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CUIPO JIANG AND QIFEN JIANG

We classify the irreducible weight modules of the abelian extension of the
Lie algebra of diffeomorphisms of tori of dimension greater than 1, with
finite-dimensional weight spaces.

1. Introduction

Let W, 41 be the Lie algebra of diffeomorphisms of the (v+1)-dimensional torus.
If v = 0, the universal central extension of the complex Lie algebra W is the
Virasoro algebra, which, together with its representations, plays a very important
role in many areas of mathematics and physics [Belavin et al. 1984; Dotsenko and
Fateev 1984; Di Francesco et al. 1997]. The representation theory of the Virasoro
algebra has been studied extensively; see, for example, [Kac 1982; Kaplansky and
Santharoubane 1985; Chari and Pressley 1988; Mathieu 1992].

If v > 1, however, the Lie algebra W, | has no nontrivial central extension
[Ramos et al. 1990]. But W, 1 has abelian extensions whose abelian ideals are the
central parts of the corresponding toroidal Lie algebras; see [Berman and Billig
1999], for example. There is a close connection between irreducible integrable
modules of the toroidal Lie algebra and irreducible modules of the abelian ex-
tension &; see [Berman and Billig 1999; Eswara Rao and Moody 1994; Jiang
and Meng 2003], for instance. In fact, the classification of integrable modules of
toroidal Lie algebras and their subalgebras depends heavily on the classification
of irreducible representations of & and its subalgebras. See [Billig 2003] for the
constructions of the abelian extensions for the group of diffeomorphisms of a torus.

In this paper we study the irreducible weight modules of &, for v > 1. If V is
an irreducible weight module of & some of whose central charges cy, ..., ¢, are
nonzero, one can assume that ¢, ..., cy are Z-linearly independent and cyy; =
-+« =¢, =0, where N > 0. We prove that if N > 1, then V must have weight
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spaces which are infinite-dimensional. So if all the weight spaces of V are finite-
dimensional, N vanishes. We classify the irreducible modules of & with finite-
dimensional weight spaces and some nonzero central charges. We prove that such
a module V is isomorphic to a highest weight module. The highest weight space
T is isomorphic to an irreducible (#,+W,)-module all of whose weight spaces
have the same dimension, where «,, is the ring of Laurent polynomials in v com-
muting variables, regarded as a commutative Lie algebra. An important step is to
characterize the «,-module structure of 7. It turns out that the action of #, on T
is essentially multiplication by polynomials in s{,. Therefore T can be identified
with Larsson’s construction [1992] by a result in [Eswara Rao 2004]. That is, T is
a tensor product of g/,-module with «,,.

When all the central charges of V are zero, we prove that the abelian part acts
on V as zero if V is a uniformly bounded £-module. So the result in this case is
not complete.

Throughout the paper, C, Z and Z_ denote the sets of complex numbers, pos-
itive integers and negative integers.

2. Basic concepts and results

Let A, = C[tgtl, tlil, e tvil] (v > 1) be the ring of Laurent polynomials in
commuting variables g, t1, ..., t,. Forn=(ny, ny, ..., n,) €Z’, ng € Z, we denote
15t -1 by 1,°t". Let K be the free s,1-module with basis {ko, k1, ..., k,}

and let d be the subspace spanned by all elements of the form

1%
> ritd’ttki,  for (ro,r) = (ro, 71, ..., 1) € 2"t
i=0

Set % = H/dJt and denote the image of 15°1"k; still by itself. Then I is spanned
by the elements {t(;(’tfkp |p=0,1,...,v,r90 € Z, r € 7'} with relations

v

(2-1) > rptttk, =0.
p=0

Let 9 be the Lie algebra of derivations on #,4;. Then
v
gb = { pr(t()vtlv th)dp | fp(t()’ tl9 "'7tl)) e‘gzq'v+1}a
p=0

where d,, =1,d/9dt,, p =0,1,...,v. From [Berman and Billig 1999] we know
that the algebra % admits two nontrivial 2-cocycles with values in J{:

