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In 1978 M. Lassalle obtained an analogue of the Laurent series for holo-
morphic functions on the complexification of a compact symmetric space
and proved a Plancherel type formula for such functions. In 2002 J. Faraut
established such a formula, which he calls Gutzmer’s formula, for all non-
compact Riemannian symmetric spaces. This was immediately put into use
by B. Krotz, G. Olafsson and R. Stanton to characterise the image of the
heat kernel transform. In this article we prove an analogue of Gutzmer’s
formula for the Heisenberg motion group and use it to characterise Poisson
integrals associated to the sublaplacian. We also use the Gutzmer’s formula
to study twisted Bergman spaces.

1. Introduction

Consider the Laplace–Beltrami operator on a Riemannian manifold M and the
associated heat semigroup Tt . The problem of characterising the image of L2(M)

under Tt has received considerable attention starting with Bargmann [1961]. He
treated the case of Rn and showed that the image is a weighted Bergman space
of entire functions. Similar results were obtained for compact Lie groups by Hall
[1994] and for compact symmetric spaces by Stenzel [1999]. For the case of Her-
mite, Laguerre and Jacobi expansions see [Karp 2005] and the references there.

Contrary to the general expectation, such a characterisation is not true for the
Laplace operator on the Heisenberg group Hn , as shown by Krötz, Thangavelu and
Xu in [Krötz et al. 2005b]. Specifically, we proved there that the image of L2(Hn)

is not a weighted Bergman space but a sum of two such spaces defined by signed
weights.

Recently Krötz, Olafsson and Stanton [Krötz et al. 2005a] showed that when
X is a noncompact Riemannian symmetric space the image of L2(X) cannot be
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described as a weighted Bergman space. In the same paper a different characterisa-
tion of the image was obtained, using orbital integrals. In the case of noncompact
Riemannian symmetric spaces the functions Tt f do not extend as entire functions
but only as holomorphic functions on a domain called the complex crown. The
behaviour of Tt f is therefore similar to that of Poisson integrals of L2 functions
on Rn . Recall that the Poisson integrals extend only as holomorphic functions on a
tube domain. The main ingredient used in [Krötz et al. 2005a] is a result of Faraut
[2002] which he calls Gutzmer’s formula. Our aim in this paper is to show that,
using Gutzmer’s formula, Poisson integrals can be characterised as certain spaces
of holomorphic functions.

In Section 2 we treat the Poisson integrals on Rn , where the results are easy to
obtain. Section 3 recapitulates necessary results on special Hermite functions. In
Section 4 we prove an analogue of Gutzmer’s formula for the Heisenberg group,
and we use this in Section 5 to give a characterisation of Poisson integrals on Hn .
Since Gutzmer’s formula is available on all noncompact Riemannian symmetric
spaces, a similar characterisation of Poisson integrals on them should be possible.
In Section 6 we revisit twisted Bergman spaces and give a new proof of their char-
acterisation as the image of L2(Cn) under the special Hermite semigroup. (This
was proved in [Krötz et al. 2005b] by a different method.)

2. Poisson integrals on Euclidean spaces

Throughout this paper x2 stands for |x |
2, for x ∈ Rn . Let

pt(x) = cnt (t2
+ x2)−(n+1)/2

be the Poisson kernel on Rn , where cn is a suitable constant. The Poisson integral
of a function f ∈ L2(Rn) is defined by

f ∗ pt(x) =

∫
Rn

f (u)pt(x − u) du,

which is also given in terms of the Fourier transform by

f ∗ pt(x) = (2π)−n/2
∫

Rn
ei x ·ξ f̂ (ξ)e−t |ξ | dξ.

From any of these expressions it is clear that the function F(x)= f ∗ pt(x) extends
to the tube domain

�t = {z = x + iy ∈ Cn
: |y| < t}

as a holomorphic function. We are interested in knowing exactly what kind of
holomorphic functions F arise as Poisson integrals.
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To state our result, we recall the definition of the spherical function ϕλ on Rn .
For each λ ∈ C we define

ϕλ(x) =

∫
Sn−1

e−iλx ·ω dω.

It is clear that ϕλ extends to Cn as an entire function. Moreover, when λ is real or
purely imaginary it is given in terms of the Bessel function of order n/2−1. More
precisely,

ϕλ(x) = cn Jn/2−1(λ|x |)(λ|x |)−(n/2−1).

Using the Plancherel theorem for the Fourier transform, it is easy to see that for
any r with 0 ≤ r < t ,

(2-1)
∫

Sn−1

∫
Rn

| f ∗ pt(x + irω)|2 dx dω =

∫
Rn

| f̂ (ξ)|2e−2t |ξ |ϕ2ir (ξ) dξ.

Following [Faraut 2002] we call this Gutzmer’s formula for Euclidean spaces.
The right-hand side of the formula is finite even if r = t , as long as∫

Rn
| f̂ (ξ)|2e−2t |ξ |ϕ2i t(ξ) dξ < ∞.

This happens precisely when∫
Rn

| f̂ (ξ)|2(1 + |ξ |
2)−(n−1)/2 dξ < ∞

as can be seen using the asymptotic properties of the Bessel functions; see [Szegö
1967], for example. Recall that the Sobolev space H s(Rn), for s ∈ R, is the space
of tempered distributions f for which

‖ f ‖
2
(s) =

∫
Rn

| f̂ (ξ)|2(1 + |ξ |
2)s dξ

is finite. We have the following characterisation of Poisson integrals on Rn .

Theorem 2.1. A holomorphic function F on the tube domain �t is the Poisson
integral of a function f ∈ H−(n−1)/2(Rn) if and only if

lim
r→t

∫
Sn−1

∫
Rn

|F(x + irω)|2 dx dω

is finite. Moreover, the limit is equivalent to the norm of f ∈ H−(n−1)/2(Rn).

