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THE EUCLIDEAN RANK OF HILBERT GEOMETRIES

OLIVER BLETZ-SIEBERT AND THOMAS FOERTSCH

We prove that the Euclidean rank of any 3-dimensional Hilbert geometry
(D, hD) is 1; that is, (D, hD) does not admit an isometric embedding of the
Euclidean plane. We show that for higher dimensions this remains true if
the boundary ∂ D of D is C1.

1. Introduction

In the late nineteenth century D. Hilbert informed F. Klein in a letter about his
discovery of a method to construct metric spaces, generalizing Klein’s model of
the real hyperbolic space [Hilbert 1895]:

Let En denote the n-dimensional Euclidean space. The Euclidean distance of
x, y ∈ En is written |xy|, the line segment between x and y is [x, y], whereas
L(x, y)= << x, y>> denotes the whole affine line through x and y in En .

Given an open bounded convex domain D ⊂ En with boundary ∂D ⊂ En , the
Hilbert metric hD : D × D → R+0 is defined via the cross-ratio: Given distinct
points x, y ∈ D, take the points ξx,y, ξy,x where L(x, y) intersects ∂D and set

hD(x, y)= log
|yξx,y| |xξy,x |

|xξx,y| |yξy,x |
.

Formally, ξx,y ∈ << x, y>> ∩∂D is uniquely determined

D

ξx,y

x

y

ξy,x

by the condition |ξx,y x |< |ξx,y y|. The cross ratio, of
course, is invariant under projective transformations.
For the basic properties of hD see [Busemann 1955]
and [de la Harpe 1993]; for example, the topology
induced by hD on D coincides with the subspace
topology inherited from En . We refer to the metric
space (D, hD) as a Hilbert geometry.

Hilbert proved that the straight line segments in (D, hD) indeed are geodesics.
In general, however, other geodesic segments also exist (see Lemma 2.1).
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It is natural to ask what metric spaces can be realized as Hilbert geometries.
Hilbert himself pointed out that his construction, applied to an open n-dimensional
Euclidean ball (or ellipsoid), yields Klein’s model of n-dimensional real hyperbolic
space.

Kelly and Strauss [1958] have proved that these are the only globally nonpos-
itively Busemann curved Hilbert geometries, and therefore also the only Hilbert
geometries which are CAT(0). (For these notions see [Bridson and Haefliger 1999;
Jost 1997], for instance.)

More recently, Karlsson and Noskov [2002] showed that, nevertheless, there
exist many Gromov-hyperbolic Hilbert geometries. (A geodesic metric space is
called δ-hyperbolic, for a given δ ≥ 0, if each side of any geodesic triangle is
contained in the union of the δ-neighborhoods of the other two sides; a δ-hyperbolic
space is also called Gromov-hyperbolic.) Benoist [2003] then presented a neces-
sary and sufficient condition for a Hilbert geometry to be Gromov-hyperbolic in
terms of the boundary ∂D of D. Another characterization in terms of the spectrum
of the Laplacian of (D, hD) was recently obtained in [Colbois and Vernicos 2006].

A necessary — but by far not sufficient — condition for the Hilbert geometry on
D to be Gromov-hyperbolic is that the boundary ∂D be C1 and that D be strictly
convex (see [Karlsson and Noskov 2002] or [Benoist 2003]). Thus there exist
plenty of examples of Hilbert geometries that are not Gromov-hyperbolic.

Nonetheless, these examples still show certain “hyperbolic” features. This raises
the question: How close to being hyperbolic are Hilbert geometries in general?

One particularly interesting class of non-Gromov-hyperbolic Hilbert geometries
are those defined on the interior of simplices (the convex hull of n + 1 points in
En in general position). Although such geometries have been studied in detail for
decades — see [Phadke 1974/75; Busemann and Phadke 1987], for example — it
was not until much later that de la Harpe [1993] proved that, surprisingly, Hilbert
geometries defined on the interior of simplices are isometric to normed vector
spaces (see also [Nussbaum 1988]). In [Foertsch and Karlsson 2005] it was proved
that these normed vector spaces are the only ones that can be realized as Hilbert
geometries.

Whereas the papers mentioned above were concerned with the question of which
metric spaces admit a realization as a Hilbert geometry, here we will be interested,
more generally, in isometric embeddings into Hilbert geometries. This includes
Hilbert geometries that are not uniquely geodesic, in particular those arising from
nonstrictly convex domains — these cases are, in our view, even more interesting.

(Recall that a map f : (X, dX )→ (Y, dY ) between metric spaces (X, dX ) and
(Y, dY ) is a quasiisometric embedding if there exist λ≥ 1 and k ≥ 0 such that

(1-1) 1
λ

dX (x, x ′)− k ≤ dY
(

f (x), f (x ′)
)
≤ λ dX (x, x ′)+ k for any x, x ′ ∈ X.
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If, moreover, f (X) is a k-net in (Y, dY ) (that is, Y is the k-neighborhood of f (X)),
then f is called a quasiisometry. Recall further that if the inequalities in (1-1) hold
with λ= 1, then f is called a rough-isometric embedding.)

This article is somehow motivated by the following result, which we quote from
[Bridson and Haefliger 1999, Theorem III.H 1.9]: There is no (quasi)isometric
embedding of the Euclidean plane in a geodesic Gromov-hyperbolic metric space.

Obviously, since every n-dimensional normed vector space is bilipschitz to En ,
the Hilbert geometry defined on the interior of any simplex in En is quasiisometric
to En . However, as we will show, at least every 3-dimensional Hilbert geometry
does not admit an isometric embedding of the Euclidean plane. To state the corre-
sponding theorem, recall that the Euclidean rank, rankE(X, d), of a metric space
(X, d) is defined to be the supremum over all dimensions of Euclidean spaces that
admit isometric embeddings into (X, d). Since affine line segments in a Hilbert
geometry are geodesics, any Hilbert geometry has Euclidean rank at least 1.

Towards answering the question of how close to hyperbolic spaces a Hilbert
geometry is, we will prove that Hilbert geometries have Euclidean rank 1 — at
least in the cases mentioned in the abstract (though we believe this holds true for
all cases):

Theorem 1.1. Let (D, hD) be a 3-dimensional Hilbert geometry. Then

rankE(D, hD)= 1.

We believe that Theorem 1.1 generalizes to arbitrary dimensions. For higher
dimensions we can prove:

Theorem 1.2. Let (D, hD) be an n-dimensional Hilbert geometry. Then

rankE(D, hD)= 1

if ∂D does not contain a line segment, or if ∂D is C1.

The main idea of the proof is to compare the Gromov products in E2 with those in
the Hilbert geometry: in E2 the Gromov product of pairs of points on two geodesic
rays — emanating from a fixed base point on different affine lines — is unbounded
if the points tend (on the rays) to infinity. Now consider an isometric embedding of
E2 into a Hilbert geometry and the geodesic rays which are the images of the two
rays in E2. By a result of Karlsson and Noskov (Theorem 2.9), the endpoints of
these geodesic rays span an affine line segment in the border of D (that is, this line
segment does not intersect with D itself). Since this holds for all rays in E2 which
are not collinear, this gives a lot of information about ∂D. The main difficulty is that
the endpoints of geodesic rays do not depend continuously on the rays themselves
(but compare Lemma 2.6). Therefore, there are many configurations to consider for
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how the endpoints may be spread over ∂D. In dimension 3, we are able to exploit
the facts mentioned to prove Theorem 1.1. In higher dimensions the geometry
is much richer, and the variety of imaginable geometric configurations is much
broader; this has kept us from solving the problem in higher dimensions. But we
get Theorem 1.2 as a byproduct of our considerations.

