
Pacific
Journal of
Mathematics

HOPFISH ALGEBRAS

XIANG TANG, ALAN WEINSTEIN AND CHENCHANG ZHU

Volume 231 No. 1 May 2007





PACIFIC JOURNAL OF MATHEMATICS
Vol. 231, No. 1, 2007

HOPFISH ALGEBRAS

XIANG TANG, ALAN WEINSTEIN AND CHENCHANG ZHU

We introduce a notion of “hopfish algebra” structure on an associative al-
gebra, allowing the structure morphisms (coproduct, counit, antipode) to
be bimodules rather than algebra homomorphisms. We prove that quasi-
Hopf algebras are hopfish algebras. We find that a hopfish structure on the
algebra of functions on a finite set G is closely related to a “hypergroupoid”
structure on G. The Morita theory of hopfish algebras is also discussed.

1. Introduction

When the multiplication on a (discrete, topological, smooth, algebraic) group G
is encoded in an appropriate algebra A = A(G) of functions on G with values in
a commutative ring k, it becomes a coproduct, that is, an algebra homomorphism
1 : A → A ⊗k A. The inclusion of the unit and the inversion map are also en-
coded as homomorphisms: the counit ε : A → k and the antipode S : A → A.
The group properties (associativity, unit, inverse) become statements about these
homomorphisms which constitute the axioms for a (commutative) Hopf algebra;
any noncommutativity of the underlying group appears as noncocommutativity of
the coproduct.

In noncommutative geometry, a noncommutative algebra A is thought of as the
functions on a “noncommutative space” or “quantum space” X . If X is to be a
“quantum group”, the algebra A should have the additional structure of a Hopf
algebra. We note that, for noncommutative Hopf algebras, the antipode has to be
an antihomomorphism rather than a homomorphism of algebras. For this reason,
a Hopf algebra is not quite a group in the category of algebras; this anomaly will
come back to haunt us later.

One type of quantum space is a quantum torus, whose function algebra is the
crossed product algebra Aα associated to an action of Z on the circle S1

= R/Z

generated by an irrational rotation rα. This irrational rotation algebra is generally
taken as a surrogate for the algebra of continuous functions on the “bad quotient
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space” S1/αZ because, for nice quotients, the crossed product algebra is Morita
equivalent to the algebra of functions on the quotient. Since S1/αZ is a group, one
might expect Aα to have a Hopf algebra structure, but this is not so. In particular,
there can be no counit, since there are no algebra homomorphisms Aα → C. In
geometric language, “the quantum torus has no points”.

Additionally, in noncommutative geometry, Morita equivalent algebras are often
thought of as representing the “same space”, but the notion of Hopf algebra, and
even that of biunital bialgebra, is far from Morita invariant.

In this paper, we propose a new algebraic approach to “group structure” based on
the idea that the appropriate morphisms between algebras are bimodules (perhaps
with extra structure, or satisfying extra conditions) rather than algebra homomor-
phisms. Our immediate inspiration to use bimodules was [Tseng and Zhu 2006],
in which leaf spaces of foliations are treated as differential stacks for the purpose
of putting group(oid)-like structures on them. This means that the structure mor-
phisms of the groupoids are themselves bibundles [Mrčun 1996] (with respect to
foliation groupoids, which play in this geometric story the role of the crossed prod-
uct algebras above) rather than ordinary mappings of leaf spaces. We were also
motivated by previous uses of bimodules as generalized morphisms of algebras,
C∗-algebras, groupoids, and Poisson manifolds, a point of view which has been
extensively developed by Landsman and others (see, for instance, [Bursztyn and
Weinstein 2005; Landsman 2001a; 2001b]).

We call our new objects hopfish algebras, the suffix “oid” and prefixes like
“quasi” and “pseudo” having already been appropriated for other uses. Also, our
term retains a hint of the Poisson geometry which inspired some of our work.

Outline of the paper. We begin with a discussion of the category in which objects
are algebras and morphisms are bimodules, emphasizing the functor, which we call
modulation, from the usual category to this one. We then look at the analogues of
semigroups and groups in this category, which we call sesquialgebras and hopfish
algebras. What turns out to be especially delicate is the definition of the antipode.
We next show that Hopf algebras, and the more general quasi-Hopf algebras, be-
come hopfish algebras upon modulation. In the following section, we study the
Morita invariance of the hopfish property, showing that a sufficient condition for
this to hold is that a Morita equivalence bimodule be compatible with the antipode
of a hopfish algebra. Finally, we study hopfish structures on finite dimensional
commutative algebras. We show that these correspond to “multiple-valued group-
oid structures” and give examples of hopfish algebras which do not correspond
under Morita equivalence to Hopf algebras.

Outlook. In this present paper, we restrict ourselves to the purely algebraic sit-
uation; in particular, our tensor products do not involve any completion. We do
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not require finite dimensionality of our algebras, although some of our examples
do have this property. We hope to develop a theory of hopfish C∗-algebras in
the future, with a treatment of irrational rotation algebras as a first goal. Even
without this theory, it has been possible in [Blohmann et al. 2006] to construct
a sesquiunital sesquialgebra structure on the “polynomial part” of the irrational
rotation algebras. These algebras are not quite hopfish, since the candidate antiau-
tomorphism satisfies only a weakened version of our antipode axiom. (We hope
that this will be remedied when we go on to the C∗-algebras.) Nevertheless, our
structure is sufficient to induce an interesting monoid structure on isomorphism
classes of modules.

Finally, we remark that all of our examples of hopfish examples are either weak
Hopf algebras or Morita equivalent to quasi-Hopf algebras. It would be interesting
to find completely new examples. The irrational rotation algebras are probably not
of either of these special types, but, as we have already noted, they are not quite
hopfish.

2. The modulation functor

Fixing a commutative ring k as our ring of scalars, we will work mostly in a cat-
egory Alg whose objects are unital k-algebras. The morphism space Hom(A, B)
is taken to be the set of isomorphism classes of biunital (A, B)-bimodules. We
will almost always consider these morphisms as going from right to left, i.e.-
from B to A (or, better, “to A from B”). The composition XY ∈ Hom(A,C)
of X ∈ Hom(A, B) and Y ∈ Hom(B,C) is defined (on representative bimodules)
as X ⊗B Y , with the residual actions of A and C providing the bimodule structure.

We will frequently fail to distinguish between morphisms in Alg and their repre-
sentative bimodules, as long as we can do so without causing confusion. It is also
possible to work in the more refined 2-category whose morphisms are bimodules
and whose 2-morphisms are bimodule isomorphisms, but we leave this for the
future.

We will denote by Alg0 the “usual” category whose objects are again unital k
algebras but whose morphisms are unital homomorphisms. Thus, Hom0(A, B)
will denote the homomorphisms to A from B. There is an important functor from
Alg0 to Alg which we will call modulation.1 The modulation of f ∈Hom0(A, B) is
the isomorphism class of A f , which is the k-module A with the (A, B)-bimodule
structure

(1) a · x · b = ax f (b).