Vv
m n mo+n +
T (4 ‘1"d,, tootﬂdb) = —hgmyp E mply ooy “kp,
p=0
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(1) 1 dy, 1301 dy) = many Z mpty A
p=0
Let T = w171 + U2ty be an arbitrary linear combination of 71 and 7,. Then the
corresponding abelian extension of U is

=D H,
with the Lie bracket
(2-2) (101" dy, 1301 k) = gty Oy 4 8 Z mpty ot
p=0
(15012 d, 15012 dp] = naty Oty — mpty OO,
+ Tty 1" dy, 1,°1" dp).
The sum

- (ﬂ}(}@ki)@(l@oﬁdi)

is an abelian Lie subalgebra of £. An £-module V is called a weight module if

where V, ={ve V | h-v=A(h)v for all h € h}. Denote by P(V) the set of all
weights. Throughout the paper, we assume that V is an irreducible weight module
of & with finite-dimensional weight spaces. Since V is irreducible, we have

kilv =i,
where the constants ¢;, fori =0, 1, ..., v, are called the central charges of V.

Lemma 2.1. Let A = (a;j) (0 <1i, j <v) be a (v+1) x (v+1) matrix such that
det A =1 and a;j € Z. There exists an automorphism o of &£ such that

v v
otk =Y apt™ ky, o) = bit™ d,,  0<j<v,
p=0 p=0

where t™ = 1,°t"™, B = (b;;) = A™.

3. The structure of V with nonzero central charges

In this section, we discuss the weight module V which has nonzero central charges.
It follows from Lemma 2.1 that we can assume that cg, cy, ..., cy are Z-linearly
independent, i.e., if ZlNzo a;c; =0,a; € Z,thenall aq;(i =0, ..., N) must be zero,
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and cy41 = cy42 =+ - = ¢, =0, where N > 0. For m = (mg, m), denote #; 1™
by ™ as in Lemma 2.1. It is easy to see that V has the decomposition

V= @ Vi,

meZv+1
where V; = {v e V | d;(v) = (yo(d;) + mi)v,i =0,1,...,v}, with yg € P(V)
a fixed weight, and m = (mg, my, ..., my) € Z'*'. If V has finite-dimensional

weight spaces, the V;; are finite-dimensional, for 7 € ZV*+!,

In Lemmas 3.1-3.6 we assume that V has finite-dimensional weight spaces.

Lemma3.1. For pe {0, 1,...,v}and 0 # t’;’kp € ¥, if there is a nonzero element
vin V such that tmkpv =0, then tmkp is locally nilpotent on V.

Lemma 3.2. Let t(')" "k, € & be such that m = (mo, m) # 0, and there exists
0 <a <N suchthatm, #0if N < p <v. If t;°t"k,, is locally nilpotent on 'V,
then dim V;; > dim Vi for all n € 7+,

Proof. Case 1: p €{0,1,..., N}. We first prove that dim V; > dim Vj,; for all

nez"t. Suppose dim V; =m, dim V; 5 =n. Let {w, w,, ..., w,} be a basis of
Vam and {w], w), ..., w,,} a basis of V;. We can assume that m, # 0 for some
0 < a < v distinct from p, where m = (mg, m) = (mo, my, ..., m,). Since "'k, is

locally nilpotent on V and V;.; is finite-dimensional, there exists £ > O such that
(t"k ) Viiin = 0. Therefore

" d) (k) (wi, wa, ..., wy) =0,

On the other hand, by induction on k, we can deduce that

k
_ . k!'k! . L -
M k Mk k: Lol (1K k—i Py k—l'
(™" d) (k) ;i!(k_i)!(k_i)!macp< P dy)
Therefore
iy (N k! i i g Nk—l—i i g Nk—1—i )~
t p(meaC‘p(I kp) (t da) )l da(U)1,wz,...,U)n)
i=0 - —1l). —1l).
:—k!mﬁc];(wl,wz,...,wn).
Assume that
el klk! i 0oy Nk—1—i g i g Nk—1—i) i
(Z g™ @) ) T ) )
i—=0 - —1). —1).
l = (w}, Wh, ..., w,)C,

with C € C™*" and that

(3-1) "k (wh, wh, ..., wh) = (wi, wa, ..., w,)B,
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with B € C"*™_ Then
k k
BC =—klm,c,lI.
This implies that m > n. So dim V; > dim V. for all 7 € Z"*!. Also, by (3-1)
and the fact that r(B) = n, we know that m > n if and only if there exists v € V;

such that "k p-v=0. Since t"_qkp is locally nilpotent on V, there exist an integer
s >0 and w € V445 such that

(t"k,) - w = 0.