We do not know whether there exist Hilbert geometries that admit isometric em-
beddings of open subsets of E2. To address this problem, the asymptotic methods
used in this paper will not be of any help. However, an advantage of the asymptotic
methods presented here is that they might even yield a stronger nonembedding
result: To us it seems likely that Theorem 1.1 can be sharpened to prove that there
does not exist even a rough-isometric embedding of the Euclidean plane into a
Hilbert geometry. But it seems that new ideas are necessary to obtain such a result.

2. Preliminaries

A geodesic segment in a metric space X is an isometric embedding γ : I → X of
an interval I ⊂ E1 into X . If I = [0,∞), we also call γ a geodesic ray (originating
at γ (0)). The images of such maps γ can also be called geodesic segments and
rays. A metric space X is geodesic if for every x, y ∈ X there exists a geodesic
segment connecting x to y, i.e., a geodesic γ : [a, b] → X such that γ (a) = x
and γ (b) = y. If for every x, y ∈ X in a geodesic metric space X the image of a
geodesic segment connecting x to y is unique, X is called uniquely geodesic.

Let D be an open bounded convex domain in En . The closure D is also convex,
and every affine line containing a point of D intersects ∂D in exactly two points.
For distinct a, b ∈ ∂D, the open Euclidean segment from a to b, denoted [a, b]◦ :=
[a, b] − {a, b}, lies either entirely in D or entirely in ∂D.

Convex hulls in Hilbert geometries. As mentioned in the introduction, Hilbert
geometries are geodesic spaces, but are not, in general, uniquely geodesic. The
following well-known lemma states this more precisely. In it, we use the notation
[x, z]d for the metric convex hull of two points x and z in a metric space (X, d):

[x, z]d =
{

y ∈ X
∣∣ d(x, z)= d(x, y)+ d(y, z)

}
.

Lemma 2.1 [de la Harpe 1993, Proposition 2]. Let (D, hD) be a Hilbert geometry
and let x, z ∈ D be distinct. Then

[x, z]hD =
{

y ∈ D
∣∣ [ξz,y, ξy,x ] ∪ [ξx,y, ξy,z] ⊂ ∂D

}
;

in other words, there exists y ∈ D\ << x, z>> such that hD(x, z)= hD(x, y)+hD(y, z)
if and only if there exist open line segments I, J ⊂ ∂D spanning an affine 2-plane
in En and such that ξx,z ∈ I , ξz,x ∈ J .
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In particular, if D is strictly convex (that is, if every affine line intersecting ∂D
in at least two points also intersects D), the Hilbert geometry (D, hD) is uniquely
geodesic.

If 6 is an affine subspace of En intersecting ∂D but not D, then F = 6 ∩ D =
6∩∂D will be called a boundary flat of the Hilbert geometry (D, hD); the border
of F with respect to the subspace topology in 6 will be denoted by ∂F and its
(relative) interior by F◦ = F \ ∂F . A boundary flat is a convex set in En .

We make some simple remarks on convexity, to be used several times later.

Remark 2.2. (a) Continuity of the boundary projection: Consider the map

(x, y) 7→ (ξx,y, ξy,x)

defined on {(x, y) ∈ D × D | x 6= y}. Extend it to {(x, y) ∈ D × D | x 6= y} by
setting ξx,y and ξy,x such that [ξx,y, ξy,x ] = << x, y>> ∩ D with |xξx,y|< |yξx,y| and
|yξy,x |< |xξy,x |. Then (x, y) 7→ (ξx,y, ξy,x) is continuous on the set{

(x, y) ∈ D× D
∣∣ x 6= y and [x, y] 6⊂ ∂D

}
;

to be more precise, the maximal set on which the map is continuous consists exactly
of the pairs of distinct points of D for which there is no line segment in the boundary
of D containing both of them and even one of them in its relative interior.

(b) Edges converge to edges: If {pn}n∈N, {qn}n∈N are sequences in ∂D converging
to p, q ∈ ∂D and such that [pn, qn] ⊂ ∂D for all n ∈ N, then [p, q] ⊂ ∂D.

(c) Triangles on the boundary: Assume that a, b, c ∈ ∂D are not collinear, and
denote by 1(a, b, c) the closed affine triangle with vertices a, b and c, and by
1◦(a, b, c)=1(a, b, c)\

(
[a, b]∪[a, c]∪[b, c]

)
the relative interior of1(a, b, c).

Then either 1(a, b, c)⊂ ∂D or 1(a, b, c)◦ ⊂ D.

Geodesic rays in Hilbert geometries. Now we turn to geodesic rays in a Hilbert
geometry (D, hD). As one would expect, such rays do converge at infinity:

Theorem 2.3 [Foertsch and Karlsson 2005, Theorem 3]. Let (D, hD) be a Hilbert
geometry.

(i) Every geodesic ray r in (D, hD) converges to a point in ∂D, written r(∞).

(ii) Every complete geodesic γ in (D, hD) has precisely two accumulation points
γ (∞) and γ (−∞) in ∂D.

Remark 2.4. Let r and r̃ be geodesic rays in a Hilbert geometry (D, hD) such that
hD(r(t), r̃(t)) is a bounded function in t . If r(∞) lies in the (relative) interior of
a boundary flat, the same is true of r̃(∞).
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Lemma 2.5. Let (D, hD) be an n-dimensional Hilbert geometry and let

γ : (−∞,∞)→ D

be a geodesic in (D, hD). Suppose that for t1 < t2 the straight line L(γ (t1), γ (t2))
intersects ∂D in the interior of two (n−1)-dimensional boundary flats. Then for
all t0 < t1 there exists a neighborhood U of γ (t2) such that each point p ∈ U lies
on a geodesic through γ (t0) and γ (t1).

The lemma immediately implies that two points satisfying the condition on γ (t1)
and γ (t2) cannot occur as image points of an isometric embedding ϕ : E2

→

(D, hD). For suppose ϕ : E2
→ (D, hD) were an isometric embedding and let

γ denote the image of a straight line in E2 under ϕ, with ϕ(x1) = γ (t1) and
ϕ(x2) = γ (t2). Then for any x0 on the straight line through x1 and x2 in E2

satisfying |x0x1| < |x0x2| we have ϕ(x0) = γ (t0) for some t0 < t1. Now for any
given neighborhood U of γ (t2) in (D, hD), sufficiently small neighborhoods of x2

in E2 are mapped via ϕ into U . This, however, is not possible for the neighborhood
U as in Lemma 2.5, since hD(γ (t0), γ (t1))+ hD(γ (t1), u) = hD(γ (t0), u) for all
u ∈ U , whereas in any arbitrarily small neighborhood V of x2 in E2 there exists
v ∈ V with |x0x1| + |x1v|> |x0v|. This yields the desired contradiction.