When n =1, this says that F = f ∗ pt with f ∈ L2(R) if and only if both integrals∫
R

|F(x + i t)|2 dx and
∫

R
|F(x − i t)|2 dx are finite. We are interested in finding

an analogue of Theorem 2.1 for the Heisenberg group. This will be achieved via
Gutzmer’s formula for the Heisenberg motion group.
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We can rewrite Gutzmer’s formula (2-1) in terms of the group M(n) of Euclidean
motions, which is the semidirect product of SO(n) and Rn . The action of M(n) on
Rn is given by (σ, u)x = u +σ x . This action has a natural extension to Cn: simply
define (σ, u)(x + iy) = u +σ x + iσ y. Gutzmer’s formula then takes the following
form.

Proposition 2.2. Let F be holomorphic in �t and let the restriction of F to Rn be
such that F̂ is square integrable with respect to the measure ϕ2i t(ξ) dξ . Then

lim
y2→t2

∫
M(n)

|F(g.(x + iy))|2 dg =

∫
Rn

|F̂(ξ)|2ϕ2i t(ξ) dξ.

To see why this is true, we observe that∫
M(n)

|F(g.(x + iy))|2 dg =

∫
SO(n)

∫
Rn

|F(u + σ x + iσ y)|2dudσ.

Plancherel theorem for the Fourier transform shows that the Rn integral is∫
Rn

|F̂(ξ)|2e−2σ y·ξ dξ.

The proposition follows since∫
SO(n)

e−2σ y·ξ dσ = cnϕ2i |y|(ξ).

In Section 4 we prove an analogue of this proposition for the Heisenberg motion
group, which is then used in Section 5 to characterise Poisson integrals on the
Heisenberg group.

3. Some results on special Hermite functions

We collect here relevant information about special Hermite functions and prove
some estimates required in the next section. We closely follow the notations used
in [Thangavelu 1998; 2004]; see those monographs for more details.

We will denote by 8α, α ∈ Nn , the Hermite functions on Rn , normalised so that
their L2 norms are 1. On finite linear combinations of such functions we can define
certain operators π(z, w), where z, w ∈ Cn , by setting

π(z, w)8α(ξ) = ei(z·ξ+(z/2)·w)8α(ξ + w),

where · denotes the Euclidean inner product. Note that 8α(ξ) = Hα(ξ)e−|ξ |
2/2,

where Hα is a polynomial on Rn and for z ∈ Cn we define 8α(z) to be Hα(z)e−z2/2,
where z2

= z · z. The special Hermite functions 8α,β(z, w) are then defined by

(3-1) 8α,β(z, w) = (2π)−n/2(π(z, w)8α, 8β).



GUTZMER’S FORMULA AND POISSON INTEGRALS ON THE HEISENBERG GROUP 221

The restrictions of 8α,β(z, w) to Rn
× Rn are usually called special Hermite func-

tions. The family {8α,β(x, u) : α, β ∈ Nn
} forms an orthonormal basis for L2(Rn

×

Rn). The functions 8α,β(z, w) are just the holomorphic extensions of 8α,β(x, u)

to Cn
× Cn . An easy calculation shows that

(3-2) (π(z, w)8α, 8β) = (8α, π(−z̄, −w̄)8β).

This means that for x, u ∈ Rn the operators π(x, u) are unitary on L2(Rn) (related
to the Schrödinger representation π1 of the Heisenberg group) and

(π(i x, iu)8α, 8β) = (8α, π(i x, iu)8β).

We can also verify that

(3-3) π(z, w)π(z′, w′) = e(i/2)(z′
·w−z·w′)π(z + z′, w + w′).

For x, u ∈ Rn this gives

(3-4) (π(2i x, 2iu)8α, 8α) = ‖π(i x, iu)8α‖
2
2.

Let Ln−1
k be the Laguerre polynomials of type n − 1 and define the Laguerre

functions ϕk by

ϕk(x, u) := Ln−1
k

( 1
2(x2

+ u2)
)
e−(x2

+u2)/4
=

∑
|α|=k

8α,α(x, u),

where the second equality is classical. The Laguerre functions have a natural holo-
morphic extension to Cn

× Cn , which we denote by the same symbol:

(3-5) ϕk(z, w) =

∑
|α|=k

8α,α(z, w).

From this expression we obtain the following estimate for the complexified La-
guerre functions.

Proposition 3.1. For z, w ∈ Cn and k ∈ N,

|ϕk(z, w)|2 ≤ C
(k + n − 1)!

k!(n−1)!
e(u·y−v·x)ϕk(2iy, 2iv),

where z = x + iy and w = u + iv.

Proof. We have

8α,α(x + iy, u + iv) = (2π)−n/2(π(x + iy, u + iv)8α, 8α)

and this gives in view of (3-3)

8α,α(x + iy, u + iv) = (2π)−n/2e(u·y−v·x)/2(π(iy, iv)8α, π(−x, −u)8α).
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Since π(−x, −u) is unitary we get the estimate

|8α,α(x + iy, u + iv)| ≤ (2π)−n/2e(u·y−v·x)/2
‖π(iy, iv)8α‖2.

Applying the Cauchy–Schwarz inequality in (3-5), recalling that∑
|α|=k

1 =
(k + n − 1)!

k!(n−1)!
,

and using (3-4) we get the proposition. �

The functions ϕk(z, w) are members of the twisted Bergman spaces Bt studied in
[Krötz et al. 2005b]. Since evaluations are continuous functionals on reproducing
kernel Hilbert spaces of holomorphic functions and as Bt is one such space we get
the estimate

|ϕk(z, w)| ≤ Ct‖ϕk‖Bt ≤ Ct

(
(k + n − 1)!

k!(n−1)!

)1/2

e(2k+n)t .

However, we can greatly improve this estimate using the proposition above.

Proposition 3.2. For each r > 0 we have the uniform estimates

|ϕk(z, w)| ≤ Cr e(u·y−v·x)/2
(

(k + n − 1)!

k!(n−1)!