1We are indebted to Yvette Kosmann-Schwarzbach for suggesting this apt name for a functor
which is ubiquitous in the literature on Morita equivalence, but which does not seem to have acquired
a standard designation.
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We will often denote the modulation of a morphism by the same symbol, but in
bold face, e.g. f ∈Hom(A, B). The modulation functor is not necessarily faithful,
as the next lemma shows.

Lemma 2.1. For f, g ∈Hom0(A, B), their modulations f and g are equal (i.e. the
bimodules A f and Ag are isomorphic) if and only if f =φgφ−1 for some invertible
φ ∈ A.

Proof. If f = φgφ−1, f and g are both represented by A, with the same left A-
module structures. To correct for the difference between the right actions of B, we
introduce the bijective map 8 : A f → Ag defined by x 7→ xφ, which is a bimodule
isomorphism because

8(ax f (b))= ax f (b)φ = axφφ−1 f (b)φ = axφg(b)= a8(x)g(b).

For the converse, given a bimodule isomorphism 8 : A f → Ag, we define φ to
be 8(1A). By setting x = 1A in the bimodule morphism identities 8(ax)= a8(x)
and 8(x f (b)) = 8(x)g(b), we find first that 8(a) = aφ, so that φ is invertible
because 8 is, and then that f (b)φ = φg(b), or f = φgφ−1. �

Lemma 2.2. A morphism X ∈ Hom(A, B) is the modulation of f ∈ Hom0(A, B)
if and only if it is isomorphic to A as a left A module.

Proof. If X represents f , then clearly X is isomorphic to A as a left A module.
For the converse, if X = A as a left A module then X is isomorphic to A f where
f (b)= 1A · b. �

An invertible morphism in Hom(A, B) is called a Morita equivalence between
A and B, and the group of Morita self-equivalences of A is called its Picard group.
The modulation functor clearly takes algebra isomorphisms to Morita equivalences.
In fact, we have:

Lemma 2.3. The modulation of f ∈ Hom0(A, B) is invertible if and only if f is
invertible.

Proof. A standard fact about Morita equivalence is that, if X ∈Hom(A, B) is invert-
ible, the natural homomorphisms from A and B to the B- and A-endomorphisms
of X are isomorphisms. When X = A f , the map which takes b ∈ B to the operator
of right multiplication by f (b) is injective if and only if f is injective. On the other
hand, all of the left A-module endomorphisms of A are the right multiplications,
so they are all realized by the action of B if and only if f is surjective. �

Remark 2.4. It is also possible to modulate a nonunital f . In this case, the under-
lying k-module should be taken to be the left ideal I in A generated by f (1B), so
that the bimodule structure (1) is still biunital. The three lemmas above change to
the following statements, whose proofs are similar, so we only sketch them.
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Lemma 2.1′. If f and g are algebra homomorphisms A ← B not necessarily
unital, then their modulations f and g are equal if and only if there are elements
φ ∈ A · f (1B) and ψ ∈ A · g(1B) such that φψ = g(1B), ψφ = f (1B), g = φ fψ ,
satisfying the two additional conditions that xφψ = 0 implies xφ= 0 and xψφ= 0
implies xψ = 0.

Sketch of proof. Given an isomorphism 8 to f from g, let φ = 8(g(1B)) and
ψ = 8−1( f (1B)). Then 8(xg(1B)) = xφ and 8−1(x f (1B)) = xψ . All this
gives us the desired equations and properties. For the converse, the morphism
8(xg(1B)) := xφ is an isomorphism from A · g(1B) to A · f (1B) with inverse
8−1(x f (1B)) := xψ . The two additional conditions make8 and8−1 well defined.

�

Lemma 2.2′. A morphism X ∈ Hom(A, B) is the modulation of a (not necessarily
unital) map f : A← B if and only if it is represented by a principal left ideal in A.

Sketch of proof. If X is the modulation of f , then X = A · f (1B). For the converse,
if X is isomorphic to a left A ideal A · c, then X is the modulation of f : b 7→ c · b,
where b ∈ B and · is the right action of B on X = A · c. �

Lemma 2.3′. When f (1B) is in the center of A, the modulation of a morphism
f : A← B (not necessarily unital) is invertible if and only if f is an isomorphism
from B to A · f (1B) and f (1B) is not a zero divisor.

Sketch of proof. One applies the same argument. If f is invertible, notice that
A→EndB(X) by a 7→a· is an isomorphism, therefore a f (1B) 6=a′ f (1B) if a 6=a′.
This implies that f (1B) is not a zero divisor. As before f has to be injective. For
any a ∈ A, right multiplication by a is in EndA(X), therefore there is b ∈ B such
that f (1B)a = f (b). It is not hard to prove the converse. �

Finally, we recall that every (A, B) bimodule gives rise (via tensor product over
B) to a k-linear functor from the category of left B-modules to that of left A-
modules, that isomorphisms between bimodules produce naturally equivalent func-
tors, and that invertible elements of Hom(A, B) correspond to homotopy classes
of equivalences of categories. (The Eilenberg–Watts theorem characterizes the
functors arising from bimodules as those which commute with finite limits and
colimits.)

Sesquialgebras. To make the notion of biunital bialgebra Morita invariant, we in-
troduce the following definition. For simplicity of notation, we omit the subscript
k on tensor products over k, and the unadorned asterisk ∗ will denote the k-dual.

Definition 2.4. A sesquiunital sesquialgebra over a commutative ring k is a uni-
tal k-algebra A equipped with an (A ⊗ A, A)-bimodule 1 (the coproduct) and a
(k, A)-module (that is, a right A module) ε (the counit), satisfying the following
properties.
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(1) (coassociativity) The (A⊗ A⊗ A, A)-bimodules

(A⊗1)⊗A⊗A 1 and (1⊗ A)⊗A⊗A 1

are isomorphic.

(2) (counit) The (k⊗ A, A)= (A⊗ k, A)= (A, A)-bimodules

(ε⊗ A)⊗A⊗A 1 and (A⊗ ε)⊗A⊗A 1

are isomorphic to A.

For example, if (A,1, ε) is a biunital bialgebra, then its modulation (A,1, ε)
is a sesquiunital sesquialgebra. If we have a Morita equivalence X between A and
another algebra B, we can use composition with X and X ⊗ X to put a biunital
sesquialgebra structure on B. See Section 5 below for more details.

3. The antipode and hopfish algebras

Our definition of sesquiunital sesquialgebra expresses (with arrows reversed) the
usual axioms of a monoid (semigroup with identity) in the category Alg. A monoid
is a group when all its elements have inverses, so it is natural to look for a sesquial-
gebraic analogue of the inverse. In a Hopf algebra, the antipode, which encodes
inversion, is an algebra antihomomorphism S : A→ A. The properties of inversion
(gg−1

= e = g−1g for every group element) are then expressed as commutativity
of two diagrams, or equality of compositions

(2) 1 ◦ ε = µ ◦β ◦1,

where 1 : k→ A is inclusion of the scalars, µ : A⊗A→ A is algebra multiplication,
and β : A⊗ A→ A⊗ A is either I ⊗ S or S⊗ I (I being the identity morphism on
A).