Proof of Lemma 2.5. Fix t0< t1. Then, by Lemma 2.1, [ξγ (t1),γ (t0), ξγ (t2),γ (t1)]⊂ ∂D
and [ξγ (t0),γ (t1), ξγ (t1),γ (t2)] ⊂ ∂D. Since ξγ (t1),γ (t2) and ξγ (t2),γ (t1) lie in the interior
of (n−1)-dimensional boundary flats F1 and F2, there exists a neighborhood U of
γ (t2) in D such that for all p ∈ U the projection ξγ (t1),p lies in the interior of F1

and ξp,γ (t1) lies in the interior of F2. The claim follows from Lemma 2.1. �

Consider sequences of geodesic rays ri , i ∈N, in the Hilbert geometry (D, hD)

converging pointwise to some geodesic ray r in

a

p
ξp,a

b

c

The Hilbert geometry of a 2-simplex
is not uniquely geodesic.

(D, hD). In general their limit points ri (∞) do
not converge to r(∞)! This can be observed in the
Hilbert geometry (1◦, h1◦) defined inside an open
triangle 1◦ = 1◦(a, b, c) in E2 with vertices a, b
and c. Fix p ∈ 1◦. Then [p, ξp,a] is a geodesic
ray converging to ξp,a ∈ [b, c]◦, yet [p, ξp,a] is the
pointwise limit of geodesic rays ri in (1◦, h1◦),
which all converge to b.

The next lemma and its corollary investigate such
behavior to some extent.

Lemma 2.6 (Jump Lemma). Let (D, hD) be a Hilbert geometry. Suppose {an}n ,
{bn}n and {cn}n are sequences in D converging to distinct points a, b ∈ ∂D and
c ∈ D, respectively, such that
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hD(an, cn)= hD(an, bn)+ hD(bn, cn) for all n ∈ N.

(I) If c ∈ D, then [a, b] ( [a, ξb,a] ⊂ ∂D and [ξb,a, ξc,b] ⊂ ∂D. In particular,
c /∈ <<a, b>> and b 6= ξb,a . (See figure.)

a

an

bn

b

ξb,a

ξc,b

c

(II) If c ∈ ∂D, one of the following (nondisjoint) cases occurs:
(i) [a, b] ∪ [b, c] ⊂ ∂D.

(ii) [a, b]( [a, ξb,a] ⊂ ∂D and [c, ξb,a] ⊂ ∂D, for [b, c] 6⊂ ∂D.
(iii) [c, b]( [c, ξb,c] ⊂ ∂D and [a, ξb,c] ⊂ ∂D, for [a, b] 6⊂ ∂D.

Proof. (I) Let ξ̃a,b be an accumulation point of {ξan,bn }n∈N; it might be different
from ξa,b. Since an→a and bn→b as n→∞, it follows that ξ̃a,b ∈ <<a, b>> ∩ ∂D
and a ∈ [̃ξa,b, b]. Hence, with [ξan,bn , ξbn,cn ] ⊂ ∂D and b= limn→∞ ξbn,cn , Remark
2.2 yields [a, b] ⊂ ∂D and thus c /∈ <<a, b>> .

Now let ξ̃b,a be an accumulation point of {ξbn,an }n∈N. Then ξ̃b,a ∈ <<a, b>> ∩ ∂D
and b ∈ [̃ξb,a, a]. Since [ξc,b, ξ̃b,a] ⊂ ∂D (by Remark 2.2(b) and Lemma 2.1),
it follows from Remark 2.2(c) (or directly from convexity) that ξ̃b,a = ξb,a , and
therefore [ξb,a, ξc,b] ⊂ ∂D. Since c ∈ [ξc,b, b] ∩ D, we deduce b 6= ξb,a and thus
[a, b]( [a, ξb,a] ⊂ ∂D.

(II) Now suppose that [b, c] 6⊂ ∂D. By Lemma 2.1 and Remark 2.2(a), b= ξb,c =

limn→∞ ξbn,cn and c = ξc,b = limn→∞ ξcn,bn . Again from the same lemma and
remark, it follows that [a, b] ⊂ ∂D, since for every accumulation point ξ̃a,b of
{ξan,bn }n∈N we have ξ̃a,b ∈ <<a, b>> .

Since [b, c] 6⊂ ∂D, it follows just as in part (I) that ξ̃b,a = ξb,a , [c, ξb,a] ⊂ ∂D
and b 6= ξb,a , hence [a, b] ( [a, ξb,a] ⊂ ∂D. This proves (ii). Interchanging the
roles of a and c, we get (iii). �

Corollary 2.7. Let r and ri , i ∈ N, be geodesic rays in the Hilbert geometry
(D, hD) such that the ri converge pointwise to r , and suppose that limi→∞ ri (∞)

exists. Then [
lim

i→∞
ri (∞), r(∞)

]
⊂ ∂D.
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If , moreover, limi→∞ ri (∞) 6= r(∞), there exists ξ ∈ ∂D such that

r(∞) ∈
[
ξ, lim

i→∞
ri (∞)

]◦
.

Lemma 2.8. Let γ : (−∞,∞)→ (D, hD) be a geodesic in the Hilbert geometry
(D, hD) such that

[γ (−∞), γ (∞)] ⊂ ∂D.
Then

[γ (−∞), γ (∞)] = <<γ (−∞), γ (∞)>> ∩ ∂D.

Proof. From Lemma 2.1 we deduce[
ξγ (−n),γ (0), ξγ (0),γ (n)

]
∪
[
ξγ (n),γ (0), ξγ (0),γ (−n)

]
⊂ ∂D for all n ∈ N.

Hence, Remark 2.2(b) yields[
ξγ (−∞),γ (0), ξγ (0),γ (∞)

]
∪
[
ξγ (∞),γ (0), ξγ (0),γ (−∞)

]
⊂ ∂D,

from which the claim follows, since γ (0) ∈ D. �

Gromov products. Let (X, d) be a metric space. We use the standard notation

(x · y)o = 1
2

[
d(x, o)+ d(y, o)− d(x, y)

]
,

where x, y, o ∈ X . The expression (x · y)o is called the Gromov product of x and
y with respect to the basepoint o. The following theorem will be used to study
the boundary of images of isometric embeddings of the Euclidean plane E2 into
Hilbert geometries:

Theorem 2.9 [Karlsson and Noskov 2002]. Let D be a bounded convex domain.
Let {xn}n∈N, {zn}n∈N be two sequences of points in D. Assume that

xn→ x̄ ∈ ∂D, zn→ z̄ ∈ ∂D, [x̄, z̄] 6⊂ ∂D.

Then, for any fixed p0, there is a constant K = K (p0, x̄, z̄) such that

lim sup
n→∞

(xn · zn)p0 ≤ K .

For Gromov products in the Euclidean plane, we have:

Lemma 2.10 (Gromov products in E2). Let r1, r2 be two geodesic rays in E2,
parameterized by arc length, starting at o ∈ E2 and forming there an angle α =
6 o(r1, r2) 6= π . Then

lim
n→∞

(
r1(n) · r2(n)

)
o =∞.
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3. The proof of Theorem 1.2

Notation. Suppose that (D, hD) is a Hilbert geometry admitting an isometric em-
bedding ϕ : E2

→ (D, hD) of the Euclidean plane.
Fix an origin o ∈ E2. Consider the set Ro of geodesic rays in D that are images

(under ϕ) of geodesic rays in E2 starting at o. We coordinatize Ro by the unit
sphere S1

⊂ C ∼= E2 around o: for α ∈ S1 we denote by rα the image in D of the
geodesic ray starting at o and passing through α. We call the point rα(∞) in ∂D
to which rα converges the endpoint of rα, and so get the endpoint map

S1
→ ∂D, α 7→ rα(∞),

whose image is the set E of endpoints. The endpoint map is not necessarily con-
tinuous — see remarks before the Jump Lemma 2.6 — but by that lemma or its
corollary, the map is continuous at every α ∈S1 having the property that rα(∞) is
not contained in the (relative) interior of a boundary flat. Indeed, if the endpoint
map is not continuous at α ∈ S1, then rα(∞) is contained in the (relative) interior
of a line segment in ∂D. We may express this also as follows.

