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ON AHLFORS’ SCHWARZIAN DERIVATIVE AND KNOTS

MARTIN CHUAQUI

We extend Ahlfors’ definition of the Schwarzian derivative for curves in
euclidean space to include curves on arbitrary manifolds, and give applica-
tions to the classical spaces of constant curvature. We also derive in terms
of the Schwarzian a sharp criterion for a closed curve in R3 to be unknotted.

1. Introduction

This paper is a continuation of [Chuaqui and Gevirtz 2004], in which we developed
sharp bounds on the real part of Ahlfors’ [1988] Schwarzian derivative for curves
C in Rn which imply that C is simple. We begin with a geometrically simpler
definition of the Schwarzian for such curves, the real part S1 f of which coincides
with that of Ahlfors. This approach has the advantage of suggesting a Schwarzian
for curves in arbitrary manifolds, the results we obtain strongly suggesting that its
real part, at least, is appropriately defined. After our discussion of the Schwarzian
for curves in the general manifold context we focus on the particular cases of
hyperbolic n-space Hn and the n-sphere Sn and derive the relationship between
S1 f as calculated with respect to the metrics on Hn and Sn on the one hand, and
with respect to the euclidean metric on the underlying ball and Rn

∪ {∞}, on the
other. Using these calculations together with results of [Chuaqui and Gevirtz 2004]
we obtain a very short proof of a theorem of C. Epstein [1985] to the effect a
curve in Hn is necessarily simple if the absolute value of its geodesic curvature
is everywhere bounded by 1; we also prove the theorem’s spherical counterpart.
Lastly, we derive a sharp bound on S1 f which implies that the corresponding curve
is unknotted.

2. Preliminaries

Let f : (a, b) → Rn be a C3 curve with f ′
6= 0, and let X ·Y stand for the euclidean

inner product of vectors X, Y in Rn . Set |X |
2
= X · X . As pointed out in [Chuaqui
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and Gevirtz 2004], the real part of Ahlfors’ Schwarzian, defined by

S1 f =
f ′

· f ′′′

| f ′|2
− 3

( f ′
· f ′′)2

| f ′|4
+

3
2

| f ′′
|
2

| f ′|2
,

can be written in terms of the velocity v = | f ′
| and the curvature k of the trace of

f as

(1) S1 f =

(
v′

v

)′

−
1
2

(
v′

v

)2
+

1
2
v2k2,

and this expression is invariant under Möbius transformations of Rn
∪ {∞}. Our

main result in that paper was:

Theorem 1. Let p = p(x) be a continuous real-valued function on an open interval
I such that any nontrivial solution of u′′

+ pu = 0 has at most one zero on I . Let
f : I → Rn be a C3 curve with f ′

6= 0. If S1 f ≤ 2p, then f is one-to-one on I
and admits a spherically continuous extension to the closed interval, which is also
one-to-one unless the trace of f is a circle, in which case S1 f ≡ 2p.

Although the formal expression on the right side of (1) is meaningful in the
context of manifolds, its appropriateness is made apparent by the following con-
siderations. Let T denote the tangent vector along the trace of f , and let ∇ stand
for usual covariant differential operator on M . Then ∇T T corresponds to f ′′.
We regard the 2-dimensional subspace spanned by T and ∇T T as the complex
plane C (the orientation being irrelevant), so that T = a = a(t) and ∇T T = b(t)
are complex-valued functions of the parametrizing variable t ∈ I . Following the
classical definition of the Schwarzian, given by(

f ′′

f ′

)′

−
1
2

(
f ′′

f ′

)2

,

we are led to consider the complex function

(2)
(b

a

)′

−
1
2

(b
a

)2

as the manifold analogue of the Schwarzian. A straightforward calculation shows
that the real part of the expression in (2) coincides with (1).