Therefore (t~"k,)t"k, - w = t"k,(t "k, - w) = 0. If t7"k, - w = 0, by the
proof above, dim Vj ;s < dim V445, contradicting the fact that dim Vo gm—m >
dim Vi 4. Therefore (t_mkp)’ -w # 0 for all r € N. Since

(t "k p) 1"k - w = 1"k, (t k) - w =0

and (t "k »)’ - w € Vg, it follows that there is a nonzero element v in V; such that
t"ky-v=0. Thus n < m.

Case 2: N < p <v. The proof is similar to that of case 1, but we have to consider
t~"d, and 1"k, instead and use the Z-linear independence of ¢y, ..., cy. O

Lemma 3.3. Let 0 # t"k, € ¥ and 0 # 1"k, € & be such that (my, ..., my) # 0,
(no,...,nNy) ZO0if N < p <v,where m = (mg, my, ..., m,).
D D”tmkp is locally nilpotent on V , t’hkq is locally nilpotent forg =0, 1, ..., v.

(2) If both 0 # t’;’kp and 0 # t’_‘kp are locally nilpotent on V, then t"_’+’_’kp is
locally nilpotent.

3) If0 # t"_”ﬁkp is la_cally ni{potem‘ on'V and (mg+no,...,my+ny) #0if
N < p <v, thent"k, ort"k, is locally nilpotent.

Lemma 3.4. For 0 < p <wv, let 0 # t”_’kp € & be such that (mg, ..., my) # 0,
where m = (mg, my, ...,m,). Then tmkp or t*"_ikp is locally nilpotent on V.

Proof. The proof occupies the next few pages. We first deal with the case 0 <p < N.
Without losing generality, we can take p = 0.
Suppose the lemma is false. By Lemma 3.2, for any 7 € Z'*! we have

dim Vf—Hﬁ =dim V; =dim V;_;, l"hk()Vf = V;+n‘1, l‘_rﬁkon =Vi_nm.

Fixr=(rg, 1) € 7"+ such that V; # 0. Let {vy, ..., v,} be a basis of V; and set

1 _
vi(km) = —t""ko-v;, i=1,2,...,n,
Co
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where k € Z\ {0}. Then {vy(km), vy(km), ..., v,(km)} is a basis of Vi ;. Let
B© Br(ho’)_,ﬁ € C"*" be such that

—m,m’
L _ _ SN — ©)
C_t kO(vl(_m)a UZ(_m), LRI Un(_m)) - (Ul9 U2v L] UH)BM’_Ms
0
1 - _ . ©)
c 4 kO(vl(m), U2(m)’ R ] vn(m)) - (Ul9 UZv R ] Un)B_;ﬁJﬁ-
0

Since 1"k and t "k, are commutative, it is easy to deduce that

,—m —m,m"

O _ pO
B BY)

By Lemma 3.1, B,(;? )7,1-1 1s an n X n invertible matrix.

Claim. B;%O )7,7-1 does not have distinct eigenvalues.

Proof. Set ¢ = 1/cq. To prove the claim, we need to consider ct"koct " ko — A id,
where A € C*. As in the proof of Lemma 3.1, we can deduce that if there is a
nonzero element v in V such that (ctkoct ko — A id)v = 0, then ¢t koct ko —
A id is locally nilpotent on V. On the other hand, we have

(ctmkoct_’hko —A id)l(vl, v2,...,0) = (v, vy, ..., vn)(B,(hO’)_m — Aid)[.