Proposition 3.1 (Endpoint Alternative). If e is an endpoint,
• the point e is the limit of a sequence of distinct endpoints, or
• there is a line segment in ∂D containing e such that e or another endpoint is

contained in the relative interior of the segment.
(These alternatives are not mutually exclusive.)

Proof. Suppose a sequence {αn}n∈N in S1 converges to α ∈ S1 and that {rαn (∞)}

converges to some e′ := limn→∞ rαn (∞) 6= rα(∞)=: e. We show that

(3-1) e lies in the relative interior of <<e, e′>> ∩ ∂D.

Indeed, set cn := ϕ(o) for all n ∈ N. The geodesic rays rαn converge pointwise to
rα with rα(∞)= e, but limn→∞ = e′ 6= e. By passing to a suitable subsequence of
{αn}n∈N (which, for simplicity, we denote again by {αn}n∈N), we can pick bn, an ∈

rαn such that

hD(an, cn)= hD(an, bn)+ hD(bn, cn) for all n ∈ N

as well as limn→∞ bn = e and limn→∞ an = e′. Now apply part (I) of the Jump
Lemma 2.6, with b = e and a = e′, to obtain (3-1).

We will apply this fact in different cases. Suppose that e = rα(∞) is not the
limit of a sequence of distinct endpoints. Then either

(a) δ 7→ rδ(∞) is locally constant at α, i.e., there exists ε > 0 such that rβ(∞)= e
for all β ∈ (α− ε, α+ ε), or

(b) there exists a sequence {αn}n∈N with limn→∞ αn = α such that {rαn (∞)}n∈N

converges to some e′ := limn→∞ rαn (∞) 6= e.
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In case (b), we see immediately that the conditions leading to (3-1) are satisfied,
and we are done.

Now suppose that (a) holds and let

ε0 := sup
{
ε > 0 | rβ(∞)= e for all β ∈ (α− ε, α+ ε)

}
.

From Theorem 2.3(ii) it follows that rβ(∞) is not globally constant, which implies
ε0 ≤ π .

Let α′ := α± ε0 be such that rβ(∞) is not locally constant at α′. Then either

rα′(∞)= e or rα′(∞) 6= e.

In the first case, since ε0 was chosen maximal, the choice of α′ guarantees that there
exists a sequence {α′n}n∈N with limn→∞ α

′
n = α such that {rα′n (∞)}n∈N converges

to some e′ := limn→∞ rα′n (∞) 6= e. This follows since e is assumed not to be a limit
of a sequence of distinct endpoints. Therefore, since rα′(∞)= e, we are essentially
back in alternative (b).

If instead rα′(∞) 6= e, since rβ(∞)= e for all β ∈ (α−ε0, α+ε0), there exists a
sequence {α′n}n∈N with limn→∞ α

′
n = α

′ such that rα′n (∞)= e 6= e′= rα′(∞) for all
n ∈N. Then again the conditions leading to (3-1) hold, with e and e′ interchanged,
showing that e′ lies in the relative interior of <<e, e′>> ∩ ∂D. �

Corollary 3.2. The set E is not contained in a single affine line. In particular, E

contains more than two points.

Proof. Suppose for a contradiction that there exists an affine line L such that
E ⊂ L ∩ ∂D. Either l := L ∩ ∂D consists of exactly two points e and e′, or l is a
connected affine line segment.

In the first case, Theorem 2.3(ii) yields E = {e, e′}. Thus the argument in the
proof of the Endpoint Alternative implies that e or e′ lie in the relative interior of
<<e, e′>> ∩ ∂D; a contradiction.

In the second case, when l = L ∩ ∂D is a connected affine line segment, let
e, e′ ∈ ∂D be such that l = [e, e′]. Lemma 2.8 implies that rα(∞) ∈ {e, e′} for
all α ∈ S1. Thus E ⊂ {e, e′}, and Theorem 2.3(ii) yields E = {e, e′}. Once again
the argument in the proof of the Endpoint Alternative implies that e or e′ lie in the
relative interior of <<e, e′>> ∩ ∂D: a contradiction. �

Here is an immediate consequence of Theorem 2.9 and Lemma 2.10:

Corollary 3.3. For α, β ∈ S1 with α 6= −β we have [rα(∞), rβ(∞)] ⊂ ∂D.

We will show that if there is an α ∈S1 with [rα(∞), r−α(∞)] 6⊂ ∂D, then there
is a tetrahedron (i.e. a 3-simplex) bordering D. Corollary 3.3 will be generalized
in Lemma 4.2 for three-dimensional Hilbert geometries by showing that if D is the
(interior of a) tetrahedron, then the case [rα(∞), r−α(∞)] 6⊂ ∂D does not occur.
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Lemma 3.4. Let (D, hD) be an n-dimensional Hilbert geometry. Suppose there
exists a geodesic γ : (−∞,∞)→D in E2 whose image satisfies [γ (−∞), γ (∞)] 6⊂
∂D. Then there exists a 3-dimensional affine space 6 in En such that D ∩63 is
(bordered by) a 3-simplex.

q−

z−

p−

q+

z+

p+

Proof. We can suppose that γ |[0,∞) = r1, and we set

z+ = r1(∞), z− = r−1(∞)= γ (−∞).

(See the figure above, where the points p+, p−, q+, and q− are the vertices of a
tetrahedron whose surface is contained in ∂D.)

Let {αn}n be a sequence in S1
\ {1,−1} converging to 1 such that

lim
n→∞

rαn (∞)= q+ ∈ ∂D and lim
n→∞

r−αn (∞)= q− ∈ ∂D

exist. Thanks to Corollary 3.3, we have

[z−, rαn (∞)], [z
+, r−αn (∞)], [z

−, r−αn (∞)], [z
+, rαn (∞)] ⊂ ∂D,

for all n, and since by Remark 2.2(b) edges converge to edges, we get

[z−, q+], [z+, q−], [z−, q−], [z+, q+] ⊂ ∂D.

Hence q+, q− ∈ ∂D \ {z+, z−}, since [z−, z+] 6⊂ ∂D by assumption. Furthermore,
Remark 2.2(b) also implies [q+, q−] ⊂ ∂D.

Set p+ = ξz+,q+ and p− = ξz−,q− . From Corollary 2.7 it follows that p− 6= z−

and p+ 6= z+.
Now suppose q− = p+; since [q+, z−] ⊂ ∂D as we saw above, Remark 2.2

yields 1(q+, q−, p−) ⊂ ∂D, in particular [z+, z−] ⊂ ∂D; a contradiction. Thus
we have q− 6= p+ and, similarly, q+ 6= p−.

