model for π̃ is a
formal power series in t defined for every character ν of O× as

ξ̂ (ν, t) :=
∑
n∈Z

ξn(ν)tn
:=

∑
n∈Z

(∫
u∈O×

ξ($ nu)ν(u) du
)

tn.
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Here we normalize the Haar measure du so that O× has volume 1. For every ν
there is a formal series c(ν, t) such that

̂̃π(w)ξ(ν, t)= c(ν, t )̂ξ (ω−1
0 ν−1, z−1

0 t−1)

where ω0 is the restriction of the central character ωπ̃ to O× and z0 = ωπ̃ ($) (see
Proposition 2.10 of [Jacquet and Langlands 1970]). Since π̃ is supercuspidal, it
follows from Equation 2.18.1, Proposition 2.23, and the proof of Theorem 2.18 of
the same paper that c(ν, t) is a monomial in t of the form

c(ν, t)= c0(ν)tnν , nν =−c(π̃ ⊗ ν−1)≤−2.

Using the definitions of φ1 and τ and the orthogonality of characters we get

τ̂ (ν, t)=

{
0 if ν 6= 11 on (O×)2,

c1t−2l if ν = 11 on (O×)2.

where c1 = vol((O×)2). Hence we get

̂̃π(w)τ(ν, t)=

{
0 if ν 6= ω−1

0 on (O×)2,

c2(ν)tnν+2l if ν = ω−1
0 on (O×)2.

for some nonzero constant c2(ν). Now N (O) fixes π̃(w)τ if the function π̃(w)τ is
supported on O (since the conductor of ψ is O), and the latter is true if we show that
nν+2l ≥ 0 for any character ν which is ω−1

0 on (O×)2. In other words, we need to
show that c(π̃⊗ν−1)≤ c(π̃). (In fact, minimality of π̃ then forces equality, which
would imply that the function π̃(w)τ is supported on O×.)

To prove this inequality, using the local Langlands correspondence (see [Kudla
1994] for instance), we consider the Langlands parameter ϕ = ϕ(π̃) of π̃ which
is a two-dimensional irreducible representation of the Weil group WF of F . Since
the residue characteristic is not 2, we get that ϕ is induced from a Galois regular
character χ of E∗ for the unramified quadratic extension E/F . If c(ϕ) denotes
the local Artin conductor of ϕ, then we have, using Proposition 4(b) of §4.3 in
[Serre 1967], c(π̃) = c(ϕ) = 2c(χ). Since ν is ω−1

0 on (O×)2, we have c(ν) ≤
c(ωπ̃ ) unless c(ωπ̃ ) = 0 and c(ν) = 1. Suppose the former condition holds. The
central character is the determinant of the Langlands parameter and hence we get
ωπ̃ = det(ϕ(π̃))= det(indWF

WE
(χ))= ωE/Fχ |F∗ . Since E/F is unramified we have

2c(ν−1)≤2c(ωπ̃ )=2c(χ |F∗)≤2c(χ)=c(π̃). For every character κ of F∗ we have
the inequality c(π̃ ⊗ κ) ≤ max{c(π̃), 2c(κ)} (see §4 of [Gross 1988]). Applying
this to κ = ν−1 and using the preceding information on the conductor of ν−1, we
get the required inequality −nν = c(π̃⊗ν−1)≤max{c(π̃), 2c(ν−1)} = c(π̃)= 2l.
If, on the other hand, c(ωπ̃ ) = 0 and c(ν) = 1, then c(π̃ ⊗ ν−1) ≤ c(π̃) follows
easily. �
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We now state the results for the supercuspidal L-packets of cardinality four. We
omit the proofs since they are minor modifications of the corresponding statements
for the unramified supercuspidal L-packets that we just dealt with.

Proposition 3.3.6 (Unramified supercuspidal L-packet of cardinality four). Let σ̃
denote a very cuspidal representation of Z K̃ of level l = 1 such that ResK (̃σ ) =

σ = σ1 ⊕ σ2. Let {π1, π
′

1, π2, π
′

2} be the corresponding L-packet of G. Then
c(π1)= c(π ′1)= c(π2)= c(π ′2)= 2. Moreover,

(i) Let η be any character such that η(−1) = ωσ (−1). If π denotes any repre-
sentation in the L-packet, then πK1

η = π
K ′1
η = (0).

(ii) Let η be any character such that η(−1)= ωσ (−1) and c(η)≤ 1. Then for all
m ≥ 2 we have

(a) dim(π1)
K ′m
η = dim(π2)

K ′m
η = dim(π ′1)

Km
η = dim(π ′2)

Km
η =

⌈m−1
2

⌉
.

(b) dim(π1)
Km
η = dim(π ′1)

K ′m
η = dim(π2)

Km
η = dim(π ′2)

K ′m
η = b

m−1
2 c.

Corollary 3.3.7 (Test vectors for unramified supercuspidal L-packets of cardinality
four). With notation as above let {π1, π

′

1, π2, π
′

2} be the unramified supercuspidal
L-packet of cardinality four. Let ψ be the character of Fq induced by ψ by iden-
tifying Fq with P−1/O. Without loss of generality assume that σ1 is ψ-generic.
Then

(i) π ′1 is ψ-generic, π1 is ψ$ -generic, π ′2 is ψε-generic, and π2 is ψε$ -generic.

(ii) Assume that π̃ is realized in its ψ-Kirillov model. The function φ1 of Proposi-
tion 3.3.5 is a newform for π ′1. This further implies that π̃(α)(φ1) is a newform
for π1, π̃(γ )(φ1) is a newform for π ′2 and π̃(αγ )(φ1) is a newform for π2.
Finally, each of these newforms is a test vector for an appropriate Whittaker
functional coming from (i).

We now consider the ramified supercuspidal L-packets. Let σ̃ be a very cuspidal
representation of NG̃( Ĩ ) of level l ≥ 1. Let ResI σ̃ = σ1⊕σ2 and let πi = indG

I (σi ).
We call {π1, π2} a ramified supercuspidal L-packet of G.

Proposition 3.3.8 (Ramified supercuspidal L-packets). Let {π1, π2} be a ramified
supercuspidal L-packet as above. Then c(π1)= c(π2)= 2l + 1. We have

(i) For any character η of F∗ such that η(−1) = ωσ (−1) we have (π1)
K2l
η =

(π2)
K2l
η = (π1)

K ′2l
η = (π2)

K ′2l
η = (0).

(ii) Let η(−1)= ωσ (−1) and c(η)≤ l. For all m ≥ 2l + 1 we have dim(π1)
Km
η =

dim(π2)
Km
η = dim(π1)

K ′m
η = dim(π2)

K ′m
η = m− 2l.

Proof. Since γ conjugates π1 to π2, dim(π1)
Km
η = dim(π2)

Km
η for all m. Further-

more, conjugation by α stabilizes both π1 and π2, which implies this same equality
for K ′m .
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That (π1)
K2l
η = (0) can be seen using Mackey theory [Kutzko 1977] as in the

proof of Proposition 3.3.4 by considering the set of representatives for

K2l\G̃/NG̃( Ĩ )

given by

{n̄(s)h(u)ar : s ∈P/P2l, u ∈O×, r ≥ 0}∪ {n̄(t)wh(u)ar : t ∈O/P2l, u ∈O×, r ≥ 0}.

To prove (ii), we use induction on the level m of the congruence subgroups Km or
K ′m . To begin the induction, we show that for m= 2l+1, all the relevant spaces are
one-dimensional. It suffices, using Lemma 3.1.3, to prove that dim(π1)

K2l+1
η ≥ 1.

This is done as in the proof of Proposition 3.3.4. Note that σ̃U
η is at least two-

dimensional and contains the span of w1 and w2. Since γ conjugates σ1 to σ2, we
get that both (σi )

U
η are nonzero. Let us say that wi ∈ σ

U
i . Then the corresponding

fwi is in (πi )
K2l+1
η . To proceed with the induction argument, we note that, by

Lemma 3.1.3, we need only show that for each m≥2l+2, the dimension of (π1)
Km
η

is at least m − 2l. This follows from (π1)
Km−1
η ⊕ π̃(β)m−2l−1(π1)

K2l+1
η ⊂ (π1)

Km
η .

This inclusion and the fact that the sum is direct is proved exactly as in the proof
of Proposition 3.3.4. �

Proposition 3.3.9 (Test vectors for ramified supercuspidal L-packets). Let {π1, π2}

be a ramified supercuspidal L-packet coming from a very cuspidal representation
σ̃ of NG̃( Ĩ ) of level l ≥ 1. One and only one of the πi is ψ-generic, say π1. Then
π2 is ψε-generic. Let η = ωσ . Let φ1 and φε be as in Proposition 3.3.5. We have

(i) (π1)
K2l+1
η = Cφ1 and (π2)

K2l+1
η = Cφε .

(ii) Any ψ-Whittaker functional is nonzero on φ1 and similarly any ψε-Whittaker
functional is nonzero on φε .

Proof. The proof is entirely analogous to the proof of Proposition 3.3.5. In fact,
using the notation in that proof, it suffices now to show that the support of π̃(w)τ
is in O, where τ = π̃(α2l+1)φ1. We can see as before that

̂̃π(w)τ(ν, t)=

{
0 if ν 6= ω−1

0 on (O×)2,

c1(ν)tnν+2l+1 if ν = ω−1
0 on (O×)2

where ω0 = ωπ̃ |O× . As before, we need to show that if ν = ω−1
0 on (O×)2, then

in fact nν + 2l + 1 = 0. Since π̃ is a ramified supercuspidal representation, its
Langlands parameter ϕ = ϕ(π̃) is a two dimensional irreducible representation of
the Weil group WF of F that is induced from a Galois regular character χ of E∗

for a ramified quadratic extension E/F . From Proposition 4(b) of §4.3 in [Serre
1967], we get that c(π̃)= c(ϕ)= c(χ)+1. By Theorem 3.3.3, c(π̃)= 2l+1 which
implies that c(χ)= 2l ≥ 2. This together with the fact that E/F is ramified gives
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2c(χ |F∗) ≤ c(χ). As in Proposition 3.3.5 we have ωπ̃ = ωE/Fχ |F∗ . Hence we
get 2c(ν−1)≤ 2c(ωπ̃ )≤max{2, 2c(χ |F∗)} ≤ c(χ) < c(χ)+1= c(π̃). We deduce
(using for instance §4 of [Gross 1988]) that −nν = c(π̃⊗ν−1)= c(π̃)= 2l+1. �

3.4. Comparison of conductor with other invariants. We begin by recording the
following theorem relating the conductor of a representation π of G to the conduc-
tor of a minimal representation of G̃ that determines the L-packet containing π .

Theorem 3.4.1 (Relation between c(π) and c(π̃)). Let π be an irreducible admis-
sible representation of G = SL2(F). Let π̃ be a representation of G̃ = GL2(F)
whose restriction to G contains π . Assume that π̃ is minimal, i.e., c(π̃⊗χ)≥ c(π̃)
for all characters χ of F∗. Then c(π)= c(π̃).

Proof. If π is a subquotient of a principal series representation π(χ) then the the-
orem follows from Propositions 3.2.4, 3.2.6, 3.2.8, 3.2.10 and 3.2.12 together with
the easily verifiable fact that π̃ may be taken as IndG̃

B̃ (χ⊗11). If π is a supercuspidal
representation then the theorem follows from Propositions 3.3.4, 3.3.6 and 3.3.8
while keeping in mind that Kutzko’s construction (Theorem 3.3.3) actually gives
minimal supercuspidal representations π̃ of G̃. �

Now we relate the conductor of a representation π of G with the depth ρ(π) of π
(a notion due to A. Moy and G. Prasad [1994]). We urge the reader to compare this
theorem with a result from [Lansky and Raghuram 2003] where we determine such
a relation for all discrete series representations of D∗, GLn(F) and GL2(D) for a
central division algebra D over F . We also mention in passing that considering
the action of GLn(F) on the Bruhat–Tits building of SLn(F) we get that the depth
of every representation in an L-packet of SLn(F) is the same.

Theorem 3.4.2 (Relation between the conductor c(π) and the depth ρ(π) for G).
Let π be an irreducible representation of G. Let ρ(π) be the depth of π .

(i) If π is a subquotient of a principal series π(χ), then ρ(π)=max{c(π)−1, 0}.

(ii) If π is an irreducible supercuspidal representation, then

ρ(π)=max
{

c(π)−2
2

, 0
}
.

Proof. The first statement is proved by the equalities ρ(π) = ρ(π(χ)) = ρ(χ) =
max{c(χ)−1, 0} =max{c(π)−1, 0}. He the first and second equality follow from
[Moy and Prasad 1996] and the third from [Lansky and Raghuram 2003]. We omit
the details of the proof of the second statement which can be proved almost exactly
as in §4 of the latter paper. �
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4. Towards multiplicity one for newforms

Given an irreducible representation π of G = SL2(F) and a character η of F∗ such
that cη(π)= c(π), one might ask if we have dim V Kc(π)

η = 1. The answer is that this
is often the case but not true in general. In fact we have dim V Kc(π)

η = 1 unless π is
a representation in what we have called an unramified supercuspidal L-packet of
cardinality two or if π is an irreducible principal series representations π(χ) such
that χ is not quadratic but χ |O× is quadratic. For representations in these packets
we get dim V Kc(π)

η = 2.
Nevertheless, in all cases we have proved that an appropriate Whittaker func-

tional is nonvanishing on some newform. This can be used to formulate a kind of
a multiplicity one result if we consider the quotient of the space V Kc(π)

η of new-
forms by the kernel of this Whittaker functional. More precisely, if η is such that
cη(π) = c(π), 9 is a nontrivial additive character of F of conductor either O or
P−1 such that π is 9-generic, and 39 is a 9-Whittaker functional for π , then we
have

dim
V Kc(π)
η

V Kc(π)
η ∩ kernel(39)

= 1.

Another possibility is to consider some canonical nondegenerate bilinear form
on the space V Kc(π) and consider the orthogonal complement of the subspace

V Kc(π)
η ∩ kernel(39)

as a candidate for a one-dimensional space of newforms. Then the multiplicity one
result is formulated as dim

(
V Kc(π)
η ∩ kernel(39)

)⊥
= 1.
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AN ABSOLUTE ESTIMATE OF THE HOMOGENEOUS
EXPANSIONS OF HOLOMORPHIC MAPPINGS

TAISHUN LIU AND JIANFEI WANG

Let f : � → � be a holomorphic mapping, where � is one of the four
classical domains in Cm×n. We show that, if P = f (0), we have

∞∑
k=0

∥∥DϕP (P)[Dk f (0)(Zk)]
∥∥

�

k!
∥∥DϕP (P)

∥∥ < 1

for ‖Z‖� < 1
3 and ϕP ∈ Aut � such that ϕP (P) = 0. This generalizes to

higher dimensions a classical result of Bohr, which corresponds to the case
� = {z : |z| < 1} ⊂ C. The constant 1

3 is the best possible.

Let f be a holomorphic function from the unit disc D ⊂C to itself, with Taylor
expansion

f (z)=
∞∑

k=0

akzk .

Then

(0)
∞∑

k=0

|akzk
|< 1 for |z|< 1

3 .

This result, known as Bohr’s theorem, was originally obtained in [Bohr 1914] for
|z| < 1

6 . That 1
6 can be improved to 1

3 and that this is the best possible constant
was quickly realized independently by M. Riesz, I. Schur, and N. Wiener. New
proofs were given in [Sidon 1927; Tomić 1962]. More recently, attention has been
paid to multidimensional generalizations of Bohr’s theorem [Boas and Khavinson
1997; Boas 2000; Defant et al. 2003; Dineen and Timoney 1989; 1991]. Such gen-
eralizations were obtained by studying the power series of a holomorphic function
defined in

B`n
p
:=

{
z ∈ Cn

: ‖z‖p =

( n∑
k=1
|zk |

p
)1/p

< 1
}

MSC2000: primary 30H05; secondary 32A05.
Keywords: holomorphic mapping, homogeneous expansion, classical domains, Bohr’s theorem.
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with modulus less than 1. They can be summarized as follows:

1
3 3
√

e
1

n1−1/p ≤ K < 3
( log n

n

)1−1/p
if 1≤ p ≤ 2,

1
3

1
√

n
≤ K < 2

√
log n

n
if 2≤ p ≤∞,

where K is the supremum of r ∈ [0, 1] such that
∑

α≥0 |cαzα| < 1 for z ∈ r B`n
p

whenever
∣∣∑

α≥0 cαzα
∣∣ < 1 for z ∈ B`n

p
. Here the sum is taken over multi-indices

α = (α1, α2, . . . , αn), where the α j are nonnegative integers. Aizenberg [2000,
Theorem 9] established these inequalities for p = 1. Dineen and Timoney [1989]
investigated the case p =∞ and their result was clarified in [Boas and Khavinson
1997]. Boas [2000, Theorem 3] then generalized to 1< p <∞.

The result of Aizenberg and Boas does not, strictly speaking, reduce to Bohr’s
classical theorem, as consideration of the case n = 1 shows. In this article, we
give a new generalization of Bohr’s theorem to higher dimensions. We investigate
holomorphic mappings from � to �, where � is one of the four classical domains
in Cn (see below), and demonstrate a result analogous to Bohr’s, which reduces to it
when n=1. We also prove that the constant 1

3 is best possible in higher dimensions.
In the proof we use homogeneous expansions of holomorphic mappings, which
replace multiple power series. The Minkowski norm in each of the four classical
domains replaces the Euclidean norm, and certain properties of the automorphisms
of these domains play an important role.

We first recall the definition of the four classical domains in the sense of Hua
[1963]. Let Cm×n denote the set of m × n matrices Z =

(
zi j
)

1≤i≤m, 1≤ j≤n , with
zi j ∈ C and 1 ≤ m ≤ n; denote by Z ′ and Z , respectively, the transpose and the
complex conjugate of Z .

The first classical domain, RI (m, n) ⊂ Cm×n , consists of matrices Z such that
Im − Z Z ′ > 0, where Im is the identity matrix of rank m and the inequality sign
means that the left-hand side is positive definite.

The second classical domain, RII (n) ⊂ Cn×n , consists of Z such that Z = Z ′

and In − Z Z ′ > 0.
The third classical domain, RIII (n) ⊂ Cn×n , consists of Z such that Z = −Z ′

and In − Z Z ′ > 0.
The fourth classical domain, RIV (n) ⊂ Cn , is the set of Z = (z1, z2, . . . , zn)

satisfying
|Z Z ′|2+ 1− 2|Z |2 > 0, |Z Z ′|< 1.

Let � denote one of the four classical domains or the unit polydisc Dn
⊂ Cn .

The span of � in the ambient space (Cm×n , Cn×n or Cn , as the case may be) is
provided with a Minkowski functional ‖ · ‖� arising from � [Liu and Ren 1998].



HOMOGENEOUS EXPANSIONS OF HOLOMORPHIC MAPPINGS 157

By results in [Liu 1989] and [Gong 1998], we know that

‖Z‖� = sup
{
|αZβ ′| : α ∈ ∂Bm, β ∈ ∂Bn}

if � = RI (m, n), RII (n), or RIII (n) (with m = n in the latter two cases), and
this supremum equals the square root of the largest characteristic root of Z Z ′; if
�= Dn , then ‖Z‖� =max{|zk | : 1≤ k ≤ n}; and if �=RIV (n), then

‖Z‖� =
√
|Z |2+

√
|Z |4− |Z Z ′|2,

where |Z | is the Euclidean norm in Cn . Hence � = RI (m, n) is the unit ball of
the complex Banach space Cm×n with respect to the norm ‖ · ‖�. The subspaces
{Z ∈ Cn×n

: Z = Z ′} and {Z ∈ Cn×n
: Z = −Z ′} are complex Banach spaces

with respect to the norm ‖ · ‖�, for � = RII (n) and RIII (n) respectively, and �
is the unit ball for that norm. Cn is a complex Banach space whose unit ball is
�=RIV (n) for the norm ‖ · ‖�.

Let ∂� and ∂0� denote the topological boundary and distinguished boundary of
�. Denote by H(�,�) the space of holomorphic mappings from � to �, and by
Aut� the group of holomorphic automorphisms of �. Let � denote the closure
of �. If T is a linear operator between normed linear spaces, we denote by ‖T ‖
its norm. Finally, Dk f (Z) will mean the k-th Fréchet derivative of f at Z , where
f ∈ H(�,�) and k is a nonnegative integer.

Theorem. Let f :�→� be holomorphic, where� is one of the classical domains,
and set P = f (0). Then

(1)
∞∑

k=0

∥∥DϕP(P)[Dk f (0)(Z k)]
∥∥
�

k!
∥∥DϕP(P)

∥∥ < 1

for ‖Z‖� < 1
3 and ϕP ∈ Aut� such that ϕP(P)= 0.

If ‖Z‖� > 1
3 , there exists a holomorphic map f : �→ � such that (1) is not

valid.

As already mentioned, if � = D ⊂ C, inequality (1) reduces to the relation (0)
of page 155, recovering Bohr’s classical theorem in one complex variable.

The proof of the theorem requires some lemmas, the first two of which are well
known.

Lemma 1 [Liu 1989]. Let P ∈RI (m, n). There is an m×m unitary matrix U and
an n× n unitary matrix V for which P has the polar decomposition

P =U

λ1 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...

0 · · · λm 0 · · · 0

 V,
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where 1> λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 and ‖P‖� = λ1. Set

Q =U


1√

1−λ2
1

0

. . .

0 1√
1−λ2

m

U ′, R = V ′



1√
1−λ2

1
0

. . .

1√
1−λ2

m
0 In−m


V .

Then

ϕP (Z)= Q−1(Im − Z P ′)−1(P − Z) R ∈ Aut RI (m, n)

for Z ∈RI (m, n), and hence

DϕP(P)(W )=−QW R

for W ∈ Cm×n .

Lemma 2 [Liu 1989]. Given any A ∈ RIV (n), there exist a real orthogonal n× n
matrix T and 1> λ1 ≥ λ2 ≥ 0 such that

(2) A = e iθ
(
λ1+λ2

2
, i λ1−λ2

2
, 0, . . . , 0

)
T ∈RIV (n)

and ‖A‖� = λ1, where i =
√
−1 and θ ∈ R. Let

(3) Q = T ′

1+ λ1λ2 0 0

0 1− λ1λ2 0

0 0
√
(1− λ2

1)(1− λ2
2)In−2

 T .

Then

ϕA(Z)=
A+ Z Z ′A− Z Q

1− 2Z A′+ Z Z ′AA′
∈ Aut RIV (n)

for any Z ∈RIV (n), and hence

DϕA(A)(X)= X
2A′A− Q

1− 2|A|2+ |AA′|2

for X ∈ Cn .

Lemma 3. Let � be one of the four classical domains. Then

‖DϕP(P)‖ =
1

1−‖P‖2�

for any P ∈�.
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Proof. Case 1: � is one of RI (m, n), RII (n), RIII (n). We assume without loss of
generality that �=RI (m, n). From Lemma 1 and the definition of ‖ · ‖�, we get

‖DϕP(P)(W )‖� = sup
{
|αQW Rβ ′| : α ∈ ∂Bm, β ∈ ∂Bn}

≤ sup
{
|αWβ ′|
1− λ2

1
: α ∈ ∂Bm, β ∈ ∂Bn

}
=
‖W‖�
1− λ2

1

for W ∈ Cm×n . This implies that

‖DϕP(P)‖� ≤
1

1− λ2
1
=

1
1−‖P‖2�

.

If we take Z0 ∈RI (m, n) with ‖Z0‖� = 1 such that

U ′Z0V ′ =


1 0 0
0 0 0

. . .

0 0 0

 ,
we obtain

‖DϕP(P)(Z0)‖� = sup


∥∥∥∥∥∥∥∥∥αU


(1−λ2

1)
−1 0 0

0 0 0
. . .

0 0 0

Vβ ′

∥∥∥∥∥∥∥∥∥
�

: α ∈ ∂Bm, β ∈ ∂Bn


=

1
1− λ2

1
.

This shows that ‖DϕP(P)‖� ≥
1

1− λ2
1
=

1
1−‖P‖2�

, which leads to the desired
conclusion.

Case 2: �=RIV (n). Taking A = P ∈� in Lemma 2 and expressing it as in (2),
we see from the lemma that

(4) DϕA(A)(Z)=
W

1− 2|A|2+ |AA′|2
,

where W = Z(2A′A− Q), with Q as in (3). It is clear that

(5) 1− 2|A|2+ |AA′| = (1− λ2
1)(1− λ

2
2),

where 1> λ1 ≥ λ2 ≥ 0, and that

W = Z T ′


1
2(λ

2
1+λ

2
2−2) −

i
2(λ

2
1−λ

2
2) 0

i
2(λ

2
1−λ

2
2)

1
2(λ

2
1+λ

2
2−2) 0

0 0 −
√
(1−λ2

1)(1−λ2
2)In−2

T .
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If Z ∈ ∂0�, that is, Z = e iθ (x1, x2, . . . , xn) with xk ∈ R for k = 1, 2, . . . , n, it is
clear that

|Z |2 = |Z Z ′| = x2
1 + · · ·+ x2

n = 1.

A simple computation then shows that

W W ′ =

Z T ′


1
2

(
(1−λ2

1)
2
+(1−λ2

2)
2
)

0 0

0 1
2

(
(1−λ2

1)
2
+(1−λ2

2)
2
)

0

0 0 (1−λ2
1)(1−λ

2
2)In−2

T Z ′.

Since T is a real orthogonal matrix we obtain

|W |2 =W W ′ ≤
(1− λ2

1)
2
+ (1− λ2

2)
2

2
|Z Z ′| =

(1− λ2
1)

2
+ (1− λ2

2)
2

2
,

where we have used the Schwarz inequality on the coefficient of In−2. Clearly,

W W ′ = (1− λ2
1)(1− λ

2
2)Z Z ′.

Hence

‖W‖� =
√
|W |2+

√
|W |4− |W W ′|2 ≤ 1− λ2

2,

which together with (4) and (5) yields

‖DϕA(A)(Z)‖� ≤
1

1− λ2
1

for Z ∈ ∂0�.

If Z ∈ ∂�, there exists a linear functional f satisfying

f (Z)= ‖DϕA(A)(Z)‖�, ‖ f ‖ = 1.

The function g defined by g(ξ) = f (DϕA(A)(ξ)) is holomorphic on �, so we
obtain from the preceding inequality

|g(ξ)| ≤ ‖DϕA(A)(ξ)‖� ≤
1

1− λ2
1

for ξ ∈ ∂0�.

On the other hand, the maximum principle gives

|g(Z)| = ‖DϕA(A)(Z)‖� ≤ ‖DϕA(A)(ξ)‖� ≤
1

1− λ2
1

for ξ ∈ ∂0�.

Therefore

(6) ‖DϕA(A)‖ ≤
1

1− λ2
1
=

1
1−‖A‖2�

.
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There remains to show the reverse inequality,

(7) ‖DϕA(A)‖ ≥
1

1−‖A‖2�
.

Take Z0 = (1, 0, 0, . . . , 0) ∈ ∂0�. Then ‖Z0‖� = 1, and

‖DϕA(A)(Z0)‖� =
1

1− λ2
1
=

1
1−‖A‖2�

.

But this immediately implies (7), completing the proof. �

Proof of the Theorem. Case 1: �= Dn . For ‖Z‖� < 1
3 it is easy to show that

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k)]‖�

k! ‖DϕP(P)‖
< 1.

On the other hand, when ‖Z‖� > 1
3 , we let ‖Z0‖� = |z0

j | = maxk{|z0
k |} >

1
3 and

define
f (Z)=

p j − z j

1− p j z j
,

where 1> p j >
1
2(|z

0
j |
−1
− 1). Then

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
> 1.

Case 2: � is one of RI (m, n), RII (n), RIII (n). We assume without loss of gen-
erality that � = RI (m, n). Take P = f (0) ∈ � and express it as in Lemma 1,
defining Q and R accordingly. The lemma then says that

ϕP (Z)= Q−1(Im − Z P ′)−1(P − Z)R

for any Z ∈RI (m, n). From Lemma 3, we get

‖DϕP(P)‖� =
1

1−‖P‖2�
.

Since � is a convex domain, for a fixed k we can define

fk(Z)=
k∑

j=1

f (e i 2π j/k Z)
k

.

Then fk ∈ H(�,�). It is clear that

1
k

k∑
j=1

e i 2π jl/k
=

{
1 if l ≡ 0 (mod k),

0 otherwise.
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From the homogeneous expansion of the holomorphic mapping f , we get

fk(Z)=
1
k

( k∑
j=1

(
f (0)+

∞∑
l=1

e i 2π jl/k Dl f (0)(Z l)

l!

))
.

This implies that

ϕP ◦ fk(Z)= ϕP

(
P +

∞∑
l=1

Dlk f (0)(Z lk)

(lk)!

)
= ϕP(P)+ DϕP(P)

( ∞∑
l=1

Dlk f (0)(Z lk)

(lk)!