)1/2

kn/4−3/8 exp
(
r(2k + n)1/2),

valid for y2
+ v2

≤ r2.

Proof. In view of Proposition 3.1 it is enough to estimate ϕk(2iy, 2iv). In the
region δ ≤ y2

+v2
≤ r2, with δ > 0, the required inequality follows using Perron’s

estimate [Szegö 1967, Theorem 8.22.3]:

Lα
k (s) =

1
2π−1/2es/2(−s)−α/2−1/4kα/2−1/4e2(−ks)1/2(

1 + O(k−1/2)
)
,

valid for s in the complex plane cut along the positive real axis (we require the
estimate when s < 0). We now use the representation

Lα
k (s) =

(−1)kπ−1/20(k+α+1)

0(α+
1
2)(2k)!

∫ 1

−1
(1 − t2)α−1/2 H2k(s1/2t) dt

for the Laguerre polynomials in terms of Hermite polynomials, along with the
estimates given in [Szegö 1967, Theorem 8.22.6] for Hermite polynomials, to get
the uniform estimates even when δ = 0. �

We need one more result on special Hermite functions. If F(z, w) is a function
on Cn

× Cn we define its twisted translation by

(3-6) τ(z′, w′)F(z, w) = e−(i/2)(z′
·w−z·w′)F(z − z′, w − w′).



GUTZMER’S FORMULA AND POISSON INTEGRALS ON THE HEISENBERG GROUP 223

In view of (3-3) we have

τ(z′, w′)8α,α(z, w) = (2π)−n/2(π(z, w)π(−z′, −w′)8α, 8α).

Using (3-2) this can be written as

τ(z′, w′)8α,α(z, w) = (2π)−n/2(π(−z′, −w′)8α, π(−z̄, −w̄)8α).

Expanding π(−z′, −w′)8α and π(−z̄, −w̄)8α in terms of Hermite functions we
obtain

(3-7) τ(z′, w′)8α,α(z, w) = (2π)n/2
∑
β

8α,β(−z′, −w′)8β,α(z, w).

By taking z = −z′
= iy and w = −w′

= iv we obtain

(3-8) 8α,α(2iy, 2iv) = (2π)n/2
∑
β

|8α,β(iy, iv)|2,

since we have the relation

8β,α(iy, iv) = (2π)−n/2(π(iy, iv)8β, 8α) = 8α,β(iy, iv).

Proposition 3.3. For y, v ∈ Rn ,∫
Rn×Rn

|ϕk(x + iy, u + iv)|2e−(u·y−v·x) dx du = (2π)n/2ϕk(2iy, 2iv).

Proof. In view of (3-8) we have

ϕk(2iy, 2iv) = (2π)−n/2
∑
|α|=k

∑
β

|8α,β(iy, iv)|2.

On the other hand from (3-6) we get

8α,α(x + iy, u + iv)e−(u·y−v·x)/2
= τ(−iy, −iv)8α,α(x, u),

which gives, in view of (3-7),∫
Rn×Rn

|τ(−iy, −iv)8α,α(x, u)|2dxdu = (2π)n
∑
β

|8α,β(iy, iv)|2.

Summing over all α with |α| = k we get the proposition. �

4. Gutzmer’s formula on the Heisenberg group

Let Hn
= Cn

× R be the Heisenberg group with multiplication defined by

(z, t)(z′, t ′) =
(
z + z′, t + t ′

+
1
2 Im(z · z̄′)

)
.
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More often we write (x, u, t) in place of (z, t) and the group law takes the form

(x, u, t)(x ′, u′, t ′) =
(
x + x ′, u + u′, t + t ′

+
1
2(u · x ′

− x · u′)),

where x, u, x ′, u′
∈ Rn . For a function f on Hn we define

f λ(z) =

∫
R

f (z, t)eiλt dt.

For each nonzero λ ∈ R the Schrödinger representation πλ of Hn is defined by

πλ(x, u, t)ϕ(ξ) = eiλt eiλ(x ·ξ+x ·u/2)ϕ(ξ + u),

where ϕ ∈ L2(Rn). We define 8λ
α(x) = |λ|

n/48(|λ|
1/2x) and

Eλ
α,β(x, u, t) = (2π)−n/2(πλ(x, u, t)8λ

α, 8λ
β).

Note that
Eλ

α,β(x, u, t) = eiλt8λ
α,β(x, u),

where 8λ
α,β(x, u)= Eλ

α,β(x, u, 0). We write ϕλ
k (x, u)=ϕk(|λ|

1/2(x, u)), so in view
of (3-5) we have

ϕλ
k (x, u) =

∑
|α|=k

8λ
α,α(x, u) = ϕk(|λ|

1/2(x, u))

and let eλ
k (x, u, t) = eiλtϕλ

k (x, u). The results proved in the previous section are
all valid for these functions for every nonzero λ ∈ R.

The inversion formula for the group Fourier transform on Hn can be written in
the form

(4-1) f (x, u, t) =

∫
∞

−∞

( ∞∑
k=0

f ∗ eλ
k (x, u, t)

)
dµ(λ),

where dµ(λ) = (2π)−n−1
|λ|

n dλ is the Plancherel measure on the Heisenberg
group. Define the λ-twisted convolution of two functions F and G on Cn by

F ∗λ G(x, u) =

∫
R2n

F(x ′, u′)G(x − x ′, u − u′)e−(i/2)λ(u·x ′
−x ·u′) dx ′ du′.

Then (4-1) takes the form

f (x, u, t) =

∫
∞

−∞

e−iλt
( ∞∑

k=0

f λ
∗λ ϕλ

k (x, u)

)
dµ(λ).