From the Jump Lemma 2.6 we get [z−, p+], [z+, p−] ⊂ ∂D, which implies
that q+ 6= q−, for otherwise [z−, z+] ⊂ ∂D, which contradicts the assumption
[γ (−∞), γ (∞)] 6⊂ ∂D. Now Remark 2.2(c) finally implies

1(q+, q−, p−),1(q+, q−, p+),1(p+, p−, q+),1(p+, p−, q−)⊂ ∂D;

that is, the surface of the tetrahedron spanned by q+, q−, p+ and p− is the part of
∂D contained in the affine space spanned by these four points. �



268 OLIVER BLETZ-SIEBERT AND THOMAS FOERTSCH

Proof of Theorem 1.2. Suppose there is an isometric embedding ϕ : E2
→ (D, hD);

we will use the notation of page 265.
Lemma 2.8 and the Endpoint Alternative (Proposition 3.1) show there exists

α ∈ S1
\ {1,−1} such that rα(∞) 6= r1(∞). Therefore, the existence of a line

segment in ∂D follows from Corollary 3.3.
To prove that ∂D is not C1, it obviously suffices to show that there exists an

affine plane6 in En intersecting D and such that there exist distinct points a, b, c∈
6 ∩ ∂D with [a, b], [b, c] ⊂ ∂D and a /∈ <<b, c>> .

Suppose first that there exists a geodesic γ in D such that [γ (−∞), γ (∞)]⊂∂D
and which is the image of a geodesic in E2 under ϕ. Then[

ξγ (0),γ (−∞), ξγ (∞),γ (0)
]
∪
[
ξγ (0),γ (∞), ξγ (−∞),γ (0)

]
⊂ ∂D.

Therefore, a=γ (−∞), b=γ (∞), c= ξγ (0),γ (−∞), and the affine plane6 spanned
by a, b and c are as claimed; note that γ (0) ∈6 ∩ D.

Now suppose there is a geodesic γ : (−∞,∞)→D with [γ (−∞), γ (∞)]◦⊂D
that is the image of a geodesic in E2 under ϕ. With the notation as in the proof of
Lemma 3.4, we set a = z−, b = q+ and c = z+ and consider the affine plane 6
spanned by a, b and c. These points have the desired properties since [z+, z−]◦ ⊂
6 ∩ D. �

4. The proof of Theorem 1.1

We continue to use the notation introduced in the last section, and we additionally
assume D ⊂ E3.

To prove Lemma 4.2, a generalization of Corollary 3.3 in dimension 3 to the
case α =−β, we will use Lemma 4.1.

Lemma 4.1. Let (D, hD) be a 3-dimensional Hilbert geometry that admits an
isometric embedding ϕ : E2

→ (D, hD). Suppose there exist 2-dimensional bound-
ary faces F0, F1, F2,⊂ ∂D such that F1 ∩ F0 and F2 ∩ F0 are one-dimensional
boundary flats. Then the (relative) interior of F1 ∩ F0 and F2 ∩ F0 satisfy

E∩ (F1 ∩ F0)
◦
=∅ or E∩ (F2 ∩ F0)

◦
=∅.

Proof. Suppose E∩ (F1 ∩ F0)
◦
6=∅ 6= E∩ (F2 ∩ F0)

◦. We denote the affine plane
containing F0 by 60. For t ∈ (0, dist (ϕ(o),60)) let 6t be the affine plane in
Euclidean distance dist (60, 6t) = t to 60 which intersects D. For t sufficiently
small, we can choose et , ft ∈6t ∩ϕ(E

2) such that ξet , ft ∈ F1 and ξ ft ,et ∈ F2, which
by Lemma 2.5 is not possible; this contradiction proves the claim. �

The generalization of Corollary 3.3 in dimension 3 mentioned above reads as
follows:
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Lemma 4.2. Let (D, hD) be a 3-dimensional Hilbert geometry that admits an
isometric embedding ϕ : E2

→ (D, hD). Then[
rα(∞), rβ(∞)

]
⊂ ∂D for all α, β ∈ S1.

Slightly more generally: Any two points e, f ∈ E span a line segment [e, f ] ⊂ ∂D
in the boundary of D.

Proof. Due to Corollary 3.3, all we have to prove is that[
rα(∞), r−α(∞)

]
⊂ ∂D for all α ∈ S1.

Suppose for a contradiction that there exists a geodesic through o ∈ E2, such that
for its image γ under ϕ we get [γ (−∞), γ (∞)] 6⊂ ∂D. Then, since D is three-
dimensional, it follows from Lemma 3.4, that ∂D is a tetrahedron such that z− :=
γ (−∞) and z+ := γ (∞) are points on the relative interiors of two opposite edges.

Let α ∈ S1 be such that rα(∞) = z+ and r−α(∞) = z−. We deduce from
Corollary 3.3 that [rβ(∞), rα(∞)] ∪ [rβ(∞), r−α(∞)] ⊂ ∂D for any β ∈ S1

\

{−α, α}; this implies

E⊂ [q+, q−] ∪ [q+, p−] ∪ [p+, q−] ∪ [p+, p−] ∪ {z−, z+},

where we use the same notation as in the proof of Lemma 3.4. Thus the Jump
Lemma 2.6 implies

E∩
(
[q+, q−]◦ ∪ [q+, p−]◦ ∪ [p+, q−]◦ ∪ [p+, p−]◦

)
6=∅.

This, however, contradicts Lemma 4.1. To see this, suppose, for instance, that
there exists e ∈ [q+, q−]◦∩E. The contradiction to Lemma 4.1 follows in this case
by setting for instance F0 := 1(q−, q+, p+), F1 := 1(p+, p−, q+) and F2 :=

1(q+, q−, p−). The other cases follow in the same way. �

Being interested in the endpoint set E, we have so far restricted our attention to
those geodesic rays rα in ϕ(E2) the endpoints of which define E, that is, the images
of rays emanating from o. In the following we will also have to consider other
geodesic rays in ϕ(E2). The next lemma examines the relation of endpoints rα(∞)
and those of geodesic rays r in ϕ(E2) which are parallel to rα.

Lemma 4.3. Let rα and r be geodesic rays in ϕ(E2) which are in finite Hausdorff
distance to each other. The following alternatives are possible.

(1) If rα(∞) is not contained in the interior of an affine line segment [e, e′] ⊂ ∂D,
then rα(∞)= r(∞).

(2) If rα(∞) is contained in the interior of an affine line segment [e, e′] ⊂ ∂D,
then r(∞) ∈ [L(e, e′)∩ ∂D]◦.
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Proof. Suppose rα(∞) 6= r(∞) and ξrα(∞),r(∞) = rα(∞). For all ε > 0 there exist
Euclidean neighborhoods U ε

rα of rα(∞) and U ε
r of r(∞) such that |xξxy| < ε for

all x ∈ U ε
rα ∩ D and y ∈ U ε

r ∩ D. The conclusion of the lemma follows from the
definition of the Hilbert distance, since |r(∞)rα(∞)| > 0 and since the rays are
supposed to be in finite Hausdorff distance. �

Lemma 4.4. Let (D, hD) be a 3-dimensional Hilbert geometry admitting an iso-
metric embedding ϕ : E2

→ (D, hD) of the Euclidean plane. Suppose there are
α, β ∈ S1 such that the affine space 6 = <<rα(∞), rβ(∞), r−β(∞)>> induced by
rα(∞), rβ(∞) and r−β(∞) in E3 intersects ∂D in a two-dimensional boundary
flat F =6 ∩ ∂D, and assume that rα(∞) is not contained in an open line segment
of ∂D. Then there exist u, v ∈ ∂F with

[u, rα(∞)] ∪ [v, rα(∞)] ⊂ ∂F,

such that u, v and rα(∞) are affinely independent. Here ∂F denotes the boundary
of F in 6.