)
+ · · ·

=
DϕP(P)[Dk f (0)(Z k)]

k!
+

DϕP(P)[D2k f (0)(Z2k)]

(2k)!
+ · · · ,

and hence

DϕP(P)[Dk f (0)(Z k)]

k!
=

1
2π

∫ 2π

0
ϕP ◦ fk(Ze iθ )e−ikθdθ

since ϕP ◦ fk is holomorphic and maps 0 to 0. Again because ϕP ◦ fk ∈ H(�,�),
we have

‖DϕP(P)[Dk f (0)(Z k)]‖�

k!
< 1

for any Z ∈�. Thus

‖DϕP(P)[Dk f (0)(Z k)]‖�

k!
≤ 1

for any Z ∈�. This shows that

‖DϕP(P)[Dk f (0)(Z k)]‖�

k!
= ‖Z‖k�

‖DϕP(P)[Dk f (0)(Z k/‖Z‖k)]‖�
k!

≤ ‖Z‖k�.

Using the equality ‖DϕP(P)‖ =
1

1−‖P‖2�
from Lemma 3, we then get

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k)]‖�

k! ‖DϕP(P)‖
≤ ‖P‖�+ (1−‖P‖2�)

∞∑
k=1

‖Z‖k�

< ‖P‖�+ (1−‖P‖2�)
∞∑

k=1

(1
3

)k

= ‖P‖�+
1−‖P‖2�

2
= 1−

(1−‖P‖�)
2

2

< 1

for ‖Z‖� < 1
3 .
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There remains to show that 1
3 is the best possible constant. In fact, if Z ∈� with

‖Z‖� > 1
3 , we take

Z0 =

µ1 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...

0 · · · µm 0 · · · 0

 ∈RI (m, n),

where 1>µ1 ≥µ2 ≥ · · · ≥µm ≥ 0 and ‖Z0‖� =µ1 >
1
3 . Take p11 ∈R such that

(8) 1
2

( 1
µ1
− 1

)
< p11 < 1.

If we define f ∈ H(�,�) by

f (Z)=


p11−z11

1− p11z11
0 0

0 0 0
. . .

0 0 0

 ,

we obtain successively

P = f (0)=


p11 0 0

0 0 0
. . .

0 0 0

 ,

Q =

(
(1− p2

11)
−1/2 0

0 Im−1

)
, R =

(
(1− p2

11)
−1/2 0

0 In−1

)
,

‖DϕP(P)P‖� =
p11

1− p2
11
,

Dk f (0)(Z k)

k!
= (p2

11− 1)pk−1
11 zk

11


1 0 0
0 0 0

. . .

0 0 0


for k ≥ 1. This implies that

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k!
= pk−1

11 |z11|
k
= pk−1

11 µk
1

when k ≥ 1. In view of the definition of Z0, we get

‖DϕP(P)‖ =
1

1− p2
11
.
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Therefore
∞∑

k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
= p11+ (1− p2

11)

∞∑
k=1

pk−1
11 µk

1

= p11+ (1− p2
11)

µ1

1− p11µ1
.

Then we immediately get from (8) the desired inequality

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
> 1.

Case 3: � = RIV . The proof of (1) for ‖Z‖� < 1
3 changes little from Case 2. To

show that 1
3 is best possible, let Z0 = (µ1, 0, . . . , 0) ∈ RIV (n), with 1 > µ1 >

1
3 .

We have ‖Z0‖� = µ1, by [Liu 1989]. Therefore

Q =

1+µ2
1 0 0

0 1−µ2
1 0

0 0 (1−µ2
1)In−2

 .
Take p11 ∈ R with 1

2

( 1
µ1
− 1

)
< p11 < 1 and define

f (Z)=
(

p11− z1

1− p11z1
, 0, . . . , 0

)
∈ H(�,�).

Then P = f (0)= (p11, 0, . . . , 0). From Lemma 2 we obtain

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k!
= pk−1

11 |µ1|
k

when k ≥ 1. Hence, as required,

∞∑
k=0

‖DϕP(P)[Dk f (0)(Z k
0)]‖�

k! ‖DϕP(P)‖
= p11+ (1− p2

11)

∞∑
k=1

pk−1
11 µk

1

= p11+ (1− p2
11)

µ1

1− p11µ1
> 1. �

From the proof of the theorem, we have obtained in addition:

Corollary. Let P ∈� be given, where � is one of the four classical domains, and
define

γ1 =
1

2+‖P‖�
, γ2 =

1
1+ 2‖P‖�

.
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If f :�→� is a holomorphic mapping taking 0 to P , the inequality
∞∑

k=0

‖DϕP (P)[D
k f (0)(Z k)]‖�

k! ‖DϕP (P)‖
< 1

holds for all Z such that ‖Z‖� <γ1. If ‖Z‖� >γ2, there exists f ∈ H(�,�) with
f (0)= P such that the inequality fails.

This leads naturally to the following problem:

Question. What is the best constant γP , depending on ‖P‖�, such that
∞∑

k=0

‖DϕP(P)[Dk f (0)(Z k)]‖�

k! ‖DϕP(P)‖
< 1

whenever ‖Z‖�<γP? According to the Corollary, γP ∈

[ 1
2+‖P‖�

,
1

1+2‖P‖�

]
.
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A VARIATIONAL FORMULA FOR FLOATING BODIES

JOHN MCCUAN

Well known first order necessary conditions for a liquid mass to be in equi-
librium in contact with a fixed solid surface declare that the free surface
interface has mean curvature prescribed in terms of the bulk accelerations
acting on the liquid and meets the solid surface in a materially dependent
contact angle. We derive first order necessary conditions for capillary sur-
faces in equilibrium in contact with solid surfaces which may also be al-
lowed to move. These conditions consist of the same prescribed mean curva-
ture equation for the interface, the same prescribed contact angle condition
on the boundary, and an additional integral condition which may be said to
involve, somewhat surprisingly, only the wetted region.

An example of the kind of system under consideration is that of a floating
ball in a fixed container of liquid. We apply our first order conditions to this
particular problem.

1. Introduction: expressions for energy and volume

In the calculus of variations, one is interested in minimizing an energy functional
over some class of admissible functions. The energy is usually assumed to be an
integral operator. For example, one often considers

(1) F[u] =
∫
�

F(x, u, Du) dx +
∫
∂�

F(x, u, Du) dx

where � is a fixed domain in Rn and the competing functions u are all defined on
�.

Following Gauss, a standard approach to the derivation of equations governing
equilibrium configurations for liquid masses in contact with solid bounding sur-
faces is via the calculus of variations. In this context, due to the geometric and in
particular parametric nature of the situation, it is more natural to consider energy
functionals which are integral operators on a given Riemann surface M and which
involve a parametric mapping X :M→R3. Though the value of the energy involves

MSC2000: primary 76B45, 76D45, 49K20; secondary 49Q05, 53A10.
Keywords: calculus of variations, capillarity, minimal surfaces, constant mean curvature.
The author is grateful to the Max Planck Institute for Mathematics in the Sciences, which supported
this research.

167



168 JOHN MCCUAN

universally the inclusion of surface area terms for the liquid free surface interface
and the wetted region on the solid support surface, the precise identification in the
literature of the Riemann surface M and the mapping X is somewhat more obscure.

In most, if not all, cases it is tacitly assumed that the entire configuration is
determined by the free surface interface and, hence, that the functional E = E[X ]
has as argument the mapping X which parameterizes the free surface interface.
More precisely, it is assumed that the mapping X which determines the free surface
interface also determines the contact line (the boundary of the free interface); the
contact line determines a particular wetted region on the solid surface; the free
surface interface together with the wetted region determine the enclosed volume
or liquid mass, and this is enough information to compute the energy. Competing
admissible mappings are then naturally considered as those mappings defined on
the image3 of X , or equivalently on its preimage M . Each such free surface inter-
face leads to an admissible configuration defining a liquid mass as just described.
From this point of view, the objective may be stated as finding a piecewise C1

mapping X0 determining a free surface interface for which E(X0) ≤ E(X) for all
piecewise C1 competing or admissible mappings X . It should be noted that in this
formulation, the energy is given implicitly at least to the extent that a particular
integral describing, say, the wetted area, is never written down. Since the first
variation formula in this context only involves integrals over 3 and ∂3, this point
of view seems at first adequately justified, at least formally.

We give here an alternative approach which is somewhat more explicit at least to
the extent that the initial energy is given in terms of a well defined integral operator.
In situations in which portions of the solid boundary are free to move, or partially
free to move, the image of the free surface does not always determine the wetted
region or the volume; consider a cylindrical container

{(x, y, z) ∈R3
: x2
+ y2
= 2, −3≤ z ≤ 1}∪ {(x, y, z) ∈R3

: x2
+ y2
≤ 2, z =−3}

with the floating solid cylinder

{(x, y, z) ∈ R3
: x2
+ y2
≤ 1, −2+ h ≤ z ≤ 1+ h}

for h fixed with −1 < h < 2. An admissible interface for every value of h is
given by the annulus {(x, y, 0) ∈ R3

: 1 < x2
+ y2 < 2}; while this interface

determines the contact line, the wetted region and enclosed volume both depend
explicitly on h. In such situations, our alternative and more general approach is
more natural, being further justified by the fact that additional integral terms, not
expressible as integrals over the free surface interface or its boundary, appear in
the first order necessary conditions. Furthermore, the explicit appearance of an
independent parameter h in this type of problem suggests an analogous class of
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problems in the nonparametric case different from (1). Namely, one may consider

F[u, h] =
∫
�

F(x, u, Du, h) dx +
∫
∂�

F(x, u, Du, h) dx,

where the admissible functions u are defined on �× �̃ for some set �̃ ∈ Rm . We
are unaware of any treatment of problems of this sort in the literature, but one can
think of some interesting examples with little difficulty.

We now give formal mathematical assumptions used to model capillary systems
in somewhat more detail than we have found in the literature. We model solid
surfaces by the boundaries of initially prescribed closed sets in R3. The union of
all such solid surfaces is denoted by 6 = ∂C where C denotes the union of the
closed sets. We assume, for the moment, that all solid surfaces are fixed, and an
interior liquid mass, modeled by an open set M, occupies some portion of R3

\C.
The boundary of M consists of a portion W in 6, which we call the wetted region,
and a portion 3= ∂M\W, the free surface interface.

Given a particular liquid mass M0, we assume M0 and the associated surfaces
30 and W0 admit the structure of abstract Riemannian manifolds (of dimensions
3, 2, and 2 respectively).

Relative to M0, we consider the admissible class of liquid mass configurations
M obtained as parameterized images

X :M0→ R3.

More precisely, we consider liquid masses M = X (M0) with smooth parameteri-
zation X

∣∣
M0

; it is assumed that ∂M = X (30)∪ X (W0) with free surface interface
3= X (30), parameterized by X

∣∣
30

, and wetted region W= X (W0)= X (M0)∩6

with parameterization X
∣∣
W0

.

Given an admissible liquid mass configuration M, we assume the energy of the
system is given by

(2) E= A(3)−βA(W)

where A denotes the area functional. The constant β is called the adhesion coeffi-
cient. See [Finn 1986] for further details. For simplicity, we have not included in
(2) the possibility that bulk accelerations are acting on the liquid. The applications
given in this paper do not involve gravity or other accelerations, but for reference
we will briefly indicate below what occurs in this more general setting.

We will assume that each global parameterization, such as X
∣∣
30
: 30 → 3,

extends smoothly to an open neighborhood of the boundary. In particular, we can
parameterize a small neighborhood of every point in the closure of 3 locally by
some map defined in a neighborhood of R2. We will employ the usual abuse of
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X

u

3

R3

v

M

Figure 1. A free surface interface parameterized on an abstract manifold

notation in denoting this local parameterization also by X . More generally, we
may emphasize the role of either parameter domain 30 or W0 (or their union) as
an abstract manifold by denoting it as M and referring to the appropriate restriction
of X :M0→R3 simply as X :M→R3. The context is usually adequate to indicate
which portion of ∂M is under consideration. If we wish to emphasize the distinction
between the free surface 3 and wetted region W, we will use a superscript “W” in
reference to the wetted region.

Under these assumptions, the area functional can be written explicitly as an inte-
gral over a fixed Riemann surface M of the Jacobian scaling factor

√
det (d X T d X)

where the superscript “T ” denotes the transpose (or adjoint) of the linear transfor-
mation; see [Evans and Gariepy 1992]. We can write, for example,

A(3)=
∫
3

1=
∫
30

√
det (d X T d X)=

∫
M

√
det (d X T d X).

Using a similar expression for the wetting energy, we see that the energy of ad-
missible configurations is well defined as a functional on pairs of restrictions X :
M = 30 → R3, XW

: MW
=W0 → R3 on a pair of fixed Riemann surfaces (or

alternatively on admissible maps X on the union M =30 ∪W0):

(3) E(X)=
∫

M

√
det (d X T d X)−β

∫
MW

√
det (d XWT d XW)

The volume of the liquid mass can also be expressed in terms of integrals over
the same parameter domains. In fact, using the divergence theorem

V =
∫

M
1=

1
3

∫
M

divR3 x =
1
3

∫
3

X · N +
1
3

∫
W

XW
0 · N

W
0 .
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Thus, we may write

(4) V (X)=
1
3

∫
M

X · N
√

det (d X T d X)+
1
3

∫
MW

XW
0 · N

W
0

√
det (d XWT d XW).

Expressions (3) and (4) provide the basis for the calculations in the next section.
When bulk accelerations are considered, one encounters in the energy an addi-

tional term of the form

G=

∫
M

g

where g is a given scalar function of position. I am unaware of a means to express
this term as an integral over ∂M0. Thus, we are apparently forced to use the full
information of the mapping X :M0→ R3 associated with an admissible variation
of the bulk liquid and admit the dependence of the energy on the third restriction
X
∣∣
M0
:M0→ R3, which we also denote by X :

G(X)=
∫

M0

g ◦ X |det DX |.

2. General formulae

Given a liquid mass configuration as described above, we wish to consider a vari-
ation X : M0 × (−ε, ε) → R3 such that X ( · ; 0) = idM0

( · ) and for each fixed
t ∈ (−ε, ε), the two restrictions

X
∣∣
30×{t}

:30 = M→ R3 and X
∣∣
W0×{t}

:W0 = MW
→ R3,

which parameterize images 3 and W respectively, arise as restrictions to 30 and
W0 of the global map X :M0→ R3 associated to an admissible liquid mass M =

Mt . The variations under consideration here are required to be smooth so that the
functions

E(t)= A(3)−βA(W) and V (t)=
1
3

∫
3

X · N +
1
3

∫
W

XW
· N W

are differentiable on (−ε, ε).
Finally, we note the compatibility of the restrictions to W0 and 30 along their

common boundary:

(5) XW(q; t)= X (q; t) for every q ∈ ∂MW
= ∂M

This simple relation will play a key role in our derivation of a variational formula
for floating bodies.

With no bulk accelerations, no condition on the interior restriction X
∣∣
M0×{t}

need
be considered, and this part of the global map can be ignored.
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Figure 2. Variation of 30.

We wish to compute Ė= dE/dt . We begin with A(3).

A(3)=
∫
3

1=
∑

U

∫
U

√
EG− F2,

where we have written the abstract manifold M (up to a set of measure zero) as a
disjoint union of images of coordinate neighborhoods U in the u, v-plane and E ,
F , and G are the coefficients of the first fundamental form on a given neighborhood
U . That is, taking X to be locally defined on U , we have

E = |Xu|
2, F = Xu · Xv, G = |Xv|2,

√
EG− F2 = |Xu × Xv|.

Thus we obtain

d
dt

∫
U

√
EG− F2 =

∫
U

(Xu × Xv) · (Ẋu × Xv + Xu × Ẋv)
√

EG− F2

=

∫
U

(Xu · Ẋu)G− (Xv · Ẋu)F + (Xv · Ẋv)E − (Xu · Ẋv)F
√

EG− F2
.

Now, if we write Ẋ = φN +ψXu+ηXv = φN + ẊT, where N is a unit normal to
3, then

Ẋu = φu N +φNu +ψu Xu +ψXuu + ηu Xv + ηXuv,

Ẋv = φvN +φNv +ψvXu +ψXuv + ηvXv + ηXvv,
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so that
Xu · Ẋu =−φe+ψu E + 1

2ψEu + ηu F + 1
2ηEv,

Xv · Ẋu =−φ f +ψu F +ψFu −
1
2ψEv + ηuG+ 1

2ηGu,

Xu · Ẋv =−φ f +ψvE + 1
2ψEv + ηvF + ηFv − 1

2ηGu,

Xv · Ẋv =−φg+ψvF + 1
2ψGu + ηvG+ 1

2ηGv,

where e= Xuu ·N , f = Xuv ·N , and g= Xvv ·N are the coefficients of the second
fundamental form. Multiplying the expressions above by the appropriate factors,
adding them together and grouping like terms we obtain

(Xu · Ẋu)G− (Xv · Ẋu)F + (Xv · Ẋv)E − (Xu · Ẋv)F

=−φ(eG− 2 f F + gE)+ψu(EG− F2)+ 1
2ψ(EG− F2)u

+ ηv(EG− F2)+ 1
2η(EG− F2)v.

Thus, we have

d
dt

∫
U

√
EG− F2

=−

∫
U
φ

eG− 2 f F + gE
√

EG− F2
+

∫
U
ψu

√
EG− F2+ψ

(EG− F2)u

2
√

EG− F2

+

∫
U
ηv

√
EG− F2+ η

(EG− F2)v

2
√

EG− F2

=−

∫
U
φ

eG− 2 f F + gE
√

EG− F2
+

∫
U
(ψ
√

EG− F2)u + (η
√

EG− F2)v.

Finally, summing over the neighborhoods U we have

Ȧ(3)=−
∫
3

2Hφ+
∑

U

∫
U

(ψ
√

EG− F2)u + (η
√

EG− F2)v
√

EG− F2

√
EG− F2

=−

∫
3

2Hφ+
∫
3

div3 ẊT

=−

∫
3

2H X · N +
∫
∂3

ẊT
· En,

where H is the mean curvature of 3, En is the outward conormal to ∂3 and the
last term comes from the divergence theorem. We note finally, that ẊT

· En = Ẋ · En
because, N · En = 0.

This formula should be recognized as the general formula for the first variation
of area for an arbitrary surface in R3 under an arbitrary vector-valued variation.
While the derivation above is somewhat more general than that of [Wente 1966]
or [Finn 1986], since we allow arbitrary variations, Spivak [1979] derives an even
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more general version which allows arbitrary dimension and also immersion in an
arbitrary submanifold. We felt it was worthwhile, however, to derive the general-
ization in the limited context of the present discussion.

We may apply the same calculation to the variation of W by XW and obtain

(6) Ȧ(W)=

∫
∂3

Ẋ · Eν

where ν is the outward conormal to ∂W= ∂3 with respect to W. Notice from (5)
that

ẊW(q; t)= Ẋ(q; t)

for every q ∈ ∂MW, and in the case of a fixed rigid bounding surface 6, we are
requiring ẊW

= Ẋ to be tangent to 6 along ∂3. This is why the surface integral
of 2H W Ẋ · N W does not appear in (6). Moreover, along ∂3 we may write Ẋ =
(Ẋ · Eν)Eν+ δEt where Et is a unit tangent to ∂3, so that

Ė=−

∫
3

2H X · N +
∫
∂3

Ẋ · Eν(Eν · En−β).

If γ is the angle measured inside M between3 and 6 along ∂3, then we obtain
the familiar form

(7) Ė=−

∫
3

2H X · N +
∫
∂3

(cos γ −β)Ẋ · Eν.

We next proceed to derive an expression for

V̇ =
d
dt

V (t),

where

V = V (t)=
∫

M
1=

1
3

∫
M

divR3 x =
1
3

∫
3

X · N +
1
3

∫
W

XW
· N W

by the divergence theorem.

Note. The expression used for the change in V (M) in [Barbosa et al. 1988] and
referenced by [Ros and Souam 1997] apparently assumes that the variation map-
ping X (on M×[0, ε]) gives a parameterization of the volume under consideration.
By following Wente [1966] (who followed Blaschke [1930]) we get an expression
which is valid under this assumption and also without it. The computation, how-
ever, is a little more involved.

It is interesting to note that earlier, Barbosa and do Carmo [1984] use also
Blaschke’s expression for the volume. Presumably, the formulation in their latter
paper [1988] is a consequence of working in a curved ambient manifold. This
suggests the following question: Is there a generalization of the trivial formula
divRn x = n to situations in which Rn is replaced by an n-dimensional manifold?
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The question in one lower dimension, also has relevance for the main problem
under consideration in this paper, because if this were the case, it might be possible
to replace the wetting energy term with an integral around ∂3 and, hence, simplify
the overall construction. It should be noted, of course that in the case of a floating
object, that vector field would be expected to depend on the position of the floating
object.

Finally, in using Blaschke’s expression for the volume, we have effectively re-
placed an integral over M by one over ∂M. If we are willing to consider variation
of the entire liquid mass (which we are apparently forced to do below to accommo-
date bulk accelerations), then an alternative approach is possible. This approach is
presented in the context of the more complicated situation below.

Returning to the variation of Blaschke’s volume expression, we begin as before,
writing 3 as a union of parameter neighborhoods X (U ). Then

d
dt

∫
3

X · N =
∑

U

d
dt

∫
U

X · (Xu × Xv).

For each local domain U ,

d
dt

∫
U

X · (Xu × Xv)=
∫

U
Ẋ · (Xu × Xv)+ X · (Ẋu × Xv)+ X · (Xu × Ẋv).

Considering the last two terms in this expression,

X · (Ẋu×Xv)+X · (Xu× Ẋv)

= [X · (Ẋ×Xv)]u+ [X · (Xu× Ẋ)]v− Xu · (Ẋ×Xv)− X · (Xuv× Ẋ)

−Xv · (Xu× Ẋ)− X · (Ẋ×Xuv)

= [X · (Ẋ×Xv)]u+ [X · (Xu× Ẋ)]v+2Ẋ · (Xu×Xv).

In the last line, we have used the identity −Xv · (Xu × Ẋ) = vol(Xu, Xv, Ẋ) =
−Xu · (Ẋ × Xv) where vol(Xu, Xv, Ẋ) = Ẋ · (Xu × Xv) is the volume of the
parallelepiped spanned by Ẋ , Xu and Xv (up to a sign). Substituting this into the
integral under consideration, we find

d
dt

∫
U

X · (Xu× Xv)= 3
∫

U
Ẋ · (Xu× Xv)+

∫
U
[X · (Ẋ× Xv)]u+[X · (Xu× Ẋ)]v.

We wish to express the last integrand as the local expression of the divergence
of a globally defined vector field on 3. Substituting the expression

Ẋ = φN +ψXu + ηXv = φN + ẊT
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for Ẋ , we find that the integrand can be written as

[X ·(Ẋ×Xv)]u+[X ·(Xu× Ẋ)]v =
[

X ·
φ(Xu×Xv)×Xv
√

EG−F2

]
u
+

[√
EG−F2 ψX ·N

]
u

+

[
X ·
φXu×(Xu×Xv)
√

EG−F2

]
v

+

[√
EG−F2 ηX ·N

]
v
.

The second and fourth terms sum to precisely√
EG− F2 div3[(X · N )ẊT

].

Applying the triple cross product rule, we find

(Xu × Xv)× Xv =−G Xu + F Xv and Xu × (Xu × Xv)= F Xu − E Xv.

Thus, the first and third terms sum to[√
EG− F2 φ

−G X · Xu + F X · Xv
EG− F2

]
u

+

[√
EG− F2 φ

−F X · Xu − E X · Xv
EG− F2

]
v

.

Comparing this with the expression of a general vector field in local coordinates,
we see that this is

−

√
EG− F2 div3[φXT

].

Going back to the original integral, we have

d
dt

∫
U

X · (Xu × Xv)= 3
∫

X (U )
Ẋ · N +

∫
X (U )

div3[φ ẊT
− (X · N )XT

].

Properly speaking, the expressions X and Ẋ in the integrals on the right side of
this equation represent respectively X (X−1(x; t); t) and Ẋ(X−1(x; t); t) for x ∈
X (U )⊂3. The function v(x; t) := Ẋ(X−1( · ; t); t) will play an important role in
the case of bulk accelerations below.

Finally summing over all neighborhoods U and recalling that φ = Ẋ · N , we
have

1
3

d
dt

∫
3

X · N =
∫
3

Ẋ · N +
1
3

∫
3

div3[(X · N )ẊT
− (Ẋ · N )XT

]

=

∫
3

Ẋ · N +
1
3

∫
∂3

[(X · N )ẊT
− (Ẋ · N )XT

] · En

=

∫
3

Ẋ · N +
1
3

∫
∂3

[(X · N )Ẋ − (Ẋ · N )X ] · En.

Again, we have used the divergence theorem. The last line results from the fact that
the vectors (X · N )Ẋ and (Ẋ · N )X have the same component in the direction N .
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The same calculation applies to the integral over W appearing in the expression
for V so that

V̇ =
∫
3

Ẋ · N +
∫

W
ẊW
· N W

+ J,

where

3J =
∫
∂3

[(X · N )Ẋ − (Ẋ · N )X ] · En+ [(X · N W)Ẋ − (Ẋ · N W)X ] · Eν.

It would be usual at this point to assume Ẋ · N W
= 0 along ∂3 so that one of the

boundary integral terms vanishes. In keeping with the use of quite general vector-
valued variations, we will avoid such an assumption. We will substitute rather

Ẋ = φN + δEn+ ηEt, Eν = (Eν · N )N + (Eν · En)En, N W
=−(Eν · En)N + (Eν · N )En,

where Et is a vector tangent to ∂3. In this way, we find

[(X · N )Ẋ − (Ẋ · N )X ] · En+ [(X · N W)Ẋ − (Ẋ · N W)X ] · Eν

= φ[−X · En+ (X · N W)(Eν · N )+ (Eν · En)(X · Eν)]

+δ[X · N + (X · N W)(Eν · En)− (Eν · N )(X · Eν)]

= φ[−(X · En)(1− (Eν · En)2− (Eν · N )2)]+ δ[(X · N )(1− (Eν · En)2− (Eν · N )2)]

= 0.

Thus, we have a general variational formula for volume with respect to an arbitrary
admissible vector-valued variation:

(8) V̇ =
∫
3

Ẋ · N +
∫

W
ẊW
· N W.

In the situation presently under consideration, we also have that ẊW is in the
tangent space of 6, so that the second integral also vanishes, and we obtain the
familiar

(9) V̇ =
∫
3

Ẋ · N .

If the additional term G=
∫

M g is included in the energy, we require in addition
that the third restriction of our variation X

∣∣
M0×{t}

: M0 → R3 parameterizes its
image which is required to be the admissible liquid mass M = Mt bounded by 3
and W. In this more complicated situation, we first write

G=

∫
M0

g ◦ X det DX,

where we have omitted the absolute values on the Jacobian factor for small t under
the assumption of smoothness in t on the third restriction and the observation that
det DX ( · ; 0)= 1> 0.
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This puts us in a position to apply Euler’s first kinematical theorem — identity
(4.1) in [Serrin 1959] — to obtain

Ġ=

∫
M
[Dg · v+ g divR3 v] =

∫
M

divR3[gv] =
∫
3

g Ẋ · N +
∫

W
g ẊW

· N W

by the divergence theorem, where v(x; t)= Ẋ(X−1(x; t); t) is the spatial velocity
of the flow induced by the variation. (In the last expression, we have returned to the
use of Ẋ to represent v( · ; t).) For a detailed derivation of the kinematical identity
in the special case under consideration, see the appendix to [McCuan 2006].

If 6 is a fixed rigid surface, ẊW
·N W
= 0 as before, and we obtain, in complete

generality, the formula

Ġ=

∫
3

g Ẋ · N

which was obtained in special cases in [Wente 1966] and [Finn 1986] but not
considered in [Ros and Souam 1997] or [Spivak 1979].
Note: If one is willing to admit the full variation of the interior liquid mass, this
approach gives also, in the special case g ≡ 1, formulae (8) and (9).

The next step in developing the variational theory of these surfaces would be
to introduce a Lagrange parameter corresponding to the volume constraint of the
problem. We will have the opportunity to consider this topic under more general
circumstances below, and hence move directly to those considerations.

3. Movable boundaries

We now wish to allow portions of the rigid bounding surface 6 to assume the
character of free floating or partially free floating rigid obstacles. To this end, we
assume 60 (and correspondingly the relevant abstract manifold MW

=W0) to be
composed of disjoint components 6s and 6m . The former portions remain fixed,
or stationary, as in the discussion above, while the latter are movable in the sense
we now describe.

Let w = w(x; h) be a family of rigid motions of R3 indexed by and smoothly
depending on the parameter h which for simplicity we will assume is real-valued.
Correspondingly, we will generalize our notion of variation to that of smooth maps
X : M0 × (−δ, δ)× (−ε, ε)→ R3, which for each fixed h ∈ (−δ, δ) satisfy the
conditions set forth in the previous section, with one slight modification. The new
parameter h lying between−δ and δ will index the position of the movable portion
of6, so that for fixed h the image of XW

m is required to lie inw(6m; h). Otherwise,
the parameter t on (−ε, ε) is the variation parameter as before. When convenient,
we will continue to refer to the union MW

s ∪ MW
m =W0s ∪W0m simply as MW.