Let Hn denote the hyperbolic n-space with constant sectional curvature −1, for
which we use the standard model Bn

= {x ∈ Rn
: |x | < 1} with metric tensor gh =

4(1−|x |
2)−2g, where g is the euclidean metric. Let Sn stand for the n-dimensional

sphere, as modeled by Rn
∪ {∞} with the metric ge = 4(1 + |x |

2)−2g; here the
sectional curvature is 1. Both are special cases of a domain � ⊂ Rn endowed
with a conformal metric tensor, that is, a metric tensor of the form ḡ = e2ϕ(x)g.
In this generality one can relate the Schwarzian corresponding to the resulting
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manifold M with the standard euclidean Schwarzian defined on � itself. To do so
one needs to determine how the velocity and curvature of a curve change under
conformal changes of metric. Any object (velocity, curvature, covariant derivative,
etc.) associated with the manifold M will be distinguished from the corresponding
object in the underlying � by a bar. Thus, let v, k denote the velocity and curvature
on � so that v̄, k̄ are their counterparts on M . Obviously, v̄ = eϕv, from which
routine calculations yield

(3)
(
v̄′

v̄

)′

−
1
2

(
v̄′

v̄

)2

=

(
v′

v

)′

−
1
2

(
v′

v

)2
+ v2 Hess(ϕ)(t, t) + v2k(grad ϕ · n) −

1
2 v2(grad ϕ · t)2,

where t and n are the euclidean unitary tangent and normal vectors to the curve,
Hess(ϕ) is the (euclidean) Hessian bilinear form and grad is the standard gradient.

In order to derive the relationship between k and k̄ one needs to know how
the covariant derivative changes under conformal changes of metric. The classical
formula is

(4) ∇X Y = ∇X Y + (grad ϕ · X)Y + (grad ϕ · Y )X − (X · Y ) grad ϕ.

The curvature k̄ is determined by the equation

∇ t̄ t̄ = k̄n̄,

where t̄ = e−ϕt and n̄ = e−ϕn. Using (4) one obtains

∇ t̄ t̄ = e−2ϕ (kn + (grad ϕ · t)t − grad ϕ) .

After taking the euclidean norm of both sides we get

k̄2
= e−2ϕ

(
k2

− (grad ϕ · t)2
− 2k(grad ϕ · n) + |grad ϕ|

2) ,
and using (3) we have

(5) S1 f = S1 f + v2 Hess(ϕ)(t, t) − v2(grad ϕ · t)2
+

v2

2
|grad ϕ|

2.

The terms on the right-hand side depending on ϕ are best expressed in terms of the
Schwarzian tensor B(ϕ) of the metric ḡ with respect to g, as defined in [Osgood
and Stowe 1992] by

B(ϕ) = Hess(ϕ) − dϕ ⊗ dϕ −
1
n
(1ϕ − |grad ϕ|

2)g.
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Then (5) can be rewritten as

(6) S1 f = S1 f + v2 B(ϕ)(t, t) +
v2

n
1ϕ +

n−2
2n

v2
|grad ϕ|

2

= S1 f + v2 B(ϕ)(t, t) −
v2

2
scal ḡ

n(n−1)
e2ϕ,

where scal ḡ is the scalar curvature of the metric ḡ, that is, the sum of the sec-
tional curvatures of any complete set orthogonal 2-planes of the tangent space at
a given point. The Schwarzian tensor appears in the work of Osgood and Stowe
as a suitable generalization of the classical Schwarzian derivative when studying
conformal local diffeomorphisms between Riemannian manifolds, or more gen-
erally, when studying metrics on a given manifold that are conformally related.
They show that conformal changes of metric with vanishing Schwarzian tensor,
called Möbius changes of metric, are rare on arbitrary manifolds. On euclidean
space, nevertheless, Möbius changes can be described completely and include, in
particular, the hyperbolic and the spherical metric. In other words, B(ϕ) = 0 when
eϕ is either 2(1 − |x |

2)−1 or 2(1 + |x |
2)−1.

Since scal ḡ = −n(n−1) when ḡ = gh we obtain from (6)

(7) Sh
1 f = S1 f +

v2

2
e2ϕ.

For the spherical metric we have scal(ḡ) = n(n − 1), hence (6) gives

(8) Ss
1 f = S1 f −

v2

2
e2ϕ.

We use (7) to give a very short proof of this result:

Theorem 2 [Epstein 1985]. Let γ ⊂ Hn be a curve with geodesic curvature
bounded in absolute value by 1. Then γ is simple.

Proof. Let f : (−l, l) → γ be a hyperbolic arclength parametrization. Note that
the value l = ∞ is possible. Then vh ≡ 1, so that Sh

1 f = k2
h/2. But since v = e−ϕ

=

(1 − |x |
2)/2 it follows from (7) that

S1 f =
k2

h − 1
2

≤ 0.