Therefore the claim holds. O
For pef{l,2,...,v},let C’;’é, Crg’_,h € C"*" be such that
k01, 02, V) = OI0R), - V() C
ey (V1 (=), ..., V(=) = (V1 V2, ., V) O .
Since
| PP
—t k()l kp(vl,vz,...,vn):t kp—l ko(Ul,Uz,...,Un),
Co €o
we have
(p) 0) (p)
(3-2) Cill = B_Mc,h”’().
Furthermore, by the fact that
Vo, 1 s iy Lo, 1
—t"kog—t" kot kp(vl,vz,...,vn):t kp—l‘ ko—t "ko(vy, va, ..., Vvy)
Co €o o €

and

S R I .
t"kyg—1t""kot"k, =t"k,—t""kot" kg,
Co Co
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we deduce that

(3_3) B(O)— _C(P)_ — C(P) 0) C(p) C(‘I)_ — C(‘]) C(P) 1 < P.q <.

—m,m m,0 —mm’ m,0’

Hence there exists D € C"*" such that {D*IB(_OH)-1 =D, D'c”’D|1<p<v)are
» m,0
all upper triangular matrices. If we set

(w17 w27 e oy wn) = (Ul’ U27 oo oy vn)D
and 1
w; (ki) = —t"kgw;, 1 <i <n, k € Z\ {0},
o
then
1 _
— 5™ kg (wy (=), wa (=), ..., wa(—1)) = (wi, ..., w.) D' BY) D,
0
(Wi, W, wy) = (WiGR), - w, () DTN CYYD

So we can assume that B(Orzl i C (_p z-), and C (p ) > for 1 < p < v are all invertible

upper triangular matrices. Furthermore because
_ _ !
(r'"k,,cifmko —Aid) W1, V2, ey 02) = (01, 02, ., U)(CP) = 2idY,
0

the argument used in the proof of the claim shows that Cr(;f’ )_n-l also does not have
distinct eigenvalues. For 1 < p < N, set

1
(p) (p)
By _in= C_Cni,frh
p
and for 0 < p < N denote by A, the eigenvalue of Blilp )_m

Let A(a) _and A\ for0 <a <vandk, k1, k; € Z\ {0}, be such that

kym,kom>

My 1, 2, v = ik, va ki), v (ki) AL S
tkl'ﬁda(vl(kzn_/l)’ vz(kzn_’[), ey vn(kzn_/l))

= (v (kg + ki), . . ., vn (ki + ko)) A9

kim,kom*

Case 1: v > 1. Since "ky = tg1°t"_1k0 = 0, it follows that there exists 1 <a <v
such that m, # 0, where m = (m, ma, ..., my). Let b € {1, ..., v} be such that
a # b. Consider

i} 1 . 1 B} N
(3-4) [t™"dy, —t"kol = mq—ko, [(t7"dy, t"kp] = makp.
Co ()
Case 1.1: There exists b € {0, 1, ..., v} such that b # 0, a and ¢, = 0. Then
A =B A skmad, A LCT = LA
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By (3-2) and (3-3),

A rmBY T =P A et

—m,0 "m0

But the sum on the left-hand side cannot be similar to A( @) i 0" since m, # 0 and
B(O) _, isaninvertible upper triangular matrix and does not have different eigen-
Values Thus this case is excluded.

Case 1.2: ¢y, #0 forallb € {0, 1, ...,v}, b #0, a. By (3-4) and (3-2), we have

0) (a) o - 1 (O 1 (b) —1
Bm - A_n-q’()Bnﬁ,—n] +maBn*1’_nf1 — man - 1
Z a0 0 4@ o6 lpo)

m,—m mO —m,0 m,0 m,—m

-1 -1
(I) There exists b # 0 and a such that Ay # Ap. Then m, (0)_,,-1 —my B,E—ﬁ )_,,-1 is

an invertible upper triangular matrix and does not have different eigenvalues. As
in case 1.1, we deduce a contradiction.

(II) A g =Ap forall b € {1, ..., v} distinct from a.