Proof. From Lemma 2.8 and our assumptions it follows that rα(∞), r−β(∞), and
rβ(∞) lie in ∂F .

Suppose that r−β(∞) or rβ(∞) are contained in the interior of affine line seg-
ments which are contained in ∂D. Then those line segments are subsets of F ,
since otherwise, Remark 2.2(c) implies that ∂D is 3-dimensional. Since r−β(∞)
and rβ(∞) lie in ∂F , the same remark also yields that such a line segment in F
containing r−β(∞) or rβ(∞) in its relative interior has to be contained in ∂F .

(1) First assume that r−β(∞) and rβ(∞) are not contained in the relative interior
of line segments in ∂D.

Let γ denote the geodesic in ϕ(E2) through ϕ(o) determined by γ (1) = rβ(1),
i.e. γ |[0,∞]=r1 and γ (−t)=r−β(t) for all t>0. Let further γn : (−∞,∞)→D for
n ∈N be the geodesic in ϕ(E2) determined by |γn(t)γ (t)| = n for all t ∈ (−∞,∞)
and by im(rα)∩ im(γn) 6=∅.

Then Lemma 4.3 implies γn(−∞) = r−β(∞) and γn(∞) = rβ(∞) for all n ∈
N. Set bn = im(rα) ∩ im(γn); then rα(∞) = limn→∞ bn . Finally let 6n be the
affine plane in E3 spanned by r−β(∞), bn and rβ(∞). Then [ξbnrβ (∞), r−β(∞)] ∪
[ξbnr−β (∞), rβ(∞)] ⊂6n ∩ ∂D. Since the bn converge to rα(∞), it follows that

[rα(∞), r−β(∞)] ∪ [rα(∞), rβ(∞)] ⊂ ∂F,

and the claim follows with u = r−β(∞) and v = rβ(∞).

(2) Now assume r−β(∞) or rβ(∞) lie in the interior of an open line segment
which is contained in ∂D. Then, as explained above, such a line segment has to
be contained in ∂F .
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To treat the remaining cases at once, we use the following notation. Let e, e′, f,
f ′ ∈ ∂F be such that r−β(∞) ∈ [e, e′]◦ ⊂ ∂F and rβ(∞) ∈ [ f, f ′]◦ ⊂ ∂F . In case
such points, say e and e′, do not exist, we use the conventions [e, e′]◦ = {r−β(∞)}
and [L(e, e′)∩ ∂D]◦ = {r−β(∞)} = L(e, e′)∩ ∂D.

From Lemma 4.3 it follows that for γn as defined in (1) we obtain γn(−∞) ∈

[L(e, e′)∩∂D]◦ as well as γn(∞)∈[L( f, f ′)∩∂D]◦ for all n∈N. By compactness
of L(e, e′)∩ ∂D and L( f, f ′)∩ ∂D there exists a subsequence of {γn}n∈N, which
we again denote by {γn}n∈N, such that the γn(−∞) and the γn(∞) converge to
some u′ ∈ L(e, e′)∩ ∂D and some v′ ∈ L( f, f ′)∩ ∂D.

Now let bn be as in part (1) of the proof and let 6n denote the affine plane
spanned by γn(−∞), bn and γn(∞). Then

[ξbn,γn(−∞)ξγn(∞),bn ] and [ξbn,γn(−∞)ξγn(∞),bn ]

lie in 6n ∩ ∂D.
If limn→∞ γn(−∞) = rα(∞) or limn→∞ γn(∞) = rα(∞), we deduce respec-

tively that [rα(∞), r−β(∞)] ⊂ ∂F or [rα(∞), rβ(∞)] ⊂ ∂F , and we set u =
r−β(∞) or v = rβ(∞). Otherwise u 6= rα(∞) 6= v′ and with u := u′ and v := v′

we conclude that
[rα(∞), u] ∪ [rα(∞), v] ⊂ ∂F. �

Theorem 1.1 follows as a corollary of the following two propositions, which
restrict the possibilities for the configuration of the points in E.

Proposition 4.5. Let (D, hD) be a 3-dimensional Hilbert geometry admitting an
isometric embedding ϕ : E2

→ (D, hD) of the Euclidean plane. Then E is not
contained in a single boundary flat.

Proof. By Lemma 2.8 and the Endpoint Alternative (Proposition 3.1), the set E

cannot be contained in a 1-dimensional boundary flat.
Now suppose that E is contained in a 2-dimensional boundary flat F . Let 6 be

the affine plane in E3 containing F , and let ∂F denote the boundary of F in 6.
Then Lemma 2.8 already implies that E⊂ ∂F .

Claim. There exist two noncollinear line segments in ∂D each of which contains
a point of E in its relative interior.

Proof. This follows from the Jump Lemma 2.6 and Lemma 4.4, but the argument
requires distinguishing several cases. Fix β ∈ S1.

(1) If r−β(∞) and rβ(∞) are both contained in (necessarily distinct) open line
segments of ∂F , there is nothing to prove.

(2) Suppose next that r−β(∞) is contained in an open line segment [e, e′]◦ =
[L(e, e′)∩∂D]◦ = [L(e, e′)∩∂F]◦, but rβ(∞) is not. Then, since e, e′ and rβ(∞)
are affinely independent, it follows from our analysis of the continuity properties
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of δ 7→ rδ(∞) that there exists α ∈ S1 with rα(∞) 6= rβ(∞) and rα(∞) /∈ [e, e′].
Without loss of generality we may assume that rα(∞) is not contained in an
open line segment which is contained in ∂F , since otherwise r−β(∞) and rα(∞)
are points as desired. Lemma 4.4 then yields the existence of u, v ∈ ∂F with
[u, rα(∞)] ∪ [v, rα(∞)] ⊂ ∂F . Again due to our analysis of the continuity prop-
erties of δ 7→ rδ(∞), there exists some p ∈ ([u, rα(∞)]◦∪[v, rα(∞)]◦)∩E. Since
[u, rα(∞)] and [v, rα(∞)] are not collinear with [e, e′] (by our choice of α), we
see that p and rα(∞) form a tuple of points in E as desired.

(3) Now assume that neither r−β(∞) nor rβ(∞) are contained in open line seg-
ments which are contained in ∂F . By Corollary 3.2 there exists α ∈ S1 such that
rα(∞), r−β(∞) and rβ(∞) span the two-dimensional affine space 6.

(3a) If rα(∞) and r−α(∞) are both contained in (necessarily distinct) open line
segments which are contained in ∂F , again there is nothing to prove.

(3b) Suppose rα(∞) is contained in an open affine line segment which is contained
in ∂F , but r−α(∞) is not. Then, by exactly the same arguments as above in (2)
with r−β(∞) and rβ(∞) replaced by r−α(∞) and rα(∞), the claim follows.