By appealing to Theorem 1 with the choice p(x)≡ 0, we conclude that γ is simple.
�

In the same vein, we can use (8) to derive the corresponding simplicity criterion
for curves on Sn .
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Theorem 3. Let γ ⊂ Sn be a curve of length l ≤ 2π and geodesic curvature ks

satisfying

k2
s ≤

4π2
− l2

l2 .

Then γ is simple except when it is a circle of constant curvature
√

4π2 − l2/ l.

Proof. We proceed as before and consider f : [0, l] → γ , a spherical arclength
parametrization. Then Ss

1 f = k2
s /2 and vs = (1 + |x |

2)/2, so (8) gives

S1 f =
1 + k2

s

2
≤

2π2

l2 .

This time we apply Theorem 1 with p(x) ≡ π2/ l2 to conclude that f ((0, l)) is
simple. The extended curve f ([0, l]) remains simple unless it is a circle, of constant
curvature

√
4π2 − l2/ l. �

3. Knots

Theorem 4. Let f : [−1, 1) → R3 parametrize a simple closed curve in R3. If
the periodic continuation of f is C3 and S1 f (t) ≤ 2π2 for all t ∈ (−1, 1), then
f ([−1, 1)) is unknotted.

Proof. The idea is to show that, if knotted, the curve 0 = f ([−1, 1]) can be laid out
to form a planar, closed, nonsimple curve for which the real part of the Schwarzian
has not increased. The process used to do this is based on the following ideas,
developed by Brickell and Hsiung [1974] in the course of their proof of the Fary–
Milnor theorem.

For p ∈ R3 we define the shell C p of 0 with vertex p to be the developable
surface made up of all segments [p, q] with q 6= p on 0. The indicatrix of C p,
denoted by Ip, is the curve on S2

= {u ∈ R3
: |u| = 1} traced by the vectors

(q− p)/|q− p|; its length l(Ip) is called the total angle of Ip. A key fact established
by Brickell and Hsiung is that 0 is unknotted if l(Ip)< 3π for all p ∈0. The proof
of this uses Crofton’s formula ∫

n(G)dG = 4l(Ip)

giving the length of Ip in terms of the number n(G) of intersection points of Ip

with great circles G ⊂ S2. The integral is performed over S2, after identifying a
point on the sphere with the normal direction of a plane containing a great circle.
The authors show that n(G) ≥ 1 for all G and that {G : n(G) = 2} has measure
zero [Brickell and Hsiung 1974, Lemma 8, p. 188]. Since the measure of the entire
set of great circles is 4π , if l(Ip) < 3π then {G : n(G) = 1} must have positive
measure. Hence there exists at least one great circle G with n(G)=1, which means
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there exists one plane through the point p intersecting 0 at exactly one other point
q 6= p. Such a plane is called transversal to 0. The curve 0 has the transversal
property if for any p ∈ 0 there exists a plane through p transversal to 0.

Theorem [Brickell and Hsiung 1974, Lemma 6, p. 191]. Let C be a closed smooth
curve embedded in hyperbolic or euclidean space of dimension three. If C has the
transversal property then C is a trivial knot.

We conclude from this discussion that if 0 is a knot there is a point p ∈ 0 for
which l(Ip) ≥ 3π . The two cases l(Ip) > 3π and l(Ip) = 3π require a slightly
different analysis. Suppose first that l(Ip)>3π . As we move p to a point p′ slightly
away from 0, the number l(Ip′) varies continuously, except for a jump increment
by π . Hence there exists p′ /∈ 0 for which l(Ip′) > 4π . On the other hand, since
l(Ir ) is a continuous function of r ∈ R3

\0 and since l(Ir ) → 0 as |r | → ∞, we can
find p0 /∈ 0 such that l(Ip0) = 4π . We now lay out the shell C p0 isometrically onto
the plane so that 0 traces out a closed curve γ that is not simple. To do this, let
0 = 0(s) be an arclength parametrization, 0 ≤ s ≤ L , and set r(s) = |0(s) − p0|.
We lay out 0 onto the plane curve γ given by z = z(s) = r(s)eiθ(s), where the
function θ is chosen so that |z′(s)| = 1, or equivalently

|r ′(s) + ir(s)θ ′(s)| = 1.

The function

θ(s) =

∫ s

0

√
1 − (r ′(t))2

r(t)
dt

has this property. The point p0 corresponds to z = 0 /∈ γ , and the polar angle
θ = θ(s) increases at the same rate as the spatial angle of the rays [p0, 0(s)] at the
vertex p0. Because l(Ip0) = 4π it follows that γ is a closed curve with winding
number 2 with respect to the origin.