When A is noncommutative, the maps µ and β are k-linear but not algebra
homomorphisms. One can consider S as a homomorphism from A to the opposite
algebra Aop, or vice versa, but there is no way to correct µ in such a manner.
As a result, we see no way to rewrite (2) in the category Alg. Instead, we take
an alternate approach, which may also be useful elsewhere in the theory of Hopf
algebras.

We keep in mind the example where A is the algebra of k-valued functions on a
group G.

One way to characterize groups among monoids without explicitly postulating
the existence of inverses is to consider the subset

J = {(g, h) | gh = e} ⊂ G×G
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and require that it project bijectively to one factor in the product. To represent
J algebraically, even when A is noncommutative, we borrow an idea from Pois-
son geometry [Lu 1993], where coisotropic submanifolds become one-sided ideals
when a Poisson manifold is quantized to become a noncommutative algebra.

We begin, then, with the space Z ′ = HomA(ε,1) of right module homomor-
phisms. (In the group case, Z ′ plays the role of measures on G × G which are
supported on J .) Using the left A⊗ A module structure on 1, we define a right
A⊗ A module structure on Z ′ by (gb)(u)= g(bu) for g in Z ′, b in A⊗ A and u in
1. Note that Z ′ is completely determined by ε and 1 and is not an extra piece of
data.

For the algebraic model of functions on J , we must take a predual of Z ′, that is,
a left A⊗ A-module Z whose k-dual Z∗ is equipped with a right A⊗ A-module
isomorphism with Z ′.

Definition 3.1. A preantipode for a sesquiunital sesquialgebra A over k is a left
A⊗ A module S together with an isomorphism of its k-dual with the right A⊗ A
module HomA(ε,1).

Since a left A module is also a right Aop module, we may consider S as an
(A, Aop) bimodule, where (A, ·) is from the left A in A⊗ A and (·, Aop) is from
the right one, i.e. as an Alg morphism in Hom(A, Aop).

The following is our way of expressing algebraically that the first projection
from J to G is bijective.

Definition 3.2. Let A be a sesquiunital sesquialgebra. If a preantipode S, con-
sidered as an (A, Aop) bimodule, is a free left A module of rank 1, we call S an
antipode and say that A along with S is a hopfish algebra.

By Lemma 2.2, S is the modulation of an algebra homomorphism A ← Aop.
Thus, the definition is effectively that there is a homomorphism S to A from Aop

such that the full k-dual of the modulation of S is isomorphic to HomA(ε,1).

4. Hopf and quasi-Hopf algebras as hopfish algebras

As we observed earlier, the modulation of a biunital bialgebra is a sesquiunital
sesquialgebra. In this section, we will give an explicit description of a preantipode
in this case, and we will show that the modulation of a Hopf algebra is hopfish. Al-
though this is a special case of the quasi-Hopf algebras treated later in this section,
we deal separately with the Hopf case because the proof is much simpler.

Let (A,1, ε) be a biunital bialgebra. Considering the modulations ε = k and
1 = A ⊗ A as right A modules respectively, one may identify Z ′ with the sub-
space of (A⊗ A)∗ =Homk(k, A⊗ A) consisting of those linear functionals which
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annihilate the left ideal W generated by

{ε(a)(1⊗ 1)−1(a)|a ∈ A},

i.e. with the k-module dual to (A⊗ A)/W . We may therefore take the (cyclic) left
A⊗ A module S1 = (A⊗ A)/W as a preantipode.

We will use the following lemma later. Its straightforward proof is left to the
reader.

Lemma 4.1. W is equal to the left ideal generated by 1(ker ε).

Now suppose that A is equipped with an antipode S making it into a Hopf alge-
bra. We will consider S as a homomorphism A← Aop, with modulation S. As a
k-module, S is A; its (A, Aop) bimodule structure is a · x · b = ax S(b).

If we can show that the preantipode S1 is isomorphic to S as a bimodule, then
since S is isomorphic to A as a left A-module, S = S1 is an antipode, making the
modulation of A into a hopfish algebra.

We define a map φ : A⊗ A→ A by

a⊗ b 7→ aS(b),

This map is obviously a morphism of (A, Aop) bimodules because

φ(c · (a⊗ b))= φ(ca⊗ b)= caS(b)= c · (aS(b)),

φ((a⊗ b) · c)= φ(a⊗ cb))= aS(b)S(c)= (aS(b)) · c.

Hence this map descends to S1 = (A⊗ A)/W because

φ(ε(a)(1⊗ 1)−1(a))= 1 ◦ ε(a)− (id⊗ S) ◦1(a)= 0.

The induced map from S1 to A, which we also denote by φ, is also a morphism of
(A, Aop) bimodules.

Moreover φ is surjective, since it has a left inverse a 7→ [a⊗1], where [ ] denotes
the equivalence class modulo W . This map is also a right inverse, and φ is injective,
if and only if the equation

(3) 1⊗ a− S(a)⊗ 1 ∈W

is satisfied for all a ∈ A. Notice that aS(b)⊗1−a⊗b= (a⊗1)(S(b)⊗1−1⊗b)
and W is a left ideal. Since id = m ◦ (id ⊗ ε) ◦ 1, composing with S we have∑

S(a1)ε(a2)=
∑

S(a1ε(a2))= S(a). (Here we use Sweedler’s notation 1(a)=∑
a1 ⊗ a2 and

∑
1(a1)⊗ a2 =

∑
a1,1 ⊗ a1,2 ⊗ a2, etc.) On the other hand, we

have∑
(S(a1)⊗ 1) ·1(a2)=

∑
(S(a1)a2,1)⊗ a2,2

=

∑
(S(a1,1)a1,2)⊗ a2 =

∑
1⊗ ε(a1)a2 = 1⊗ a.
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We explain the equalities above as follows. The first equality just comes from the
notation and the multiplication in the tensor product algebra. For the second, we
consider the map s : A⊗ A⊗ A→ A⊗ A defined by s(a ⊗ b⊗ c) = S(a)b⊗ c.
Coassociativity and evaluation of s give∑

s(a1⊗ a2,1⊗ a2,2)=
∑

s(a1,1⊗ a1,2⊗ a2)

=

∑
(S(a1)a2,1)⊗ a2,2 =

∑
(S(a1,1)a1,2)⊗ a2.

For the third equality, we have used the property of S that µ ◦ (S⊗ id) ◦1= 1 ◦ ε.
Therefore,

1⊗ a− S(a)⊗ 1=
∑

(S(a1)⊗ 1)(−ε(a2)+1(a2)) ∈W.

So (3) is proved, hence S and S1 are isomorphic as (A, Aop) bimodules.
We have thus proved the following theorem.

Theorem 4.2. Let (A,1, ε) be a biunital bialgebra. Then (A⊗ A)/W , where W
is the left ideal generated by

{ε(a)(1⊗ 1)−1(a) | a ∈ A},

is a preantipode for the modulation of A. If A is a Hopf algebra, with antipode S,
then (A⊗ A)/W is isomorphic to the modulation S, and (A,1, ε, S) is a hopfish
algebra.