(3c) Finally suppose that rα(∞) is not contained in an open affine line segment
contained in ∂F . Then, by Lemma 4.4, [r−β(∞), rα(∞)] ∪ [rβ(∞), rα(∞)]⊂ ∂F .
From our analysis of the continuity properties of δ 7→ rδ(∞), it follows that there
exists

p ∈ ([r−β(∞), rα(∞)]◦ ∪ [rβ(∞), rα(∞)]◦)∩E.

Assume p ∈ [r−β(∞), rα(∞)]◦. If there also exists q ∈ [rβ(∞), rα(∞)]◦ ∩ E,
then p and q are points as desired. If not, then, due to the continuity properties of
δ 7→ rδ(∞), there exists q ∈ (6−∩∂F ∩E)\{r−β(∞), rβ(∞)}, where 6− denotes
the closure of the connected component of6\L(r−β(∞), rβ(∞)), which does not
contain rα(∞).

If such a q is contained in an open line segment which is contained in ∂F ,
then p and q are points as desired. Otherwise Lemma 4.4 yields [r−β(∞), q] ∪
[rβ(∞), q] ⊂ ∂F and there exists

q ′ ∈ ([r−β(∞), q]◦ ∪ [rβ(∞), q]◦)∩E.

In this case p and q ′ are the points as desired, which completes the proof of the
claim. �

To complete the proof of Proposition 4.5, we will apply Lemma 4.1 for a contra-
diction. Pick α, β ∈S1 so that rα(∞) and rβ(∞) are contained in the relative inte-
rior of noncollinear line segments lα, lβ of ∂F . Then [ξrα(n),rα(0), ξrα(0),r−α(n)]⊂ ∂D
for all n ∈ N, and therefore also [ξrα(∞),rα(0), ξrα(0),r−α(∞)] ⊂ ∂D. Hence, by con-
vexity, lα and [ξrα(∞),rα(0), ξrα(0),r−α(∞)] = [rα(∞), ξrα(0),r−α(∞)] span a boundary
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flat F1 of ∂D which intersects F in lα; see Remark 2.2(c). Similarly, lβ is part of
the boundary of another flat F2 contained in ∂D.

Setting F0 := F , this contradicts Lemma 4.1. Hence, E is not contained in a
2-dimensional boundary flat. �

Proposition 4.6. Let (D, hD) be a 3-dimensional Hilbert geometry admitting an
isometric embedding ϕ :E2

→ (D, hD) of the Euclidean plane. Then E is contained
in a single 2-dimensional affine space 6 ⊂ E3.

Proof. In order to reach a contradiction, suppose there exist endpoints a, b, c, d ∈E

not contained in a common affine plane. Then any three of them are not contained
in a common affine line. The four points a, b, c, d span four triangles the edges of
which lie in ∂D. In the following we distinguish several cases by the number of
those triangles, which are contained in boundary flats, i.e. the interiors of which
are not contained in D. Note that the border of such a triangle belongs to ∂D and
that such a triangle is either contained in ∂D, or its intersection with ∂D is the
boundary of the triangle; see Remark 2.2(c).

Case 0: All four triangles are boundary flats. In this case, D is the interior of
the tetrahedron with vertices a, b, c, and d . The Endpoint Alternative yields that at
least two of the edges carry a point of E in their relative interiors, while Lemma 4.2
implies that those edges belong to the boundary of the same boundary flat. This,
however, is not possible, due to Lemma 4.1.

Case 1: Exactly three triangles are boundary flats. Assume that the triangles
1(d, a, b), 1(d, a, c) and 1(d, b, c) are boundary flats, whereas 1◦(a, b, c) is
contained in D. Let Chull(a, b, c, d) be the (Euclidean) convex hull of a, b, c and
d . Then its interior C◦hull(a, b, c, d) satisfies C◦hull(a, b, c, d)⊂ D.

Now consider the points ξa,d , ξb,d and ξc,d . At least two of them must correspond
to the points a, b and c, since otherwise we get a contradiction due to Lemma 2.5.
So assume that ξb,d = b and ξc,d = c. If also ξa,d = a, there exists

e ∈ E∩ {[a, d]◦ ∪ [b, d]◦ ∪ [c, d]◦},

as can be seen by combining the inclusion C◦hull(a, b, c, d) ⊂ D with Lemma 4.2,
since δ 7→ rδ(∞) has to leave d somehow. Suppose that e ∈ [a, d], say; then we
can just replace a by e and obtain e 6= ξe,d . Thus we can assume without loss of
generality that a 6= ξa,d .

Again from Lemmas 4.2 and 2.5 we deduce that E∩ <<b, c, d >> ∩∂D = {b, c, d}.
Also, since C◦hull(ξa,d , b, c, d)⊂ D, it follows that E⊂ ( <<d, a, b>> ∪ <<d, a, c>> )∩∂D.

Suppose next that there exists e∈ ([ξa,d , b]◦∪[ξa,d , c]◦)∩E. Then1(ξa,d , b, c)⊂
∂D and we reach a contradiction with Lemma 2.5, since a ∈ [ξa,d , d]◦.

Since δ 7→ rδ(∞) has to leave both b and c somehow, the Endpoint Alternative
(Proposition 3.1) yields ∂F−(ξa,d , b, d)∩E 6=∅ as well as ∂F−(ξa,d , c, d)∩E 6=∅,
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where, for instance, F−(ξa,d , b, d) denotes the intersection of the boundary flat
<<ξa,d , b, d >> ∩∂D with the open half-plane in <<ξa,d , b, d >> \ <<ξa,d , b>> not containing
d , and ∂F−(ξa,d , b, d) denotes its boundary in <<ξa,d , b, d >> \ <<ξa,d , b>> .

Set ∂[Fb]
−
:= ∂F−(ξa,d , b, d) and ∂[Fc]

−
:= ∂F−(ξa,d , c, d). We claim that

(4-1)
⋃

q∈[∂Fc]+

[b, q] ⊂ ∂D and
⋃

q∈[∂Fc]−

[b, q] ⊂ ∂D.

Indeed, δ 7→ rδ(∞) has to move from c to b somehow. If δ 7→ rδ(∞) is continuous,
the claim is clear from Lemma 4.2. The general case follows, since whenever
δ 7→ rδ(∞) is not continuous, there exists e ∈ [∂Fb]

−
∩ E (or e ∈ [∂Fc]

−
∩ E)

in the relative interior of a line segment in [∂Fb]
− (or [∂Fb]

−, respectively), and
then Lemma 4.2 and Remark 2.2(c) lead to [b, q] ⊂ ∂D (or [b, q] ⊂ ∂D) for all q
contained in such a line segment.

There exist e ∈ E∩ [∂Fb]
− and e′ ∈ E∩ [∂Fc]

−. From Lemma 4.2 we find that
[e, e′] ⊂ ∂D; hence, since [∂Fb]

−
∩ [ξad , b] = ∅ and [∂Fb]

−
∩ [ξad , b] = ∅, the

segment [e, e′] is contained in the open half-space of E3
\ <<ξa,d , b, c>> that does not

contain d .
Now take a sequence {qn}n∈N in [∂Fb]

− converging to ξad . Then [b, qn] lies in
∂D for all n∈N, and for n sufficiently large and p∈[qn, b]◦ the straight line <<e, p>>

intersects 1◦(ξa,d , b, c). We reach a contradiction, since e ∈ ∂D and e 6= p ∈ ∂D
imply that for the 3-dimensional C◦hull(ξa,d , b, c, e) we obtain C◦hull(ξa,d , b, c, e)⊂
∂D due to Remark 2.2(c).