(II.1) Suppose first that ¢, = 0 (in this case N =v —1,a = v) or ¢, # 0 and
Aq = Ag (in this case N = v). Since Z;ZO mpt’hkp =0, we have

1
Zm,, "k, —1t""ko = 0.
p=0 c

=0, and therefore

vV
E mpc, =0,
p=0

which contradicts the assumption that cg, ..., cy are Z-linearly independent.
(II.2) Now suppose ¢, # 0, A, # Ao and there exists b # 0 and a such that
myp # 0. We deduce a contradiction as in case 1.2(I) by interchanging a by b.
(I1.3) Suppose ¢, # 0, Ay # Ag and my, =0 for all b € {1, ..., v} distinct from
a. Then mycoro + mycahy = 0. The proof of this case is the same as in case 2.2
below.

So 3 m,CY
p=0

m

Case2.: v=1.Inthiscase a = 1.
Case 2.1: c, = 0. Since [t™"dy, t"ko] = [t "k, t”‘do] =0, we have

AO B0 A0 A9

—m,m m,0’ —m
Therefore

[t_n_/ldOa tn_ldo](vl’ UZ, LA vn) = (vls v2, LA ] Un)B(,O) [A(O) A(—O) ]

m,0’
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At the same time, we have
[t~ dy, " do] = 2modo +m§(— 1 + p2) (moko +miky),
where T = (71 + (272 as above. So

(3-5) BY), ;1A o AL 1= (2mo(yo(do)+ro)+m(—p ) (moco+mien)1,

1,0’
where yy is the weight fixed above. Since yy is arbitrary, we can choose it such
that
2mo(vo(do) + ro) + mg(—pu1 + 12) (moco +mic1) # 0.

But B(_O% ;» 18 an invertible triangular matrix and does not have different eigenval-
ues, in contradiction with (3-5).
Case 2.2: ¢, # 0. Since

[t~ dy, t" kol = —mky, [t "dy, t" ko] = m1ko and

[t"dy, t kol = miky, [t"dy, t "ko] = —m ko,

we have
[kot ™ do + kit ™™ dy, " ko] = [kot™do + k1t"dy, t ko] = O.
Therefore
kOAg)h,m + ki A(—lr)nm = Br(FzO,)—n_1 (kOAg)ﬁ,() +ki Ail;;,é)’
koA s+ ki AS =B L (koAY + kAL,
and

[kot ™" do + kit ™™ dy, kot™do + k1™ di1(vy, . . ., vy)
0) 0) (1) 0) (1)
= (Ui, ) By koAT] s +kiATL o koA HhiALT]-

m,0’
At the same time, we have
[kot ™" do + kit " dy, kot™ do + k11" dy]
= 2(moco +mic1)(codo + c1dy) — (moco +micr)® ( — pa)id.

Since cg and ¢ are Z-linearly independent, we know that mgco +mc; # 0. As in
case 2.1, we deduce a contradiction.

This concludes the first part of the proof. We next turn to the second major case,
N<p=<v.

If N>1or N =0, we have (my, ..., m,) # 0, and the lemma follows from the
first part and Lemma 3.3. Otherwise, let "k, = 10"k ,. Set £o =B, 7 Cto do®
Cko and W = U (£p)v, where v € V5 is a homogeneous element. Since ¢y # 0,
the sets {dim W, 0)+5 | no € Z} are not uniformly bounded. But if neither t(')"okp
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nor #, "k, is locally nilpotent, then 7ok, and ty 'k p are not locally nilpotent. So
by Lemmas 3.2 and 3.1, dim V{3, 0)+5 = dim V; for all ny € Z, which is impossible
since dimV/,, 0)+5 > dim Wy, 0)+5. This proves Lemma 3.4 O

For 0 < p < N, consider the direct sum
& ¢ d, & Tk,
mpyel

which is a Virasoro Lie subalgebra of &£. Since ¢, # 0, it follows from [Mathieu
1992] that there is a nonzero v, € V; for some r € Z"*! such that

(3-6) ty'dyv,=0 forallm,eZ,
or
(3-7) ty'dyv, =0 forallm,eZ_.

Lemma 3.5. If v, € V; satisfies (3-6), the sets

{ty kg |mpeZy,q=0,1,2,...,v,q # p}
are all locally nilpotent on V. Likewise for (3-7), with Z replaced by 7 .

Proof. We only prove the first statement. Suppose it is false; then by Lemma 3.3
tpkg is not locally nilpotent on V for some g € {0, 1, ..., v}, ¢ # p. By Lemma
34,1, 1kq is locally nilpotent. Therefore there exists k € Z, such that
() k) vy £0, (1, kg) v, =0.