As we have denoted derivatives with respect to t with the customary dot above the
letter, we will denote derivatives with respect to h with an acute accent: ´ . For each
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h and t , the energy of and volume associated with the configuration are given by
the same expressions as before.

We will assume that E(X0, XW
0 ) ≤ E(X, XW) for all C1 admissible variations

(X, XW) in a C0 neighborhood of (X0, XW
0 ) whose associated volume is also con-

strained to match that of the original minimizing configuration.
We give now a brief justification for the existence of a Lagrange multiplier in

this problem. The argument is slightly more general than that seen for integral
operators of the form (1) because we avoid the use of “additive variations,” i.e.,
the usual u+εφ. This is essentially an avoidance of assuming a linear structure in
the class of admissible variations. The argument is also somewhat different than
that usually given for Fréchet differentiable functionals as in [Gelfand and Fomin
1963] or for Gâteaux differentiable functionals as in [Sagan 1969] or [Ekeland and
Temam 1976] for essentially the same reason.

We begin with a standard single parameter variation Y : M0 × (−ε, ε)→ R3

of M0 for which the volume has nonvanishing first variation. Examination of the
variational formula for volume indicates that this is always possible; we can arrange
for example that the first restriction (to30) satisfies Ẏ ·N ≥ 0 with strict inequality
on some open subset of 30. We denote the parameter for this variation by τ so
that Y = Y (p; τ). Corresponding to each fixed τ , we consider a further variation
X = X (p; h; t; τ) with X (p; 0; 0; τ) = Y (p; τ). This construction results in two
smooth real-valued functions of three variables,

f (h, t, τ )= E(X, XW) and g(h, t, τ )= V (X, XW),

having the property that f (0, 0, 0) is a minimum for f (h, t, τ ) subject to the con-
straint g(h, t, τ ) = V (X0, XW

0 ). The usual principle of Lagrange applied to these
functions asserts the gradients of f and g must be parallel at the origin; that is,

D f (0, 0, 0)= λDg(0, 0, 0)

for some constant λ. This results in three equations, the first two of which are

(10) É− λV́ = 0 and Ė− λV̇ = 0,

where everything is evaluated at h= t = 0. We have computed expressions (7) and
(9) for Ė and V̇ above, so that the second equation becomes

Ė− λV̇ =−
∫
30

(2H + λ)Ẋ · N +
∫
∂30

(cos γ −β)Ẋ · En = 0.

By taking first interior variations (for which Ẋ ≡ 0 on ∂30) we find

2H =−λ= constant on 30.
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Thus, the first integral vanishes, and we can take Ẋ · En arbitrary on ∂30, so that

cos γ = β = constant on ∂30.

These are the usual first order necessary conditions for a capillary surface in zero
gravity. The inclusion of G evidently leads also to the usual prescribed mean cur-
vature equation 2H = g − λ where g is a volumetric potential energy density
appropriate to any accelerations present.

We now turn to the first equation in (10). Applying the reasoning that led to
Ė but differentiating instead with respect to h, we note that there is no reason to
believe X́W lies in the tangent space to6. Thus, we obtain a variational expression
with all terms present:

É− λV́ =−
∫
3

2H X́ · N +
∫
∂3

X́ · En+β
∫

W
2H W X́W

· N W
−β

∫
∂3

X́ · Eν

−λ

∫
3

X́ · N − λ
∫

W
X́W
· N W,

where H W is the mean curvature on the wetted region W. We note, that we could, of
course eliminate some of the integrals over portions Ws of W which are stationary,
but we will save on subscripts by including them for the moment. We can use the
prescribed mean curvature equation to cancel the integrals over3, and we may also
substitute the contact angle boundary condition so that for 3 = 30 and 6 = 60

we have∫
∂3

X́ · (En− cos γ Eν)+ cos γ
∫

W
2H W X́W

· N W
+

∫
W

2H X́W
· N W

= 0.

We have moved the constant 2H inside the integral; it may be easily checked that
this same formula holds in the case of bulk accelerations where 2H = g− λ may
be nonconstant. Noting that En− cos γ Eν = En− (En · Eν)Eν and that N W and Eν form an
orthonormal basis, we see that En−cos γ Eν= sin γ N W. Thus the condition becomes

(11)
∫
∂3

sin γ X́ · N W
+ cos γ

∫
W

2H W X́W
· N W

+

∫
W

2H X́W
· N W

= 0.

This is a first version of our new first order condition which applies to situations
in which the solid support structures are deformable. We have not used, however,
any special properties of the deformation XW and of the smooth family of rigid
motions w :R3

× (−δ, δ)→R3. Using these properties should allow us to express
the formula in a manner that is essentially independent of X́W in the interior of W.
The crucial observation is that because

6m;h =6h = w(6m; h)
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we have

(12) w−1(XW) ∈60

where we have suppressed the subscript “m,” and XW denotes XW
m (x; h, t); h. (We

note that in the following discussion, we will also consistently suppress t depen-
dence.)

The inclusion (12) implies

Dw−1(XW)X́W
+ ẃ−1(XW) ∈ Tw−1(XW)60.

Recall, however, that for fixed h, the transformations w and w−1 are rigid motions.
Therefore, we know that, for example, w−w(0) is linear and has a corresponding
matrix Dw which depends only on h. Since multiplication by this matrix also
corresponds to the differential mapping dw : Tw−1(XW)60 → TXW6 of tangent
spaces where 6 =6h , we find that

(13) X́W
+ Dwẃ−1(XW) ∈ TXW6.

Differentiating the defining relationw(w−1(x; h); h)= x with respect to h, we find

Dw(w−1(x; h); h)ẃ−1(x; h)=−ẃ(w−1(x; h); h).

Therefore, (13) can also be written as

X́W
− ẃ(w−1(XW)) ∈ TXW6.

From this it follows that each of the terms X́W
· N W appearing in (11) may be

replaced with ẃ · N W
= ẃ( · ; 0) · N W.

(14) sin γ
∫
∂3

ẃ · N W
+ cos γ

∫
W

2H Wẃ · N W
+

∫
W

2Hẃ · N W
= 0.

(We are still suppressing the subscript “m” on all the domains of integration; tech-
nically, ∂3= ∂Ws ∪ ∂Wm and the stationary portion of the first integral vanishes
because X́W

· N W
≡ 0 there.)

Next, we temporarily fix h0 and consider a specific motion of the wetted region
Wh0 as follows. Let W̃= W̃h be parameterized on Mm by

p 7→ w(w−1(XW(p; h0); h0); h).

Notice that for h = h0 the surface W̃ is exactly Wh0 and for h > h0 the surface W̃

is just a rigid motion of the same wetted region and, therefore, has the same area.
Thus, using the general formula for the variation of surface area in this special
case, we have

0=
d

dh
A(W̃)=−

∫
W̃

2H̃ Wẃ · Ñ W
+

∫
∂W̃
ẃ · ν̃,
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where H̃ W is the mean curvature on W̃, Ñ W is the normal on W̃, ν̃ is the conormal
on ∂W̃, and the vectors ẃ appearing in the integrals are evaluated at

(w−1(w(w−1(x; h0); h); h0); h).

We now change variables in the integrals from the previous page using the map
x 7→ w(w−1(x; h); h0) which maps W̃h back to W̃h0 =Wh0 . We then have

−

∫
Wh0

2H W Dw(w−1( · ; h); h0) Dw−1( · ; h0) ẃ(w
−1( · ; h0); h) · N W

+

∫
∂Wh0

Dw(w−1( · ; h); h0) Dw−1( · ; h0) ẃ(w
−1( · ; h0); h) · Eν = 0.

Setting h=h0 and suppressing all the h’s again so that ẃ(w−1)= ẃ(w−1( · ; h); h),
we get

−

∫
W

2H Wẃ(w−1) · N W
+

∫
∂W
ẃ(w−1) · Eν = 0.

Using this identity to replace the middle integral on the left in (14), we find at h= 0
the condition ∫

∂W
ẃ · (sin γ N W

+ cos γ Eν)+
∫

W
2Hẃ · N W.

Finally, we note that sin γ N W
+cos γ Eν= En and modify the notation to emphasize

once again the significance of the movable portion 6m of the solid support surface
to obtain the fundamental formula.

Theorem 3.1. Assume X0 parameterizes a capillary surface 30 that meets solid
support surfaces at a constant contact angle γ and defines a liquid mass M as
described above. If moreover, 30 provides a minimum among variations compati-
ble with the motion of a portion 6m of the bounding surfaces allowed by the rigid
motions w = w(x; h), then∫

Wm

2Hẃ · N W
+

∫
∂Wm

ẃ · En = 0,

where ẃ = ∂w/∂h( · ; 0). It should be noted in this formula that En is the conormal
to ∂3⊃ ∂Wm and H is the mean curvature of 3. The formula holds both when H
is constant and when 2H = g− λ is prescribed by bulk accelerations.

We now apply this result to a particular physical situation.

4. The floating ball

Finn [2005] considers the configuration shown in Figure 3 in which a planar in-
terface z ≡ 0 for α = a sin γ ≤ r ≤ R meets a cylindrical container of radius R at
an angle π/2 and a sphere held rigidly on the axis of the container at an angle of
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a

R0

0

−a cos γ

a sin γγ

Figure 3. A planar interface determining a liquid mass of given
volume and prescribed contact angle.

contact γ . If the ball remains rigidly fixed with center at height −a cos γ , then we
may apply the stability theory of Vogel [2000] to obtain the following result whose
proof we give at the end of the section.

Theorem 4.1. For the fixed ball problem, the planar interface is linearly stable
and is a strong local minimum in the sense of Vogel.

We conclude from this, that such an initial configuration is almost certainly ex-
perimentally reproducible, though with some external support to hold the ball in
place. One would like to know if the ball will remain in this position and the planar
interface will persist if the external support were to be removed. Will the ball float
in this position as suggested by Finn?

A theory allowing such a decisive conclusion is apparently unavailable in the
situation of moving boundaries. Our calculation leading to Theorem 3.1 however
allows us to make an argument that stability with respect to vertical motion of the
ball in this problem is also likely.

Finn shows in his paper that if the ball is moved (or suggestively pushed) down-
ward by a small distance h, then there is a unique rotationally symmetric constant
mean curvature surface that meets the ball still at the angle γ , the container still at
angle π/2 and determines a liquid mass of the same volume. The same assertions
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ω

α

N ∗

N

Figure 4. Nodoid interface.

are true if one raises the ball a small distance h (see Figure 4), and the surfaces
are, in each case, nodoids whose meridians are obtained as the path of the focal
point of a hyperbola as it rolls along the vertical axis through the center of the ball.
If for each h ∈ (−δ, δ), these auxiliary configurations have free surface interface
3h and wetted area Wh , where the center of the ball is located at h − a cos γ ,
then presumably the overall stability of the configuration (at least with respect to
vertical motion of the ball) should be characterized by the values

E(h)= A(3h)− cos γ A(Wh).

We wish to compute, in particular, É = dE/dh; the volume term can be ignored,
since all the volumes are the same. The quantity E(h) can be written explicitly in
terms of integrals as

E= 2π
∫ R

α

r
√

1+ u′(r)2 dr − cos γ 2π
∫ α

0

ar
√

a2− r2
dr

where u and α are determined as follows. The function u solves the ordinary dif-
ferential equation of constant mean curvature for rotationally symmetric surfaces.
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This equation is

(15)
1
r

(
ru′√

1+ u′2

)′
= 2Hh .

Denoting by α = α(h) the radius at which the nodoid surface meets the ball, we
can integrate to find

(16) u(r)= u(α)+
∫ r

α

αq + Hh(t2
−α2)

|Hh|

√
(ρ2

out− t2)(t2− ρ2
in)

dt,

where u(α)= h− a cos γ −
√

a2−α2, and

q = q(h)=
u′(α)√

1+ u′(α)2
=−

(
α

a
cos γ +

√
1−

(
α

a

)2
sin γ

)
=− cos(γ −ω)

where ω is the smaller angle made by a segment from the center of the ball to the
contact line with the horizontal (see Figure 4),

Hh =−
αq

R2−α2 =
α cos(γ −ω)

R2−α2

which follows from the fact that u′(R) = 0 and the first integral of equation (15),
and 0< ρin < ρout are the positive roots of r2

−[αq+ Hh(r2
−α2)]2 = 0. Finally,

it remains to describe α = α(h) which is determined implicitly by the equation

(17) V = πR2l + 2π
∫ α

0
r(h− a cos γ −

√
a2− r2) dr + 2π

∫ R

α

ru(r) dr

= πR2(l + h− a cos γ )− 2π
∫ α

0
r
√

a2− r2 dr

−2π
√

a2−α2
∫ R

α

rdr + 2π
∫ R

α

r
∫ r

α

u′(t) dt dr,

where l denotes the initial depth of the liquid near the wall of the cylindrical con-
tainer. In order to show that α = α(h) is well defined for h in some neighborhood
of zero, we think of the expression above as defining V = V (α, h) and show that

∂V
∂α
(a sin γ, 0) 6= 0.

This calculation is contained in the proof of Lemma 4.3 below.
The expression for u may also be expressed in terms of standard elliptic inte-

grals, as indicated in [Finn 2005]. Then it will be noted that the volume above as
well as E will depend on integrals of complicated expressions involving elliptic
integrals. This should suffice to indicate the difficulty in calculating É directly.
Since we know that V́ = 0 for this variation, however, we have direct recourse
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to the formula of Theorem 3.1 which is completely independent of the value of
u = u(r) for α < r < R.

Lemma 4.2. For the floating ball problem described above

É=
dE

dh
=

2παR2

R2−α2 cos(γ −ω).

Proof. In this case, the rigid motion is simply translation in the vertical direction
w(x; h)= x+he3 and ẃ= e3. The wetted region (on the ball) W is the portion of
lower hemisphere {(x, y, h−a cos γ−

√
a2− r2) :0≤r2

= x2
+y2
≤α2
}, and can be

parameterized in spherical coordinates (θ, φ) for 0≤ θ ≤ 2π and 0≤ φ ≤π/2−ω.
Thus, from the formula in Theorem 3.1,

É= 2παe3 · (sin γ N W
+ cos γ Eν)+ 2Hh2π

∫ π/2−ω

0
(e3 · N W)a2 sinφ dφ

= 2πα(sin γ sinω+ cos γ cosω)+
2α cos(γ −ω)

R2−α2 2πa2
∫ π/2−ω

0
cosφ sinφ dφ

= 2πα cos(γ −ω)
(

1+
a2

R2−α2 sin2(π/2−ω)
)
.

Since a2 sin2(π/2−ω)= α2, this is the formula given above. �

Notice that α and R2
− α2 are both positive. Thus, the sign of É in this case is

determined by the factor cos(γ−ω). We know that when h=0 we haveω=γ−π/2
so that É(0) = 0. In order to determine the value of É for other values of h we
must examine more closely the volume equation for α = a cosω.

Lemma 4.3. The function α = α(h) defined in a neighborhood of h = 0 satisfies
α′(0)< 0. Consequently, given h in some neighborhood of zero, since cosω=α/a,
if h < 0, then ω < γ −π/2; if h > 0, then ω > γ −π/2.

Proof. In this proof, we consider the expressions in the definition of the nodoid
meridians (16) to be functions of both α and h as independent variables. From
this point of view, we note that the expressions for q , H and u′ have no explicit
dependence on h. Furthermore, setting

v = v(α; r)= αq + H(r2
−α2),

we obtain an alternative expression for u′ = u′(r;α):

u′ =
v

√
r2− v2

.

Differentiating the expression for the fixed volume (17) with respect to h, we find

0= πR2
+

(
π
( α
√

a2−α2
− u′(α)

)
(R2
−α2)+ 2π

∫ R

α

r
∫ r

α

∂u′

∂α
(t) dt dr

)
α′(h).
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Thus, we wish to show that

(18) lim
h→0

(
α(R2

−α2)
√

a2−α2
− u′(α)(R2

−α2)+ 2
∫ R

α

r
∫ r

α

∂u′

∂α
(t) dt dr

)
> 0.

We consider each term individually; each term has a completely nonsingular limit.
First,

α(R2
−α2)

√
a2−α2

−→ −tan γ (R2
− a2 sin2 γ ) > 0 as h→ 0,

where we have used that −tan γ > 0. Since q and H tend to 0 with h, we see that
v tends uniformly to zero for r in some neighborhood of [a sin γ, R]. In particular,
αu′(α) tends to 0 with h, so the second term vanishes in the limit.

The last term requires some preliminary calculations and limits:

∂u′

∂α
=

r2

(r2− v2)3/2

∂v

∂α
=

r2

(r2− v2)3/2

(
q +α

∂q
∂α
+
∂H
∂α
(r2
−α2)− 2αH

)
.

Inside the parentheses we have, as h→ 0,

∂q
∂α
=−

1
a

cos γ +
α

a
√

a2−α2
sin γ −→ −

1
a
(cos γ + tan γ sin γ )=−

1
a cos γ

and

∂H
∂α
=−

∂

∂α

(
α

R2−α2

)
q −

(
α

R2−α2

)
∂q
∂α
−→

tan γ

R2− a2 sin2 γ

Therefore,

∂u′

∂α
−→

1
r

(
−tan γ + tan γ

r2
− a2 sin2 γ

R2− a2 sin2 γ

)
=−

tan γ

r(R2− a2 sin2 γ )
(R2
− r2)

as h→ 0. Since −tan γ > 0, this shows the last term in (18) also has a positive
limit. �

We recall that each of the nodoid interfaces is considered a critical interface for
the fixed ball problem. That is, they satisfy the necessary conditions of having
constant mean curvature and constant contact angle equal to γ on the contact line
with the ball. With the addition of our third necessary condition in the floating ball
problem, we can now state the following.

Theorem 4.4. With respect to the variation of the planar interface through nodoid
interfaces parameterized by the height of the ball h, the plane is the only equilib-
rium for h in some neighborhood of h = 0 and provides a strict minimum of energy
among those interfaces.
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We were unable to analyze precisely the nodoid interfaces (even concerning
existence and connectedness) for h far from zero, but since the formula in Lemma
4.2 results only from boundary considerations and we can say that cos(γ −ω) 6= 0
for every nodoid interface, we can make the following assertion:

Theorem 4.5. The unique rotationally symmetric equilibrium for the floating ball
problem is the planar interface; each nodoid interface is unstable to first order with
respect to motion of the ball.

It is, of course, unlikely that any of the other nodoid interfaces would have lower
energy than the plane. Presumably, an analytic argument could be given to cover
the component of those interfaces connected via h to the neighborhood of the planar
interface considered in Theorem 4.4, and the global picture could be understood nu-
merically if not analytically. For now, we have illustrated the use of Theorem 3.1.

Lastly, we return to the fixed ball problem and show that the planar interface is
a strong local minimum in the sense of Vogel.

Proof of Theorem 4.1. This configuration satisfies the conditions stated in [Vogel
2000]. Therefore, the stability for the interface is determined by the eigenvalue
problem 

1φ+ λφ = 0, r =
√

x2+ y2 ∈ (α, R),

∂φ

∂r

∣∣∣
r=α
=

1
α
φ
∣∣
r=α;

∂φ

∂r

∣∣∣
r=R
≡ 0.

Vogel shows that if all eigenvalues for this problem are positive, the interface is
strictly stable and a strong local minimum with respect to a large class of pertur-
bations.

In polar coordinates, the equation becomes

1
r

(
∂

∂r

(
r
∂φ

∂r

)
+
∂

∂θ

(1
r
∂φ

∂θ

))
+ λφ = 0.

Setting

φ =

∞∑
k=1

gk(r) sin(kθ)+
∞∑

k=0

fk(r) cos(kθ),

we are led to the Sturm–Liouville problemsr f ′′+ f ′+
(
λr − k2/r

)
f = 0, α < r < R,

f ′(α)= 1
α

f (α); f ′(R)= 0,

where f denotes fk , k = 0, 1, . . . or gk , k = 1, 2, . . . .
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We wish to show that there are no nontrivial solutions for λ ≤ 0. For λ < 0 we
set λ=−µ2 and change variables (t = µr) to obtain f ′′+ (1/t) f ′−

(
1+ k2/t2

)
f = 0, αµ < t < Rµ,

f ′(µα)= 1
µα

f (µα); f ′(µR)= 0.

This is a regular problem which we can transform using the change of variables
τ̇ = log t . Then we get

f (t)= v(log t); f ′ =
v′

t
, f ′′ =

v′′

t2 −
v′

t2 ,

so that {
v′′− (e2τ

+ k2)v = 0, l1 = log(µα) < τ < log(µR)= l2,

v′(l1)= v(l1); v′(l2)= 0.

We claim that this problem has no nontrivial solution. In fact, if v(l1) < 0, then
v′(l1)= v(l1) < 0 and v′′(l1)= (e2l1+k2)v(l1) < 0. Since each of v(τ), v′(τ ), and
v′′(τ ) must remain negative, there can be no l2 > l1 for which v′(l2)= 0. (Assume
that one of v, v′, v′′ vanishes first at τ = τ1. If v(τ1) = 0, there is some τ2 < τ1

for which v′(τ2) > 0, a contradiction. The same argument holds if v′(τ1) = 0. If
v′′(τ1)= 0, then

v(τ1)=
1(

e2l1 + k2
) v′(τ2)= 0,

also a contradiction.)
If v(l1)= 0, then uniqueness of solutions gives v ≡ 0.
If v(l1) > 0, then v, v′, and v′′ must remain forever positive, so we cannot have

v′(l2)= 0.
If λ= 0, the problem becomesr2 f ′′+ r f ′− k2 f = 0, α < r < R,

f ′(α)= 1
α

f (α); f ′(R)= 0.

This is an Euler equation that transforms as above to{
v′′ = k2v, l1 = logα < τ < log R = l2,

v′(l1)= v(l1); v′(l2)= 0.
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An argument similar to that in the case λ < 0, shows that only the trivial solution
is possible. In fact, more explicitly we have v = cekt

+ de−kt , so that{
cekl1 − de−kl1 = cekl1 + de−kl1,

cekl2 − de−kl2 = 0

or {
(k− 1)ekl1c− (k+ 1)e−kl1d = 0,

ekl2c− e−kl2d = 0,

which has only the trivial solution since

−(k−1)ek(l1−l2)+ (k+1)ek(l2−l1) = k(ek(l2−l1)− e−k(l2−l1))+ ek(l2−l1)+ e−k(l2−l−1)

= 2k sinh k(l2−l1)+2 cosh k(l2−l1) 6= 0.

(If this were to vanish, we would have

sinh k(l2− l1)

cosh k(l2− l1)
=−

1
k
< 0, k 6= 0

or
cosh k(l2− l1)= 0, k = 0,

both of which are impossible.)
Thus, the interface under consideration is stable and also a strong local minimum

by the work of Vogel. �

References

[Barbosa and do Carmo 1984] J. L. Barbosa and M. do Carmo, “Stability of hypersurfaces with
constant mean curvature”, Math. Z. 185:3 (1984), 339–353. MR 85k:58021c Zbl 0513.53002

[Barbosa et al. 1988] J. L. Barbosa, M. do Carmo, and J. Eschenburg, “Stability of hypersur-
faces of constant mean curvature in Riemannian manifolds”, Math. Z. 197:1 (1988), 123–138.
MR 88m:53109 Zbl 0653.53045

[Blaschke 1930] W. Blaschke, Vorlesungen über Differentialgeometrie und geometrische Grundla-
gen von Einsteins Relativitätstheorie, I: Elementare Differentialgeometrie, 3rd ed., Grundlehren der
Math. Wiss. 1, Springer, Berlin, 1930. Reprinted Dover, New York, 1945. JFM 56.0588.07

[Ekeland and Temam 1976] I. Ekeland and R. Temam, Convex analysis and variational problems,
Studies in Mathematics and its Applications 1, North-Holland, Amsterdam, 1976. MR 57 #3931b
Zbl 0322.90046

[Evans and Gariepy 1992] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of
functions, CRC Press, Boca Raton, FL, 1992. MR 93f:28001 Zbl 0804.28001

[Finn 1986] R. Finn, Equilibrium capillary surfaces, Grundlehren der Math. Wissenschaften 284,
Springer, New York, 1986. MR 88f:49001 Zbl 0583.35002

[Finn 2005] R. Finn, “Floating and partly immersed balls in a weightless environment”, Funct.
Differ. Equ. 12:1-2 (2005), 167–173. MR 2005m:76072 Zbl 1085.76016



A VARIATIONAL FORMULA FOR FLOATING BODIES 191

[Gelfand and Fomin 1963] I. M. Gelfand and S. V. Fomin, Calculus of variations, Prentice-Hall,
Englewood Cliffs, NJ, 1963. Reprinted Dover, New York, 2000. MR 28 #3353 Zbl 0127.05402

[McCuan 2006] J. McCuan, “Variation of energy for capillary surfaces”, Preprint, MPI-MIS, Leip-
zig, 2006, Available at http://www.mis.mpg.de/preprints/2006/prepr2006 18.html.

[Ros and Souam 1997] A. Ros and R. Souam, “On stability of capillary surfaces in a ball”, Pacific
J. Math. 178:2 (1997), 345–361. MR 98c:58029 Zbl 0930.53007

[Sagan 1969] H. Sagan, Introduction to the calculus of variations, McGraw-Hill, New York, 1969.
Reprinted Dover, New York, 1992. MR 94h:49001

[Serrin 1959] J. Serrin, “Mathematical principles of classical fluid mechanics”, pp. 125–263 in
Handbuch der Physik, 8/1: Strömungsmechanik I, edited by S. Flügge and C. Truesdell, Springer,
Berlin, 1959. MR 21 #6836b

[Spivak 1979] M. Spivak, A comprehensive introduction to differential geometry, vol. 4, 2nd ed.,
Publish or Perish, Wilmington, DE, 1979. MR 82g:53003d Zbl 0439.53004

[Vogel 2000] T. I. Vogel, “Sufficient conditions for capillary surfaces to be energy minima”, Pacific
J. Math. 194:2 (2000), 469–489. MR 2001j:58023 Zbl 1021.58014

[Wente 1966] H. C. Wente, Existence theorems for surfaces of constant mean curvature and per-
turbations of a liquid globule in equilibrium, Ph.D. thesis, Harvard University, Cambridge, MA,
1966.

Received January 11, 2006. Revised June 9, 2006.

JOHN MCCUAN

SCHOOL OF MATHEMATICS

GEORGIA INSTITUTE OF TECHNOLOGY

686 CHERRY STREET

ATLANTA, GA 30332
UNITED STATES

mccuan@math.gatech.edu
http://www.math.gatech.edu/~mccuan



PACIFIC JOURNAL OF MATHEMATICS
Vol. 231, No. 1, 2007

HOPFISH ALGEBRAS

XIANG TANG, ALAN WEINSTEIN AND CHENCHANG ZHU

We introduce a notion of “hopfish algebra” structure on an associative al-
gebra, allowing the structure morphisms (coproduct, counit, antipode) to
be bimodules rather than algebra homomorphisms. We prove that quasi-
Hopf algebras are hopfish algebras. We find that a hopfish structure on the
algebra of functions on a finite set G is closely related to a “hypergroupoid”
structure on G. The Morita theory of hopfish algebras is also discussed.

1. Introduction

When the multiplication on a (discrete, topological, smooth, algebraic) group G
is encoded in an appropriate algebra A = A(G) of functions on G with values in
a commutative ring k, it becomes a coproduct, that is, an algebra homomorphism
1 : A → A ⊗k A. The inclusion of the unit and the inversion map are also en-
coded as homomorphisms: the counit ε : A → k and the antipode S : A → A.
The group properties (associativity, unit, inverse) become statements about these
homomorphisms which constitute the axioms for a (commutative) Hopf algebra;
any noncommutativity of the underlying group appears as noncocommutativity of
the coproduct.

In noncommutative geometry, a noncommutative algebra A is thought of as the
functions on a “noncommutative space” or “quantum space” X . If X is to be a
“quantum group”, the algebra A should have the additional structure of a Hopf
algebra. We note that, for noncommutative Hopf algebras, the antipode has to be
an antihomomorphism rather than a homomorphism of algebras. For this reason,
a Hopf algebra is not quite a group in the category of algebras; this anomaly will
come back to haunt us later.

One type of quantum space is a quantum torus, whose function algebra is the
crossed product algebra Aα associated to an action of Z on the circle S1

= R/Z

generated by an irrational rotation rα. This irrational rotation algebra is generally
taken as a surrogate for the algebra of continuous functions on the “bad quotient

MSC2000: primary 16W30; secondary 81R50.
Keywords: Hopf algebra, hopfish algebra, groupoid, bimodule, Morita equivalence, hypergroupoid.
Weinstein’s research is partially supported by NSF Grant DMS-0204100. Tang and Zhu worked
respectively at UC Davis and ETH Zürich during the period of this research.
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space” S1/αZ because, for nice quotients, the crossed product algebra is Morita
equivalent to the algebra of functions on the quotient. Since S1/αZ is a group, one
might expect Aα to have a Hopf algebra structure, but this is not so. In particular,
there can be no counit, since there are no algebra homomorphisms Aα → C. In
geometric language, “the quantum torus has no points”.