Remark 4.3. The hopfish antipode S is also isomorphic to Aop as a right Aop-
module if and only if the Hopf antipode S is invertible. This is why we use a “one
sided” criterion for a preantipode to be an antipode.

We turn now to quasi-Hopf algebras. Recall that a quasibialgebra (A, ε,1, S) is
nearly a bialgebra, except that the coproduct does not satisfy associativity exactly;
instead, there is an invertible element8 ∈ A⊗ A⊗ A (the coassociator), satisfying

(4) (id⊗1)(1(a))=8−1(1⊗ id)(1(a))8 for all a ∈ A,

and further coherence conditions,

(5) (1⊗ id⊗ id)(8) ·(id⊗ id⊗1)(8)= (8⊗1) ·(id⊗1⊗ id)(8) ·(1⊗8),

(ε⊗ id)◦1= id= (id⊗ε)◦1,

(id⊗ε⊗ id)(8)= 1.

Since the modulation functor “kills” inner automorphisms (Lemma 2.1), the mod-
ulation of a quasibialgebra is a sesquialgebra.
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Now A is a quasi-Hopf algebra if there is an anti-homomorphism S : A→ A
and elements α, β in A, such that

(6)
∑

S(a1)αa2 = ε(a)α,
∑

a1βS(a2)= ε(a)β for all a ∈ A,

where we use Sweedler’s notation: 1(a) =
∑

a1 ⊗ a2. There are also higher
coherence conditions for α and β; see [Drinfel’d 1989] for details.

The following proposition is a slight modification of [Drinfel’d 1989, Proposi-
tion 1.5]. Unlike Drinfel’d, we do not assume that S is invertible, so we can not
obtain the “right” part of his proposition, but his “left” part can be proved under
weaker hypotheses.

Proposition 4.4. Let (A,1, ε,8, S, α, β) be a quasi-Hopf algebra, with 8 =∑
i X i ⊗ Yi ⊗ Zi and 8−1

=
∑

j Pj ⊗ Q j ⊗ R j . Define

ω =
∑

j
S(Pj )αQ j ⊗ R j ∈ A⊗ A.

Denote by W the left ideal of A⊗ A generated by 1(ker ε). Then

(1) the k-linear mappings φ,ψ : A⊗ A→ A⊗ A, given by

φ(a⊗ b)= (a⊗ 1)ω1(b), ψ(a⊗ b)=
∑

i
aX iβS(Yi )S(b1)⊗ b2 Zi ,

are bijective, where we have used Sweedler’s notation 1b = b1⊗ b2;

(2) the mapping a⊗b 7→ (id⊗ε)(φ−1(a⊗b)) induces a bijection (A⊗A)/W→ A,
and (id⊗ ε)(φ−1(a⊗ b))= aβS(b);

Proof. First, φψ = id = ψφ. We will prove only that φψ = id; the other equation
can be derived by the same method, as in [Drinfel’d 1989]. We have

φψ(a⊗ b)=
∑

i

φ(aX iβS(Yi )S(b1)⊗ b2 Zi )

=

∑
i

(aX iβS(Yi )S(b1)⊗ 1)ω1(b2)1(Zi )

=

∑
i

(a⊗ 1)(X iβS(Yi )⊗ 1)
(
(S(b1)⊗ 1)ω1b2

)
1Zi

=

∑
i

(a⊗ 1)(X iβS(Yi )⊗ 1)(B)1(Zi ),

where B = (S(b1)⊗ 1)ω1b2.
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We insert the definition of ω in B, and have

(S(b1)⊗ 1)ω1b2

=
∑

j

(
S(b1)S(Pj )αQ j ⊗ R j

)
1b2

=
∑

j
(m⊗ id)

(
(S⊗α · ⊗id)

(
(Pj b1⊗ Q j ⊗ R j )(1⊗1b2)

))
=

∑
j
(m⊗ id)

(
(S⊗α · ⊗id)

(
(Pj ⊗ Q j ⊗ R j )(b1⊗ 1⊗ 1)(1⊗1b2)

))
= (m⊗ id)

(
(S⊗α · ⊗id)

(
8−1(1⊗1)1(b)

))
,

where m : A ⊗ A → A is the multiplication on A and α · : A → A is the left
multiplication by α.

Using the twisted coassociativity (id⊗1)1 =8(1⊗ id)(1)8−1 we continue
the calculation above to find that B is equal to

(m⊗ id)
(
(S⊗α · ⊗id)

(
(1⊗ id)1(b)8−1))
=

∑
j
(m⊗ id)

(
(S⊗α · ⊗id)

(
b11 Pj ⊗ b12 Q j ⊗ b2 R j

))
=

∑
j
(m⊗ id)

(
S(Pj )S(b11)⊗αb12 Q j ⊗ b2 R j

)
=

∑
j

S(Pj )S(b11)αb12 Q j ⊗ b2 R j

=
∑

j
S(Pj )αε(b1)Q j ⊗ b2 R j =

∑
j

S(Pj )αQ j ⊗ ε(b1)b2 R j

=
∑

j
S(Pj )αQ j ⊗ bR j = (1⊗ b)

∑
j
(S(Pj )αQ j ⊗ R j ),

where in the fourth equality we have used a property of the antipode S, and at the
fifth we have used a property of ε.

Substituting the expression above for B in the calculation of φψ , we have

φψ(a⊗ b)=
∑
i, j

(a⊗ 1)(X iβS(Yi )⊗ 1)(1⊗ b)(S(Pj )αQ j ⊗ R j )1(Zi )

= (a⊗ b)
∑
i, j

(X iβS(Yi )⊗ 1)(S(Pj )αQ j ⊗ R j )1(Zi ).

Next, we show that U =
∑

i, j (X iβS(Yi )⊗ 1)(S(Pj )αQ j ⊗ R j )1(Zi ) is equal
to 1. We define the k-linear map 9 : A⊗ A⊗ A⊗ A→ A⊗ A by

9(a⊗ b⊗ c⊗ d)= aβS(b)αc⊗ f,
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so U can be written as∑
i, j

(X iβS(Yi )⊗ 1)(S(Pj )αQ j ⊗ R j )1(Zi )

=

∑
i, j

X iβS(Yi )S(Pj )αQ j Zi1⊗ R j Zi2

=

∑
i, j

9((1⊗ Pj ⊗ Q j ⊗ R j )(X i ⊗ Yi ⊗ Zi1⊗ Zi2))

=9
(
(1⊗8−1)(id⊗ id⊗1)(8)

)
.

Using the coherence condition

(7) (id⊗ id⊗1)(8)(1⊗ id⊗ id)(8)= (1⊗8)(id⊗1⊗ id)(8)(8⊗ 1),

we get

(1⊗8−1)(id⊗ id⊗1)(8)= (id⊗1⊗ id)(8)(8⊗ 1)(1⊗ id⊗ id)(8−1)

=

∑
i, j,k

X i X j Pk1⊗ Yi1Y j Pk2⊗ Yi2 Z j Qk ⊗ Zi Rk .