We would like to rewrite this inversion formula in terms of certain representations
of the Heisenberg motion group, whose definition we recall. The unitary group
U (n) acts on the Heisenberg group as automorphisms, the action being defined
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by σ(z, t) = (σ.z, t), where σ ∈ U (n). The Heisenberg motion group Gn is the
semidirect product of U (n) and Hn with group law

(σ, z, t)(τ, w, s) = (στ, (z, t)(σ.w, s)).

Functions on Hn can be considered as right U (n)-invariant functions on Gn . Hence
the inversion formula for such functions on Gn will involve only certain class-one
representations of Gn . We now proceed to describe the relevant representations.

For each k ∈ N and nonzero λ ∈ R let Hλ
k be the Hilbert space for which the

functions Eλ
α,β , with α, β ∈ Nn , |α| = k, form an orthonormal basis. The inner

product in Hλ
k is defined by

(F, G) = |λ|
n
∫

Cn
F(z, 0)G(z, 0) dz.

On this Hilbert space we define a representation ρλ
k of the Heisenberg motion group

by
ρλ

k (σ, z, t)F(w, s) = F((σ, z, t)−1(w, s)).

Then it is known (from [Ratnakumar et al. 1997], for example) that ρλ
k is an irre-

ducible unitary representation of Gn . As (Gn, U (n)) is a Gelfand pair, ρλ
k has a

unique U (n) fixed vector, which is none other than eλ
k .

Given f ∈ L1(Hn) we can define its group Fourier transform by

ρλ
k ( f ) =

∫
Gn

f (z, t)ρλ
k (σ, z, t) dσ dz dt,

which is a bounded operator acting on Hλ
k . In this integral dσ stands for the nor-

malised Haar measure on U (n). From calculations done in [Thangavelu 1998,
Chapter 3] we infer that

tr(ρλ
k (σ, z, t)∗ρλ

k ( f )) =
k!(n−1)!

(k + n − 1)!
f ∗ eλ

k (z, t)

and the inversion formula for a right U (n)-invariant function on Gn takes the form

f (z, t) = (2π)−n−1
∫

∞

−∞

( ∞∑
k=0

tr(ρλ
k (σ, z, t)∗ρλ

k ( f ))
(k + n − 1)!

k!(n−1)!

)
|λ|

n dλ.

Also the Plancherel theorem can be written as∫
Hn

| f (z, t)|2 dz dt = (2π)−n−1
∫

∞

−∞

( ∞∑
k=0

‖ρλ
k ( f )‖2

H S
(k + n − 1)!

k!(n−1)!

)
|λ|

n dλ.

From this we can read off the Plancherel measure for Gn when dealing with right
U (n)-invariant functions.
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It can be shown that the operator ρλ
k ( f ) is of rank one. Indeed, ρλ

k ( f )Eα,β = 0
if α 6= β and

ρλ
k ( f )Eλ

α,α =
k!(n−1)!

(k + n − 1)!
f ∗ eλ

k .

From this we infer that ρλ
k ( f )eλ

k = f ∗ eλ
k . Hence it follows that for any F ∈ Hλ

k
we have

ρλ
k ( f )F =

k!(n−1)!

(k + n − 1)!
(F, eλ

k )ρλ
k ( f )eλ

k .

Proposition 4.1. For every Schwartz class function f on Hn the inversion formula

f (z, t)= (2π)n/2
∫

∞

−∞

( ∞∑
k=0

(
ρλ

k ( f )eλ
k , ρλ

k (1, z, t)
k!(n−1)!

(k+n−1)!
eλ

k

)(k+n−1)!

k!(n−1)!

)
dµ(λ)

holds, where 1 stands for the identity matrix in U (n).

Proof. In view of the inversion formula (4-1) it is enough to show that(
ρλ

k ( f )eλ
k , ρλ

k (1, z, t)eλ
k
)
= f ∗ eλ

k (z, t).

As eλ
k (z, t) =

∑
|α|=k Eλ

α,α(z, t) we consider

ρλ
k (1, z, t)Eλ

α,α(w, s) = Eλ
α,α((−z, −t)(w, s)).

Recall that

Eλ
α,α((−z, −t)(w, s)) = (2π)−n/2(πλ(−z, −t)πλ(w, s)8λ

α, 8λ
α).

Expanding πλ(w, s)8λ
α and πλ(z, t))8λ

α in terms of 8λ
β we get

ρλ
k (1, z, t)Eλ

α,α(w, s) = (2π)n/2
∑
β

Eλ
α,β(w, s) Eλ

α,β(z, t).

Since ρλ
k ( f )eλ

k = f ∗eλ
k and {Eλ

α,β(w, s) : α, β ∈ Nn, |α| = k} is an orthogonal basis
for Hλ

k we get the proposition. �

From now on we identify Hn with Rn
× Rn

× R and use the notation (x, u, t)
rather than (x + iu, t) to denote elements of Hn . The action of U (n) on Hn then
takes the form σ.(x, u, t) = (a.x − b.u, b.x + a.u, t), where a and b are the real
and imaginary parts of σ . This action has a natural extension to Cn

×Cn
×C given

by σ.(z, w, ζ ) = (a.z −b.w, b.z +a.w, ζ ). With this definition we can extend the
action of Gn on Hn to Cn

× Cn
× C:

(a + ib, x ′, u′, t ′)(z, w, ζ ) = (x ′, u′, t ′)(a.z − b.w, b.z + a.w, ζ ).