Additionally, in noncommutative geometry, Morita equivalent algebras are often
thought of as representing the “same space”, but the notion of Hopf algebra, and
even that of biunital bialgebra, is far from Morita invariant.

In this paper, we propose a new algebraic approach to “group structure” based on
the idea that the appropriate morphisms between algebras are bimodules (perhaps
with extra structure, or satisfying extra conditions) rather than algebra homomor-
phisms. Our immediate inspiration to use bimodules was [Tseng and Zhu 2006],
in which leaf spaces of foliations are treated as differential stacks for the purpose
of putting group(oid)-like structures on them. This means that the structure mor-
phisms of the groupoids are themselves bibundles [Mrčun 1996] (with respect to
foliation groupoids, which play in this geometric story the role of the crossed prod-
uct algebras above) rather than ordinary mappings of leaf spaces. We were also
motivated by previous uses of bimodules as generalized morphisms of algebras,
C∗-algebras, groupoids, and Poisson manifolds, a point of view which has been
extensively developed by Landsman and others (see, for instance, [Bursztyn and
Weinstein 2005; Landsman 2001a; 2001b]).

We call our new objects hopfish algebras, the suffix “oid” and prefixes like
“quasi” and “pseudo” having already been appropriated for other uses. Also, our
term retains a hint of the Poisson geometry which inspired some of our work.

Outline of the paper. We begin with a discussion of the category in which objects
are algebras and morphisms are bimodules, emphasizing the functor, which we call
modulation, from the usual category to this one. We then look at the analogues of
semigroups and groups in this category, which we call sesquialgebras and hopfish
algebras. What turns out to be especially delicate is the definition of the antipode.
We next show that Hopf algebras, and the more general quasi-Hopf algebras, be-
come hopfish algebras upon modulation. In the following section, we study the
Morita invariance of the hopfish property, showing that a sufficient condition for
this to hold is that a Morita equivalence bimodule be compatible with the antipode
of a hopfish algebra. Finally, we study hopfish structures on finite dimensional
commutative algebras. We show that these correspond to “multiple-valued group-
oid structures” and give examples of hopfish algebras which do not correspond
under Morita equivalence to Hopf algebras.

Outlook. In this present paper, we restrict ourselves to the purely algebraic sit-
uation; in particular, our tensor products do not involve any completion. We do
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not require finite dimensionality of our algebras, although some of our examples
do have this property. We hope to develop a theory of hopfish C∗-algebras in
the future, with a treatment of irrational rotation algebras as a first goal. Even
without this theory, it has been possible in [Blohmann et al. 2006] to construct
a sesquiunital sesquialgebra structure on the “polynomial part” of the irrational
rotation algebras. These algebras are not quite hopfish, since the candidate antiau-
tomorphism satisfies only a weakened version of our antipode axiom. (We hope
that this will be remedied when we go on to the C∗-algebras.) Nevertheless, our
structure is sufficient to induce an interesting monoid structure on isomorphism
classes of modules.

Finally, we remark that all of our examples of hopfish examples are either weak
Hopf algebras or Morita equivalent to quasi-Hopf algebras. It would be interesting
to find completely new examples. The irrational rotation algebras are probably not
of either of these special types, but, as we have already noted, they are not quite
hopfish.

2. The modulation functor

Fixing a commutative ring k as our ring of scalars, we will work mostly in a cat-
egory Alg whose objects are unital k-algebras. The morphism space Hom(A, B)
is taken to be the set of isomorphism classes of biunital (A, B)-bimodules. We
will almost always consider these morphisms as going from right to left, i.e.-
from B to A (or, better, “to A from B”). The composition XY ∈ Hom(A,C)
of X ∈ Hom(A, B) and Y ∈ Hom(B,C) is defined (on representative bimodules)
as X ⊗B Y , with the residual actions of A and C providing the bimodule structure.

We will frequently fail to distinguish between morphisms in Alg and their repre-
sentative bimodules, as long as we can do so without causing confusion. It is also
possible to work in the more refined 2-category whose morphisms are bimodules
and whose 2-morphisms are bimodule isomorphisms, but we leave this for the
future.

We will denote by Alg0 the “usual” category whose objects are again unital k
algebras but whose morphisms are unital homomorphisms. Thus, Hom0(A, B)
will denote the homomorphisms to A from B. There is an important functor from
Alg0 to Alg which we will call modulation.1 The modulation of f ∈Hom0(A, B) is
the isomorphism class of A f , which is the k-module A with the (A, B)-bimodule
structure

(1) a · x · b = ax f (b).

1We are indebted to Yvette Kosmann-Schwarzbach for suggesting this apt name for a functor
which is ubiquitous in the literature on Morita equivalence, but which does not seem to have acquired
a standard designation.
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We will often denote the modulation of a morphism by the same symbol, but in
bold face, e.g. f ∈Hom(A, B). The modulation functor is not necessarily faithful,
as the next lemma shows.

Lemma 2.1. For f, g ∈Hom0(A, B), their modulations f and g are equal (i.e. the
bimodules A f and Ag are isomorphic) if and only if f =φgφ−1 for some invertible
φ ∈ A.

Proof. If f = φgφ−1, f and g are both represented by A, with the same left A-
module structures. To correct for the difference between the right actions of B, we
introduce the bijective map 8 : A f → Ag defined by x 7→ xφ, which is a bimodule
isomorphism because

8(ax f (b))= ax f (b)φ = axφφ−1 f (b)φ = axφg(b)= a8(x)g(b).

For the converse, given a bimodule isomorphism 8 : A f → Ag, we define φ to
be 8(1A). By setting x = 1A in the bimodule morphism identities 8(ax)= a8(x)
and 8(x f (b)) = 8(x)g(b), we find first that 8(a) = aφ, so that φ is invertible
because 8 is, and then that f (b)φ = φg(b), or f = φgφ−1. �

Lemma 2.2. A morphism X ∈ Hom(A, B) is the modulation of f ∈ Hom0(A, B)
if and only if it is isomorphic to A as a left A module.

Proof. If X represents f , then clearly X is isomorphic to A as a left A module.
For the converse, if X = A as a left A module then X is isomorphic to A f where
f (b)= 1A · b. �

An invertible morphism in Hom(A, B) is called a Morita equivalence between
A and B, and the group of Morita self-equivalences of A is called its Picard group.
The modulation functor clearly takes algebra isomorphisms to Morita equivalences.
In fact, we have:

Lemma 2.3. The modulation of f ∈ Hom0(A, B) is invertible if and only if f is
invertible.

Proof. A standard fact about Morita equivalence is that, if X ∈Hom(A, B) is invert-
ible, the natural homomorphisms from A and B to the B- and A-endomorphisms
of X are isomorphisms. When X = A f , the map which takes b ∈ B to the operator
of right multiplication by f (b) is injective if and only if f is injective. On the other
hand, all of the left A-module endomorphisms of A are the right multiplications,
so they are all realized by the action of B if and only if f is surjective. �

Remark 2.4. It is also possible to modulate a nonunital f . In this case, the under-
lying k-module should be taken to be the left ideal I in A generated by f (1B), so
that the bimodule structure (1) is still biunital. The three lemmas above change to
the following statements, whose proofs are similar, so we only sketch them.
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Lemma 2.1′. If f and g are algebra homomorphisms A ← B not necessarily
unital, then their modulations f and g are equal if and only if there are elements
φ ∈ A · f (1B) and ψ ∈ A · g(1B) such that φψ = g(1B), ψφ = f (1B), g = φ fψ ,
satisfying the two additional conditions that xφψ = 0 implies xφ= 0 and xψφ= 0
implies xψ = 0.

Sketch of proof. Given an isomorphism 8 to f from g, let φ = 8(g(1B)) and
ψ = 8−1( f (1B)). Then 8(xg(1B)) = xφ and 8−1(x f (1B)) = xψ . All this
gives us the desired equations and properties. For the converse, the morphism
8(xg(1B)) := xφ is an isomorphism from A · g(1B) to A · f (1B) with inverse
8−1(x f (1B)) := xψ . The two additional conditions make8 and8−1 well defined.

�

Lemma 2.2′. A morphism X ∈ Hom(A, B) is the modulation of a (not necessarily
unital) map f : A← B if and only if it is represented by a principal left ideal in A.

Sketch of proof. If X is the modulation of f , then X = A · f (1B). For the converse,
if X is isomorphic to a left A ideal A · c, then X is the modulation of f : b 7→ c · b,
where b ∈ B and · is the right action of B on X = A · c. �

Lemma 2.3′. When f (1B) is in the center of A, the modulation of a morphism
f : A← B (not necessarily unital) is invertible if and only if f is an isomorphism
from B to A · f (1B) and f (1B) is not a zero divisor.

Sketch of proof. One applies the same argument. If f is invertible, notice that
A→EndB(X) by a 7→a· is an isomorphism, therefore a f (1B) 6=a′ f (1B) if a 6=a′.
This implies that f (1B) is not a zero divisor. As before f has to be injective. For
any a ∈ A, right multiplication by a is in EndA(X), therefore there is b ∈ B such
that f (1B)a = f (b). It is not hard to prove the converse. �

Finally, we recall that every (A, B) bimodule gives rise (via tensor product over
B) to a k-linear functor from the category of left B-modules to that of left A-
modules, that isomorphisms between bimodules produce naturally equivalent func-
tors, and that invertible elements of Hom(A, B) correspond to homotopy classes
of equivalences of categories. (The Eilenberg–Watts theorem characterizes the
functors arising from bimodules as those which commute with finite limits and
colimits.)

Sesquialgebras. To make the notion of biunital bialgebra Morita invariant, we in-
troduce the following definition. For simplicity of notation, we omit the subscript
k on tensor products over k, and the unadorned asterisk ∗ will denote the k-dual.

Definition 2.4. A sesquiunital sesquialgebra over a commutative ring k is a uni-
tal k-algebra A equipped with an (A ⊗ A, A)-bimodule 1 (the coproduct) and a
(k, A)-module (that is, a right A module) ε (the counit), satisfying the following
properties.
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(1) (coassociativity) The (A⊗ A⊗ A, A)-bimodules

(A⊗1)⊗A⊗A 1 and (1⊗ A)⊗A⊗A 1

are isomorphic.

(2) (counit) The (k⊗ A, A)= (A⊗ k, A)= (A, A)-bimodules

(ε⊗ A)⊗A⊗A 1 and (A⊗ ε)⊗A⊗A 1

are isomorphic to A.

For example, if (A,1, ε) is a biunital bialgebra, then its modulation (A,1, ε)
is a sesquiunital sesquialgebra. If we have a Morita equivalence X between A and
another algebra B, we can use composition with X and X ⊗ X to put a biunital
sesquialgebra structure on B. See Section 5 below for more details.

3. The antipode and hopfish algebras

Our definition of sesquiunital sesquialgebra expresses (with arrows reversed) the
usual axioms of a monoid (semigroup with identity) in the category Alg. A monoid
is a group when all its elements have inverses, so it is natural to look for a sesquial-
gebraic analogue of the inverse. In a Hopf algebra, the antipode, which encodes
inversion, is an algebra antihomomorphism S : A→ A. The properties of inversion
(gg−1

= e = g−1g for every group element) are then expressed as commutativity
of two diagrams, or equality of compositions

(2) 1 ◦ ε = µ ◦β ◦1,

where 1 : k→ A is inclusion of the scalars, µ : A⊗A→ A is algebra multiplication,
and β : A⊗ A→ A⊗ A is either I ⊗ S or S⊗ I (I being the identity morphism on
A).

When A is noncommutative, the maps µ and β are k-linear but not algebra
homomorphisms. One can consider S as a homomorphism from A to the opposite
algebra Aop, or vice versa, but there is no way to correct µ in such a manner.
As a result, we see no way to rewrite (2) in the category Alg. Instead, we take
an alternate approach, which may also be useful elsewhere in the theory of Hopf
algebras.

We keep in mind the example where A is the algebra of k-valued functions on a
group G.

One way to characterize groups among monoids without explicitly postulating
the existence of inverses is to consider the subset

J = {(g, h) | gh = e} ⊂ G×G
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and require that it project bijectively to one factor in the product. To represent
J algebraically, even when A is noncommutative, we borrow an idea from Pois-
son geometry [Lu 1993], where coisotropic submanifolds become one-sided ideals
when a Poisson manifold is quantized to become a noncommutative algebra.

We begin, then, with the space Z ′ = HomA(ε,1) of right module homomor-
phisms. (In the group case, Z ′ plays the role of measures on G × G which are
supported on J .) Using the left A⊗ A module structure on 1, we define a right
A⊗ A module structure on Z ′ by (gb)(u)= g(bu) for g in Z ′, b in A⊗ A and u in
1. Note that Z ′ is completely determined by ε and 1 and is not an extra piece of
data.

For the algebraic model of functions on J , we must take a predual of Z ′, that is,
a left A⊗ A-module Z whose k-dual Z∗ is equipped with a right A⊗ A-module
isomorphism with Z ′.

Definition 3.1. A preantipode for a sesquiunital sesquialgebra A over k is a left
A⊗ A module S together with an isomorphism of its k-dual with the right A⊗ A
module HomA(ε,1).

Since a left A module is also a right Aop module, we may consider S as an
(A, Aop) bimodule, where (A, ·) is from the left A in A⊗ A and (·, Aop) is from
the right one, i.e. as an Alg morphism in Hom(A, Aop).

The following is our way of expressing algebraically that the first projection
from J to G is bijective.

Definition 3.2. Let A be a sesquiunital sesquialgebra. If a preantipode S, con-
sidered as an (A, Aop) bimodule, is a free left A module of rank 1, we call S an
antipode and say that A along with S is a hopfish algebra.

By Lemma 2.2, S is the modulation of an algebra homomorphism A ← Aop.
Thus, the definition is effectively that there is a homomorphism S to A from Aop

such that the full k-dual of the modulation of S is isomorphic to HomA(ε,1).

4. Hopf and quasi-Hopf algebras as hopfish algebras

As we observed earlier, the modulation of a biunital bialgebra is a sesquiunital
sesquialgebra. In this section, we will give an explicit description of a preantipode
in this case, and we will show that the modulation of a Hopf algebra is hopfish. Al-
though this is a special case of the quasi-Hopf algebras treated later in this section,
we deal separately with the Hopf case because the proof is much simpler.

Let (A,1, ε) be a biunital bialgebra. Considering the modulations ε = k and
1 = A ⊗ A as right A modules respectively, one may identify Z ′ with the sub-
space of (A⊗ A)∗ =Homk(k, A⊗ A) consisting of those linear functionals which
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annihilate the left ideal W generated by

{ε(a)(1⊗ 1)−1(a)|a ∈ A},

i.e. with the k-module dual to (A⊗ A)/W . We may therefore take the (cyclic) left
A⊗ A module S1 = (A⊗ A)/W as a preantipode.

We will use the following lemma later. Its straightforward proof is left to the
reader.

Lemma 4.1. W is equal to the left ideal generated by 1(ker ε).

Now suppose that A is equipped with an antipode S making it into a Hopf alge-
bra. We will consider S as a homomorphism A← Aop, with modulation S. As a
k-module, S is A; its (A, Aop) bimodule structure is a · x · b = ax S(b).

If we can show that the preantipode S1 is isomorphic to S as a bimodule, then
since S is isomorphic to A as a left A-module, S = S1 is an antipode, making the
modulation of A into a hopfish algebra.

We define a map φ : A⊗ A→ A by

a⊗ b 7→ aS(b),

This map is obviously a morphism of (A, Aop) bimodules because

φ(c · (a⊗ b))= φ(ca⊗ b)= caS(b)= c · (aS(b)),

φ((a⊗ b) · c)= φ(a⊗ cb))= aS(b)S(c)= (aS(b)) · c.

Hence this map descends to S1 = (A⊗ A)/W because

φ(ε(a)(1⊗ 1)−1(a))= 1 ◦ ε(a)− (id⊗ S) ◦1(a)= 0.

The induced map from S1 to A, which we also denote by φ, is also a morphism of
(A, Aop) bimodules.

Moreover φ is surjective, since it has a left inverse a 7→ [a⊗1], where [ ] denotes
the equivalence class modulo W . This map is also a right inverse, and φ is injective,
if and only if the equation

(3) 1⊗ a− S(a)⊗ 1 ∈W

is satisfied for all a ∈ A. Notice that aS(b)⊗1−a⊗b= (a⊗1)(S(b)⊗1−1⊗b)
and W is a left ideal. Since id = m ◦ (id ⊗ ε) ◦ 1, composing with S we have∑

S(a1)ε(a2)=
∑

S(a1ε(a2))= S(a). (Here we use Sweedler’s notation 1(a)=∑
a1 ⊗ a2 and

∑
1(a1)⊗ a2 =

∑
a1,1 ⊗ a1,2 ⊗ a2, etc.) On the other hand, we

have∑
(S(a1)⊗ 1) ·1(a2)=

∑
(S(a1)a2,1)⊗ a2,2

=

∑
(S(a1,1)a1,2)⊗ a2 =

∑
1⊗ ε(a1)a2 = 1⊗ a.



HOPFISH ALGEBRAS 201

We explain the equalities above as follows. The first equality just comes from the
notation and the multiplication in the tensor product algebra. For the second, we
consider the map s : A⊗ A⊗ A→ A⊗ A defined by s(a ⊗ b⊗ c) = S(a)b⊗ c.
Coassociativity and evaluation of s give∑

s(a1⊗ a2,1⊗ a2,2)=
∑

s(a1,1⊗ a1,2⊗ a2)

=

∑
(S(a1)a2,1)⊗ a2,2 =

∑
(S(a1,1)a1,2)⊗ a2.

For the third equality, we have used the property of S that µ ◦ (S⊗ id) ◦1= 1 ◦ ε.
Therefore,

1⊗ a− S(a)⊗ 1=
∑

(S(a1)⊗ 1)(−ε(a2)+1(a2)) ∈W.

So (3) is proved, hence S and S1 are isomorphic as (A, Aop) bimodules.
We have thus proved the following theorem.

Theorem 4.2. Let (A,1, ε) be a biunital bialgebra. Then (A⊗ A)/W , where W
is the left ideal generated by

{ε(a)(1⊗ 1)−1(a) | a ∈ A},

is a preantipode for the modulation of A. If A is a Hopf algebra, with antipode S,
then (A⊗ A)/W is isomorphic to the modulation S, and (A,1, ε, S) is a hopfish
algebra.

Remark 4.3. The hopfish antipode S is also isomorphic to Aop as a right Aop-
module if and only if the Hopf antipode S is invertible. This is why we use a “one
sided” criterion for a preantipode to be an antipode.

We turn now to quasi-Hopf algebras. Recall that a quasibialgebra (A, ε,1, S) is
nearly a bialgebra, except that the coproduct does not satisfy associativity exactly;
instead, there is an invertible element8 ∈ A⊗ A⊗ A (the coassociator), satisfying

(4) (id⊗1)(1(a))=8−1(1⊗ id)(1(a))8 for all a ∈ A,

and further coherence conditions,

(5) (1⊗ id⊗ id)(8) ·(id⊗ id⊗1)(8)= (8⊗1) ·(id⊗1⊗ id)(8) ·(1⊗8),

(ε⊗ id)◦1= id= (id⊗ε)◦1,

(id⊗ε⊗ id)(8)= 1.

Since the modulation functor “kills” inner automorphisms (Lemma 2.1), the mod-
ulation of a quasibialgebra is a sesquialgebra.
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Now A is a quasi-Hopf algebra if there is an anti-homomorphism S : A→ A
and elements α, β in A, such that

(6)
∑

S(a1)αa2 = ε(a)α,
∑

a1βS(a2)= ε(a)β for all a ∈ A,

where we use Sweedler’s notation: 1(a) =
∑

a1 ⊗ a2. There are also higher
coherence conditions for α and β; see [Drinfel’d 1989] for details.

The following proposition is a slight modification of [Drinfel’d 1989, Proposi-
tion 1.5]. Unlike Drinfel’d, we do not assume that S is invertible, so we can not
obtain the “right” part of his proposition, but his “left” part can be proved under
weaker hypotheses.

Proposition 4.4. Let (A,1, ε,8, S, α, β) be a quasi-Hopf algebra, with 8 =∑
i X i ⊗ Yi ⊗ Zi and 8−1

=
∑

j Pj ⊗ Q j ⊗ R j . Define

ω =
∑

j
S(Pj )αQ j ⊗ R j ∈ A⊗ A.

Denote by W the left ideal of A⊗ A generated by 1(ker ε). Then

(1) the k-linear mappings φ,ψ : A⊗ A→ A⊗ A, given by

φ(a⊗ b)= (a⊗ 1)ω1(b), ψ(a⊗ b)=
∑

i
aX iβS(Yi )S(b1)⊗ b2 Zi ,

are bijective, where we have used Sweedler’s notation 1b = b1⊗ b2;

(2) the mapping a⊗b 7→ (id⊗ε)(φ−1(a⊗b)) induces a bijection (A⊗A)/W→ A,
and (id⊗ ε)(φ−1(a⊗ b))= aβS(b);

Proof. First, φψ = id = ψφ. We will prove only that φψ = id; the other equation
can be derived by the same method, as in [Drinfel’d 1989]. We have

φψ(a⊗ b)=
∑

i

φ(aX iβS(Yi )S(b1)⊗ b2 Zi )

=

∑
i

(aX iβS(Yi )S(b1)⊗ 1)ω1(b2)1(Zi )

=

∑
i

(a⊗ 1)(X iβS(Yi )⊗ 1)
(
(S(b1)⊗ 1)ω1b2

)
1Zi

=

∑
i

(a⊗ 1)(X iβS(Yi )⊗ 1)(B)1(Zi ),

where B = (S(b1)⊗ 1)ω1b2.
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We insert the definition of ω in B, and have

(S(b1)⊗ 1)ω1b2

=
∑

j

(
S(b1)S(Pj )αQ j ⊗ R j

)
1b2

=
∑

j
(m⊗ id)

(
(S⊗α · ⊗id)

(
(Pj b1⊗ Q j ⊗ R j )(1⊗1b2)

))
=
∑

j
(m⊗ id)

(
(S⊗α · ⊗id)

(
(Pj ⊗ Q j ⊗ R j )(b1⊗ 1⊗ 1)(1⊗1b2)

))
= (m⊗ id)

(
(S⊗α · ⊗id)

(
8−1(1⊗1)1(b)

))
,

where m : A ⊗ A → A is the multiplication on A and α · : A → A is the left
multiplication by α.

Using the twisted coassociativity (id⊗1)1 =8(1⊗ id)(1)8−1 we continue
the calculation above to find that B is equal to

(m⊗ id)
(
(S⊗α · ⊗id)

(
(1⊗ id)1(b)8−1))
=
∑

j
(m⊗ id)

(
(S⊗α · ⊗id)

(
b11 Pj ⊗ b12 Q j ⊗ b2 R j

))
=
∑

j
(m⊗ id)

(
S(Pj )S(b11)⊗αb12 Q j ⊗ b2 R j

)
=
∑

j
S(Pj )S(b11)αb12 Q j ⊗ b2 R j

=
∑

j
S(Pj )αε(b1)Q j ⊗ b2 R j =

∑
j

S(Pj )αQ j ⊗ ε(b1)b2 R j

=
∑

j
S(Pj )αQ j ⊗ bR j = (1⊗ b)

∑
j
(S(Pj )αQ j ⊗ R j ),

where in the fourth equality we have used a property of the antipode S, and at the
fifth we have used a property of ε.

Substituting the expression above for B in the calculation of φψ , we have

φψ(a⊗ b)=
∑
i, j

(a⊗ 1)(X iβS(Yi )⊗ 1)(1⊗ b)(S(Pj )αQ j ⊗ R j )1(Zi )

= (a⊗ b)
∑
i, j

(X iβS(Yi )⊗ 1)(S(Pj )αQ j ⊗ R j )1(Zi ).

Next, we show that U =
∑

i, j (X iβS(Yi )⊗ 1)(S(Pj )αQ j ⊗ R j )1(Zi ) is equal
to 1. We define the k-linear map 9 : A⊗ A⊗ A⊗ A→ A⊗ A by

9(a⊗ b⊗ c⊗ d)= aβS(b)αc⊗ f,
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so U can be written as∑
i, j

(X iβS(Yi )⊗ 1)(S(Pj )αQ j ⊗ R j )1(Zi )

=

∑
i, j

X iβS(Yi )S(Pj )αQ j Zi1⊗ R j Zi2

=

∑
i, j

9((1⊗ Pj ⊗ Q j ⊗ R j )(X i ⊗ Yi ⊗ Zi1⊗ Zi2))

=9
(
(1⊗8−1)(id⊗ id⊗1)(8)

)
.

Using the coherence condition

(7) (id⊗ id⊗1)(8)(1⊗ id⊗ id)(8)= (1⊗8)(id⊗1⊗ id)(8)(8⊗ 1),

we get

(1⊗8−1)(id⊗ id⊗1)(8)= (id⊗1⊗ id)(8)(8⊗ 1)(1⊗ id⊗ id)(8−1)

=

∑
i, j,k

X i X j Pk1⊗ Yi1Y j Pk2⊗ Yi2 Z j Qk ⊗ Zi Rk .

Hence 9
(
(1⊗8−1)(id⊗ id⊗1)(8)

)
is equal to∑

i, j,k

9(X i X j Pk1⊗ Yi1Y j Pk2⊗ Yi2 Z j Qk ⊗ Zi Rk)

=

∑
i, j,k

X i X j Pk1βS(Pk2)S(Y j )S(Yi1)αYi2 Z j Qk ⊗ Zi Rk

=

∑
i, j,k

X i X jβε(Pk)S(Y j )ε(Yi )αZ j Qk ⊗ Zi Rk

=

∑
i, j,k

X iε(Pk)(X jβS(Y j )αZ j )ε(Yi )Qk ⊗ Zi Rk

=

∑
i,k

X iε(Pk)ε(Yi )Qk ⊗ Zi Rk .

In the second equality, we used properties of the antipode: Pk1βS(Pk2) = βε(Pk)

and S(Yi1)αYi2 = αε(Yi ). In the last equality, we used
∑

j X jβS(Y j )αZ j = 1.
We evaluate id⊗ε⊗id⊗id on both sides of (7), and since ε is an homomorphism

from A to k, we obtain

(8) (id⊗ε⊗1)(8)((id⊗ε)1⊗ id⊗ id)(8)

= (id⊗((ε⊗ id⊗ id)(8)))(id⊗(ε⊗ id)1⊗ id)(8)((id⊗ε⊗ id)(8)⊗ id).

In the definition of a quasi-Hopf algebra, we assumed that id⊗ ε ⊗ id(8) = 1.
Therefore, (id ⊗ ε ⊗ 1)(8) = (id ⊗ id ⊗ 1)(id ⊗ ε ⊗ id)(8) = 1. Hence, by
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(id⊗ ε))1= id⊗ 1, the left-hand side of (8) is equal to

((id⊗ ε)1⊗ id⊗ id)(8)=
∑

i

X i ⊗ 1⊗ Yi ⊗ Zi .

The right-hand side of (8) is equal to

(ε⊗ id⊗ id)(8)
(∑

i

X i ⊗ 1⊗ Yi ⊗ Z j

)
.

Therefore, we have

(9)
∑

i

X i ⊗ 1⊗ Yi ⊗ Zi = (ε⊗ id⊗ id)(8)
(∑

i

X i ⊗ 1⊗ Yi ⊗ Z j

)
.

We multiply both sides of (9) by
∑

i
Pj ⊗ 1⊗ Q j ⊗ R j and obtain

ε⊗ id⊗ id(8)= 1.

So we have ε⊗ id⊗ id(8−1)= ε⊗ id⊗ id(8−18)= 1.
Finally,∑

i, j

X iε(Pk)ε(Yi )Qk ⊗ Zi Rk =
∑
i,k

(m⊗ id)(X i ⊗ ε(Yi )⊗ Zi )(ε(Pk)⊗ Qk ⊗ Rk)

= (m⊗ id)
(
(id⊗ ε⊗ id)(8)(ε⊗ id⊗ id)(8−1)

)
= 1.

In conclusion, we have shown that φψ(a⊗ b)= a⊗ b and similarly ψφ(a⊗ b)=
a ⊗ b. Therefore, φ and ψ are invertible. This completes the proof of the first
statement of Proposition 4.4.

Now we calculate (id⊗ ε)φ−1(a ⊗ b). By the proof above, ψ is the inverse of
φ, and

(id⊗ ε)φ−1(a⊗ b)= (id⊗ ε)
(∑

i

aX iβS(Yi )S(b1)⊗ b2 Zi

)
=

∑
i

aX iβS(Yi )S(b1)ε(b2)ε(Zi )

=

∑
i

aX iβS(Yi )S(b1ε(b2))ε(Zi )

=

∑
i

aX iβS(Yi )S(b)ε(Zi ).