Hence 9
(
(1⊗8−1)(id⊗ id⊗1)(8)

)
is equal to∑

i, j,k

9(X i X j Pk1⊗ Yi1Y j Pk2⊗ Yi2 Z j Qk ⊗ Zi Rk)

=

∑
i, j,k

X i X j Pk1βS(Pk2)S(Y j )S(Yi1)αYi2 Z j Qk ⊗ Zi Rk

=

∑
i, j,k

X i X jβε(Pk)S(Y j )ε(Yi )αZ j Qk ⊗ Zi Rk

=

∑
i, j,k

X iε(Pk)(X jβS(Y j )αZ j )ε(Yi )Qk ⊗ Zi Rk

=

∑
i,k

X iε(Pk)ε(Yi )Qk ⊗ Zi Rk .

In the second equality, we used properties of the antipode: Pk1βS(Pk2) = βε(Pk)

and S(Yi1)αYi2 = αε(Yi ). In the last equality, we used
∑

j X jβS(Y j )αZ j = 1.
We evaluate id⊗ε⊗id⊗id on both sides of (7), and since ε is an homomorphism

from A to k, we obtain

(8) (id⊗ε⊗1)(8)((id⊗ε)1⊗ id⊗ id)(8)

= (id⊗((ε⊗ id⊗ id)(8)))(id⊗(ε⊗ id)1⊗ id)(8)((id⊗ε⊗ id)(8)⊗ id).

In the definition of a quasi-Hopf algebra, we assumed that id⊗ ε ⊗ id(8) = 1.
Therefore, (id ⊗ ε ⊗ 1)(8) = (id ⊗ id ⊗ 1)(id ⊗ ε ⊗ id)(8) = 1. Hence, by
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(id⊗ ε))1= id⊗ 1, the left-hand side of (8) is equal to

((id⊗ ε)1⊗ id⊗ id)(8)=
∑

i

X i ⊗ 1⊗ Yi ⊗ Zi .

The right-hand side of (8) is equal to

(ε⊗ id⊗ id)(8)
(∑

i

X i ⊗ 1⊗ Yi ⊗ Z j

)
.

Therefore, we have

(9)
∑

i

X i ⊗ 1⊗ Yi ⊗ Zi = (ε⊗ id⊗ id)(8)
(∑

i

X i ⊗ 1⊗ Yi ⊗ Z j

)
.

We multiply both sides of (9) by
∑

i
Pj ⊗ 1⊗ Q j ⊗ R j and obtain

ε⊗ id⊗ id(8)= 1.

So we have ε⊗ id⊗ id(8−1)= ε⊗ id⊗ id(8−18)= 1.
Finally,∑

i, j

X iε(Pk)ε(Yi )Qk ⊗ Zi Rk =
∑
i,k

(m⊗ id)(X i ⊗ ε(Yi )⊗ Zi )(ε(Pk)⊗ Qk ⊗ Rk)

= (m⊗ id)
(
(id⊗ ε⊗ id)(8)(ε⊗ id⊗ id)(8−1)

)
= 1.

In conclusion, we have shown that φψ(a⊗ b)= a⊗ b and similarly ψφ(a⊗ b)=
a ⊗ b. Therefore, φ and ψ are invertible. This completes the proof of the first
statement of Proposition 4.4.

Now we calculate (id⊗ ε)φ−1(a ⊗ b). By the proof above, ψ is the inverse of
φ, and

(id⊗ ε)φ−1(a⊗ b)= (id⊗ ε)
(∑

i

aX iβS(Yi )S(b1)⊗ b2 Zi

)
=

∑
i

aX iβS(Yi )S(b1)ε(b2)ε(Zi )

=

∑
i

aX iβS(Yi )S(b1ε(b2))ε(Zi )

=

∑
i

aX iβS(Yi )S(b)ε(Zi ).

To show that the last term is equal to aβS(b), we consider the k-linear map
ϒ : A⊗ A⊗ A→ A defined by ϒ(a1⊗ a2⊗ a3) = a1βS(a2)a3. Accordingly, we
have

∑
i X iβS(Yi )ε(Zi )=ϒ((id⊗ id⊗ε)(8)). By applying id⊗ id⊗ε⊗ id to (8),
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we have similarly (id⊗ id⊗ε)(8)= 1⊗1⊗1. So
∑

i X iβS(Yi )ε(Zi )=ϒ(1)= β,
and

∑
i a X iβS(Yi )S(b)ε(Zi ) is equal to aβS(b).

Therefore if there is an element in W , which can be written as1(µ), where µ is
in the kernel of ε, then (id⊗ ε)φ−1(1(µ))= µ1βS(µ2)= ε(µ)β = 0. This shows
that W is contained in the kernel of the map (id⊗ ε)φ−1

: A⊗ A→ A. Finally,
we show that (id⊗ ε)φ−1 is a bijection from A⊗ A/W to A. If

∑
i xi ⊗ yi is in

the kernel of (id⊗ ε)φ−1. We define
∑

j a j ⊗b j to be equal to φ
(∑

i xi ⊗ yi
)
, and

(id⊗ ε)
(∑

j a j ⊗ b j
)
=

∑
j a jε(b j )= 0. Then

∑
i xi ⊗ yi is equal to∑

i

xi ⊗ yi =
∑

j

φ(a j ⊗ b j )=
∑

j

(a j ⊗ 1)ω1(b j )

=

∑
j

(a j ⊗ 1)ω(1(b j )− ε(b j )) ∈W,

where in the third equality, we have used that∑
j

(a j ⊗ 1)ωε(b j )=
∑

j

(a jε(b j )⊗ 1)ω = 0. �

By the same arguments used in Theorem 4.2, we obtain:

Theorem 4.5. Let (A,1, ε,8) be a biunital quasibialgebra, and let W be the left
ideal generated by {ε(a)(1⊗1)−1(a) | a ∈ A}. Then (A⊗ A)/W is a preantipode
for the modulation of A.

If A is a quasi-Hopf algebra, with antipode (S, α, β), then (A⊗ A)/W is iso-
morphic to the modulation S, and (A,1, ε, S) is a hopfish algebra.

5. Morita invariance

The following theorem shows that, with our definition of hopfish algebra, we are
on the right track toward defining a Morita invariant notion.

Theorem 5.1. Let A be a quasi-Hopf algebra and B an algebra Morita equivalent
to A. Then B is a sesquiunital sesquialgebra with a preantipode.

Proof. Let P be an (A, B)-bimodule, and Q a (B, A)-bimodule, inverse to one an-
other in the category Alg. We recall the hopfish structure on A defined in Theorem
4.5, with

εA
= k, 1A

= A⊗ A, SA
= A⊗ A/W.

We use the bimodules P and Q to define

εB
:= εA

⊗A P, 1B
:=

(
Q⊗ Q

)
⊗A⊗A 1A

⊗A P,

These data make B into a sesquiunital sesquilinear algebra.
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Now we define

SB
:=

(
Q⊗ Q

)
⊗A⊗A SA.

Remark 5.2. Our definition of the antipode SB only uses the bimodule Q, not
P . This is because Q is a (B, A) bimodule, and therefore is also an (Aop, Bop)

bimodule naturally. Since SA is an (A, Aop) bimodule, Q⊗A SB
⊗Aop Q defines a

(B, Bop) bimodule, which is isomorphic to (Q⊗ Q)⊗A⊗A SA.