This action is then extended to functions defined on Cn
× Cn

× C:

ρ(g) f (z, w, ζ ) = f (g−1.(z, w, ζ )), g ∈ Gn.
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We are now ready to prove Gutzmer’s formula for the Heisenberg group. Sup-
pose f is a Schwartz class function on Hn such that f λ

= 0 for all |λ| > A and
ρλ

k ( f ) = 0 for all λ, k such that (2k +n)|λ| > B. We say that the Fourier transform
of f is compactly supported if this condition is satisfied for some A and B. Now
the inversion formula

f (g.(x, u, ξ)) =

∫ A

−A

∑
(2k+n)|λ|≤B

(
ρλ

k ( f )eλ
k , ρλ

k (g)ρλ
k (1, x, u, ξ)eλ

k
)

dµ(λ)

is valid for any g ∈ Gn . Moreover, as each of ρλ
k (1, x, u, ξ)eλ

k extends to C2n+1 as
an entire function, the same is true of f (g.(x, u, ξ)) and we have

f (g.(z, w, ζ )) =

∫ A

−A
eλη

∑
(2k+n)|λ|≤B

(
ρλ

k ( f )eλ
k , ρλ

k (g)ρλ
k (1, x, u, ξ)eλ

k
)

dµ(λ),

where ζ = ξ + iη. We then have the following Gutzmer’s formula for the action
of Heisenberg motion group on C2n+1, which is the complexification of Hn .

Theorem 4.2. Let f be Schwartz function whose Fourier transform is compactly
supported in the sense above. Then f extends to C2n+1 as an entire function and
we have the identity∫

Gn

∣∣ f (g.(z, w, ζ ))
∣∣2 dg =

(2π)n/2
∫

∞

−∞

e2ληe−λ(u·y−v·x)

( ∞∑
k=0

‖ f λ
∗λ ϕλ

k ‖
2
2

k!(n−1)!

(k+n−1)!
ϕλ

k (2iy, 2iv)

)
dµ(λ),

where ‖ f λ
∗λ ϕλ

k ‖2 is the L2(Cn) norm of f λ
∗λ ϕλ

k .

We will prove this theorem by appealing to a general result on locally compact
unimodular groups. Gutzmer’s formula in the case of the circle group S1 is just
the Plancherel formula for the Fourier series applied to the Laurent series expan-
sion of a function holomorphic in an annulus containing S1. Lassalle [1978] has
made an extensive study of Laurent series expansion for functions holomorphic in
certain domains D contained in the complexification XC of compact Riemannian
symmetric spaces X . He obtained a Plancherel formula for such a series, which he
later used in studying analogues of Hardy spaces over tube domains associated to
compact symmetric spaces; see [Lassalle 1985]. Faraut [2002] treated the case of
noncompact Riemannian symmetric spaces and proved a formula which he calls
Gutzmer’s formula. We recall the general setup for the reader’s convenience.

Let G be a locally compact unimodular group with unitary dual Ĝ. Let 3 be a
Borel subset of Ĝ and let dµ be the Plancherel measure. For each λ ∈ 3 choose
a unitary representation (πλ, Vλ) of class λ. Let A(λ) be a family of trace class
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operators for which
∫
3

tr(|A(λ)|) dµ and
∫
3

tr(A(λ)∗ A(λ)) dµ are finite. Define a
function f on G by

f (g) =

∫
3

tr(A(λ)πλ(g−1)) dµ.

Then f lies in L2(G), and by the Plancherel Theorem,∫
G

| f (g)|2 dg =

∫
3

tr(A(λ)∗ A(λ)) dµ.

This sets up a one-to-one correspondence between subspaces of L2(G) whose
Fourier transforms are supported on 3 and families (A(λ)) of Hilbert–Schmidt
operators satisfying ∫

3

tr(A(λ)∗ A(λ)) dµ < ∞.

The isometry just described takes a particularly simple form when (A(λ)) is
a family of rank-one operators. Let A(λ)v = (v, η(λ))ξ(λ), where v ∈ Vλ and
η(λ), ξ(λ) are measurable functions taking values in Vλ. We then have the follow-
ing result, whose proof can be found in [Faraut 2002; 2003].

Proposition 4.3. Assume that η(λ) and ξ(λ) satisfy∫
3

‖η(λ)‖2
‖ξ(λ)‖2 dµ < ∞.

Then the function f defined by f (g) =

∫
3
(πλ(g−1)ξ(λ), η(λ)) dµ belongs to

L2(G) and satisfies ∫
G

| f (g)|2 dg =

∫
3

‖η(λ)‖2
‖ξ(λ)‖2 dµ.

Proof of Theorem 4.2. Take G = Gn and 3 = R × N. The relevant representations
are ρλ

k acting on the Hilbert spaces Hλ
k . As already seen, the operators ρλ

k ( f ) have
rank one. We take ξ(γ ) := ρλ

k ( f )eλ
k and

η(γ ) :=
k!(n−1)!

(k + n − 1)!
ρλ

k (1, z, w, ζ )eλ
k

when γ = (λ, k) ∈ 3. (The first factor on the right is used because its reciprocal
appears in the Plancherel measure for Gn .) We wish to appeal to Proposition 4.3
to complete the proof of Theorem 4.2.

We are therefore left with proving the equality

‖ρλ
k (1, z, w, ζ )eλ

k ‖
2
= e2ληe−λ(u·y−v·x)ϕλ

k (2iy, 2iv).

Recall that eλ
k (x ′, u′, t ′) = eiλt ′ϕλ

k (x, u) and this can be extended to Cn
× Cn

× C

as a holomorphic function. The action of ρλ
k (1, x, u, t) on eλ

k is given by

ρλ
k (1, x, u, t)eλ

k (x ′, u′, t ′) = eλ
k ((x, u, t)−1(x ′, u′, t ′))
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which reduces to

eiλ(t ′−t−(u·x ′
−x ·u′)/2)ϕλ

k (x ′
− x, u′

− u).

The holomorphic extension of this is given by

ρλ
k (1, z, w, ζ )eλ

k (x ′, u′, t ′) = eiλ(t ′−ζ−(w·x ′
−z·u′)/2)ϕλ

k (x ′
− z, u′

− w).

In terms of real and imaginary parts of z = x + iy, w = u + iv, and ζ = ξ + iη,
this becomes

ρλ
k (1, z,w,ζ )eλ

k (x ′,u′, t ′)=eληeiλ(t ′−ξ−(u·x ′
−x ·u′)/2)e−λ(u′

·y−x ′
·v)/2 ϕλ

k (x ′
−z,u′

−w).