To show that the last term is equal to aβS(b), we consider the k-linear map
ϒ : A⊗ A⊗ A→ A defined by ϒ(a1⊗ a2⊗ a3) = a1βS(a2)a3. Accordingly, we
have

∑
i X iβS(Yi )ε(Zi )=ϒ((id⊗ id⊗ε)(8)). By applying id⊗ id⊗ε⊗ id to (8),
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we have similarly (id⊗ id⊗ε)(8)= 1⊗1⊗1. So
∑

i X iβS(Yi )ε(Zi )=ϒ(1)= β,
and

∑
i a X iβS(Yi )S(b)ε(Zi ) is equal to aβS(b).

Therefore if there is an element in W , which can be written as1(µ), where µ is
in the kernel of ε, then (id⊗ ε)φ−1(1(µ))= µ1βS(µ2)= ε(µ)β = 0. This shows
that W is contained in the kernel of the map (id⊗ ε)φ−1

: A⊗ A→ A. Finally,
we show that (id⊗ ε)φ−1 is a bijection from A⊗ A/W to A. If

∑
i xi ⊗ yi is in

the kernel of (id⊗ ε)φ−1. We define
∑

j a j ⊗b j to be equal to φ
(∑

i xi ⊗ yi
)
, and

(id⊗ ε)
(∑

j a j ⊗ b j
)
=
∑

j a jε(b j )= 0. Then
∑

i xi ⊗ yi is equal to∑
i

xi ⊗ yi =
∑

j

φ(a j ⊗ b j )=
∑

j

(a j ⊗ 1)ω1(b j )

=

∑
j

(a j ⊗ 1)ω(1(b j )− ε(b j )) ∈W,

where in the third equality, we have used that∑
j

(a j ⊗ 1)ωε(b j )=
∑

j

(a jε(b j )⊗ 1)ω = 0. �

By the same arguments used in Theorem 4.2, we obtain:

Theorem 4.5. Let (A,1, ε,8) be a biunital quasibialgebra, and let W be the left
ideal generated by {ε(a)(1⊗1)−1(a) | a ∈ A}. Then (A⊗ A)/W is a preantipode
for the modulation of A.

If A is a quasi-Hopf algebra, with antipode (S, α, β), then (A⊗ A)/W is iso-
morphic to the modulation S, and (A,1, ε, S) is a hopfish algebra.

5. Morita invariance

The following theorem shows that, with our definition of hopfish algebra, we are
on the right track toward defining a Morita invariant notion.

Theorem 5.1. Let A be a quasi-Hopf algebra and B an algebra Morita equivalent
to A. Then B is a sesquiunital sesquialgebra with a preantipode.

Proof. Let P be an (A, B)-bimodule, and Q a (B, A)-bimodule, inverse to one an-
other in the category Alg. We recall the hopfish structure on A defined in Theorem
4.5, with

εA
= k, 1A

= A⊗ A, SA
= A⊗ A/W.

We use the bimodules P and Q to define

εB
:= εA

⊗A P, 1B
:=
(
Q⊗ Q

)
⊗A⊗A 1A

⊗A P,

These data make B into a sesquiunital sesquilinear algebra.
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Now we define

SB
:=
(
Q⊗ Q

)
⊗A⊗A SA.

Remark 5.2. Our definition of the antipode SB only uses the bimodule Q, not
P . This is because Q is a (B, A) bimodule, and therefore is also an (Aop, Bop)

bimodule naturally. Since SA is an (A, Aop) bimodule, Q⊗A SB
⊗Aop Q defines a

(B, Bop) bimodule, which is isomorphic to (Q⊗ Q)⊗A⊗A SA.

In the following, we will show that SB is a preantipode:

Homk(k, SB)∼= HomB(ε
B,1B).

According to our definitions, we have

HomB(ε
B,1B)= HomB

(
εA
⊗A P,

(
Q⊗ Q

)
⊗A⊗A 1A

⊗A P
)
.

Since the Morita equivalence between A and B defines an equivalence of right-
module categories, we have a natural isomorphism

HomB
(
εA
⊗A P,

(
Q⊗ Q

)
⊗A⊗A 1A

⊗A P
)
∼= HomA

(
εA,

(
Q⊗ Q

)
⊗A⊗A 1A).

The space HomA
(
εA,

(
Q⊗ Q

)
⊗A⊗A 1A) consists of k-linear morphisms from(

Q⊗ Q
)
⊗A⊗A 1A to k, vanishing on the A-submodule W̃ spanned by

(q1⊗ q2)⊗A⊗A (a1⊗ a2)(ε(a)1⊗ 1−1(a)), qi ∈ Q, a, ai ∈ A, i = 1, 2.

The A-submodule W̃ is isomorphic to (Q ⊗ Q)⊗A⊗A W , where W is defined
as in Theorem 4.5. Therefore, HomA

(
εA,

(
Q⊗Q

)
⊗A⊗A 1A) is isomorphic to the

k-dual of the quotient

(10) (Q⊗ Q)⊗A⊗A 1A/W̃ ∼= (Q⊗ Q)⊗A⊗A (A⊗ A/W ).

Replacing A⊗ A/W by SA in (10), we have

HomB(ε
B,1B)∼=

(
(Q⊗ Q)⊗A⊗A SA)∗ ∼= (SB)∗.

Therefore, SB defines a preantipode on (B,1B, εB). �

Now we study when the sesquiunital sesquialgebra just defined is a hopfish al-
gebra, i.e. when SB is isomorphic to B as a left B-module.

We introduce the following special type of module over a hopfish algebra.

Definition 5.3. Let be A be a hopfish algebra with antipode bimodule S, and let X
be a right A-module and therefore a left Aop-module. Then X is self-conjugate if
HomA(A, X) is isomorphic to S⊗Aop X as a left A-module.
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Remark 5.4. The category of finite dimensional left modules over a quasi-Hopf
algebra is a rigid monoidal category. A self-dual module X of a quasi-Hopf al-
gebra A is a self-dual object in the category of finite dimensional modules, i.e.
Homk(k, X) is isomorphic to S⊗Aop X .

We can understand the definition of a self-conjugate module geometrically as
follows. A hopfish algebra A can be thought as functions on a “noncommutative
space with group structure” G. If we view a finite projective right A-module X as
the space of sections of a “vector bundle” E over G, HomA(A, X) corresponds to
the space of sections of the dual bundle E∗, and S⊗Aop X is the pullback of the
bundle E by the “inversion” map ι of G. The self-conjugacy condition on E says
that E∗ is isomorphic to ι∗E .

Proposition 5.5. With the same assumptions and notation as in Theorem 5.1, if
the (B, A)-Morita equivalence bimodule Q is self-conjugate as a right A-module,
then B is a hopfish algebra with antipode SB defined in Theorem 5.1.

Proof. Recall that the preantipode on B defined in Theorem 5.1 is equal to (Q ⊗
Q)⊗A⊗A SA. Since Q is a right A-module, it is also a left Aop-module, and the
preantipode SB can be rewritten as Q⊗A SA

⊗Aop Q.
Since Q is self-conjugate, we have SA

⊗Aop Q ∼= HomA(A, Q), and so

Q⊗A SA
⊗Aop Q ∼= Q⊗A HomA(A, Q).

When Q is a Morita equivalence bimodule between A and B, Q is a finitely
generated projective A-module and B∼=HomA(Q, Q)= Q⊗A HomA(A, Q). This
shows that Q⊗A SA

⊗Aop Q is isomorphic to B as a left B-module. �

The following example is a special case of Proposition 5.5. We remark that
given a (quasi)-Hopf algebra A, the matrix algebra Mn(A) of n× n matrices with
coefficients in A is not a (quasi-)Hopf algebra when n ≥ 2.

Example 5.6. Let A be a quasi-Hopf algebra with εA
= k, 1A

= A ⊗ A, and
SA
= A. Then the n × n matrix algebra Mn(A) = B with coefficients in A is a

hopfish algebra. We consider Q = An as a space of column vectors, so that it
has the structure of an (Mn(A), A)-bimodule, The counit εB is An viewed as row
vectors, i.e. as a (k,Mn(A))-bimodule. The coproduct 1B is isomorphic to(

An
⊗ An)

⊗A⊗A (A⊗ A)⊗A (An)T =
(

An
⊗ An)

⊗A⊗A (An)T .

SB is equal to An
⊗A A ⊗Aop An . An

⊗A A ⊗Aop An is isomorphic to Mn(A) as
an (Mn(A),Mn(A)op)-bimodule, where the left Mn(A) module structure is from
the standard left multiplication, while the right Mn(A)op module structure is the
composition of the left multiplication, transposition of matrices, and the antipode
on A. Therefore, B = Mn(A) is a hopfish algebra.
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The following example shows that the self-conjugacy condition in Proposition
5.5 can not be eliminated.

Example 5.7. Consider the cyclic group Z/3Z with elements 0, 1, 2. The algebra A
of functions on Z/3Z is a commutative Hopf algebra spanned by the characteristic
functions e0, e1, and e2. We notice that the ei ’s are projections in A, and denote the
submodule ei A by Ai . Now consider the following projective module over A

Q = Ar
0⊕ As

1⊕ At
2,

where r, s, t are nonnegative integers. Then

B = HomA(Q, Q)= Ar2

0 ⊕ As2

1 ⊕ At2

2 .

It is not difficult to see that Q is self-conjugate if and only if s = t .
We calculate the expression for SB in Theorem 5.1:

(Q⊗ Q)⊗A⊗A SA
=
(
(Ar

0⊕ As
1⊕ At

2)⊗ (A
r
0⊕ As

1⊕ At
2)
)
⊗A⊗A SA

=
(

Ar
0⊗ (A

r
0⊕ As

1⊕ At
2)
)
⊗A⊗A SA

⊕
(

As
1⊗ (A

r
0⊕ As

1⊕ At
2)
)
⊗A⊗A SA

⊕
(

At
2⊗ (A

r
0⊕ As

1⊕ At
2)
)
⊗A⊗A SA.

We look at the tensor product (Ai⊗A j )⊗A⊗A SA. By Theorem 4.2, the antipode
bimodule SA is isomorphic to A. Therefore (Ai ⊗ A j )⊗A⊗A SA is equal to

(Ai ⊗ A j )⊗A⊗A A = Ai ⊗A A j ,

where the left A-module structure on A j is the composition of the right multipli-
cation with the antipode map S : A→ A.

We notice that S(ei )e j = 0 if S(ei ) 6= e j . Therefore,

Ai ⊗A A j =

{
0 if S(ei ) 6= e j ,

Ai if S(ei )= e j .

We conclude that SB
= Ar2

0 ⊕ Ast
1 ⊕ Ast

2 . We observe that SB is isomorphic to
B as a left B module if and only if s = t .

Therefore, SB is isomorphic to B if and only if Q is a self-conjugate A-module.

We define a notion of Morita equivalence between hopfish algebras.

Definition 5.8. Let (A, εA,1A, SA) and (B, εB,1B, SB) be two hopfish alge-
bras. Then (A, εA,1A, SA) is Morita equivalent to (B, εB,1B, SB) if there is an
(A, B)-bimodule A PB and a (B, A)-bimodule B Q A satisfying

(1) P ⊗B Q = A, and Q⊗A P = B.

(2) εB
= εA

⊗A P ,
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(3) 1B
= (Q⊗ Q)⊗A⊗A 1A

⊗A P ,

(4) SB
= (Q⊗ Q)⊗A⊗A SA.

Proposition 5.9. Definition 5.8 defines an equivalence relation among hopfish
algebras.

The proof is a straightforward check.

6. Hopfish structures on kn

In this section, we give examples of hopfish algebras which are not Morita equiva-
lent to modulations of Hopf algebras. In particular, we will describe hopfish struc-
tures on the commutative algebra kG of k-valued functions on a finite set G which
do not correspond to group structures on G.

We may identify the r -th tensor power of kG with kGr
. Since this algebra is

commutative, we can also identify (kg)op with kg.
If G is a semigroup, kG is a bialgebra with coproduct 1(a)(g, h)= a(gh), with

a counit ε(a)= a(e) when G has an identity element e. When G is a group, we get
a Hopf algebra structure by setting S(a)(g)= a(g−1).

Now let G be a groupoid. We may make the same definitions as above, adding
that 1(a)(g, h) should be 0 when gh is not defined, and ε(a) is the sum of the
values of a on all the identity elements. When G is not a group, kG is no longer
a Hopf algebra, but rather a weak Hopf algebra [Nikshych 2002, Example 2.3],
since 1 is not unital and ε is not even an algebra homomorphism. When G is a
groupoid, we have two algebra morphisms α, β:kG0

→ kG as the lifts of the source
and target maps. The coproduct1 is defined on kG

⊗kG0 kG by1(a)(g, h)=a(gh),
and counit ε : kG

→ kG0
by ε(a)(e) = a(e), and the antipode S is defined by

S(a)(g) = a(g−1). (kG, α, β,1, ε, S) is a quantum groupoid [Lu 1996]. It turns
out that we can still form the modulation of these operators, and we still get a
hopfish algebra because of the commutativity of the algebras kG and kG0

. To prove
this, we will look at a more general situation.

Any sesquialgebra coproduct on A = kG is an (A ⊗ A, A)-bimodule, i.e. a
module 1 over kG×G×G . Such a module decomposes into submodules supported
at the points of G3. For our purposes, we will assume that these are free modules
of finite rank. Then 1 is determined up to isomorphism by the dimensions dg

hk
of the components 1

g
hk , for (g, h, k) ∈ G3. It is straightforward to check that the

condition for coassociativity is precisely that the dg
hk’s be the structure constants

of an associative algebra A′ = ZG over Z, i.e. a ring. Namely, identifying each
element of G with its characteristic function, we have gh =

∑
k dk

ghk. Similarly,
a (k, A)-bimodule ε with free submodules εg as components is determined by the
dimensions eg of εg, and this bimodule is a counit precisely when e :=

∑
g egg is a
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unit element for A′. We say that such sesquiunital sesquialgebras are of finite free
type. Thus we have shown:

Proposition 6.1. There is a one to one correspondence between sesquiunital sesqui-
algebra structures of finite free type on kG and unital ring structures on ZG for
which the structure constants and the components of the unit are nonnegative.

The best known examples of such rings are the monoid algebras. If G is a
monoid, then we may define δg

hk to be the characteristic function of the graph g=hk
of multiplication and eg to be the characteristic function of the identity element.
The corresponding sesquialgebra is just the modulation of the dual to the monoid
bialgebra A′.

With this example in mind, we may think of a general structure of convolution
type on ZG as corresponding to a “product” operation on G in which the product of
any two elements is a (possibly empty) subset of G whose elements are provided
with positive integer “multiplicities”. We will call such a subset a “multiple ele-
ment”; the identity is also such a multiple element. (Of course, any ring structure
may be viewed in this way, if we allow the multiplicities to be arbitrary integers).

To begin our analysis of these structures, we show that there are restricted pos-
sibilities for the unit.

Proposition 6.2. Each eg is either 0 or 1.

Proof. Given g, by the counit property
∑

k ekdg
gk = δgg = 1, we see that there is at

least one k ∈ G such that dg
gk 6= 0. By the counit property again, we have

eg
≤ egdg

gk ≤
∑

h

ehdg
hk = δgk ≤ 1. �

We will denote by G0 the support of the unit, that is, the set of g ∈ G for which
eg
= 1. This set will play the role of identity elements in G.
As long as G is nonempty, so is G0. In fact, we have the following:

Proposition 6.3. Given any g in G, there are unique elements l(g) and r(g) in G0

such that, for all h ∈ G0, dk
hg = δhl(g)δgk and dk

gh = δr(g)hδgk .

Proof. This is again a straightforward corollary of the counit property. We obtain
from

∑
k ekdh

gk = δgh ,
∑

g egdh
gk = δkh that

∑
g∈G0 dk

gh = δkh . So dk
gh = 0 when

k 6= h and there exists a unique element g0 ∈ G0 such that dh
gh equals 1 for g = g0

and 0 for all other g. We let l(h) be this g0. This proves the first equation; the
second is proved by a similar argument. �

Since the sum of the elements of G0 is the unit of kG , it is idempotent, from
which it follows that kG0 is a subalgebra. In fact, one may show:
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Proposition 6.4. The elements of G0 form a set of orthogonal idempotents in ZG .
In other words, the algebra structure on the subalgebra ZG0

of A′ is just pointwise
multiplication.

Proof. This follows from uniqueness in Proposition 6.3. �

Proposition 6.5. For all g and h in G, if dk
gh 6= 0, l(k) = l(g) and r(k) = r(h). If

r(g) is not equal to l(h), then gh = 0 in G. In particular, l(h) = h = r(h) for all
h ∈ G0.

Proof. Coassociativity gives us∑
s

dk
l(g)sds

gh =
∑

s

ds
l(g)gdk

sh .

By Proposition 6.3, ds
l(g)g = δgs . Therefore, the right-hand side of the equation

is equal to dk
gh 6= 0.

On the left-hand side, according to Proposition 6.3, dk
l(g)s 6= 0 only when l(s)=

l(g) and k = s. Therefore, if dk
gh 6= 0, then dk

l(g)k = 1, so l(k) = l(g). Similar
arguments show that r(k)= r(h).

If r(g) 6= l(h), again by coassociativity, we have

dk
gh =

∑
s

ds
gr(g)d

k
sh =

∑
s

dk
gsds

r(g)h .

According to Proposition 6.3, if r(g) 6= l(h), ds
r(g)h = 0 for all s; therefore, dk

gh = 0.
�

We now have retractions l and r from G onto G0 which are like the target and
source maps from a category to its set of identity elements. In fact, in terms of
the multiplicative structure on G corresponding to the algebra structure on A′, we
have l(g)g= gr(g)= g; in particular, these products are single valued and without
multiplicities. We might call G a “hypercategory”. The composition of morphisms
is a “multiple morphism” between two definite objects.

We will show next that, when kG has an antipode and is hence a hopfish algebra,
the underlying multiplicative structure on G has inverses and the property that gh
is nonzero whenever r(g) = l(h). We will call such a structure a “hypergroupoid”
(see Definition 6.9).2

According to Definition 3.2, an antipode is a (kG, kG)-bimodule S whose dual
is isomorphic to HomkG (ε,1).

We recall the definition of ε and 1:

ε =⊕gε
g, 1=⊕g,h,t1

t
gh .

2The notion of group with multiple-valued multiplication has a long history. The reader may start
with [Kuntzmann 1939], which cites even earlier work.
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Therefore we can write

HomkG (ε,1)=
(
⊕s εs)

⊗kG
(
⊕g,h,t 1t

gh
)∗
.

We notice that kG acts via the upper indices of ε and 1 by componentwise
multiplication. Therefore, this expression for HomkG (ε,1) can be simplified to

⊕g,h
(
⊕t εt∗

⊗1t
gh
)∗
,

which is isomorphic to

⊕g,h
(
⊕t Homk(k, εt∗

⊗1t
gh)
)
∼= Homk

(
k,⊕g,h(⊕tε

t∗
⊗1t

gh)
)
.

Therefore, S is isomorphic to ⊕g,h(⊕tε
t∗
⊗1t

gh) as a (kG, kG) bimodule.
When S is an antipode, S is by definition isomorphic to kG as a left kG-module.

Therefore, if we write S as ⊕g,h Sgh , for any fixed g there exists a unique element
h ∈G such that dim(Sgh)= 1, and dim(Sgh′)= 0 for h′ 6= h. Hence, we may define
a map σ : G→ G by g 7→ h.

Since Homk(k, S)∼= HomkG (ε,1), we know that dim
(⊕

t εt∗
⊗1t

gh
)
= δσ(g)h ,

that is,

(11)
∑

t

et d t
gh = δσ(g)h .

Proposition 6.6. For any g ∈ G, define g−1 to be σ(g). Then there is a unique
s ∈ G0 such that

ds
gg−1 = 1.

In fact, s = l(g)= r(g−1).

Proof. By (11), we have ∑
t

et d t
gg−1 = δσ(g)g−1 = 1.

Thus, there is a unique s ∈G0 such that ds
gg−1 = 1 and d t

gg−1 = 0 for all other t ∈G0.
By Proposition 6.5, s = l(g)= r(g−1). �

We also have another characteristic property of categories (though here we can
only prove it in the presence of an antipode).

Proposition 6.7. If r(g)= l(h), there exists s ∈ G, such that ds
gh 6= 0.

Proof. Using coassociativity, we have∑
s

dg
gsds

hh−1 =

∑
s

ds
ghdg

sh−1 .

Since dl(h)
hh−1=1 and dg

gl(h)=1(since r(g)= l(h)), the left-hand side of the preceding
equation is not equal to 0. This implies that, on the right-hand side, there is at least
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one term which is not equal to 0. Therefore, there exists s ∈ G, such that ds
gh 6= 0.

�

Question 6.8. Is the inversion map σ : G→ G involutive?

To summarize the arguments above, we define the combinatorial objects associ-
ated to hopfish structures on kG :

Definition 6.9. A hypergroupoid is a set G with data ( · , l, r,−1 ) as follows.

(1) There is a multivalued associative binary operation · on G. More precisely, for
all g, h∈G, g·h is an element of ZG

+
, where Z+ is the semiring of nonnegative

integers. When this product is linearly extended to a product on ZG
+

, we have
g · (h · k)= (g · h) · k.

(2) There is a subset G0
⊂G with maps l, r :G→G0 such that l(g)·g= g ·r(g)=

g, for all g ∈ G The product of g and h is nonzero if and only if r(g)= l(h).

(3) There is an inverse operation g 7→ g−1 on G such that g ·g−1
|G0 = l(g) for all

g ∈ G, and further g · h|G0 = 0 if h 6= g−1.

Note that the inverse operation is determined by the product operation and G0.
We now look at the commutative algebra kG of k-valued functions on a hyper-

groupoid G. The duals of the maps l, r : G → G0 define morphisms from kG

to kG0
. The multiplication on G defines a (nonunital) coproduct homomorphism

kG×G
← kG whose modulation is a coproduct bimodule, the embedding map from

G0 to G makes kG0
into a counit bimodule, and the inversion map defines an an-

tipode. These define a hopfish algebra structure on kG .

Theorem 6.10. The hopfish structures of free finite type on kG are in one to one
correspondence with the hypergroupoid structures on G.

Example 6.11. Here is an example of a hypergroupoid which is not a groupoid,
based on [Etingof et al. 2005, Example 8.19].3 Let G = {e, g}, with multiplication
and inversion given by

eg = ge = g, ee = e, gg = e+ ng, e−1
= e, g−1

= g,

where n is a nonnegative integer. G0
= {e} and l(g) = r(g) = e. The algebra A′

associated to this hypergroupoid is Z[x]/{x2
= 1+nx}. The corresponding hopfish

algebra kG is not a quasi-Hopf algebra when n = 1 and k a field. We explain the
reason below.

The hopfish algebra structure of kG is in fact a weak Hopf algebra, with ε(e)=1,
ε(g) = 0, 1(e) = g ⊗ g + e ⊗ e and 1(g) = e ⊗ g + g ⊗ e + g ⊗ g. Since
a kG module can be decomposed into submodules supported at points of G, the
representation ring of kG is generated by two elements 1 and X corresponding to

3The hypergroupoid itself, when n=1, already appears as the first example in [Kuntzmann 1939]!
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the 1-dimensional kG module supported at e and g respectively. Since k is a field, 1
and X are just 1-dimensional k-vector spaces. Using the formulas for the coproduct
and counit, it is easy to check that this representation ring is the Grothendieck ring
of what is called Yang–Lee fusion rules in [Ostrik 2003], namely it is generated
by 1 and X with the relation X ⊗ X = 1⊕ X . The Frobenius–Perron dimension
of the element 1 is 1, while the Frobenius–Perron dimension of the element X is
the irrational number (1+

√
5)/2. According to Theorem 8.33 of [Etingof et al.

2005], the Frobenius–Perron dimension of any finite dimensional module over a
finite dimensional quasi-Hopf algebra must be a positive integer, which is equal
to the dimension of the module. This shows that kG is not Morita equivalent to a
quasi-Hopf algebra.
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GUTZMER’S FORMULA AND POISSON INTEGRALS
ON THE HEISENBERG GROUP

SUNDARAM THANGAVELU

Dedicated to Alladi Sitaram on his sixtieth birthday

In 1978 M. Lassalle obtained an analogue of the Laurent series for holo-
morphic functions on the complexification of a compact symmetric space
and proved a Plancherel type formula for such functions. In 2002 J. Faraut
established such a formula, which he calls Gutzmer’s formula, for all non-
compact Riemannian symmetric spaces. This was immediately put into use
by B. Krotz, G. Olafsson and R. Stanton to characterise the image of the
heat kernel transform. In this article we prove an analogue of Gutzmer’s
formula for the Heisenberg motion group and use it to characterise Poisson
integrals associated to the sublaplacian. We also use the Gutzmer’s formula
to study twisted Bergman spaces.

1. Introduction

Consider the Laplace–Beltrami operator on a Riemannian manifold M and the
associated heat semigroup Tt . The problem of characterising the image of L2(M)
under Tt has received considerable attention starting with Bargmann [1961]. He
treated the case of Rn and showed that the image is a weighted Bergman space
of entire functions. Similar results were obtained for compact Lie groups by Hall
[1994] and for compact symmetric spaces by Stenzel [1999]. For the case of Her-
mite, Laguerre and Jacobi expansions see [Karp 2005] and the references there.

Contrary to the general expectation, such a characterisation is not true for the
Laplace operator on the Heisenberg group Hn , as shown by Krötz, Thangavelu and
Xu in [Krötz et al. 2005b]. Specifically, we proved there that the image of L2(Hn)

is not a weighted Bergman space but a sum of two such spaces defined by signed
weights.

Recently Krötz, Olafsson and Stanton [Krötz et al. 2005a] showed that when
X is a noncompact Riemannian symmetric space the image of L2(X) cannot be

MSC2000: primary 43A85, 43A90; secondary 22E25, 22E30.
Keywords: Heisenberg group, sublaplacian, Fourier transform, Poisson integrals, Gutzmer’s

formula, Laguerre functions.
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described as a weighted Bergman space. In the same paper a different characterisa-
tion of the image was obtained, using orbital integrals. In the case of noncompact
Riemannian symmetric spaces the functions Tt f do not extend as entire functions
but only as holomorphic functions on a domain called the complex crown. The
behaviour of Tt f is therefore similar to that of Poisson integrals of L2 functions
on Rn . Recall that the Poisson integrals extend only as holomorphic functions on a
tube domain. The main ingredient used in [Krötz et al. 2005a] is a result of Faraut
[2002] which he calls Gutzmer’s formula. Our aim in this paper is to show that,
using Gutzmer’s formula, Poisson integrals can be characterised as certain spaces
of holomorphic functions.

In Section 2 we treat the Poisson integrals on Rn , where the results are easy to
obtain. Section 3 recapitulates necessary results on special Hermite functions. In
Section 4 we prove an analogue of Gutzmer’s formula for the Heisenberg group,
and we use this in Section 5 to give a characterisation of Poisson integrals on Hn .
Since Gutzmer’s formula is available on all noncompact Riemannian symmetric
spaces, a similar characterisation of Poisson integrals on them should be possible.
In Section 6 we revisit twisted Bergman spaces and give a new proof of their char-
acterisation as the image of L2(Cn) under the special Hermite semigroup. (This
was proved in [Krötz et al. 2005b] by a different method.)

2. Poisson integrals on Euclidean spaces

Throughout this paper x2 stands for |x |2, for x ∈ Rn . Let

pt(x)= cnt (t2
+ x2)−(n+1)/2

be the Poisson kernel on Rn , where cn is a suitable constant. The Poisson integral
of a function f ∈ L2(Rn) is defined by

f ∗ pt(x)=
∫

Rn
f (u)pt(x − u) du,

which is also given in terms of the Fourier transform by

f ∗ pt(x)= (2π)−n/2
∫

Rn
ei x ·ξ f̂ (ξ)e−t |ξ | dξ.

From any of these expressions it is clear that the function F(x)= f ∗ pt(x) extends
to the tube domain

�t = {z = x + iy ∈ Cn
: |y|< t}

as a holomorphic function. We are interested in knowing exactly what kind of
holomorphic functions F arise as Poisson integrals.
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To state our result, we recall the definition of the spherical function ϕλ on Rn .
For each λ ∈ C we define

ϕλ(x)=
∫

Sn−1
e−iλx ·ωdω.

It is clear that ϕλ extends to Cn as an entire function. Moreover, when λ is real or
purely imaginary it is given in terms of the Bessel function of order n/2−1. More
precisely,

ϕλ(x)= cn Jn/2−1(λ|x |)(λ|x |)−(n/2−1).