So 2 1, \k 17 k=1 1, \k,2

t,dp(t, kg) vy, = —ktpka(t, kg)" " vp+ (1, kg)"1,dpvp

= —ktyky (1, kg) "0, = 0.

This implies that 7,k is locally nilpotent, a contradiction. O

Lemma 3.6. If v, € V; satisfies (3-6), the sets
{t"k, | = (mo,...,m,) €2 m,eZ,)
are all locally nilpotent on V. Likewise for (3-7), with Z 4 replaced by 7 _.

Proof. Again we only prove the first statement. Without loss of generality, we
assume that p = 0. Let #’ be the subspace of H spanned by elements of I which
are locally nilpotenton V. If t kg, for any m € Z"\{0}, is not locally nilpotenton V,
the lemma holds thanks to Lemmas 3.3 and 3.5. Suppose X' N{tZko|m € 7"} #{0}.
By Lemmas 3.2, 3.3 and 3.5, if t”ky € H', then t ko ¢ H', and t(')"otmko e I’ for
all mg > 0.

Case 1: Suppose 1)t ko € I’ for any ko € 3. Then the lemma is proved.
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Case 2: Suppose there exists 0 # ko € H' such that ot ko ¢ H'. Since m =
(my,...,m,) #0, we can assume that m, # 0 for some a € {1, 2, ..., v}. Let Vj
be such that

dim V;, = min{dim V; | V; # 0,5 € 2"}

Case 2.1: Assume tét_mko ¢ A’ forany i > 0. Let ] € Z, and consider

!
(3-8) Z aity 't kotit ™ kov = 0,
i—0

where v € V5, \ {0}. By Lemma 3.4, {tétmko, t()_itmko |ieZ,} ' SobyLemma
3.2, we have

1012 ko Vi, =ty 12k Vi, = 101" d, Vi, =ty ' 12d, Vs, = 0,i € Z4,0 < p < v.

Let j €{0,1,...,1}. From (3-8) we have

1
to 12 dty 17 da (Y ity t kot ko)v = 0.

i=0
Therefore
I
Za,-(—ma)té_lko(—ma)t(l)_]kov = ajmlzlc(z)v =0.
i=0
Soa; =0, j=0,1,...,1. This means {t()_it_mkotét_mko)v | 0 <i <} are

linearly independent. Since / can be any positive integer, it follows that V7 _ 0 2m)
18 infinite-dimensional, a contradiction.

Case 2.2: Assume there exists | € 7 such that
0 kg ¢ K, ko € K.

(I) Assume that t(l)t_imko e H foranyi € Z,. Let s > 0 and consider
N
Za,‘l(;ll‘lmkol_lmkov =0.
i=1

Similar to the proof above, we can deduce that V; _ o) is infinite-dimensional, in
contradiction with the assumption that V' has finite-dimensional weight spaces.

(IT) Assume there exists s; € Z, such that
it ko e W, T Mko e K, .., thT ko e H!,  thrT DMk, ¢ 9
Then there exist s, 53, ..., Sk, ... such thats; > sy fori =2,3,...,k,... and

e S A i e TRSE AN
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t(i)lt(_sl_sz_m_si’l_Si)mko = 57{/’ t(l')lt(—sl_n_'“_si*l_Si_l)mko ¢ H'.

Assume that

S1 52
(Z ailo_ltlmkot_lmko + Z clsl_H'tO_th(sl+l)mk()l‘(l)t_(sl+l)mk0
i=1 i=1
53

+ Z asl+s2+it0—3lt(31+S2+1)mk0t§lf(ﬁ+Sz+z)mk0 4.

i=1
Sk
+ Z aSl+m+Skl+it0—klt(sl+"'+Sk_1-H)mkot(gk—l)lt—(ﬂ+"'+Sk_|+l)mko) v=0.
i=1
Let
M d bt d,, 1<j<si,

l‘O_ll‘(‘”+j)mdatglt_(sl+j)mda, 1 < ] < s2,

L)

to_(k_l)lt(sl+52+---+Sk—|+j)mdatglt—(sl+52+"'+Sk—1+j)ﬂda’ 1<j<s

act on the two sides of the above equation respectively. By Lemma 3.4, we deduce
that q; =0, fori =1, 2, ..., s, and that

asl_‘_...ﬂjfl_H =0 fori= 1,2, e 85, 2 < ] Sk

Since k can be any positive integer, it follows that V; _ o) is infinite-dimensional,
which contradicts our assumption. The lemma is proved. U

Lemmas 3.1 through 3.6 immediately yield the following result.