From the definition of the Hilbert space Hλ
k , the norm of ρλ

k (1, z, w, ζ )eλ
k in Hλ

k
is

‖ρλ
k (1, z, w, ζ )eλ

k ‖
2
= |λ|

ne2λη

∫
Rn×Rn

e−λ(u′
·y−x ′

·v)
|ϕλ

k (x ′
− z, u′

− w)|2 dx ′ du′.

Without loss of generality we can assume λ > 0. By a change of variables the
integral reduces to

e−λ(u·y−x ·v)

∫
Rn×Rn

e−λ1/2(u′
·y−x ′

·v)
∣∣ϕk(x ′

− iλ1/2 y, u′
− iλ1/2v)

∣∣2 dx ′ du′.

Using Proposition 3.3 we see that the integral is equal to e−λ(u·y−x ·v)ϕλ
k (2iy, 2iv),

as required. �

Remark. We have stated Gutzmer’s formula for functions whose Fourier trans-
forms are compactly supported. This condition is not necessary for the validity of
the formula. Consider the inversion formula stated in Proposition 4.1, namely

f (z, w, ζ ) = (2π)n/2
∫

∞

−∞

( ∞∑
k=0

(
ρλ

k ( f )eλ
k , ρλ

k (1, z, w, ζ )eλ
k
))

dµ(λ).

In view of the calculations made above the series converges as long as
∞∑

k=0

‖ f λ
∗λ ϕλ

k ‖2 e−λ(u·y−v·x)/2(ϕλ
k (2iy, 2iv))1/2 < ∞.

If we assume that f λ(x, u) is compactly supported in λ and the norms ‖ f λ
∗λ

ϕλ
k ‖2 have enough decay, then the inversion formula is valid and f (z, w, ζ ) is

holomorphic. For example, when f belongs to the image of L2(Hn) under the
heat semigroup associated to the full Laplacian then ‖ f λ

∗λ ϕλ
k ‖2 ≤ Ce−t (2k+n)|λ|

and f extends as an entire function (see [Krötz et al. 2005b]). For such functions
Gutzmer’s formula is valid, as can be proved by using a density argument. We refer
to [Faraut 2003] for some details in the case of noncompact Riemannian symmetric
spaces.
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5. Poisson integrals on the Heisenberg group

On the Heisenberg group we consider the sublaplacian L defined by

L = −

n∑
j=1

(X2
j + Y 2

j ),

where X1, . . . , Xn, Y1, . . . , Yn together with T = ∂/∂t form a basis for the Heisen-
berg Lie algebra. (See [Thangavelu 1998; 2004] for explicit expressions for these
vector fields.) The operator L is nonnegative, so using the spectral theorem we
can define the Poisson semigroup e−a(L)1/2

, a > 0. This is explicitly given by the
spectral representation

e−a(L)1/2
f (x, u, t) =

∫
∞

−∞

e−iλt
( ∞∑

k=0

e−(2k+n)1/2
|λ|

1/2a f λ
∗λ ϕλ

k (x, u)

)
dµ(λ).

We may suppose that f is a Schwartz class function whose Fourier transform is
compactly supported in the sense defined in the previous section. For such func-
tions the series above converges pointwise. We denote exp(−a(L)1/2) f by Pa f
and call it the Poisson integral of f . For each r > 0, define

�r =
{
(x + iy, u + iv, ζ ) ∈ Cn

× Cn
× C : y2

+ v2 < r2}.
Theorem 5.1. Let f be a Schwartz class function on Hn and assume that f λ(x, u)

is compactly supported in (−b, b) as a function of λ. Then for 0 < r < a, we can
extend Pa f (x, u, t) to �r as a holomorphic function of (z, w, ζ ), and∫

Gn

|Pa f (g.(z, w, ζ ))|2 dg = cn×∫ b

−b

e2ληe−λ(u·y−v·x)

( ∞∑
k=0

‖ f λ
∗λϕλ

k‖
2
2e−2(2k+n)1/2

|λ|
1/2a k!(n−1)!

(k+n−1)!
ϕλ

k (2iy,2iv)

)
dµ(λ).

Proof. Once we show that Pa f extends as a holomorphic function of (z, w, ζ ) on
�r the theorem will follow from Gutzmer’s formula. Consider now the expansion

Pa f (x, u, t) = (2π)−n−1
∫

∞

−∞

e−iλt
( ∞∑

k=0

f λ
∗λ ϕλ

k (x, u)e−(2k+n)1/2
|λ|

1/2a
)

|λ|
n dλ

and define the Poisson kernel by

Pλ
a (x, u) =

∞∑
k=0

ϕλ
k (x, u)e−(2k+n)1/2

|λ|
1/2a.
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Then we have

Pa f (x, u, t)

=

∫
Rn×Rn×R

e−iλt f λ(x ′, u′)Pλ
a (x − x ′, u − u′)e−i(λ/2)(x ·u′

−u·x ′) dx ′ du′ dλ.

It is therefore enough to show that Pλ
a (x, u) extends as a holomorphic function of

(z, w). Fix λ. In view of Proposition 3.1, the series

∞∑
k=0

ϕλ
k (x + iy, u + iv)e−(2k+n)1/2

|λ|
1/2a

is bounded by a constant times( ∞∑
k=0

(
(k + n − 1)!

k!(n−1)!

)1/2

(ϕλ
k (2iy, 2iv))1/2e−(2k+n)1/2

|λ|
1/2a

)
e|λ|(u·y−v·x)/2.