Using the Plancherel theorem for the Fourier transform, it is easy to see that for
any r with 0≤ r < t ,

(2-1)
∫

Sn−1

∫
Rn
| f ∗ pt(x + irω)|2 dx dω =

∫
Rn
| f̂ (ξ)|2e−2t |ξ |ϕ2ir (ξ) dξ.

Following [Faraut 2002] we call this Gutzmer’s formula for Euclidean spaces.
The right-hand side of the formula is finite even if r = t , as long as∫

Rn
| f̂ (ξ)|2e−2t |ξ |ϕ2i t(ξ) dξ <∞.

This happens precisely when∫
Rn
| f̂ (ξ)|2(1+ |ξ |2)−(n−1)/2 dξ <∞

as can be seen using the asymptotic properties of the Bessel functions; see [Szegö
1967], for example. Recall that the Sobolev space H s(Rn), for s ∈ R, is the space
of tempered distributions f for which

‖ f ‖2(s) =
∫

Rn
| f̂ (ξ)|2(1+ |ξ |2)s dξ

is finite. We have the following characterisation of Poisson integrals on Rn .

Theorem 2.1. A holomorphic function F on the tube domain �t is the Poisson
integral of a function f ∈ H−(n−1)/2(Rn) if and only if

lim
r→t

∫
Sn−1

∫
Rn
|F(x + irω)|2 dx dω

is finite. Moreover, the limit is equivalent to the norm of f ∈ H−(n−1)/2(Rn).

When n=1, this says that F= f ∗ pt with f ∈ L2(R) if and only if both integrals∫
R
|F(x + i t)|2 dx and

∫
R
|F(x − i t)|2 dx are finite. We are interested in finding

an analogue of Theorem 2.1 for the Heisenberg group. This will be achieved via
Gutzmer’s formula for the Heisenberg motion group.
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We can rewrite Gutzmer’s formula (2-1) in terms of the group M(n) of Euclidean
motions, which is the semidirect product of SO(n) and Rn . The action of M(n) on
Rn is given by (σ, u)x = u+σ x . This action has a natural extension to Cn: simply
define (σ, u)(x+ iy)= u+σ x+ iσ y. Gutzmer’s formula then takes the following
form.

Proposition 2.2. Let F be holomorphic in �t and let the restriction of F to Rn be
such that F̂ is square integrable with respect to the measure ϕ2i t(ξ) dξ . Then

lim
y2→t2

∫
M(n)
|F(g.(x + iy))|2 dg =

∫
Rn
|F̂(ξ)|2ϕ2i t(ξ) dξ.

To see why this is true, we observe that∫
M(n)
|F(g.(x + iy))|2 dg =

∫
SO(n)

∫
Rn
|F(u+ σ x + iσ y)|2dudσ.

Plancherel theorem for the Fourier transform shows that the Rn integral is∫
Rn
|F̂(ξ)|2e−2σ y·ξ dξ.

The proposition follows since∫
SO(n)

e−2σ y·ξ dσ = cnϕ2i |y|(ξ).

In Section 4 we prove an analogue of this proposition for the Heisenberg motion
group, which is then used in Section 5 to characterise Poisson integrals on the
Heisenberg group.

3. Some results on special Hermite functions

We collect here relevant information about special Hermite functions and prove
some estimates required in the next section. We closely follow the notations used
in [Thangavelu 1998; 2004]; see those monographs for more details.

We will denote by 8α, α ∈Nn , the Hermite functions on Rn , normalised so that
their L2 norms are 1. On finite linear combinations of such functions we can define
certain operators π(z, w), where z, w ∈ Cn , by setting

π(z, w)8α(ξ)= ei(z·ξ+(z/2)·w)8α(ξ +w),

where · denotes the Euclidean inner product. Note that 8α(ξ) = Hα(ξ)e−|ξ |
2/2,

where Hα is a polynomial on Rn and for z ∈Cn we define8α(z) to be Hα(z)e−z2/2,
where z2

= z · z. The special Hermite functions 8α,β(z, w) are then defined by

(3-1) 8α,β(z, w)= (2π)−n/2(π(z, w)8α,8β).
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The restrictions of 8α,β(z, w) to Rn
×Rn are usually called special Hermite func-

tions. The family {8α,β(x, u) :α, β ∈Nn
} forms an orthonormal basis for L2(Rn

×

Rn). The functions 8α,β(z, w) are just the holomorphic extensions of 8α,β(x, u)
to Cn

×Cn . An easy calculation shows that

(3-2) (π(z, w)8α,8β)= (8α, π(−z̄,−w̄)8β).

This means that for x, u ∈Rn the operators π(x, u) are unitary on L2(Rn) (related
to the Schrödinger representation π1 of the Heisenberg group) and

(π(i x, iu)8α,8β)= (8α, π(i x, iu)8β).

We can also verify that

(3-3) π(z, w)π(z′, w′)= e(i/2)(z
′
·w−z·w′)π(z+ z′, w+w′).

For x, u ∈ Rn this gives

(3-4) (π(2i x, 2iu)8α,8α)= ‖π(i x, iu)8α‖22.

Let Ln−1
k be the Laguerre polynomials of type n − 1 and define the Laguerre

functions ϕk by

ϕk(x, u) := Ln−1
k

( 1
2(x

2
+ u2)

)
e−(x

2
+u2)/4

=

∑
|α|=k

8α,α(x, u),

where the second equality is classical. The Laguerre functions have a natural holo-
morphic extension to Cn

×Cn , which we denote by the same symbol:

(3-5) ϕk(z, w)=
∑
|α|=k

8α,α(z, w).

From this expression we obtain the following estimate for the complexified La-
guerre functions.

Proposition 3.1. For z, w ∈ Cn and k ∈ N,

|ϕk(z, w)|2 ≤ C
(k+ n− 1)!

k!(n−1)!
e(u·y−v·x)ϕk(2iy, 2iv),

where z = x + iy and w = u+ iv.

Proof. We have

8α,α(x + iy, u+ iv)= (2π)−n/2(π(x + iy, u+ iv)8α,8α)

and this gives in view of (3-3)

8α,α(x + iy, u+ iv)= (2π)−n/2e(u·y−v·x)/2(π(iy, iv)8α, π(−x,−u)8α).
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Since π(−x,−u) is unitary we get the estimate

|8α,α(x + iy, u+ iv)| ≤ (2π)−n/2e(u·y−v·x)/2‖π(iy, iv)8α‖2.

Applying the Cauchy–Schwarz inequality in (3-5), recalling that∑
|α|=k

1=
(k+ n− 1)!

k!(n−1)!
,

and using (3-4) we get the proposition. �

The functions ϕk(z, w) are members of the twisted Bergman spaces Bt studied in
[Krötz et al. 2005b]. Since evaluations are continuous functionals on reproducing
kernel Hilbert spaces of holomorphic functions and as Bt is one such space we get
the estimate

|ϕk(z, w)| ≤ Ct‖ϕk‖Bt ≤ Ct

(
(k+ n− 1)!

k!(n−1)!

)1/2

e(2k+n)t .

However, we can greatly improve this estimate using the proposition above.

Proposition 3.2. For each r > 0 we have the uniform estimates

|ϕk(z, w)| ≤ Cr e(u·y−v·x)/2
(
(k+ n− 1)!

k!(n−1)!

)1/2

kn/4−3/8 exp
(
r(2k+ n)1/2

)
,

valid for y2
+ v2
≤ r2.

Proof. In view of Proposition 3.1 it is enough to estimate ϕk(2iy, 2iv). In the
region δ ≤ y2

+v2
≤ r2, with δ > 0, the required inequality follows using Perron’s

estimate [Szegö 1967, Theorem 8.22.3]:

Lαk (s)=
1
2π
−1/2es/2(−s)−α/2−1/4kα/2−1/4e2(−ks)1/2(1+ O(k−1/2)

)
,

valid for s in the complex plane cut along the positive real axis (we require the
estimate when s < 0). We now use the representation

Lαk (s)=
(−1)kπ−1/20(k+α+1)

0(α+1
2)(2k)!

∫ 1

−1
(1− t2)α−1/2 H2k(s1/2t) dt

for the Laguerre polynomials in terms of Hermite polynomials, along with the
estimates given in [Szegö 1967, Theorem 8.22.6] for Hermite polynomials, to get
the uniform estimates even when δ = 0. �

We need one more result on special Hermite functions. If F(z, w) is a function
on Cn

×Cn we define its twisted translation by

(3-6) τ(z′, w′)F(z, w)= e−(i/2)(z
′
·w−z·w′)F(z− z′, w−w′).
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In view of (3-3) we have

τ(z′, w′)8α,α(z, w)= (2π)−n/2(π(z, w)π(−z′,−w′)8α,8α).

Using (3-2) this can be written as

τ(z′, w′)8α,α(z, w)= (2π)−n/2(π(−z′,−w′)8α, π(−z̄,−w̄)8α).

Expanding π(−z′,−w′)8α and π(−z̄,−w̄)8α in terms of Hermite functions we
obtain

(3-7) τ(z′, w′)8α,α(z, w)= (2π)n/2
∑
β

8α,β(−z′,−w′)8β,α(z, w).

By taking z =−z′ = iy and w =−w′ = iv we obtain

(3-8) 8α,α(2iy, 2iv)= (2π)n/2
∑
β

|8α,β(iy, iv)|2,

since we have the relation

8β,α(iy, iv)= (2π)−n/2(π(iy, iv)8β,8α)=8α,β(iy, iv).

Proposition 3.3. For y, v ∈ Rn ,∫
Rn×Rn

|ϕk(x + iy, u+ iv)|2e−(u·y−v·x)dx du = (2π)n/2ϕk(2iy, 2iv).

Proof. In view of (3-8) we have

ϕk(2iy, 2iv)= (2π)−n/2
∑
|α|=k

∑
β

|8α,β(iy, iv)|2.

On the other hand from (3-6) we get

8α,α(x + iy, u+ iv)e−(u·y−v·x)/2 = τ(−iy,−iv)8α,α(x, u),

which gives, in view of (3-7),∫
Rn×Rn

|τ(−iy,−iv)8α,α(x, u)|2dxdu = (2π)n
∑
β

|8α,β(iy, iv)|2.

Summing over all α with |α| = k we get the proposition. �

4. Gutzmer’s formula on the Heisenberg group

Let Hn
= Cn

×R be the Heisenberg group with multiplication defined by

(z, t)(z′, t ′)=
(
z+ z′, t + t ′+ 1

2 Im(z · z̄′)
)
.
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More often we write (x, u, t) in place of (z, t) and the group law takes the form

(x, u, t)(x ′, u′, t ′)=
(
x + x ′, u+ u′, t + t ′+ 1

2(u · x
′
− x · u′)),

where x, u, x ′, u′ ∈ Rn . For a function f on Hn we define

f λ(z)=
∫

R

f (z, t)eiλt dt.

For each nonzero λ ∈ R the Schrödinger representation πλ of Hn is defined by

πλ(x, u, t)ϕ(ξ)= eiλt eiλ(x ·ξ+x ·u/2)ϕ(ξ + u),

where ϕ ∈ L2(Rn). We define 8λα(x)= |λ|
n/48(|λ|1/2x) and

Eλα,β(x, u, t)= (2π)−n/2(πλ(x, u, t)8λα,8
λ
β).

Note that
Eλα,β(x, u, t)= eiλt8λα,β(x, u),

where8λα,β(x, u)= Eλα,β(x, u, 0). We write ϕλk (x, u)=ϕk(|λ|
1/2(x, u)), so in view

of (3-5) we have

ϕλk (x, u)=
∑
|α|=k

8λα,α(x, u)= ϕk(|λ|
1/2(x, u))

and let eλk (x, u, t) = eiλtϕλk (x, u). The results proved in the previous section are
all valid for these functions for every nonzero λ ∈ R.

The inversion formula for the group Fourier transform on Hn can be written in
the form

(4-1) f (x, u, t)=
∫
∞

−∞

( ∞∑
k=0

f ∗ eλk (x, u, t)
)

dµ(λ),

where dµ(λ) = (2π)−n−1
|λ|n dλ is the Plancherel measure on the Heisenberg

group. Define the λ-twisted convolution of two functions F and G on Cn by

F ∗λ G(x, u)=
∫

R2n
F(x ′, u′)G(x − x ′, u− u′)e−(i/2)λ(u·x

′
−x ·u′)dx ′du′.

Then (4-1) takes the form

f (x, u, t)=
∫
∞

−∞

e−iλt
( ∞∑

k=0

f λ ∗λ ϕλk (x, u)
)

dµ(λ).

We would like to rewrite this inversion formula in terms of certain representations
of the Heisenberg motion group, whose definition we recall. The unitary group
U (n) acts on the Heisenberg group as automorphisms, the action being defined
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by σ(z, t) = (σ.z, t), where σ ∈ U (n). The Heisenberg motion group Gn is the
semidirect product of U (n) and Hn with group law

(σ, z, t)(τ, w, s)= (στ, (z, t)(σ.w, s)).

Functions on Hn can be considered as right U (n)-invariant functions on Gn . Hence
the inversion formula for such functions on Gn will involve only certain class-one
representations of Gn . We now proceed to describe the relevant representations.

For each k ∈ N and nonzero λ ∈ R let Hλ
k be the Hilbert space for which the

functions Eλα,β , with α, β ∈ Nn , |α| = k, form an orthonormal basis. The inner
product in Hλ

k is defined by

(F,G)= |λ|n
∫

Cn
F(z, 0)G(z, 0) dz.

On this Hilbert space we define a representation ρλk of the Heisenberg motion group
by

ρλk (σ, z, t)F(w, s)= F((σ, z, t)−1(w, s)).

Then it is known (from [Ratnakumar et al. 1997], for example) that ρλk is an irre-
ducible unitary representation of Gn . As (Gn,U (n)) is a Gelfand pair, ρλk has a
unique U (n) fixed vector, which is none other than eλk .

Given f ∈ L1(Hn) we can define its group Fourier transform by

ρλk ( f )=
∫

Gn

f (z, t)ρλk (σ, z, t) dσ dz dt,

which is a bounded operator acting on Hλ
k . In this integral dσ stands for the nor-

malised Haar measure on U (n). From calculations done in [Thangavelu 1998,
Chapter 3] we infer that

tr(ρλk (σ, z, t)∗ρλk ( f ))=
k!(n−1)!
(k+ n− 1)!

f ∗ eλk (z, t)

and the inversion formula for a right U (n)-invariant function on Gn takes the form

f (z, t)= (2π)−n−1
∫
∞

−∞

( ∞∑
k=0

tr(ρλk (σ, z, t)∗ρλk ( f ))
(k+ n− 1)!

k!(n−1)!

)
|λ|n dλ.

Also the Plancherel theorem can be written as∫
Hn
| f (z, t)|2 dz dt = (2π)−n−1

∫
∞

−∞

( ∞∑
k=0

‖ρλk ( f )‖2H S
(k+ n− 1)!

k!(n−1)!

)
|λ|n dλ.

From this we can read off the Plancherel measure for Gn when dealing with right
U (n)-invariant functions.
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It can be shown that the operator ρλk ( f ) is of rank one. Indeed, ρλk ( f )Eα,β = 0
if α 6= β and

ρλk ( f )Eλα,α =
k!(n−1)!
(k+ n− 1)!

f ∗ eλk .

From this we infer that ρλk ( f )eλk = f ∗ eλk . Hence it follows that for any F ∈ Hλ
k

we have

ρλk ( f )F =
k!(n−1)!
(k+ n− 1)!

(F, eλk )ρ
λ
k ( f )eλk .

Proposition 4.1. For every Schwartz class function f on Hn the inversion formula

f (z, t)= (2π)n/2
∫
∞

−∞

( ∞∑
k=0

(
ρλk ( f )eλk , ρ

λ
k (1, z, t)

k!(n−1)!
(k+n−1)!

eλk
)(k+n−1)!

k!(n−1)!

)
dµ(λ)

holds, where 1 stands for the identity matrix in U (n).

Proof. In view of the inversion formula (4-1) it is enough to show that(
ρλk ( f )eλk , ρ

λ
k (1, z, t)eλk

)
= f ∗ eλk (z, t).

As eλk (z, t)=
∑
|α|=k Eλα,α(z, t) we consider

ρλk (1, z, t)Eλα,α(w, s)= Eλα,α((−z,−t)(w, s)).

Recall that

Eλα,α((−z,−t)(w, s))= (2π)−n/2(πλ(−z,−t)πλ(w, s)8λα,8
λ
α).

Expanding πλ(w, s)8λα and πλ(z, t))8λα in terms of 8λβ we get

ρλk (1, z, t)Eλα,α(w, s)= (2π)n/2
∑
β

Eλα,β(w, s)Eλα,β(z, t).

Since ρλk ( f )eλk = f ∗eλk and {Eλα,β(w, s) :α, β ∈Nn, |α| = k} is an orthogonal basis
for Hλ

k we get the proposition. �

From now on we identify Hn with Rn
×Rn

×R and use the notation (x, u, t)
rather than (x + iu, t) to denote elements of Hn . The action of U (n) on Hn then
takes the form σ.(x, u, t) = (a.x − b.u, b.x + a.u, t), where a and b are the real
and imaginary parts of σ . This action has a natural extension to Cn

×Cn
×C given

by σ.(z, w, ζ )= (a.z−b.w, b.z+a.w, ζ ). With this definition we can extend the
action of Gn on Hn to Cn

×Cn
×C:

(a+ ib, x ′, u′, t ′)(z, w, ζ )= (x ′, u′, t ′)(a.z− b.w, b.z+ a.w, ζ ).

This action is then extended to functions defined on Cn
×Cn

×C:

ρ(g) f (z, w, ζ )= f (g−1.(z, w, ζ )), g ∈ Gn.
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We are now ready to prove Gutzmer’s formula for the Heisenberg group. Sup-
pose f is a Schwartz class function on Hn such that f λ = 0 for all |λ| > A and
ρλk ( f )= 0 for all λ, k such that (2k+n)|λ|> B. We say that the Fourier transform
of f is compactly supported if this condition is satisfied for some A and B. Now
the inversion formula

f (g.(x, u, ξ))=
∫ A

−A

∑
(2k+n)|λ|≤B

(
ρλk ( f )eλk , ρ

λ
k (g)ρ

λ
k (1, x, u, ξ)eλk

)
dµ(λ)

is valid for any g ∈ Gn . Moreover, as each of ρλk (1, x, u, ξ)eλk extends to C2n+1 as
an entire function, the same is true of f (g.(x, u, ξ)) and we have

f (g.(z, w, ζ ))=
∫ A

−A
eλη

∑
(2k+n)|λ|≤B

(
ρλk ( f )eλk , ρ

λ
k (g)ρ

λ
k (1, x, u, ξ)eλk

)
dµ(λ),

where ζ = ξ + iη. We then have the following Gutzmer’s formula for the action
of Heisenberg motion group on C2n+1, which is the complexification of Hn .

Theorem 4.2. Let f be Schwartz function whose Fourier transform is compactly
supported in the sense above. Then f extends to C2n+1 as an entire function and
we have the identity∫

Gn

∣∣ f (g.(z, w, ζ ))
∣∣2 dg =

(2π)n/2
∫
∞

−∞

e2ληe−λ(u·y−v·x)
( ∞∑

k=0

‖ f λ ∗λ ϕλk ‖
2
2

k!(n−1)!
(k+n−1)!

ϕλk (2iy, 2iv)
)

dµ(λ),

where ‖ f λ ∗λ ϕλk ‖2 is the L2(Cn) norm of f λ ∗λ ϕλk .

We will prove this theorem by appealing to a general result on locally compact
unimodular groups. Gutzmer’s formula in the case of the circle group S1 is just
the Plancherel formula for the Fourier series applied to the Laurent series expan-
sion of a function holomorphic in an annulus containing S1. Lassalle [1978] has
made an extensive study of Laurent series expansion for functions holomorphic in
certain domains D contained in the complexification XC of compact Riemannian
symmetric spaces X . He obtained a Plancherel formula for such a series, which he
later used in studying analogues of Hardy spaces over tube domains associated to
compact symmetric spaces; see [Lassalle 1985]. Faraut [2002] treated the case of
noncompact Riemannian symmetric spaces and proved a formula which he calls
Gutzmer’s formula. We recall the general setup for the reader’s convenience.

Let G be a locally compact unimodular group with unitary dual Ĝ. Let 3 be a
Borel subset of Ĝ and let dµ be the Plancherel measure. For each λ ∈ 3 choose
a unitary representation (πλ, Vλ) of class λ. Let A(λ) be a family of trace class
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operators for which
∫
3

tr(|A(λ)|) dµ and
∫
3

tr(A(λ)∗A(λ)) dµ are finite. Define a
function f on G by

f (g)=
∫
3

tr(A(λ)πλ(g−1)) dµ.

Then f lies in L2(G), and by the Plancherel Theorem,∫
G
| f (g)|2 dg =

∫
3

tr(A(λ)∗A(λ)) dµ.

This sets up a one-to-one correspondence between subspaces of L2(G) whose
Fourier transforms are supported on 3 and families (A(λ)) of Hilbert–Schmidt
operators satisfying ∫

3

tr(A(λ)∗A(λ)) dµ <∞.

The isometry just described takes a particularly simple form when (A(λ)) is
a family of rank-one operators. Let A(λ)v = (v, η(λ))ξ(λ), where v ∈ Vλ and
η(λ), ξ(λ) are measurable functions taking values in Vλ. We then have the follow-
ing result, whose proof can be found in [Faraut 2002; 2003].

Proposition 4.3. Assume that η(λ) and ξ(λ) satisfy∫
3

‖η(λ)‖2‖ξ(λ)‖2 dµ <∞.

Then the function f defined by f (g) =
∫
3
(πλ(g−1)ξ(λ), η(λ)) dµ belongs to

L2(G) and satisfies ∫
G
| f (g)|2 dg =

∫
3

‖η(λ)‖2‖ξ(λ)‖2 dµ.

Proof of Theorem 4.2. Take G = Gn and 3= R×N. The relevant representations
are ρλk acting on the Hilbert spaces Hλ

k . As already seen, the operators ρλk ( f ) have
rank one. We take ξ(γ ) := ρλk ( f )eλk and

η(γ ) :=
k!(n−1)!
(k+ n− 1)!

ρλk (1, z, w, ζ )eλk

when γ = (λ, k) ∈ 3. (The first factor on the right is used because its reciprocal
appears in the Plancherel measure for Gn .) We wish to appeal to Proposition 4.3
to complete the proof of Theorem 4.2.

We are therefore left with proving the equality

‖ρλk (1, z, w, ζ )eλk‖
2
= e2ληe−λ(u·y−v·x)ϕλk (2iy, 2iv).

Recall that eλk (x
′, u′, t ′) = eiλt ′ϕλk (x, u) and this can be extended to Cn

×Cn
×C

as a holomorphic function. The action of ρλk (1, x, u, t) on eλk is given by

ρλk (1, x, u, t)eλk (x
′, u′, t ′)= eλk ((x, u, t)−1(x ′, u′, t ′))
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which reduces to

eiλ(t ′−t−(u·x ′−x ·u′)/2)ϕλk (x
′
− x, u′− u).

The holomorphic extension of this is given by

ρλk (1, z, w, ζ )eλk (x
′, u′, t ′)= eiλ(t ′−ζ−(w·x ′−z·u′)/2)ϕλk (x

′
− z, u′−w).

In terms of real and imaginary parts of z = x + iy, w = u + iv, and ζ = ξ + iη,
this becomes

ρλk (1, z,w,ζ )e
λ
k (x
′,u′, t ′)=eληeiλ(t ′−ξ−(u·x ′−x ·u′)/2)e−λ(u

′
·y−x ′·v)/2ϕλk (x

′
−z,u′−w).

From the definition of the Hilbert space Hλ
k , the norm of ρλk (1, z, w, ζ )eλk in Hλ

k
is

‖ρλk (1, z, w, ζ )eλk‖
2
= |λ|ne2λη

∫
Rn×Rn

e−λ(u
′
·y−x ′·v)

|ϕλk (x
′
− z, u′−w)|2 dx ′du′.

Without loss of generality we can assume λ > 0. By a change of variables the
integral reduces to

e−λ(u·y−x ·v)
∫

Rn×Rn
e−λ

1/2(u′·y−x ′·v)
∣∣ϕk(x ′− iλ1/2 y, u′− iλ1/2v)

∣∣2 dx ′du′.

Using Proposition 3.3 we see that the integral is equal to e−λ(u·y−x ·v)ϕλk (2iy, 2iv),
as required. �

Remark. We have stated Gutzmer’s formula for functions whose Fourier trans-
forms are compactly supported. This condition is not necessary for the validity of
the formula. Consider the inversion formula stated in Proposition 4.1, namely

f (z, w, ζ )= (2π)n/2
∫
∞

−∞

( ∞∑
k=0

(
ρλk ( f )eλk , ρ

λ
k (1, z, w, ζ )eλk

))
dµ(λ).

In view of the calculations made above the series converges as long as
∞∑

k=0

‖ f λ ∗λ ϕλk ‖2 e−λ(u·y−v·x)/2(ϕλk (2iy, 2iv))1/2 <∞.

If we assume that f λ(x, u) is compactly supported in λ and the norms ‖ f λ ∗λ
ϕλk ‖2 have enough decay, then the inversion formula is valid and f (z, w, ζ ) is
holomorphic. For example, when f belongs to the image of L2(Hn) under the
heat semigroup associated to the full Laplacian then ‖ f λ ∗λ ϕλk ‖2 ≤ Ce−t (2k+n)|λ|

and f extends as an entire function (see [Krötz et al. 2005b]). For such functions
Gutzmer’s formula is valid, as can be proved by using a density argument. We refer
to [Faraut 2003] for some details in the case of noncompact Riemannian symmetric
spaces.
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5. Poisson integrals on the Heisenberg group

On the Heisenberg group we consider the sublaplacian L defined by

L=−

n∑
j=1

(X2
j + Y 2

j ),

where X1, . . . , Xn, Y1, . . . , Yn together with T = ∂/∂t form a basis for the Heisen-
berg Lie algebra. (See [Thangavelu 1998; 2004] for explicit expressions for these
vector fields.) The operator L is nonnegative, so using the spectral theorem we
can define the Poisson semigroup e−a(L)1/2 , a > 0. This is explicitly given by the
spectral representation

e−a(L)1/2 f (x, u, t)=
∫
∞

−∞

e−iλt
( ∞∑

k=0

e−(2k+n)1/2|λ|1/2a f λ ∗λ ϕλk (x, u)
)

dµ(λ).

We may suppose that f is a Schwartz class function whose Fourier transform is
compactly supported in the sense defined in the previous section. For such func-
tions the series above converges pointwise. We denote exp(−a(L)1/2) f by Pa f
and call it the Poisson integral of f . For each r > 0, define

�r =
{
(x + iy, u+ iv, ζ ) ∈ Cn

×Cn
×C : y2

+ v2 < r2}.
Theorem 5.1. Let f be a Schwartz class function on Hn and assume that f λ(x, u)
is compactly supported in (−b, b) as a function of λ. Then for 0 < r < a, we can
extend Pa f (x, u, t) to �r as a holomorphic function of (z, w, ζ ), and∫

Gn

|Pa f (g.(z, w, ζ ))|2 dg = cn×∫ b

−b

e2ληe−λ(u·y−v·x)
( ∞∑

k=0

‖ f λ∗λϕλk‖
2
2e−2(2k+n)1/2|λ|1/2a k!(n−1)!

(k+n−1)!
ϕλk (2iy,2iv)

)
dµ(λ).

Proof. Once we show that Pa f extends as a holomorphic function of (z, w, ζ ) on
�r the theorem will follow from Gutzmer’s formula. Consider now the expansion

Pa f (x, u, t)= (2π)−n−1
∫
∞

−∞

e−iλt
( ∞∑

k=0

f λ ∗λ ϕλk (x, u)e−(2k+n)1/2|λ|1/2a
)
|λ|n dλ

and define the Poisson kernel by

Pλa (x, u)=
∞∑

k=0

ϕλk (x, u)e−(2k+n)1/2|λ|1/2a.
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Then we have

Pa f (x, u, t)

=

∫
Rn×Rn×R

e−iλt f λ(x ′, u′)Pλa (x − x ′, u− u′)e−i(λ/2)(x ·u′−u·x ′)dx ′du′dλ.

It is therefore enough to show that Pλa (x, u) extends as a holomorphic function of
(z, w). Fix λ. In view of Proposition 3.1, the series

∞∑
k=0

ϕλk (x + iy, u+ iv)e−(2k+n)1/2|λ|1/2a

is bounded by a constant times( ∞∑
k=0

(
(k+ n− 1)!

k!(n−1)!

)1/2

(ϕλk (2iy, 2iv))1/2e−(2k+n)1/2|λ|1/2a
)

e|λ|(u·y−v·x)/2.