Theorem 3.7. Let V be an irreducible weight module of &£ such that cy, ..., cy
are Z-linearly independent and N > 1. Then V has weight spaces that are infinite-
dimensional.

Let
Y +1 +1 - +1 +1
Lr=> toClto, 17, ..., 17k, ® ) tClto, 7=, ..., 1) 1dp,
e =,
o= 'Cly 5 Tk, @ Y Il L L 1 A,
p=0 p=0
v vV
Fo =Y Clt, .t Tk, @ Y Cl . F1d,,.
p=0 p=0
Then

P=F, DL DEL_.
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Definition 3.8. Let W be a weight module of &. If there is a nonzero vector vg € W
such that

§L,p+v() = 0, W= U(iﬁ)vo,

then W is called a highest weight module of &. If there is a nonzero vector vop € W
such that

§B_v0 = O, W= U(§£)v0,
then W is called a lowest weight module of &£.
From Lemmas 3.2 and 3.6, we obtain:

Theorem 3.9. Let V be an irreducible weight module of & with finite-dimensional
weight spaces and with central charges co #0,c1 =co=---=c¢, =0. Then V is
a highest or lowest weight module of <.

In the remainder of this section we assume that V is an irreducible weight mod-
ule of & with finite-dimensional weight spaces and with central charges co # O,
ci=---=c¢,=0.

Set

T {fveV |Z,v=0} ifV is ahighest weight module of £,
{fveV |Z_v=0} ifV isalowest weight module of .
Then T is a $£y-module and
V=UE)T or V=UE)T.
Since V is an irreducible ¥-module, T is an irreducible £y-module. 7T has the

decomposition
r= @,

meZz"

where m = (my,mo, ..., m,), Tpy={veT|dv=m;+un(d)v,1 <i<v}and
w is a fixed weight of T. As in the proof in [Jiang and Meng 2003; Eswara Rao
and Jiang 2005], we can deduce:

Theorem 3.10. (1) Forallm,ne 7', p=1,2,...,v, we have
dim 7, =dim 7,, t"k, - T =0,
t"ko(vi(n), ..., vu(m) = co(vi(m +n), va(m+n), ..., v,(m+n)),
t"do(v1(n), v2(n), ..., v,(n)) = u(do) (Vi (m +n), vo(m +n), ..., v,(m +n)),

where {v1(0), ..., v, (0)} is a basis of Ty and v;(m) = Cltmkovi 0), fori =1,2,
0
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(2) Asan (A, & D,)-module, T is isomorphic to
Fe(Y,b) =V, b) ®@Cl, ..., 5]

for some a = (ay, ...,ay), ¥, and b, where A, = (D[tlil, cl t;—Ll], 9, is
the derivation algebra of A, and V (Y, b) is an m-dimensional, irreducible
gl (C)-module satisfying (1) = bidy y ) and

%

dp(w ™) = (mp + ) w 1+ i (Eip)w @ 1712
i=1
forw e V (i, b).

Let
M= Indi%ﬁ0 T or M= Indiﬂ(g0 T.

Theorem 3.11. Among the submodules of M intersecting T trivially, there is a
maximal one, which we denote by M™3. Moreover V.= M/ M™,

4. The structure of V withcy=---=¢, =0

Assume that V is an irreducible weight module of & with finite-dimensional weight
spaces and cp =---=c¢, =0.

Lemma 4.1. For any tfkp e, tfkp or t_fkp is locally nilpotent on V.

Lemma 4.2. If V is uniformly bounded, t" kp is locally nilpotent on V for any
t"kp € K.