For any fixed (y, v) with y2
+ v2

≤ r2 < a2, Perron’s formula gives the estimate

(ϕλ
k (2iy, 2iv))1/2

≤ Cr k(n−1)/4−1/8e(2k+n)1/2
|λ|

1/2r

and hence the series is dominated by

∞∑
k=1

k(n−1)/2k(n−1)/4−1/8e−(2k+n)1/2
|λ|

1/2(a−r)

which certainly converges as long as r < a.
Moreover, using the asymptotic estimates given by Perron’s formula the integral∫

∞

−∞

(ϕλ
k (2iy, 2iv))1/2e−(2k+n)1/2

|λ|
1/2a

|λ|
n dλ

is bounded by a constant multiple of

k(n−1)/4−1/8
∫

∞

0
e−(2k+n)1/2t (a−r)t (6n+9)/4−1 dt,

so for y2
+ v2

≤ r2 and |λ| ≤ b, the sum

∞∑
k=0

∫
∞

−∞

|ϕλ
k (x + iy, u + iv)|e−(2k+n)1/2

|λ|
1/2ae|λ|(u·y−v·x)/2

|λ|
n dλ

is dominated by a constant times

eb|u·y−v·x |

∞∑
k=1

k(n−1)/2k(n−1)/4−1/8k−(6n+9)/8,
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which is finite. Hence standard arguments show that Pλ
a (x, u) extends to �r as a

holomorphic function. �

We now use Theorem 5.1 to get a characterisation of functions that arise as
Poisson integrals. Let G(�a) be the space of functions F(z, w, ζ ) holomorphic on
�a and such that Fλ(x, u) is compactly supported in λ and

‖F‖
2
�a

= lim
y2+v2→a2

∫
Gn

|F(g.(iy, iv, t))|2 dg < ∞.

We define B(�a) to be its completion. For F ∈ G(�a), Gutzmer’s formula shows
that the restriction of F to Hn satisfies∫

∞

−∞

∞∑
k=0

(
‖Fλ

∗λ ϕλ
k ‖

2
2

k!(n−1)!

(k + n − 1)!
ϕλ

k (2iy, 2iv)

)
|λ|

n dλ < ∞

whenever y2
+ v2

≤ a2.
We also need to recall the definition of the Sobolev spaces H s(Hn). This is the

space of all tempered distributions for which (1 + L)s/2 f ∈ L2(Hn). The norm is
given by the expression

‖ f ‖
2
(s) = cn

∫
∞

−∞

( ∞∑
k=0

‖ f λ
∗λ ϕλ

k ‖
2
2
(
(2k + n)|λ|

)s
)

|λ|
n dλ.

The asymptotic formula we have used for ϕλ
k (2iy, 2iv) reads as

k!(n−1)!

(k + n − 1)!
ϕλ

k (2iy, 2iv) ≤ C((2k + n)|λ|)−(2n−1)/4e−2(2k+n)1/2
|λ|

1/2r ,

and therefore f lies in H−(2n−1)/4(Hn) precisely when∫
∞

−∞

∞∑
k=0

(
‖ f λ

∗λ ϕλ
k ‖

2
2

k!(n−1)!

(k + n − 1)!
ϕλ

k (2iy, 2iv)

)
|λ|

n dλ < ∞

for all y, v with y2
+ v2

≤ a2.

Theorem 5.2. A function F lies in B(�a) if and only if F = Pa f for some f ∈

H−(2n−1)/4(Hn). The norm of f in H−(2n−1)/4(Hn) is equivalent to

lim
y2+v2→a2

∫
Gn

|F(g.(iy, iv, t))|2 dg.

Proof. If f ∈ H−(2n−1)/4(Hn) then f can be approximated by a sequence fn of
functions whose Fourier transforms in the central variable are compactly supported.
For such functions we have verified that Pa fn extends to a function in G(�a). This
proves half the theorem. Since all the steps in our calculations are reversible, the
converse also follows in light of the remarks preceding the theorem. �
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6. Revisiting twisted Bergman spaces

Consider the full Laplacian 1 = L − T 2 on the Heisenberg group. In [Krötz et al.
2005b] we studied the problem of characterising the image of L2(Hn) under the
semigroup e−t1 as a weighted Bergman space over the domain Cn

×Cn
×C, which

is just the complexification of Hn . It turned out that the image is not a weighted
Bergman space, contrary to expectation. What is true is that the image is a direct
integral of certain weighted Bergman spaces Bλ

t , which are the images of L2(Cn)

under the semigroup e−t Lλ generated by the special Hermite operators Lλ, which
are related to L. In this section we give a different proof of this characterisation of
Bλ

t using Gutzmer’s formula on the Heisenberg group.
We briefly recall the definitions of Lλ and the twisted Bergman spaces Bλ

t ,
referring to [Krötz et al. 2005b] for more details. For each λ 6= 0, the operator Lλ

is defined by L(e−iλt f (z)) = e−iλt Lλ f (z). The spectral decomposition of Lλ is
given by

Lλ f (x, u) = (2π)−n
∞∑

k=0

(2k + n)|λ| f ∗λ ϕλ
k (x, u).

The operator Lλ generates a diffusion semigroup e−t Lλ given by twisted convolu-
tion with the kernel

pλ
t (x, u) = cn

(
λ

sinh(λt)

)n

e−λ coth(λt)(x2
+u2)/4.

For each f ∈ L2(Cn) the function

f ∗λ pλ
t (x, u) =

∫
R2n

f (x − x ′, u − u′)pλ
t (x ′, u′)ei/2λ(u·x ′

−x ·u′) dx ′ du′

can be extended to Cn
× Cn as an entire function. We let

W λ
t (x + iy, u + iv) = 4neλ(u·y−v·x) pλ

2t(2y, 2v)

and define Bλ
t to be the space of all entire functions on Cn

× Cn that are square
integrable with respect to the weight function W λ

t (z, w).

Theorem 6.1 [Krötz et al. 2005b]. An entire function F on Cn
×Cn belongs to Bλ

t
if and only if F(x, u) = f ∗λ pλ

t (x, u) for some f ∈ L2(Cn).