For any fixed (y, v) with y2
+ v2
≤ r2 < a2, Perron’s formula gives the estimate

(ϕλk (2iy, 2iv))1/2 ≤ Cr k(n−1)/4−1/8e(2k+n)1/2|λ|1/2r

and hence the series is dominated by

∞∑
k=1

k(n−1)/2k(n−1)/4−1/8e−(2k+n)1/2|λ|1/2(a−r)

which certainly converges as long as r < a.
Moreover, using the asymptotic estimates given by Perron’s formula the integral∫

∞

−∞

(ϕλk (2iy, 2iv))1/2e−(2k+n)1/2|λ|1/2a
|λ|n dλ

is bounded by a constant multiple of

k(n−1)/4−1/8
∫
∞

0
e−(2k+n)1/2t (a−r)t (6n+9)/4−1 dt,

so for y2
+ v2
≤ r2 and |λ| ≤ b, the sum

∞∑
k=0

∫
∞

−∞

|ϕλk (x + iy, u+ iv)|e−(2k+n)1/2|λ|1/2ae|λ|(u·y−v·x)/2|λ|n dλ

is dominated by a constant times

eb|u·y−v·x |
∞∑

k=1

k(n−1)/2k(n−1)/4−1/8k−(6n+9)/8,
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which is finite. Hence standard arguments show that Pλa (x, u) extends to �r as a
holomorphic function. �

We now use Theorem 5.1 to get a characterisation of functions that arise as
Poisson integrals. Let G(�a) be the space of functions F(z, w, ζ ) holomorphic on
�a and such that Fλ(x, u) is compactly supported in λ and

‖F‖2�a
= lim

y2+v2→a2

∫
Gn

|F(g.(iy, iv, t))|2 dg <∞.

We define B(�a) to be its completion. For F ∈ G(�a), Gutzmer’s formula shows
that the restriction of F to Hn satisfies∫

∞

−∞

∞∑
k=0

(
‖Fλ ∗λ ϕλk ‖

2
2

k!(n−1)!
(k+ n− 1)!

ϕλk (2iy, 2iv)
)
|λ|n dλ <∞

whenever y2
+ v2
≤ a2.

We also need to recall the definition of the Sobolev spaces H s(Hn). This is the
space of all tempered distributions for which (1+L)s/2 f ∈ L2(Hn). The norm is
given by the expression

‖ f ‖2(s) = cn

∫
∞

−∞

( ∞∑
k=0

‖ f λ ∗λ ϕλk ‖
2
2
(
(2k+ n)|λ|

)s
)
|λ|n dλ.

The asymptotic formula we have used for ϕλk (2iy, 2iv) reads as

k!(n−1)!
(k+ n− 1)!

ϕλk (2iy, 2iv)≤ C((2k+ n)|λ|)−(2n−1)/4e−2(2k+n)1/2|λ|1/2r ,

and therefore f lies in H−(2n−1)/4(Hn) precisely when∫
∞

−∞

∞∑
k=0

(
‖ f λ ∗λ ϕλk ‖

2
2

k!(n−1)!
(k+ n− 1)!

ϕλk (2iy, 2iv)
)
|λ|n dλ <∞

for all y, v with y2
+ v2
≤ a2.

Theorem 5.2. A function F lies in B(�a) if and only if F = Pa f for some f ∈
H−(2n−1)/4(Hn). The norm of f in H−(2n−1)/4(Hn) is equivalent to

lim
y2+v2→a2

∫
Gn

|F(g.(iy, iv, t))|2 dg.

Proof. If f ∈ H−(2n−1)/4(Hn) then f can be approximated by a sequence fn of
functions whose Fourier transforms in the central variable are compactly supported.
For such functions we have verified that Pa fn extends to a function in G(�a). This
proves half the theorem. Since all the steps in our calculations are reversible, the
converse also follows in light of the remarks preceding the theorem. �
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6. Revisiting twisted Bergman spaces

Consider the full Laplacian 1=L− T 2 on the Heisenberg group. In [Krötz et al.
2005b] we studied the problem of characterising the image of L2(Hn) under the
semigroup e−t1 as a weighted Bergman space over the domain Cn

×Cn
×C, which

is just the complexification of Hn . It turned out that the image is not a weighted
Bergman space, contrary to expectation. What is true is that the image is a direct
integral of certain weighted Bergman spaces Bλ

t , which are the images of L2(Cn)

under the semigroup e−t Lλ generated by the special Hermite operators Lλ, which
are related to L. In this section we give a different proof of this characterisation of
Bλ

t using Gutzmer’s formula on the Heisenberg group.
We briefly recall the definitions of Lλ and the twisted Bergman spaces Bλ

t ,
referring to [Krötz et al. 2005b] for more details. For each λ 6= 0, the operator Lλ
is defined by L(e−iλt f (z)) = e−iλt Lλ f (z). The spectral decomposition of Lλ is
given by

Lλ f (x, u)= (2π)−n
∞∑

k=0

(2k+ n)|λ| f ∗λ ϕλk (x, u).

The operator Lλ generates a diffusion semigroup e−t Lλ given by twisted convolu-
tion with the kernel

pλt (x, u)= cn

(
λ

sinh(λt)

)n

e−λ coth(λt)(x2
+u2)/4.

For each f ∈ L2(Cn) the function

f ∗λ pλt (x, u)=
∫

R2n
f (x − x ′, u− u′)pλt (x

′, u′)ei/2λ(u·x ′−x ·u′)dx ′du′

can be extended to Cn
×Cn as an entire function. We let

W λ
t (x + iy, u+ iv)= 4neλ(u·y−v·x) pλ2t(2y, 2v)

and define Bλ
t to be the space of all entire functions on Cn

× Cn that are square
integrable with respect to the weight function W λ

t (z, w).

Theorem 6.1 [Krötz et al. 2005b]. An entire function F on Cn
×Cn belongs to Bλ

t
if and only if F(x, u)= f ∗λ pλt (x, u) for some f ∈ L2(Cn).

In this section we give a different and more transparent proof that f ∗λ pλt (z, w)
belongs to Bλ

t , based on Gutzmer’s formula for special Hermite expansions. In
proving this we assume λ= 1 and simply write pt in place of p1

t .
Consider the reduced Heisenberg group (or Heisenberg group with compact cen-

ter) Hn
red defined to be Cn

× S1 with group law

(z, ei t)(w, eis)= (z+w, ei(t+s+ 1
2 Im(z·w̄))).
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The infinite-dimensional irreducible unitary representations of Hn
red that are non-

trivial at the center are given (up to unitary equivalence) by the Schrödinger rep-
resentations π j , where now j is a nonzero integer. The case j = 0 corresponds
to the one-dimensional representations that factor through characters of Cn . For
functions f on Hn

red having mean value zero, i.e.,
∫

S1 f (z, ei t) dt = 0, the relevant
representations are just π j with j 6= 0. Let Gred

n be the Heisenberg motion group
formed with Hn

red in place of Hn . Then with the same notations as in Section 4 we
have the following result. Let �r be defined as before.

Theorem 6.2. Let f be a function on Hn
red having mean value zero and satisfying

the conditions stated in Theorem 4.2. For all (z, w) ∈�r , we have∫
Gred

n

| f (g.(iy, iv, ei t))|2 dg

= (2π)−n−1
∑
j 6=0

( ∞∑
k=0

‖ f j
∗ j ϕ

j
k ‖

2
2

k!(n−1)!
(k+ n− 1)!

ϕ
j
k (2iy, 2iv)

)
| j |n.

When we take functions of the form f (x, u)e−i t , exactly one term (correspond-
ing to j = 1) survives in this sum over j (since f j is the (− j)-th Fourier coefficient
of f ), and we get∫

R2n
| f (x+iy, u+iv)|2e(u·y−v·x)dx du= cn

∞∑
k=0

‖ f ×ϕk‖
2
2

k!(n−1)!
(k+n−1)!

ϕk(2iy, 2iv),

which we refer to as Gutzmer’s formula for special Hermite expansions. Here
f × ϕk is the twisted convolution, which is just the λ-twisted convolution when
λ = 1. The equality is valid for all functions f for which the right-hand side
converges. This is so if the norms of the projections f × ϕk decay fast enough.
In particular, the preceding formula is valid if f is replaced by e−t L f with f in
L2(Cn).

Applying Gutzmer’s formula to the function F(z, w)= e−t L f (z, w) we obtain∫
R2n
|F(x + iy, u+ iv)|2e(u·y−v·x)dx du

= cn

∞∑
k=0

‖ f ×ϕk‖
2
2e−2(2k+n)t k!(n−1)!

(k+ n− 1)!
ϕk(2iy, 2iv).

If we can show that∫
R2n
ϕk(2iy, 2iv)p2t(2y, 2v) dy dv =

(k+ n− 1)!
k!(n−1)!

e2(2k+n)t ,

we can integrate Gutzmer’s formula against p2t(2y, 2v) dy dv to get∫
C2n
|F(z, w)|2W 1

t (z, w) dz dw = cn

∫
R2n
| f (x, u)|2 dx du,
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which will prove our claim and hence Theorem 6.1. So it remains to prove the
following lemma.

Lemma 6.3.
∫

R2n
ϕk(iy, iv)pt(y, v) dy dv =

(k+ n− 1)!
k!(n−1)!

e(2k+n)t .

Before proving the lemma we make some remarks. Since the heat kernel pt is
given by the expansion

pt(y, v)= (2π)−n
∞∑

k=0

e−(2k+n)tϕk(y, v)

it follows, in view of the orthogonality properties of ϕk , that

(6-1)
∫

R2n
pt(y, v)ϕk(y, v) dy dv =

(k+ n− 1)!
k!(n−1)!

e−(2k+n)t .

As ϕk are the spherical functions associated to the Gelfand pair (Gn,U (n)), the
formula in the lemma is the analogue of the formula∫

Rn
ϕλ(iy)e−y2/(4t)dy = cnetλ2

,

where ϕλ are the spherical functions on Rn , namely, the Bessel functions. This was
the key formula used in characterising Bergman spaces associated to the Laplacian
on Rn .

Proof of the lemma. Recall from [Szegö 1967] that

Ln−1
k (s)=

k∑
j=0

ck, j (−s) j ,

where the ck, j are constants whose exact values are immaterial. Equation (6-1)
now reads as

(sinh t)−n
∫

R2n

k∑
j=0

ck, j (−1) j 2− j (y2
+ v2) j e−(1+coth t)(y2

+v2)/4 dy dv

= (2π)n
(k+ n− 1)!

k!(n−1)!
e−(2k+n)t .

This can be rewritten as

(6-2) (cosh t)−n
k∑

j=0

ck, j (−1) j 2− j a j (tanh t) j (1+ tanh t)− j−n

= (2π)n
(k+ n− 1)!

k!(n−1)!
e−(2k+n)t ,

where the a j are constants defined by

a j =

∫
R2n
(y2
+ v2) j e−(y

2
+v2)/4 dy dv.
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Now both sides of (6-2) are holomorphic functions of t in a strip containing the
real line, so the equation is true for t negative as well. This leads to

(cosh t)−n
k∑

j=0

ck, j 2− j a j (tanh t) j (1− tanh t)− j−n
= (2π)n

(k+ n− 1)!
k!(n−1)!

e(2k+n)t .

The left-hand side now is simply

(sinh t)−n
∫

R2n

k∑
j=0

ck, j 2− j (y2
+ v2) j e−(−1+coth t)(y2

+v2)/4 dy dv,

which is the same as

(2π)n
∫

R2n
ϕk(iy, iv)pt(y, v) dy dv.

This completes the proof of the lemma and hence of Theorem 6.1. �
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EQUIVARIANT NIELSEN INVARIANTS
FOR DISCRETE GROUPS

JULIA WEBER

For discrete groups G, we introduce equivariant Nielsen invariants. They
are equivariant analogs of the Nielsen number and give lower bounds for
the number of fixed point orbits in the G-homotopy class of an equivariant
endomorphism f : X → X . Under mild hypotheses, these lower bounds are
sharp.

We use the equivariant Nielsen invariants to show that a G-equivariant
endomorphism f is G-homotopic to a fixed point free G-map if the gener-
alized equivariant Lefschetz invariant λG( f ) is zero. Finally, we prove a
converse of the equivariant Lefschetz fixed point theorem.

1. Introduction

The Lefschetz number is a classical invariant in algebraic topology. If the Lefschetz
number L( f ) of an endomorphism f : X → X of a compact CW-complex is
nonzero, then f has a fixed point. This is the famous Lefschetz fixed point theorem.
The converse does not hold: If the Lefschetz number of f is zero, we cannot
conclude f to be fixed point free.

A more refined invariant which allows to state the converse is the Nielsen num-
ber: The Nielsen number N ( f ) is zero if and only if f is homotopic to a fixed
point free map. More generally, the Nielsen number is used to give precise minimal
bounds for the number of fixed points of maps homotopic to f . Its development
was started by Nielsen [1920]; a comprehensive treatment can be found in [Jiang
1983].

We are interested in the equivariant generalization of these results. Given a
discrete group G and a G-equivariant endomorphism f : X→ X of a finite proper
G-CW-complex, we introduce equivariant Nielsen invariants called NG( f ) and
N G( f ). They are equivariant analogs of the Nielsen number and are derived
from the generalized equivariant Lefschetz invariant λG( f ) [Weber 2005, Defi-
nition 5.13].

MSC2000: primary 55M20, 57R91; secondary 54H25, 57S99.
Keywords: Nielsen number, discrete groups, equivariant, Lefschetz fixed point theorem.
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We proceed to show that these Nielsen invariants give minimal bounds for the
number of orbits of fixed points in the G-homotopy class of f . One even obtains
results concerning the type and “location” (connected component of the relevant
fixed point set) of these fixed point orbits. These lower bounds are sharp if X is a
cocompact proper smooth G-manifold satisfying the standard gap hypotheses.

Finally, we prove a converse of the equivariant Lefschetz fixed point theorem: If
X is a G-Jiang space as defined in Definition 5.2, then LG( f )= 0 implies that f is
G-homotopic to a fixed point free map. Here, LG( f ) is the equivariant Lefschetz
class [Lück and Rosenberg 2003a, Definition 3.6], the equivariant analog of the
Lefschetz number.

These results were motivated by work of Lück and Rosenberg [2003a; 2003b].
For G a discrete group and an endomorphism f of a cocompact proper smooth
G-manifold M , they prove an equivariant Lefschetz fixed point theorem [2003a,
Theorem 0.2]. The converse of that theorem is proven here.

Another motivation for the present article is the fact that the algebraic approach
to the equivariant Reidemeister trace provides a good framework for computation.
The connection to the machinery used in the study of transformation groups [Lück
1989; tom Dieck 1987] allows results to translate more readily from transformation
groups to geometric equivariant topology and vice-versa.

When G is a compact Lie group, Wong [1993] obtains results on equivariant
Nielsen numbers which strongly influenced us. The main difference between our
work and Wong’s is that we treat possibly infinite discrete groups. Another dif-
ference is that our approach is more structural. We can read off the equivariant
Nielsen invariants from the generalized equivariant Lefschetz invariant λG( f ).

In case G is a finite group, Ferrario [2003] studies a collection of generalized
Lefschetz numbers which can be thought of as an equivariant generalized Lefschetz
number. In contrast to the generalized equivariant Lefschetz invariant λG( f ) these
do not incorporate the W H -action on the fixed point set X H . A generalized Lef-
schetz trace for equivariant maps has also been defined by Wong, as mentioned in
[Hart 1999].

For compact Lie groups, earlier definitions of generalized Lefschetz numbers
for equivariant maps were made in [Wilczyński 1984; Fadell and Wong 1988].
These authors used the collection of generalized Lefschetz numbers of the maps
f H , for H <G. In general, these numbers are not sufficient since they do not take
the equivariance into account adequately. For further reading on equivariant fixed
point theory, see [Ferrario 2005], where an extensive list of references is given.

Organization of paper. In Section 2, we introduce the generalized equivariant Lef-
schetz invariant. We briefly assemble the concepts and definitions which are needed
for the definition of equivariant Nielsen invariants in Section 3.
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The equivariant Nielsen invariants give lower bounds for the number of fixed
point orbits of f . This is shown in Section 4. The standard gap hypotheses are
introduced, and it is shown that under these hypotheses these lower bounds are
sharp.

In the nonequivariant case, we know that the generalized Lefschetz invariant is
the right element when looking for a precise count of fixed points. We read off the
Nielsen number from this invariant. In general, the Lefschetz number contains too
little information.

But under certain conditions, we can conclude facts about the Nielsen number
from the Lefschetz number directly. These are called the Jiang conditions [1983,
Definition II.4.1] (see also [Brown 1971, Chapter VII]). In Section 5, we introduce
the equivariant version of these conditions. We also give examples of G-Jiang
spaces.

In Section 6, we derive equivariant analogs of statements about Nielsen numbers
found in [Jiang 1983], generalizing results from [Wong 1993] to infinite discrete
groups. In particular, if X is a G-Jiang space, the converse of the equivariant
Lefschetz fixed point theorem holds.

2. The generalized equivariant Lefschetz invariant

Classically, the Nielsen number is defined geometrically by counting essential fixed
point classes [Brown 1971, Chapter VI; Jiang 1983, Definition I.4.1]. Alternatively
one defines it using the generalized Lefschetz invariant.

Let X be a finite CW-complex, let f : X → X be an endomorphism, let x be a
basepoint of X , and let

λ( f )=
∑

α∈π1(X,x)φ

nα ·α ∈ Zπ1(X, x)φ

be the generalized Lefschetz invariant associated to f [Reidemeister 1936; Wecken
1941], where

Zπ1(X, x)φ := Zπ1(X, x)/φ(γ )αγ−1
∼ α, with γ, α ∈ π1(X, x).

Here φ is the map induced by f on the fundamental group π1(X, x). We have
φ(γ )=w f (γ )w−1, where w is a path from x to f (x). The generalized Lefschetz
invariant is also called Reidemeister trace in the literature, which goes back to the
original name “Reidemeistersche Spureninvariante” used by Wecken.

The set π1(X, x)φ is often denoted by R( f ) and called set of Reidemeister
classes of f . Since we will introduce a variation of this set in Definition 2.3, we
prefer to stick with the notation used in [Weber 2005].
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Definition 2.1. The Nielsen number of f is defined by

N ( f ) := #
{
α
∣∣ nα 6= 0

}
.

The Nielsen number is the number of classes in π1(X, x)φ with nonzero coeffi-
cients. A class α with nonzero coefficient corresponds to an essential fixed point
class in the geometric sense.

In the equivariant setting, the fundamental category replaces the fundamental
group. The fundamental category of a topological space X with an action of a
discrete group G is defined as follows [Lück 1989, Definition 8.15].

Definition 2.2. Let G be a discrete group, and let X be a G-space. Then the
fundamental category 5(G, X) is the following category:

• The objects Ob
(
5(G, X)

)
are G-maps x : G/H → X , where the H ≤ G are

subgroups.

• The morphisms Mor
(
x(H), y(K )

)
are pairs (σ, [w]), where

– σ is a G-map σ : G/H → G/K
– [w] is a homotopy class of G-maps w :G/H× I→ X relative G/H×∂ I

such that w1 = x and w0 = y ◦ σ .

The fundamental category is a combination of the orbit category of G and the
fundamental groupoid of X . If X is a point, then the fundamental category is just
the orbit category of G, whereas when G is the trivial group, the definition reduces
to the definition of the fundamental groupoid of X .

We often view x as the point x(1H) in the fixed point set X H . We call X H (x)
the connected component of X H containing x(1H). We also consider the relative
fixed point set, the pair

(
X H (x), X>H (x)

)
. Here X>H (x) = {z ∈ X H (x) | Gz 6=

H} is the singular set, where Gz denotes the isotropy group of z. In order to
simplify notation, we use f H (x) to denote f |X H (x), and we use fH (x) instead of
f |(

X H (x),X>H (x)
).

Fixed points of f can only exist in X H (x) when X H ( f (x))= X H (x), i.e, when
the points f (x) and x lie in the same connected component of X H .

Definition 2.3. For x ∈ Ob5(G, X) with X H ( f (x)) = X H (x) and a morphism
v = (id, [w]) ∈Mor( f (x), x), set

Zπ1
(
X H (x), x

)
φ′
:= Zπ1

(
X H (x), x

)
/φ(γ )αγ−1

∼ α,

where α ∈ π1(X H (x), x), γ ∈ Aut(x) and φ(γ )= vφ(γ )v−1
∈ Aut(x).

The automorphism group Aut(x) of the object x in the category 5(G, X) is a
group extension lying in the short exact sequence

1→ π1(X H (x), x)→ Aut(x)→W Hx → 1.
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Here W H := NG H/H is the Weyl group of H , it acts on X H . We call W Hx the
subgroup of W H which fixes the connected component X H (x).

Groups obtained from different choices of the path w and of the point x in its
isomorphism class x̄ are canonically isomorphic, so those choices do not play a
role. The group Zπ1

(
X H (x), x

)
φ′

generalizes the group Zπ1(X, x)φ defined above.
So it can be seen as the free abelian group generated by equivariant Reidemeister
classes of f H (x) with respect to the action of W Hx on X H (x).

A map (σ, [w]) ∈Mor(x, y) induces a group homomorphism

(σ, [w])∗ : Zπ1
(
X K (y), y

)
φ′
→ Zπ1

(
X H (x), x

)
φ′

by twisted conjugation, and we know that the induced group homomorphism is the
same for every map in Mor(x, y) [Weber 2005, Lemma 5.2].

The generalized equivariant Lefschetz invariant [Weber 2005, Definition 5.13],
λG( f ), is an element in the group

3G(X, f ) :=
⊕

x̄∈Is5(G,X),
X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′ .

Here Is5(G, X) denotes the set of isomorphism classes of the category 5(G, X).
Geometrically, it corresponds to the set of W H -orbits of connected components
X H (x) of the fixed point sets X H , for (H) ∈ consub(G), i.e., for a set of represen-
tatives of conjugacy classes of subgroups of G. There is a bijection Is5(G, X)

'
−→

q(H)∈consub(G)W H \ π0(X H ) which sends x : G/H → X to the orbit under the
WH-action on π0(X H ) of the component X H (x) of X H which contains the point
x(1H) [Lück and Rosenberg 2003a, Equation 3.3].

Let f̃ H (x) and ˜f >H (x) denote the lift of f H (x) to the universal covering space

X̃ H (x) and to the subset X̃>H (x) ⊆ X̃ H (x) that projects to X>H (x) under the
covering map.

At the summand indexed by x̄ , the generalized equivariant Lefschetz invariant
is given by

λG( f )x̄ := LZ Aut(x)( f̃ H (x), ˜f >H (x)
)
∈ Zπ1(X H (x), x)φ′,

where the refined equivariant Lefschetz number [Weber 2005, Definition 5.7] ap-
pears on the right hand side. It is defined by

LZ Aut(x)( f̃ H (x), ˜f >H (x)
)
:=

∑
p≥0

(−1)p trZ Aut(x)(Cc
p( f̃ H (x), ˜f >H (x))),

where the trace map trZ Aut(x) [Weber 2005, Definition 5.4] is induced by the pro-
jection Z Aut(x) → Zπ1(X H (x), x)φ′,

∑
g∈Aut(x) rg · g 7→

∑
g∈π1(X H (x),x) rg · ḡ.

Instead of Z, other rings can be used.
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This trace map generalizes the trace map used in [Lück and Rosenberg 2003a],
and the refined equivariant Lefschetz number is a generalization of the orbifold
Lefschetz number (Definition 1.4 of that reference).

The refined equivariant Lefschetz number LQ Aut(x)
(

f̃ H (x)
)

will be particularly
important to us, so we give some formulas describing it. For a finite proper G-
CW-complex X we have [Weber 2005, Lemma 5.9]

LQ Aut(x)( f̃ H (x)
)
=

∑
p≥0

(−1)p
∑

G·e∈G\Ip(X)

|Ge|
−1
· incφ( f, e) ∈Qπ1(X H (x), x)φ′ .

Here Ip(X) denotes the set of p-cells of X , e runs through the equivariant cells
of X , and Ge is its isotropy group. The refined incidence number [Weber 2005,
Definition 5.8] incφ( f, e) ∈ Zπ1(X H (x), x)φ′ for a p-cell e ∈ Ip(X) is defined to
be the “degree” of the composition

ē/∂e
ie
−→

∨
e′∈Ip(X)

e′/∂e′
h∼
−→ X p/X p−1

f
−→ X p/X p−1

h−1
∼

−−−→

∨
e′∈Ip(X)

e′/∂e′

prπ ·ē/∂e
−−−−→ π · ē/∂e

·
−→ πφ′ · ē/∂e.

Here ē is the closure of the open p-cell e and ∂e= ē\e. The map ie is the inclusion,
h is a homeomorphism and prπ ·ē/∂e is the projection.

If X = M is a cocompact proper G-manifold, we have [Weber 2005, Theo-
rem 6.6]

LQ Aut(x)( f̃ H (x)
)
=

∑
W Hx ·z∈

W Hx \Fix( f H (x))

∣∣(W Hx)z
∣∣−1 deg

((
idTz M H (x)−Tz( f H (x))

)c)
·αz.

Here the map on the tangent space is extended to the one-point compactification(
Tz M H (x)

)c. The relative versions of these formulas also hold.

We have LQ Aut(x)
(

f̃ H (x)
)
= chG(X, f )

(
λG( f )

)
x̄ [Weber 2005, Lemma 6.4],

where chG(X, f ) : 3G(X, f )→
⊕

ȳ∈Is5(G,X) Qπ1(X K (y), y)φ′ is the character

map [Weber 2005, Definition 6.2]. So we can derive LQ Aut(x)
(

f̃ H (x)
)

from λG( f ).
The equivariant analog of the Lefschetz number is the equivariant Lefschetz

class LG( f ) ∈
⊕

x̄∈Is5(G,X),X H ( f (x))=X H (x) Z, whose value at x̄ is

LG( f )x̄ = LZW Hx
(

f H (x), f >H (x)
)

[Lück and Rosenberg 2003a, Definition 3.6]. The projection of π1(X H (x), x)φ′ to
the trivial group {1} induces an augmentation map sending λG( f ) to LG( f ):

s :
⊕

x̄∈Is5(G,X),
X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′ →
⊕

x̄∈Is5(G,X),
X H ( f (x))=X H (x)

Z.
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3. Equivariant Nielsen invariants

Given an element
∑

α nα ·α∈Zπ1(X H (x), x)φ′ , we call a class α∈π1(X H (x), x)φ′
essential if the coefficient nα is nonzero.

Let G be a discrete group and let X be a cocompact proper smooth G-manifold.
Let f : X→ X be a smooth G-equivariant map such that Fix( f )∩∂X =∅ and such
that for every z ∈Fix( f ) the determinant of the map (idTz X −Tz f ) is different from
zero. One can always find a representative in the G-homotopy class of f which
satisfies this assumption. Since the generalized equivariant Lefschetz invariant is
G-homotopy invariant, we can replace f by this representative if necessary.

Definition 3.1. The equivariant Nielsen class of f is

νG( f )=
∑

Gz∈G\Fix( f )

det
(
idTz X −Tz( f )

)∣∣det
(
idTz X −Tz( f )

)∣∣ ·αz.

Here αz ∈ π1(X Gz (z), x) is the loop given by [t ∗ f (t)−1
∗ w], where x is a

basepoint in X Gz (z), t is a path from x to z and w is a path from f (x) to x . The
basepoint x may differ from z, e.g., if we have more than one fixed point in a
connected component of X Gz . If x = z, we may choose t and w to be constant.
The equivalence relation assures that this definition is independent of the choices
involved.

We can also derive the equivariant Nielsen class νG( f ) from the generalized
equivariant Lefschetz invariant λG( f ).

Lemma 3.2. The invariant ν( f ) is the image of the generalized equivariant Lef-
schetz invariant λ( f ) under the quotient map where we divide out the images of
nonisomorphisms:

νG( f )= λG( f ) ∈
⊕

x̄∈Is5(G,X),
X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′/{Im(σ, [w])∗ | σ nonisom.}

Proof. We consider the equation obtained in the refined equivariant Lefschetz fixed
point theorem [Weber 2005, Theorem 0.2]. We have

λG( f )=
∑

Gz∈G\Fix( f )

3G(z, f ) ◦ indGz⊆G(DegGz
0 ((idTz X −Tz f )c)).

Here DegGz
0 is the equivariant degree [Lück and Rosenberg 2003a], it has values in

the Burnside ring A(Gz). On basis elements [Gz/L] ∈ A(Gz), the map3G(z, f )◦
indGz⊆G is given by

3G(z, f ) ◦ indGz⊆G([Gz/L])= (pr, [cst])∗αz,
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where cst denotes the constant map and

(pr, [cst])∗ : Zπ1(X Gz (z), x)φ′→ Zπ1(X L(z ◦ pr), x ◦ pr)φ′

is the map induced by the projection pr : Gz/L→ Gz/Gz .
We know that DegGz

0 ((idTz X −Tz f )c) is a unit of the Burnside ring A(Gz) since(
DegGz

0 ((idTz X −Tz f )c)
)2
= 1 [Lück and Rosenberg 2003a, Example 4.7]. In gen-

eral a unit of the Burnside ring A(Gz) may consist of more than one summand
[tom Dieck 1979]. The summand [Gz/Gz] is always included with a coefficient
+1 or −1, but there might be summands [Gz/L] for L < Gz appearing. So one
fixed point might give more than one class with nonzero coefficients.