If, on the other hand, l(Ip) = 3π , we let p0 = p and lay out 0 as before.
We may assume that p0 = 0(0). Since the point p0 belongs to 0, the curve γ

obtained is closed because r(s) → 0 as s → 0+ and as s → L−. Also, because
0 possesses a tangent at p0, it is easy to see that the integrand in the equation
for θ(s) above behaves like h(s)/

√
s(L−s), where h is continuous on [0, L]. In

other words, γ (s) = z(s) is a planar curve passing through z = 0 with the property
that θ(s) = arg{z(s)} is increasing and has total variation of 3π . A variant of the
argument principle allowing for zeros on the curve (see [Nehari 1952, p. 131],
for instance) implies that γ cannot be simple: the point 0 ∈ γ contributes π to the
total variation of argument and therefore γ must in addition wind around the origin
once.

In either case, let g : [−1, 1) → R2 be the induced parametrization of γ defined
on the original interval of definition of f . We claim that S1g ≤ S1 f . First, vg =
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|g′
| = | f ′

| = v f because the laying-out process preserves arclength. Secondly, the
term involving the curvature does not increase because the curvature of γ is equal
to the curvature of 0 relative to the surface C p0 , that is, equal to the length of the
projection of the curvature vector of 0 in R3 onto the tangent plane to the shell.
We see from (1) that S1g ≤ S1 f .

Since γ is not simple, it can be subdivided into closed curves γ1, γ2 that are
differentiable except at the point where γ self-intersects. Because g is periodic,
one can find intervals [a, b] and [c, d] of total length 2 such that

(i) g1 = g|[a,b] : [a, b] → γ1 and g2 = g|[c,d] : [c, d] → γ2, and

(ii) the parametrizations g1, g2 are C3 on the open subintervals.

This sketch represents the case when p0 /∈ 0 together with the corresponding
nonsimple curve g:

Γ

P0

γ1 γ 2

We will show that both γ1 and γ2 are circles and that and each subinterval [a, b],
[c, d] has length 1. In effect, it follows from Theorem 1 that the optimal C constant
for a univalence criterion S1h ≤C on an open interval of length d is C =2π2/d , and
that the extended curve can be closed only if it is a circle and S1h ≡2π2/d . Because
S1g1, S1g2 are bounded above by 2π2 on the open intervals and the curves γ1 and
γ2 are closed, we conclude that the length of each subinterval [a, b], [c, d] cannot
be less than 1. Because the total length is 2, each subinterval must have length
1, and since γ1 and γ2 are closed, they must be circles with S1g1 = S1g2 ≡ 2π2.
Hence S1g ≡ 2π2, which can only happen if S1 f ≡ 2π2 and the curvature of γ

remains the same as that of 0. Hence 0 is an asymptotic curve, that is, the normal
curvature vanishes at each point of 0. Because the segments [p0, q] on the shell
C p0 are lines of curvature with corresponding principal curvature equal to zero, it
follows that either 0 lies entirely on one such segment or else the shell is planar.
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In the first case, 0 could not be closed, and in the second, it could not be knotted.
This contradiction proves the theorem. �

4. Example

In this final section we will show with that the assumption in Theorem 4 that the
periodic continuation of f be smooth is essential. We will construct a closed curve
f : [−1, 1] → R3 with S1 f ≤ 2π2 on (−1, 1), whose image is a knot that is not of
class C3 at f (1) = f (−1). The function f will be a Möbius transformation of the
following curve g.

Let g : (−1, 1) → C. We write

(9) S1g =

(
v′

v

)′

−
1
2

(
v′

v

)2

+
1
2

k2v2
= 2q +

1
2

k2v2.

We will make S1g ≤ 2π2 everywhere on the open interval, but with different
weights for the terms 2q = (v′/v)′−(1/2)(v′/v)2 and k2v2/2. Intuitively, the term
q determines how fast one traverses the curve, while the second term determines
the shape.