In this section we give a different and more transparent proof that f ∗λ pλ
t (z, w)

belongs to Bλ
t , based on Gutzmer’s formula for special Hermite expansions. In

proving this we assume λ = 1 and simply write pt in place of p1
t .

Consider the reduced Heisenberg group (or Heisenberg group with compact cen-
ter) Hn

red defined to be Cn
× S1 with group law

(z, ei t)(w, eis) = (z + w, ei(t+s+ 1
2 Im(z·w̄))).
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The infinite-dimensional irreducible unitary representations of Hn
red that are non-

trivial at the center are given (up to unitary equivalence) by the Schrödinger rep-
resentations π j , where now j is a nonzero integer. The case j = 0 corresponds
to the one-dimensional representations that factor through characters of Cn . For
functions f on Hn

red having mean value zero, i.e.,
∫

S1 f (z, ei t) dt = 0, the relevant
representations are just π j with j 6= 0. Let Gred

n be the Heisenberg motion group
formed with Hn

red in place of Hn . Then with the same notations as in Section 4 we
have the following result. Let �r be defined as before.

Theorem 6.2. Let f be a function on Hn
red having mean value zero and satisfying

the conditions stated in Theorem 4.2. For all (z, w) ∈ �r , we have∫
Gred

n

| f (g.(iy, iv, ei t))|2 dg

= (2π)−n−1
∑
j 6=0

( ∞∑
k=0

‖ f j
∗ j ϕ

j
k ‖

2
2

k!(n−1)!

(k + n − 1)!
ϕ

j
k (2iy, 2iv)

)
| j |n.

When we take functions of the form f (x, u)e−i t , exactly one term (correspond-
ing to j = 1) survives in this sum over j (since f j is the (− j)-th Fourier coefficient
of f ), and we get∫

R2n
| f (x+iy, u+iv)|2e(u·y−v·x) dx du = cn

∞∑
k=0

‖ f ×ϕk‖
2
2

k!(n−1)!

(k+n−1)!
ϕk(2iy, 2iv),

which we refer to as Gutzmer’s formula for special Hermite expansions. Here
f × ϕk is the twisted convolution, which is just the λ-twisted convolution when
λ = 1. The equality is valid for all functions f for which the right-hand side
converges. This is so if the norms of the projections f × ϕk decay fast enough.
In particular, the preceding formula is valid if f is replaced by e−t L f with f in
L2(Cn).

Applying Gutzmer’s formula to the function F(z, w) = e−t L f (z, w) we obtain∫
R2n

|F(x + iy, u + iv)|2e(u·y−v·x) dx du

= cn

∞∑
k=0

‖ f × ϕk‖
2
2e−2(2k+n)t k!(n−1)!

(k + n − 1)!
ϕk(2iy, 2iv).

If we can show that∫
R2n

ϕk(2iy, 2iv)p2t(2y, 2v) dy dv =
(k + n − 1)!

k!(n−1)!
e2(2k+n)t ,

we can integrate Gutzmer’s formula against p2t(2y, 2v) dy dv to get∫
C2n

|F(z, w)|2W 1
t (z, w) dz dw = cn

∫
R2n

| f (x, u)|2 dx du,
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which will prove our claim and hence Theorem 6.1. So it remains to prove the
following lemma.

Lemma 6.3.
∫

R2n
ϕk(iy, iv)pt(y, v) dy dv =

(k + n − 1)!

k!(n−1)!
e(2k+n)t .

Before proving the lemma we make some remarks. Since the heat kernel pt is
given by the expansion

pt(y, v) = (2π)−n
∞∑

k=0

e−(2k+n)tϕk(y, v)

it follows, in view of the orthogonality properties of ϕk , that

(6-1)
∫

R2n
pt(y, v)ϕk(y, v) dy dv =

(k + n − 1)!

k!(n−1)!
e−(2k+n)t .

As ϕk are the spherical functions associated to the Gelfand pair (Gn, U (n)), the
formula in the lemma is the analogue of the formula∫

Rn
ϕλ(iy)e−y2/(4t) dy = cnetλ2

,

where ϕλ are the spherical functions on Rn , namely, the Bessel functions. This was
the key formula used in characterising Bergman spaces associated to the Laplacian
on Rn .

Proof of the lemma. Recall from [Szegö 1967] that

Ln−1
k (s) =

k∑
j=0

ck, j (−s) j ,

where the ck, j are constants whose exact values are immaterial. Equation (6-1)
now reads as

(sinh t)−n
∫

R2n

k∑
j=0

ck, j (−1) j 2− j (y2
+ v2) j e−(1+coth t)(y2

+v2)/4 dy dv

= (2π)n (k + n − 1)!

k!(n−1)!
e−(2k+n)t .

This can be rewritten as

(6-2) (cosh t)−n
k∑

j=0

ck, j (−1) j 2− j a j (tanh t) j (1 + tanh t)− j−n

= (2π)n (k + n − 1)!

k!(n−1)!
e−(2k+n)t ,

where the a j are constants defined by

a j =

∫
R2n

(y2
+ v2) j e−(y2

+v2)/4 dy dv.
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Now both sides of (6-2) are holomorphic functions of t in a strip containing the
real line, so the equation is true for t negative as well. This leads to

(cosh t)−n
k∑

j=0

ck, j 2− j a j (tanh t) j (1 − tanh t)− j−n
= (2π)n (k + n − 1)!

k!(n−1)!
e(2k+n)t .

The left-hand side now is simply

(sinh t)−n
∫

R2n

k∑
j=0

ck, j 2− j (y2
+ v2) j e−(−1+coth t)(y2

+v2)/4 dy dv,

which is the same as

(2π)n
∫

R2n
ϕk(iy, iv)pt(y, v) dy dv.

This completes the proof of the lemma and hence of Theorem 6.1. �
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