If we divide out the images of nonisomorphisms, then we divide out the im-
age of (pr, [cst])∗ for all L 6= Gz . We are left with the summand ±αz coming
from ±1[Gz/Gz]. This cannot lie in the image of any nonisomorphism. So each
fixed point leads to exactly one summand. The sign is the sign of the determinant
det
(
idTz X −Tz( f )

)
, so the claim follows. �

We set

Zπ1(X H (x), x)φ′′ := Zπ1(X H (x), x)φ′/{Im(σ, [w])∗ | σ nonisom.}.

We use the equation established in Lemma 3.2 to define νG( f ) directly for all
endomorphisms of finite proper G-CW-complexes.

Definition 3.3. Let X be a finite proper G-CW-complex, and let f : X→ X be an
equivariant endomorphism. Then the equivariant Nielsen class of f is

νG( f ) := λG( f ) ∈
⊕

x̄∈Is5(G,X),
X H ( f (x))=X H (x)

Zπ1(X H (x), x)φ′′ .

We define equivariant Nielsen invariants by counting the essential classes α of

νG( f )x̄ in Zπ1(X H (x), x)φ′′ and of LQ Aut(x)
(

f̃ H (x)
)

in Qπ1(X H (x), x)φ′ .

Definition 3.4. Let G be a discrete group, let X be a finite proper G-CW-complex,
and let f : X→ X be a G-equivariant map.

Then the equivariant Nielsen invariants of f are elements

NG( f ), N G( f ) ∈
⊕

x̄∈Is5(G,X)

Z

defined for x̄ with X H ( f (x))= X H (x) by

NG( f )x̄ := #
{
essential classes of νG( f )x̄

}
,
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N G( f )x̄ :=min
{

#C
∣∣∣ C⊆

⋃
y≥x

π1(X K (y), y)φ′ such that for all z̄ ≥ x̄ and

for all essential classes α of LQ Aut(z)( f̃ Gz (z)
)

there are

β ∈ C and (σ, [t]) ∈Mor(z, yβ) such that (σ, [t])∗(β)= α
}
.

We continue them by 0 to x̄ ∈ Is5(G, X) with X H ( f (x)) 6= X H (x).

Note that NG( f )x̄ = NG( fH (x)) and N G( f )x̄ = N OG( f H (x)) in the notation
of [Wong 1993]. Thus the invariants defined here using the algebraic approach are
equivalent to the invariants defined using the classical covering space approach of
Wong.

An essential class α of LQ Aut(x)
(

f̃ H (x)
)

corresponds to an essential fixed point
class of f H (x), a W Hx -orbit of fixed points which one cannot get rid of under
any G-homotopy, as can be seen from the refined orbifold Lefschetz fixed point
theorem [Weber 2005, Theorem 6.6]. An essential class α of νG( f )x̄ corresponds
to an essential fixed point class of fH (x), an orbit of fixed points on X H (x) \
X>H (x) that cannot be moved into X>H (x). Counting the essential classes will
give us information on the number of fixed points and fixed point orbits.

The equivariant Nielsen invariants are G-homotopy invariant since they are de-
rived from λG( f ), which is itself G-homotopy invariant.

Proposition 3.5. Given a G-homotopy f 'G f ′, we have

NG( f )= NG( f ′), N G( f )= N G( f ′).

Proof. If f 'G f ′, with a homotopy H : X× I→ X such that H0= f and H1= f ′,
then by invariance under homotopy equivalence [Weber 2005, Theorem 5.14] we
have an isomorphism 3G(i1)

−13G(i0) : 3G(X, f )
∼
−→ 3G(X, f ′) which sends

λG( f ) to λG( f ′). The isomorphisms3G(i1) and3G(i0) are given by composition
of maps, so they do not change the number of essential classes. They also do not
change the property of a class to lie in the image of a nonisomorphism. So we have
NG( f )= NG( f ′).

An isomorphism i0∗ :Q5(G, X)φ,ȳ→Q5(G, X × I )8,i0(y) is induced by the
inclusion i0, and analogously i1 induces an isomorphism. These isomorphisms
do not change the number of essential classes. We have chG(X, f )(λG( f )) =
(i0∗)

−1i1∗ chG(X, f ′)(λG( f ′)), so N G( f )= N G( f ′). �

4. Lower bound property

The equivariant Nielsen invariants give a lower bound for the number of fixed point
orbits on X H (x)\X>H (x) and on X H (x), for maps lying in the G-homotopy class
of f . Under mild hypotheses, this is even a sharp lower bound.
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Definition 4.1. Let G be a discrete group, let X be a finite proper G-CW-complex,
and let f : X → X be a G-equivariant map. For every x̄ ∈ Is5(G, X), with
x : G/H → X , we set

MG( f )x̄ :=min
{
# fixed point orbits of ϕH (x)

∣∣ϕ 'G f
}
,

MG( f )x̄ :=min
{
# fixed point orbits of ϕH (x)

∣∣ϕ 'G f
}
.

When speaking of fixed point orbits of f H (x), we can either look at the W Hx -
orbits W Hx · z ⊆ X H (x) or at the G-orbits G · z ⊆ X (H)(x), for a fixed point z in
X H (x). These two notions are of course equivalent.

We now proceed to show the first important property of the equivariant Nielsen
invariants, the lower bound property.

Proposition 4.2. For every x̄ ∈ Is5(G, X) we have

NG( f )x̄ ≤ MG( f )x̄ , N G( f )x̄ ≤ MG( f )x̄ .

Proof. (1) If α ∈ π1(X H (x), x)φ′′ is an essential class of νG( f )x̄ , there has to be
at least one fixed point orbit in X H (x) \ X>H (x) that corresponds to α and that
cannot be moved into X>H (x). So, for any ϕ 'G f , the restriction ϕH must have
at least NG( f )x̄ fixed point orbits in X H (x) \ X>H (x). We arrive at NG( f )x̄ ≤
{#fixed point orbits of ϕH } for all ϕ 'G f , so NG( f )x̄ ≤ MG( f )x̄ .

(2) Let x̄ ∈ Is5(G, X). Suppose that ϕ 'G f such that ϕH (x) has MG( f )x̄
fixed point orbits in X H (x). Let C ⊆

⋃
x̄≤ȳ π1(X K (y), y)φ′ such that N G(ϕ)x̄ =

N G( f )x̄ = #C. If there were less than #C fixed point orbits in X H (x), there would
be less that #C essential classes and we could have chosen a smaller C. So there are
at least #C essential classes, and thus ϕH (x) has at least #C fixed point orbits. �

To prove the sharpness of this lower bound, we need certain hypotheses, which
are usually introduced when dealing with these problems. Such conditions were
first used in [Fadell and Wong 1988]. Some authors treat slightly weakened as-
sumptions [Ferrario 1999; Ferrario 2003; Jezierski 1995; Wilczyński 1984]. We
do not weaken the standard gap hypotheses in the context of functorial equivariant
Lefschetz invariants since the standard gap hypotheses are not homotopy invariant.
So an analog of Theorem 6.3 would not hold.

Definition 4.3. Let G be a discrete group and let X be a cocompact smooth G-
manifold. We say that X satisfies the standard gap hypotheses if for each x̄ ∈
Is5(G, X), with x :G/H→ X , the inequalities dim X H (x)≥ 3 and dim X H (x)−
dim X>H (x)≥ 2 hold.

Under these hypotheses, we can use an equivariant analog of Wecken’s classical
method [1941] to coalesce fixed points.
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Lemma 4.4. Let G be a discrete group and let X be a cocompact proper smooth G-
manifold satisfying the standard gap hypotheses. Let f : X→ X be a G-equivariant
map. Let O1 = Gx1 and O2 = Gx2 be two distinct isolated G-fixed point orbits,
where x1 : G/H → X and x2 : G/K → X with x1 ≤ x2. Suppose that there are
paths (σ1, [t1]) ∈Mor(x, x1) and (σ2, [t2]) ∈Mor(x, x2) for an x̄ ∈5(G, X), with
x :G/H→ X , such that (σ1, [t1])∗1x1 = α= (σ2, [t2])∗1x2 , i.e., that the fixed point
orbits induce the same α ∈ π1(X H (x), x)φ′ . Then there exists a G-homotopy { ft }

relative to X>(H) such that f0 = f and Fix f1 = Fix f0−GO1.

Proof. Suppose first that x1 < x2. Then Mor(x1, x2) 6= ∅. By replacing x1 and
x2 with other points in the orbit if necessary, we can suppose that there exists a
morphism (τ, [v]) ∈ Mor(x1, x2), where v is a path in X H (x) with v1 = x1 and
v0 = x2 ◦ τ and τ : G/H → G/K is a projection. We know that v ' f H

◦ v

(relative endpoints). (This is an equivalent characterization of x1 and x2 belonging
to the same fixed point class [Jiang 1983, I.1.10].) Since x1 ∈ X H (x)\X>H (x) and
x2 ∈ X>H (x) and dim X H (x)− dim X>H (x) ≥ 2, we may assume that v can be
chosen such that v((0, 1]) ⊆ X H (x) \ X>H (x). We coalesce x1 and x2 along v as
in [Wong 1991b, 1.1] and [Schirmer 1986, 6.1]. We can do this by only changing
f in a (cone-shaped) neighborhood U (v) of v. Because of the proper action of G
on X and the free action of W H on X H

\ X>H , this neighborhood U (v) can be
chosen such that in X H

\ X>H it does not intersect its g-translates for g 6∈ H ≤ G.
Taking the G-translates of U (v), we move O1 to O2 along the paths Gv in GU (v),
not changing the map f outside GU (v).

Now suppose x1 = x2. In this case, the result follows from [Wong 1991a, 5.4],
since X H (x) \ X>H (x) is a free and proper W Hx -space, where again the proper
action of G on X ensures that we can find a neighborhood of a path from x1 to x2

such that the G/H -translates do not intersect. �

From Lemma 4.4, we can conclude the sharpness of the lower bound given by
the equivariant Nielsen invariants.

Theorem 4.5. Let G be a discrete group. Let X be a cocompact proper smooth G-
manifold satisfying the standard gap hypotheses. Let f : X→ X be a G-equivariant
endomorphism. Then

MG( f )x̄ = NG( f )x̄ , MG( f )x̄ = N G( f )x̄

for all x̄ ∈ Is5(G, X).

Proof. (1) Since X is a cocompact smooth G-manifold, there is a G-map f ′ which
is G-homotopic to f and which has only finitely many fixed point orbits. We apply
Lemma 4.4 to f ′ to coalesce fixed point orbits in X H (x)\X>H (x)with others of the
same class α ∈Zπ1(X H (x), x)φ′ . We move them into X>H (x) whenever possible.
(We might need to create a fixed point orbit in the inessential fixed point class
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beforehand; see [Wong 1991b, 1.1].) We remove the inessential fixed point orbits.
We arrive at a map h 'G f such that NG( f )x̄ = #{fixed point orbits of hH (x)} ≥
MG( f )x̄ . Using Proposition 4.2, we obtain equality.

(2) Since X is a cocompact smooth G-manifold, there is a map f ′ which is G-
homotopic to f and which only has finitely many fixed point orbits. We have a
partial ordering on the ȳ ≥ x̄ given by ȳ ≥ z̄⇔Mor(z, y) 6=∅. We apply Lemma
4.4 to f ′ to coalesce fixed point orbits of the same class, starting from the top.
Note that when we remove fixed point orbits, we can only move them up in this
partial ordering. That is why the definition has to be so complicated. We remove
the inessential fixed point orbits. We are left with one fixed point orbit for every
essential class.

We now look at a class C such that N G( f )x̄ = #C, and we coalesce the es-
sential fixed point orbits with the corresponding classes appearing in C. (If the
corresponding class in C is inessential, we might need to create a fixed point orbit
in this inessential fixed point class beforehand.) We obtain a map h 'G f which
has exactly #C fixed point orbits. Hence

N G( f )x̄ = #{fixed point orbits of hH (x)} ≥ MG( f )x̄ .

Using Proposition 4.2, we obtain equality. �

In general, it is not possible to find a map h 'G f realizing all minima simulta-
neously. As an example, one can take G = Z/2 acting on X = S4 as an involution
so that XZ/2

= S3. One obtains MG(idS4)x̄ = 0 for all x̄ ∈ Is5(Z/2, S4), but the
minimal number of fixed points in the G-homotopy class of the identity idS4 is
equal to 1 [Wong 1993, Remark 3.4]. In this example, the standard gap hypotheses
are not satisfied. Other examples where the standard gap hypotheses do not hold
and where the converse of the equivariant Lefschetz theorem is false are given in
[Ferrario 1999, Section 5].

5. The G-Jiang condition

In the nonequivariant case, we know that the generalized Lefschetz invariant is
the right element when looking for a precise count of fixed points. We read off the
Nielsen numbers from this invariant. In general, the Lefschetz number contains too
little information. But under certain conditions, we can conclude facts about the
Nielsen numbers from the Lefschetz numbers directly, and thus obtain a converse
of the Lefschetz fixed point theorem.

These conditions are called Jiang conditions. See [Jiang 1983, Definition II.4.1],
where one can find a thorough treatment, and [Brown 1971, Chapter VII]. The Jiang
group is a subgroup of π1(X, f (x)) [Jiang 1983, Definition II.3.5]. We generalize
its definition to the equivariant case.
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Definition 5.1. Let G be a discrete group, let X be a finite proper G-CW-complex,
and let f : X→ X be a G-equivariant endomorphism. Then a G-equivariant self-
homotopy h : f 'G f of f determines a path h(x,−)∈π1(X H (x), f (x)) for every
x̄ ∈ Is5(G, X), with x : G/H → X . Define the G-Jiang group of (X, f ) to be

JG(X, f ) :=
{ ∑

x̄∈5(G,X)

[
h(x,−)

] ∣∣∣∣ h : f 'G f G-equivariant self-homotopy
}

≤

⊕
x̄∈5(G,X)

π1
(
X H (x), f (x)

)
,

and define the G-Jiang group of X to be

JG(X) :=
{ ∑

x̄∈5(G,X)

[
h(x,−)

] ∣∣∣∣ h : id'G id G-equivariant self-homotopy
}

≤

⊕
x̄∈5(G,X)

π1
(
X H (x), x

)
.

In the nonequivariant case, we know that the Jiang group J (X, f, x) is a sub-
group of the centralizer of π1( f, x)

(
π1(X, x)

)
in π1

(
X, f (x)

)
. In particular,

J (X)≤ Z
(
π1(X, x)

)
,

where Z
(
π1(X, x)

)
denotes the center of π1(X, x) [Jiang 1983, Lemma II.3.7].

Furthermore, the isomorphism ( f ◦w)∗ :π1
(
X, f (x1)

)
→π1

(
X, f (x0)

)
induced by

a pathw from x0 to x1 induces an isomorphism ( f ◦w)∗ : J (X, f, x1)→ J (X, f, x0)

which does not depend on the choice of w. So the definition does not depend on
the choice of the basepoint [Jiang 1983, Lemma II.3.9]. It is also known that
J (X) ≤ J (X, f ) ≤ π1(X) for all f [Jiang 1983, Lemma II.3.8]. This leads to
the consideration of spaces with J (X)= π1(X) in the definition of a Jiang space.
All these lemmata also make sense in the equivariant case. Thus we make the
following definition.

Definition 5.2. Let G be a discrete group and let X be a cocompact G-CW-
complex. Then X is called a G-Jiang space if for all x̄ ∈ Is5(G, X) we have

JG(X)x̄ = π1
(
X H (x), x

)
.

The group JG(X, f ) acts on 3G(X, f ) as follows: If X H ( f (x))= X H (x) and
X H ( f (x)) = X H (x), then JG(X, f )x̄ acts on Zπ1(X H (x), x). The element u =
[h(x,−)] ∈ JG(X, f )x̄ acts as composition with [wuw−1

], where v = (id, [w]) ∈
Mor( f (x), x).

Since JG(X, f )x̄ is contained in the centralizer of π1( f H (x), x)
(
π1(X H (x), x)

)
in π1

(
X H (x), f (x)

)
, this action induces an action on Zπ1(X H (x), x)φ′ by compo-

sition, whence on3G(X, f )x̄ . Thus JG(X, f ) acts on3G(X, f ), and by invariance
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of λG( f ) under homotopy equivalence, we see that

λG( f ) ∈
(
3G(X, f )

)JG(X, f )
.

Examples of G-Jiang spaces can be obtained from Jiang spaces. It is known
[Jiang 1983, Theorem II.3.11] that the class of Jiang spaces is closed under homo-
topy equivalence and the topological product operation and contains

• simply connected spaces,

• generalized lens spaces,

• H-spaces,

• homogeneous spaces of the form A/A0 where A is a topological group and
A0 is a subgroup which is a connected compact Lie group.

Hence we obtain many examples of G-Jiang spaces using the following propo-
sition, analogous to [Wong 1993, Proposition 4.9].

Proposition 5.3. Let G be a discrete group, and let X be a free cocompact con-
nected proper G-space. If X/G is a Jiang space, then X is a G-Jiang space.

Proof. Since X is connected and free, the set Is5(G, X) consists of one element.
Let x be a basepoint of X . We need to check that JG(X)x̄ = π1(X, x). Let X

p
−→

X/G be the projection. The Jiang subgroup of X/G is given by

J (X/G) :=
{[

h(p(x),−)
] ∣∣∣ h : idX/G ' idX/G self-homotopy

}
≤ π1

(
X/G, p(x)

)
.

Let α ∈ π1(X, x). Since X
p
−→ X/G is a discrete cover, X̃ = X̃/G. There is a map

p# : π1(X, x)→ π1(X/G, p(x)) induced by the projection. Since X/G is a Jiang
space, J (X/G)= π1(X/G, p(x)), so there is a homotopy h : idX/G ' idX/G such
that p#(α)= [h(p(x),−)]. Because of the free and proper action of G on X , this
homotopy h can be lifted to a G-equivariant homotopy h′ : idX 'G idX such that
α = [h′(x,−)]. Thereby α ∈ JG(X). �

6. The converse of the equivariant Lefschetz Fixed Point Theorem

One can derive equivariant analogs of statements about Nielsen numbers found in
[Jiang 1983], generalizing results from [Wong 1993] to infinite discrete groups.
In particular, if X is a G-Jiang space, the converse of the equivariant Lefschetz
fixed point theorem holds. The next theorem can be compared with [Jiang 1983,
Theorem II.4.1].
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Theorem 6.1. Let G be a discrete group, and let X be a finite proper G-CW-
complex which is a G-Jiang space. Then for any G-map f : X → X and x̄ ∈
Is5(G, X) with x : G/H → X we have:

LG( f )x̄ = 0 H⇒ λG( f )x̄ = 0 and NG( f )x̄ = 0,

LG( f )x̄ 6= 0 H⇒ λG( f )x̄ 6= 0 and NG( f )x̄ = #
{
π1(X H (x), x)φ′′

}
.

Here LG( f ) is the equivariant Lefschetz class [Lück and Rosenberg 2003a, Defi-
nition 3.6], the equivariant analog of the Lefschetz number.

Proof. Since X is a G-Jiang space, the G-Jiang group JG(X) acts transitively on
π1(X H (x), x) for all x̄ ∈ Is5(G, X). This implies that

λG( f )x̄ =
∑
α

nα ·α = n ·
∑
α

α

for some n ∈Z. This leads to LG( f )x̄ =n ·#
{
π1(X H (x), x)φ′

}
by the augmentation

map. We see that

LG( f )x̄ = 0 H⇒ n = 0

H⇒ λG( f )x̄ = 0

H⇒ νG( f )x̄ = 0

H⇒ NG( f )x̄ = 0,

LG( f )x̄ 6= 0 H⇒ n 6= 0

H⇒ λG( f )x̄,α 6= 0 for all α ∈ Z(π1(X H (x), x))φ′

H⇒ νG( f )x̄,α 6= 0 for all α ∈ Z(π1(X H (x), x))φ′′

H⇒ NG( f )x̄ = #
{
π1(X H (x), x)φ′′

}
. �

The proof of Theorem 6.1 already works if JG(X, f ) acts transitively on every
summand of 3G(X, f ). We could have called X a G-Jiang space if the condition
that JG(X, f ) acts transitively on every summand of 3G(X, f ) is satisfied. But
this condition is less tractable. It is implied by JG(X, f )x̄ = π1(X H (x), f (x)) for
all x̄ , which is implied by JG(X)x̄ = π1(X H (x), x) for all x̄ .

We now show that f is G-homotopic to a fixed point free G-map if the gener-
alized equivariant Lefschetz invariant λG( f ) is zero.

Theorem 6.2. Let G be a discrete group. Let X be a cocompact proper smooth G-
manifold satisfying the standard gap hypotheses. Let f : X→ X be a G-equivariant
endomorphism. If λG( f )= 0, then f is G-homotopic to a fixed point free G-map.
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Proof. If λG( f )=0, then chG(X, f )(λG( f ))=0, and therefore we have N G( f )x̄=
0 for all x̄ ∈ Is5(G, X). We know from Theorem 4.5 that N G( f )x̄ = MG( f )x̄ =
min{# fixed point orbits of ϕH (x) |ϕ 'G f }. In particular, for x : G/{1} → X we
obtain a map ϕ such that ϕ{1}(x) is fixed point free and ϕ 'G f . Thus we obtain
our result on every connected component of X , and combining these we arrive at
a map h 'G f which is fixed point free. �

These two theorems, Theorem 6.1 and Theorem 6.2, combine to give the main
theorem of this paper, the converse of the equivariant Lefschetz fixed point theorem.

Theorem 6.3. Let G be a discrete group. Let X be a cocompact proper smooth
G-manifold satisfying the standard gap hypotheses which is a G-Jiang space. Let
f : X→ X be a G-equivariant endomorphism. Then the following holds:

If LG( f )= 0, then f is G-homotopic to a fixed point free G-map.

Proof. We know that LG( f ) = 0 means that LG( f )x̄ = 0 for all x̄ ∈ Is5(G, X).
Since X is a G-Jiang space, by Theorem 6.1 this implies that λG( f )x̄ = 0 for all
x̄ ∈ Is5(G, X), so we have λG( f ) = 0. We apply Theorem 6.2 to arrive at the
desired result. �

Remark 6.4. As another corollary of Theorem 6.2, we obtain: If G is a discrete
group and X is a cocompact proper smooth G-manifold satisfying the standard
gap hypotheses, then χG(X) = 0 implies that the identity idX is G-homotopic
to a fixed point free G-map. This was already stated in [Lück and Rosenberg
2003a, Remark 6.8]. Here χG(X) is the universal equivariant Euler characteristic
of X [Lück and Rosenberg 2003a, Definition 6.1] defined by χG(X)x̄ = χ

(
W Hx \

X H (x),W Hx \ X>H (x)
)
∈ Z, we have χG(X)= LG(idX ). We calculate that

λG(idX )x̄ =
∑
p≥0

(−1)p
∑

Aut(x)·e∈

Aut(x)\I p (X̃ H (x),X̃>H (x))

incφ
(
id

X̃ H (x)
, e
)

= χ
(
W Hx \ X H (x),W Hx \ X>H (x)

)
· 1 ∈ Zπ1

(
X H (x), x

)
φ′
.

So we have χG(X) = 0 if and only if λG(idX ) = 0, and with Theorem 6.2 we
conclude that there is an endomorphism G-homotopic to the identity which is fixed
point free.
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VIVATSGASSE 7
D-53111 BONN

GERMANY

jweber@mpim-bonn.mpg.de



Guidelines for Authors

Authors may submit manuscripts at pjm.math.berkeley.edu/about/journal/submissions.html
and choose an editor at that time. Exceptionally, a paper may be submitted in hard copy to
one of the editors; authors should keep a copy.

By submitting a manuscript you assert that it is original and is not under consideration
for publication elsewhere. Instructions on manuscript preparation are provided below. For
further information, visit the web address above or write to pacific@math.berkeley.edu or
to Pacific Journal of Mathematics, University of California, Los Angeles, CA 90095–1555.
Correspondence by email is requested for convenience and speed.

Manuscripts must be in English, French or German. A brief abstract of about 150 words or
less in English must be included. The abstract should be self-contained and not make any
reference to the bibliography. Also required are keywords and subject classification for the
article, and, for each author, postal address, affiliation (if appropriate) and email address if
available. A home-page URL is optional.

Authors are encouraged to use LATEX, but papers in other varieties of TEX, and exceptionally
in other formats, are acceptable. At submission time only a PDF file is required; follow
the instructions at the web address above. Carefully preserve all relevant files, such as
LATEX sources and individual files for each figure; you will be asked to submit them upon
acceptance of the paper.

Bibliographical references should be listed alphabetically at the end of the paper. All
references in the bibliography should be cited in the text. Use of BibTEX is preferred but
not required. Any bibliographical citation style may be used but tags will be converted to
the house format (see a current issue for examples).

Figures, whether prepared electronically or hand-drawn, must be of publication quality.
Figures prepared electronically should be submitted in Encapsulated PostScript (EPS) or
in a form that can be converted to EPS, such as GnuPlot, Maple or Mathematica. Many
drawing tools such as Adobe Illustrator and Aldus FreeHand can produce EPS output.
Figures containing bitmaps should be generated at the highest possible resolution. If there
is doubt whether a particular figure is in an acceptable format, the authors should check
with production by sending an email to pacific@math.berkeley.edu.

Each figure should be captioned and numbered, so that it can float. Small figures occupying
no more than three lines of vertical space can be kept in the text (“the curve looks like
this:”). It is acceptable to submit a manuscript will all figures at the end, if their placement
is specified in the text by means of comments such as “Place Figure 1 here”. The same
considerations apply to tables, which should be used sparingly.

Forced line breaks or page breaks should not be inserted in the document. There is no point
in your trying to optimize line and page breaks in the original manuscript. The manuscript
will be reformatted to use the journal’s preferred fonts and layout.

Page proofs will be made available to authors (or to the designated corresponding author)
at a Web site in PDF format. Failure to acknowledge the receipt of proofs or to return
corrections within the requested deadline may cause publication to be postponed.



PACIFIC JOURNAL OF MATHEMATICS

Volume 231 No. 1 May 2007

Nonexistence results and convex hull property for maximal surfaces in
Minkowski three-space 1

ROSA MARIA BARREIRO CHAVES AND LEONOR FERRER

Energy and topology of singular unit vector fields on S3 27
PABLO M. CHACÓN AND GIOVANNI DA SILVA NUNES

Singular angles of weak limiting metrics under certain integral curvature
bounds 35

QING CHEN, XIUXIONG CHEN AND WEIYONG HE

On Ahlfors’ Schwarzian derivative and knots 51
MARTIN CHUAQUI

On isoperimetric surfaces in general relativity 63
JUSTIN CORVINO, AYDIN GEREK, MICHAEL GREENBERG AND
BRIAN KRUMMEL

Irreducible representations for the abelian extension of the Lie algebra of
diffeomorphisms of tori in dimensions greater than 1 85

CUIPO JIANG AND QIFEN JIANG

Higher homotopy commutativity of H -spaces and homotopy localizations 103
YUSUKE KAWAMOTO

Conductors and newforms for SL(2) 127
JOSHUA M. LANSKY AND A. RAGHURAM

An absolute estimate of the homogeneous expansions of holomorphic
mappings 155

TAISHUN LIU AND JIANFEI WANG

A variational formula for floating bodies 167
JOHN MCCUAN

Hopfish algebras 193
XIANG TANG, ALAN WEINSTEIN AND CHENCHANG ZHU

Gutzmer’s formula and Poisson integrals on the Heisenberg group 217
SUNDARAM THANGAVELU

Equivariant Nielsen invariants for discrete groups 239
JULIA WEBER

0030-8730(200705)231:1;1-H

Pacific
JournalofM

athem
atics

2007
Vol.231,N

o.1

Pacific
Journal of
Mathematics

Volume 231 No. 1 May 2007


	Pacific Journal of Mathematics Vol 231 Issue 1, May 2007
	Copyright and Masthead
	Nonexistence results and convex hull property for maximal surfaces in Minkowski three-space
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26

	Energy and topology of singular unit vector fields on S3
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8

	Singular angles of weak limiting metrics under certain integral curvature bounds
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

	On Ahlfors' Schwarzian derivative and knots
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11

	On isoperimetric surfaces in general relativity
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Irreducible representations for the abelian extension of the Lie algebra of diffeomorphisms of tori in dimensions greater than 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17

	Higher homotopy commutativity of H-spaces and homotopy localizations
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Conductors and newforms for SL(2)
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27

	An absolute estimate of the homogeneous expansions of holomorphic mappings
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

	A variational formula for floating bodies
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25

	Hopfish algebras
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

	Gutzmer's formula and Poisson integralson the Heisenberg group
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21

	Equivariant Nielsen invariantsfor discrete groups
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18

	Guidelines for Authors
	Table of Contents