In the following, we will show that SB is a preantipode:

Homk(k, SB)∼= HomB(ε
B,1B).

According to our definitions, we have

HomB(ε
B,1B)= HomB

(
εA
⊗A P,

(
Q⊗ Q

)
⊗A⊗A 1A

⊗A P
)
.

Since the Morita equivalence between A and B defines an equivalence of right-
module categories, we have a natural isomorphism

HomB
(
εA
⊗A P,

(
Q⊗ Q

)
⊗A⊗A 1A

⊗A P
)
∼= HomA

(
εA,

(
Q⊗ Q

)
⊗A⊗A 1A)

.

The space HomA
(
εA,

(
Q⊗ Q

)
⊗A⊗A 1A)

consists of k-linear morphisms from(
Q⊗ Q

)
⊗A⊗A 1A to k, vanishing on the A-submodule W̃ spanned by

(q1⊗ q2)⊗A⊗A (a1⊗ a2)(ε(a)1⊗ 1−1(a)), qi ∈ Q, a, ai ∈ A, i = 1, 2.

The A-submodule W̃ is isomorphic to (Q ⊗ Q)⊗A⊗A W , where W is defined
as in Theorem 4.5. Therefore, HomA

(
εA,

(
Q⊗Q

)
⊗A⊗A 1A)

is isomorphic to the
k-dual of the quotient

(10) (Q⊗ Q)⊗A⊗A 1A/W̃ ∼= (Q⊗ Q)⊗A⊗A (A⊗ A/W ).

Replacing A⊗ A/W by SA in (10), we have

HomB(ε
B,1B)∼=

(
(Q⊗ Q)⊗A⊗A SA)∗ ∼= (SB)∗.

Therefore, SB defines a preantipode on (B,1B, εB). �

Now we study when the sesquiunital sesquialgebra just defined is a hopfish al-
gebra, i.e. when SB is isomorphic to B as a left B-module.

We introduce the following special type of module over a hopfish algebra.

Definition 5.3. Let be A be a hopfish algebra with antipode bimodule S, and let X
be a right A-module and therefore a left Aop-module. Then X is self-conjugate if
HomA(A, X) is isomorphic to S⊗Aop X as a left A-module.
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Remark 5.4. The category of finite dimensional left modules over a quasi-Hopf
algebra is a rigid monoidal category. A self-dual module X of a quasi-Hopf al-
gebra A is a self-dual object in the category of finite dimensional modules, i.e.
Homk(k, X) is isomorphic to S⊗Aop X .

We can understand the definition of a self-conjugate module geometrically as
follows. A hopfish algebra A can be thought as functions on a “noncommutative
space with group structure” G. If we view a finite projective right A-module X as
the space of sections of a “vector bundle” E over G, HomA(A, X) corresponds to
the space of sections of the dual bundle E∗, and S⊗Aop X is the pullback of the
bundle E by the “inversion” map ι of G. The self-conjugacy condition on E says
that E∗ is isomorphic to ι∗E .

Proposition 5.5. With the same assumptions and notation as in Theorem 5.1, if
the (B, A)-Morita equivalence bimodule Q is self-conjugate as a right A-module,
then B is a hopfish algebra with antipode SB defined in Theorem 5.1.

Proof. Recall that the preantipode on B defined in Theorem 5.1 is equal to (Q ⊗
Q)⊗A⊗A SA. Since Q is a right A-module, it is also a left Aop-module, and the
preantipode SB can be rewritten as Q⊗A SA

⊗Aop Q.
Since Q is self-conjugate, we have SA

⊗Aop Q ∼= HomA(A, Q), and so

Q⊗A SA
⊗Aop Q ∼= Q⊗A HomA(A, Q).

When Q is a Morita equivalence bimodule between A and B, Q is a finitely
generated projective A-module and B∼=HomA(Q, Q)= Q⊗A HomA(A, Q). This
shows that Q⊗A SA

⊗Aop Q is isomorphic to B as a left B-module. �

The following example is a special case of Proposition 5.5. We remark that
given a (quasi)-Hopf algebra A, the matrix algebra Mn(A) of n× n matrices with
coefficients in A is not a (quasi-)Hopf algebra when n ≥ 2.

Example 5.6. Let A be a quasi-Hopf algebra with εA
= k, 1A

= A ⊗ A, and
SA
= A. Then the n × n matrix algebra Mn(A) = B with coefficients in A is a

hopfish algebra. We consider Q = An as a space of column vectors, so that it
has the structure of an (Mn(A), A)-bimodule, The counit εB is An viewed as row
vectors, i.e. as a (k,Mn(A))-bimodule. The coproduct 1B is isomorphic to(

An
⊗ An)

⊗A⊗A (A⊗ A)⊗A (An)T =
(

An
⊗ An)

⊗A⊗A (An)T .

SB is equal to An
⊗A A ⊗Aop An . An

⊗A A ⊗Aop An is isomorphic to Mn(A) as
an (Mn(A),Mn(A)op)-bimodule, where the left Mn(A) module structure is from
the standard left multiplication, while the right Mn(A)op module structure is the
composition of the left multiplication, transposition of matrices, and the antipode
on A. Therefore, B = Mn(A) is a hopfish algebra.
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The following example shows that the self-conjugacy condition in Proposition
5.5 can not be eliminated.

Example 5.7. Consider the cyclic group Z/3Z with elements 0, 1, 2. The algebra A
of functions on Z/3Z is a commutative Hopf algebra spanned by the characteristic
functions e0, e1, and e2. We notice that the ei ’s are projections in A, and denote the
submodule ei A by Ai . Now consider the following projective module over A

Q = Ar
0⊕ As

1⊕ At
2,

where r, s, t are nonnegative integers. Then

B = HomA(Q, Q)= Ar2

0 ⊕ As2

1 ⊕ At2

2 .

It is not difficult to see that Q is self-conjugate if and only if s = t .
We calculate the expression for SB in Theorem 5.1:

(Q⊗ Q)⊗A⊗A SA
=

(
(Ar

0⊕ As
1⊕ At

2)⊗ (A
r
0⊕ As

1⊕ At
2)

)
⊗A⊗A SA

=
(

Ar
0⊗ (A

r
0⊕ As

1⊕ At
2)

)
⊗A⊗A SA

⊕
(

As
1⊗ (A

r
0⊕ As

1⊕ At
2)

)
⊗A⊗A SA

⊕
(

At
2⊗ (A

r
0⊕ As

1⊕ At
2)

)
⊗A⊗A SA.

We look at the tensor product (Ai⊗A j )⊗A⊗A SA. By Theorem 4.2, the antipode
bimodule SA is isomorphic to A. Therefore (Ai ⊗ A j )⊗A⊗A SA is equal to

(Ai ⊗ A j )⊗A⊗A A = Ai ⊗A A j ,

where the left A-module structure on A j is the composition of the right multipli-
cation with the antipode map S : A→ A.