Let δ > 0 be small. On [−
1
2 + δ, 1

2 − δ] the curve g will have q ≡ 0, v ≡ 1
and k ≡ 2π . In other words, on this interval g describes almost a complete circle.
We define g on ( 1

2 − δ, 1) = (1
2 − δ, 1

2 + δ] ∪ ( 1
2 + δ, 1), and on (−1, −1

2 + δ) in
a symmetric way. On (1

2 − δ, 1
2 + δ] we increase the value of q smoothly; this

produces an increment in v, which forces us to decrease the value of k. We will do
this in a way that

(10)
∫ 1

2 +δ

1
2 −δ

kv dx =

∫
k ds = 2πδ.

Because of the symmetry on [−
1
2 − δ, − 1

2 + δ) we will have

∫ 1
2 +δ

−
1
2 −δ

kv dx =

(∫
−

1
2 +δ

−
1
2 −δ

+

∫ 1
2 −δ

−
1
2 +δ

+

∫ 1
2 +δ

1
2 −δ

)
kv dx = 2π.

On the remaining interval ( 1
2 + δ, 1) we will decrease k sharply to 0, shifting all

the weight to q ≡ π2. Therefore, g will map this interval to a straight line. We will
show that this can done in a way that the value of v′/v at x =

1
2 +δ is large enough

to allow the parametrization of a straight line with S1g = 2π2 on an interval of
length 1

2 − δ to reach the point at infinity.
The details are as follows:
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(I) The interval
( 1

2 −δ, 1
2 +δ

]
: We see from (9) that kv =

√
4π2 − 4q = 2π

√
1 − h,

where h = q/π2. From (10) we seek h = h(x) ∈ [0, 1] such that∫ 1
2 +δ

1
2 −δ

√
1 − h dx = δ.

If we shift the interval in question to (0, 2δ], we can choose h, for example, so that√
1 − h(x) = 1 −

x
2δ

,

that is,

h(x) =
x
δ

−

( x
2δ

)2
.

(This choice requires only to be smoothed out at the endpoints of the interval.)
With this, ∫ 2δ

0

√
1 − h dx = 2δ −

1
2δ

(2δ)2

2
= δ.

Observe that

(11)
∫ 2δ

0
h dx =

∫ 2δ

0

(
x
δ

−

( x
2δ

)2
)

dx =
(2δ)2

2δ
−

(2δ)3

3(2δ)2 =
4δ

3
,

a fact that will be important ahead.

(II) The term v′/v: Let y = v′/v. Then

(12) y′
= 2q +

1
2 y2

= 2π2h +
1
2 y2.

For convenience, once more we replace the interval ( 1
2 − δ, 1

2 + δ] by (0, 2δ]. The
initial condition for (12) is y(0) = 0. We want to know whether y(2δ) (which
corresponds to the original value of v′/v at 1

2 + δ) is sufficiently large so that the
parametrization of a straight line with velocity v = e

∫
y dx reaches the point at

infinity before time 1
2 − δ.

The parametrization of a straight line with Schwarzian identically equal to 2π2

reaches the point at infinity in time exactly 1
2 if its initial velocity has v′

= 0. To
verify this we consider the differential equation

w′
= 2π2

+
1
2w2, w(0) = 0,

which has the solution w(x) = 2π tan(πx). The corresponding parametrization of
the straight is then given by 1

π
tan(πx), which indeed becomes infinite at x =

1
2 .

Now we need to verify that the solution y of (12) has

(13) y(2δ) > w(δ).
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By integrating (12) we see from (11) that

y(2δ) > 2π2
∫ 2δ

0
h dx =

8π2δ

3
,

while
w(δ) = 2π2δ + O(δ3),

so that (13) will hold if δ is small enough. Thus g reaches the point at infinity
symmetrically at 1 − ε and −1 + ε, for some ε = O(δ). In order to rectify the fact
that g is defined only on (−1 + ε, 1 − ε), we consider the scaled parametrization
g((1−ε)x) defined on (−1, 1), the Schwarzian of which is equal to (1−ε)2S1g <

2π2. We keep the notation g for the scaled curve; its trace together with the knot
to be produced are shown in the following figure.

In the final step we produce a knot on g with a very small cost in S1g. The knot
can be accomplished by replacing a small portion of one of the arcs at the point of
self-intersection of g by a very thin tubular neighborhood, along which the new arc
of g will go around once. Although this procedure introduces torsion, S1g does not
depend on it. It is easy to see that both the modified curvature and velocity remain
arbitrarily close to their original values as long as the tubular neighborhood is thin
enough. To finish the construction, we consider some Möbius transformation T
for which f = T (g) lies in the finite plane.
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