Proof. For tfkp € ¥, by Lemma 4.1, tfkp or t_fkp is nilpotent on V;; for all
m € Z'*!. Since V is uniformly bounded, i.e., max{dim V;; | m € Z"*'} < oo,
there exists N € Z such that

(t"kpt Tk )NV =0, (tTkpt k)N TV £0

If the lemma is false, we can assume that ¢~ kp is not locally nilpotent on V.
Therefore for any 0 # v € V, we have t_fkpv #0. So

(k)N V =0.
Let t=%'d, € % be such that p # g and r, # 0. By the fact that [t=2'd,, t"k,] =
rqt "k, we deduce that t "k, (t"k,)N "1V =0, a contradiction. O

Lemma 4.3. If there exists 0 # v € V such that t’;’kpv =0 for all m € 7" and
0<p<v. Then¥(V)=0.

Proof. This follows from (2-2), since I is commutative and V is an irreducible
<-module. O

Theorem 4.4. If V is uniformly bounded, t"k »V vanishes for any 1" k, €.
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Proof. Let 0 # t;k, € K. 1If t;k,V =0, it is easy to prove that H(V) = 0. If
tik,V #0. Since V is uniformly bounded, by Lemma 4.2, there exists / € Z such
that

(4-1) (tikpt 'k )'V =0, (tikpt; k)Y £0.

If there exists s € Z such that (t; 'k,)*V =0, (1, 'k,)* "'V # 0. By the fact that
[17d;, 7 kp] = —t;7 1"k, and [t"d,, 17" k,] = 1, 1" k;, we have
k(87 k) TV =t k(17T k,) TV =0 forall F e 2V

If (ti_lkp)SV # 0 for all s € Z;. Then by (4-1) there is r > 0 such that
(tikp)! 71 (¢ k)Y = 0 for all 0 < i < r, and (t:k,) ™"t k)Y £ 0.
So for any i € Z"*!, we have

l‘_ﬁldi (tikp)l_r (ti—lkp)l-‘rr-i-l V = 0, t—n_’ldp (tikp)l_r (ti—lkp)l-‘rr-‘rl vV =0.

Therefore )
trkp (tikp)l_r_l (ti_lkp)l+r+l V= 0,

tfki (tikp)l_r_l (tiflkp)l—H’-i-l V= 0’
for all 7 € Z"+1.

Case 1: v €27+ 1. By the preceding discussion, there exist nonnegative integers
ljand r;, fori =0,2,4,...,v—1, such that

(toky— 1)1 () ooy 1) (ty—2ky—3) 2 (8 ey —3) =3 - - - (1ko) P (2 ko) V #0
and
1"k (toky— )1 () Ky 1) (ty—2ky—3) 2 (8 Sk —3) 0 - - (ko) (2] ko) 0V

vanishes forall 0 < p <vand m € VARRS By Lemma 4.3, the conclusion of the
theorem holds.

Case 2: v € 27. Then there exist nonnegative integers /; and r;, fori =0, 2,4, ...,
v — 2, such that

W = (ty—1ky—2)" 2 (1, e m2) 2 (fyshy—a) v (1) ke —a) ™ - (ko) 0 (1 ko) V
is nonzero and

(4-2) "k, W =0

forall0<p<v—1landme VARRS By (2-1), we know that

(4-3) "k, W =0,
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for 1 € 7"+ such that m, # 0. If there exists "0k, satisfying t"0k, W # 0, let

P, = span {t2d;, 1" d,, %k, | = =1 £, 0<i <v—1,

m=(mo,...,my_1) €' meZ"""},

W =U(L)W.
Then W’ #£ 0 and

"k,W' =0,  1"k,2W =0,
forall0 < p<v—1, meZ"*!, and i € 7! such that n, # 0. If there exists
0 # ™k, such that 1k, W’ # 0, we have
k) (k)W =0 and (¢t 7k,) " (k) T'W £0

for some [ € Z,. As in the preceding proof, we can deduce that there exists a
nonzero v € W’ such that

2k,2v=0
for all n € Z". Therefore
t';’kpv =0
for all m € 7"+ and 0 < p < v. We have proved that X (V) =0. U
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