We notice that S(ei )e j = 0 if S(ei ) 6= e j . Therefore,

Ai ⊗A A j =

{
0 if S(ei ) 6= e j ,

Ai if S(ei )= e j .

We conclude that SB
= Ar2

0 ⊕ Ast
1 ⊕ Ast

2 . We observe that SB is isomorphic to
B as a left B module if and only if s = t .

Therefore, SB is isomorphic to B if and only if Q is a self-conjugate A-module.

We define a notion of Morita equivalence between hopfish algebras.

Definition 5.8. Let (A, εA,1A, SA) and (B, εB,1B, SB) be two hopfish alge-
bras. Then (A, εA,1A, SA) is Morita equivalent to (B, εB,1B, SB) if there is an
(A, B)-bimodule A PB and a (B, A)-bimodule B Q A satisfying

(1) P ⊗B Q = A, and Q⊗A P = B.

(2) εB
= εA

⊗A P ,
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(3) 1B
= (Q⊗ Q)⊗A⊗A 1A

⊗A P ,

(4) SB
= (Q⊗ Q)⊗A⊗A SA.

Proposition 5.9. Definition 5.8 defines an equivalence relation among hopfish
algebras.

The proof is a straightforward check.

6. Hopfish structures on kn

In this section, we give examples of hopfish algebras which are not Morita equiva-
lent to modulations of Hopf algebras. In particular, we will describe hopfish struc-
tures on the commutative algebra kG of k-valued functions on a finite set G which
do not correspond to group structures on G.

We may identify the r -th tensor power of kG with kGr
. Since this algebra is

commutative, we can also identify (kg)op with kg.
If G is a semigroup, kG is a bialgebra with coproduct 1(a)(g, h)= a(gh), with

a counit ε(a)= a(e) when G has an identity element e. When G is a group, we get
a Hopf algebra structure by setting S(a)(g)= a(g−1).

Now let G be a groupoid. We may make the same definitions as above, adding
that 1(a)(g, h) should be 0 when gh is not defined, and ε(a) is the sum of the
values of a on all the identity elements. When G is not a group, kG is no longer
a Hopf algebra, but rather a weak Hopf algebra [Nikshych 2002, Example 2.3],
since 1 is not unital and ε is not even an algebra homomorphism. When G is a
groupoid, we have two algebra morphisms α, β:kG0

→ kG as the lifts of the source
and target maps. The coproduct1 is defined on kG

⊗kG0 kG by1(a)(g, h)=a(gh),
and counit ε : kG

→ kG0
by ε(a)(e) = a(e), and the antipode S is defined by

S(a)(g) = a(g−1). (kG, α, β,1, ε, S) is a quantum groupoid [Lu 1996]. It turns
out that we can still form the modulation of these operators, and we still get a
hopfish algebra because of the commutativity of the algebras kG and kG0

. To prove
this, we will look at a more general situation.

Any sesquialgebra coproduct on A = kG is an (A ⊗ A, A)-bimodule, i.e. a
module 1 over kG×G×G . Such a module decomposes into submodules supported
at the points of G3. For our purposes, we will assume that these are free modules
of finite rank. Then 1 is determined up to isomorphism by the dimensions dg

hk
of the components 1

g
hk , for (g, h, k) ∈ G3. It is straightforward to check that the

condition for coassociativity is precisely that the dg
hk’s be the structure constants

of an associative algebra A′ = ZG over Z, i.e. a ring. Namely, identifying each
element of G with its characteristic function, we have gh =

∑
k dk

ghk. Similarly,
a (k, A)-bimodule ε with free submodules εg as components is determined by the
dimensions eg of εg, and this bimodule is a counit precisely when e :=

∑
g egg is a



HOPFISH ALGEBRAS 211

unit element for A′. We say that such sesquiunital sesquialgebras are of finite free
type. Thus we have shown:

Proposition 6.1. There is a one to one correspondence between sesquiunital sesqui-
algebra structures of finite free type on kG and unital ring structures on ZG for
which the structure constants and the components of the unit are nonnegative.

The best known examples of such rings are the monoid algebras. If G is a
monoid, then we may define δg

hk to be the characteristic function of the graph g=hk
of multiplication and eg to be the characteristic function of the identity element.
The corresponding sesquialgebra is just the modulation of the dual to the monoid
bialgebra A′.

With this example in mind, we may think of a general structure of convolution
type on ZG as corresponding to a “product” operation on G in which the product of
any two elements is a (possibly empty) subset of G whose elements are provided
with positive integer “multiplicities”. We will call such a subset a “multiple ele-
ment”; the identity is also such a multiple element. (Of course, any ring structure
may be viewed in this way, if we allow the multiplicities to be arbitrary integers).

To begin our analysis of these structures, we show that there are restricted pos-
sibilities for the unit.

Proposition 6.2. Each eg is either 0 or 1.

Proof. Given g, by the counit property
∑

k ekdg
gk = δgg = 1, we see that there is at

least one k ∈ G such that dg
gk 6= 0. By the counit property again, we have

eg
≤ egdg

gk ≤
∑

h

ehdg
hk = δgk ≤ 1. �

We will denote by G0 the support of the unit, that is, the set of g ∈ G for which
eg
= 1. This set will play the role of identity elements in G.
As long as G is nonempty, so is G0. In fact, we have the following:

Proposition 6.3. Given any g in G, there are unique elements l(g) and r(g) in G0

such that, for all h ∈ G0, dk
hg = δhl(g)δgk and dk

gh = δr(g)hδgk .

Proof. This is again a straightforward corollary of the counit property. We obtain
from

∑
k ekdh

gk = δgh ,
∑

g egdh
gk = δkh that

∑
g∈G0 dk

gh = δkh . So dk
gh = 0 when

k 6= h and there exists a unique element g0 ∈ G0 such that dh
gh equals 1 for g = g0

and 0 for all other g. We let l(h) be this g0. This proves the first equation; the
second is proved by a similar argument. �

Since the sum of the elements of G0 is the unit of kG , it is idempotent, from
which it follows that kG0 is a subalgebra. In fact, one may show:
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Proposition 6.4. The elements of G0 form a set of orthogonal idempotents in ZG .
In other words, the algebra structure on the subalgebra ZG0

of A′ is just pointwise
multiplication.

Proof. This follows from uniqueness in Proposition 6.3. �

Proposition 6.5. For all g and h in G, if dk
gh 6= 0, l(k) = l(g) and r(k) = r(h). If

r(g) is not equal to l(h), then gh = 0 in G. In particular, l(h) = h = r(h) for all
h ∈ G0.

Proof. Coassociativity gives us∑
s

dk
l(g)sds

gh =
∑

s

ds
l(g)gdk

sh .

By Proposition 6.3, ds
l(g)g = δgs . Therefore, the right-hand side of the equation

is equal to dk
gh 6= 0.

On the left-hand side, according to Proposition 6.3, dk
l(g)s 6= 0 only when l(s)=

l(g) and k = s. Therefore, if dk
gh 6= 0, then dk

l(g)k = 1, so l(k) = l(g). Similar
arguments show that r(k)= r(h).

If r(g) 6= l(h), again by coassociativity, we have

dk
gh =

∑
s

ds
gr(g)d

k
sh =

∑
s

dk
gsds

r(g)h .

According to Proposition 6.3, if r(g) 6= l(h), ds
r(g)h = 0 for all s; therefore, dk

gh = 0.
�

We now have retractions l and r from G onto G0 which are like the target and
source maps from a category to its set of identity elements. In fact, in terms of
the multiplicative structure on G corresponding to the algebra structure on A′, we
have l(g)g= gr(g)= g; in particular, these products are single valued and without
multiplicities. We might call G a “hypercategory”. The composition of morphisms
is a “multiple morphism” between two definite objects.

We will show next that, when kG has an antipode and is hence a hopfish algebra,
the underlying multiplicative structure on G has inverses and the property that gh
is nonzero whenever r(g) = l(h). We will call such a structure a “hypergroupoid”
(see Definition 6.9).2

According to Definition 3.2, an antipode is a (kG, kG)-bimodule S whose dual
is isomorphic to HomkG (ε,1).

We recall the definition of ε and 1:

ε =⊕gε
g, 1=⊕g,h,t1

t
gh .

2The notion of group with multiple-valued multiplication has a long history. The reader may start
with [Kuntzmann 1939], which cites even earlier work.
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Therefore we can write

HomkG (ε,1)=
(
⊕s εs)

⊗kG
(
⊕g,h,t 1t

gh
)∗
.

We notice that kG acts via the upper indices of ε and 1 by componentwise
multiplication. Therefore, this expression for HomkG (ε,1) can be simplified to

⊕g,h
(
⊕t εt∗

⊗1t
gh

)∗
,

which is isomorphic to

⊕g,h
(
⊕t Homk(k, εt∗

⊗1t
gh)

)
∼= Homk

(
k,⊕g,h(⊕tε

t∗
⊗1t

gh)
)
.

Therefore, S is isomorphic to ⊕g,h(⊕tε
t∗
⊗1t

gh) as a (kG, kG) bimodule.
When S is an antipode, S is by definition isomorphic to kG as a left kG-module.

Therefore, if we write S as ⊕g,h Sgh , for any fixed g there exists a unique element
h ∈G such that dim(Sgh)= 1, and dim(Sgh′)= 0 for h′ 6= h. Hence, we may define
a map σ : G→ G by g 7→ h.

Since Homk(k, S)∼= HomkG (ε,1), we know that dim
(⊕

t εt∗
⊗1t

gh
)
= δσ(g)h ,

that is,

(11)
∑

t

et d t
gh = δσ(g)h .

Proposition 6.6. For any g ∈ G, define g−1 to be σ(g). Then there is a unique
s ∈ G0 such that

ds
gg−1 = 1.

In fact, s = l(g)= r(g−1).

Proof. By (11), we have ∑
t

et d t
gg−1 = δσ(g)g−1 = 1.

Thus, there is a unique s ∈G0 such that ds
gg−1 = 1 and d t

gg−1 = 0 for all other t ∈G0.
By Proposition 6.5, s = l(g)= r(g−1). �

We also have another characteristic property of categories (though here we can
only prove it in the presence of an antipode).

Proposition 6.7. If r(g)= l(h), there exists s ∈ G, such that ds
gh 6= 0.

Proof. Using coassociativity, we have∑
s

dg
gsds

hh−1 =

∑
s

ds
ghdg

sh−1 .

Since dl(h)
hh−1=1 and dg

gl(h)=1(since r(g)= l(h)), the left-hand side of the preceding
equation is not equal to 0. This implies that, on the right-hand side, there is at least
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one term which is not equal to 0. Therefore, there exists s ∈ G, such that ds
gh 6= 0.

�

Question 6.8. Is the inversion map σ : G→ G involutive?

To summarize the arguments above, we define the combinatorial objects associ-
ated to hopfish structures on kG :

Definition 6.9. A hypergroupoid is a set G with data ( · , l, r,−1 ) as follows.

(1) There is a multivalued associative binary operation · on G. More precisely, for
all g, h∈G, g·h is an element of ZG

+
, where Z+ is the semiring of nonnegative

integers. When this product is linearly extended to a product on ZG
+

, we have
g · (h · k)= (g · h) · k.

(2) There is a subset G0
⊂G with maps l, r :G→G0 such that l(g)·g= g ·r(g)=

g, for all g ∈ G The product of g and h is nonzero if and only if r(g)= l(h).

(3) There is an inverse operation g 7→ g−1 on G such that g ·g−1
|G0 = l(g) for all

g ∈ G, and further g · h|G0 = 0 if h 6= g−1.

Note that the inverse operation is determined by the product operation and G0.
We now look at the commutative algebra kG of k-valued functions on a hyper-

groupoid G. The duals of the maps l, r : G → G0 define morphisms from kG

to kG0
. The multiplication on G defines a (nonunital) coproduct homomorphism

kG×G
← kG whose modulation is a coproduct bimodule, the embedding map from

G0 to G makes kG0
into a counit bimodule, and the inversion map defines an an-

tipode. These define a hopfish algebra structure on kG .

Theorem 6.10. The hopfish structures of free finite type on kG are in one to one
correspondence with the hypergroupoid structures on G.

Example 6.11. Here is an example of a hypergroupoid which is not a groupoid,
based on [Etingof et al. 2005, Example 8.19].3 Let G = {e, g}, with multiplication
and inversion given by

eg = ge = g, ee = e, gg = e+ ng, e−1
= e, g−1

= g,

where n is a nonnegative integer. G0
= {e} and l(g) = r(g) = e. The algebra A′

associated to this hypergroupoid is Z[x]/{x2
= 1+nx}. The corresponding hopfish

algebra kG is not a quasi-Hopf algebra when n = 1 and k a field. We explain the
reason below.

The hopfish algebra structure of kG is in fact a weak Hopf algebra, with ε(e)=1,
ε(g) = 0, 1(e) = g ⊗ g + e ⊗ e and 1(g) = e ⊗ g + g ⊗ e + g ⊗ g. Since
a kG module can be decomposed into submodules supported at points of G, the
representation ring of kG is generated by two elements 1 and X corresponding to

3The hypergroupoid itself, when n=1, already appears as the first example in [Kuntzmann 1939]!
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the 1-dimensional kG module supported at e and g respectively. Since k is a field, 1
and X are just 1-dimensional k-vector spaces. Using the formulas for the coproduct
and counit, it is easy to check that this representation ring is the Grothendieck ring
of what is called Yang–Lee fusion rules in [Ostrik 2003], namely it is generated
by 1 and X with the relation X ⊗ X = 1⊕ X . The Frobenius–Perron dimension
of the element 1 is 1, while the Frobenius–Perron dimension of the element X is
the irrational number (1+

√
5)/2. According to Theorem 8.33 of [Etingof et al.

2005], the Frobenius–Perron dimension of any finite dimensional module over a
finite dimensional quasi-Hopf algebra must be a positive integer, which is equal
to the dimension of the module. This shows that kG is not Morita equivalent to a
quasi-Hopf algebra.
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