Note that this argument also works if d ∈ ∂D \E and there exists some e ∈ E in
the relative interior of one of the edges of the closed triangles meeting in d .

Case 2: Exactly two triangles are boundary flats. We assume without loss of
generality that 1(a, b, d),1(a, c, d)⊂ ∂D. We first fix some notation: 6(a, b, c)
will denote the affine plane in E3 spanned by a, b and c, and H−(a, b, c; d),
H+(a, b, c; d) will denote the open half-spaces of E3

\ 6(a, b, c) characterized
by d /∈ H−(a, b, c; d) and d ∈ H+(a, b, c; d). Also define the boundary flats

Fb =6(a, b, d)∩ ∂D, Fc =6(a, c, d)∩ ∂D,

and let ∂Fb and ∂Fc be their boundaries in 6(a, b, d) and 6(a, c, d), respectively.
We now seek a contradiction with the existence of an isometric embedding of

E2 into D.

(1) We first verify that E⊂ ∂Fb ∪ ∂Fc.
Suppose there exists p ∈ E ∩ (L(a, d) ∩ ∂D)◦. Since ∂D is 2-dimensional,

Lemma 4.2 and Remark 2.2(c) yield E∩∂D⊂ Fb∪Fc. Thus E⊂ ∂Fb∪∂Fc, since
for any p ∈ E∩ F◦b (or p ∈ E∩ F◦c ), the condition [c, p] ⊂ ∂D (or [b, p] ⊂ ∂D)
contradicts the 2-dimensionality of ∂D, due to Remark 2.2(c).
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Thus we may assume that L(a, d) ∩ ∂D = [a, d] and [a, d]◦ ∩ E = ∅. From
Remark 2.2(c) it follows that C◦hull(a, b, c, d)∩ ∂D is nonempty. Therefore, since
1(a, b, d)∪1(a, c, d)⊂ ∂D, we conclude that

(4-2) ∂D ∩
(
H−(a, c, d; b) ∪ H−(a, b, d; c)

)
=∅.

Moreover, we claim that

(4-3) E ∩ H+(a, c, d; b) ∩ H+(a, b, d; c)=∅.

To verify this, we set Q := H+(a, c, d; b)∩H+(a, b, d; c), Q0 :=6(b, c, d)∩Q,
Q+ :=Q∩H+(b, c, d; a) and Q− :=Q∩H−(b, c, d; a). Then Q=Q0∪Q+∪Q−.
Now Q0 ∩ E = ∅, since otherwise 1(b, c, d) ⊂ ∂D. We also deduce Q+ ∩ E =

∅; indeed, if this intersection contained a point p, we would have [p, d] ⊂ ∂D
from Lemma 4.2, but since p /∈ Chull(a, b, c, d), this would imply that [p, d] and
1◦(a, b, c) are disjoint, contradicting 1◦(a, b, c)⊂ D. Finally, Q−∩E=∅, since
for p ∈ Q−∩ E, either [p, a] ∩1◦(b, c, d) 6= ∅ and therefore 1◦(b, c, d) ⊂ ∂D,
or [p, d] ∩6(a, b, c)∩ Q− 6=∅ and therefore 1◦(a, b, c)⊂ ∂D. This proves our
claim (4-3).

From (4-2) and (4-3) it follows E ⊂ Fb ∪ Fc, and just as above we deduce that
E⊂ ∂Fb ∪ ∂Fc.

(2) We will reach the desired contradiction by proving that 1(ξa,d , b, c) ⊂ ∂D or
1(ξd,a, b, c)⊂ ∂D; indeed, by our remark at the end of Case 1, either of these two
inclusions precludes the existence of an isometric embedding ϕ : E2

→ D.
Fix p ∈ [ξa,d , ξd,a]

◦. Define 6+, 6− as the components of 6(a, c, d) \ L(p, c)
containing respectively ξa,d , ξd,a , and set [∂Fc]

+
:=
(
(∂Fc ∩6

+) \ [ξa,d , p]◦
)
∪ {c}

and likewise for [∂Fc]
−. Thus [∂Fc]

+ is the piece of ∂Fc connecting ξa,d to c in
6+ ∪ {c}. Define [∂Fb]

+ and [∂Fb]
− similarly, replacing c by b. Then

E⊂ ∂Fb ∪ ∂Fc = [∂Fc]
+
∪ [∂Fc]

−
∪ [∂Fb]

+
∪ [∂Fb]

−
∪ [ξa,d , ξd,a].

An argument analogous to the one following (4-1) shows that⋃
q∈[∂Fc]+

[b, q] ⊂ ∂D or
⋃

q∈[∂Fc]−

[b, q] ⊂ ∂D.

Similarly,

(4-4) (a)
⋃

q∈[∂Fb]+

[c, q] ⊂ ∂D or (b)
⋃

q∈[∂Fb]−

[c, q] ⊂ ∂D,

depending on whether δ 7→ rδ(∞) moves along [∂Fb]
+ or [∂Fb]

−. Without loss
of generality we may assume that δ 7→ rδ(∞) moves along [∂Fc]

+, that is to say,⋃
q∈[∂Fc]+

[b, q] ⊂ ∂D. We have to consider cases (a) and (b) of (4-4).
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(a) If there exists q ∈ [∂Fc]
+ with [ξa,d , q] ⊂ [∂Fc]

+, then, since δ 7→ rδ(∞)
moves along [∂Fc]

+ there exists c′∈E∩[ξa,d , ξq,ξa,d ]
◦. Replacing c by c′, we obtain

1(b, c′, ξa,d)⊂ ∂D by Remark 2.2(c), and we are done by our remark at the end of
Case 1. Thus there exists a sequence {en}n∈N of endpoints en ∈ (E∩[∂Fc]

+)\{ξa,d}

converging to ξa,d . Moreover, [∂Fc]
+
∩[ξa,d , c]◦=∅. Since the [c, en]

◦ converge to
[c, ξa,d ]

◦ in H−(b, c, ξa,d; ξd,a), it follows that, for n sufficiently large, there exist
straight lines in E3 through distinct points p ∈ [∂Fc]

+
⊂ ∂D and q ∈ [c, en]

◦
⊂ ∂D,

which intersect 1◦(b, c, ξa,d). Therefore, these intersection points do not belong
to D and1◦(b, c, ξa,d)⊂ ∂D, due to Remark 2.2(c). Thus we are also done in this
case.

(b) In this case there exists an endpoint e ∈E∩[∂Fb]
−
\{b, ξa,d}. For this endpoint

we have e ∈ E∩6(b, ξa,d , ξd,a)∩ H−(b, c, ξd,a; ξa,d), for otherwise e ∈ [b, ξa,d ]
◦

and therefore 1◦(b, c, ξa,d) ⊂ ∂D. Now just as for b, we also get for e the in-
clusion

⋃
q∈[∂Fc]+

[e, q] ⊂ ∂D. From the choice of e we further obtain [e, ξa,d ] ∩

6(b, c, ξd,a)∈[b, ξd,a]
◦ as well as [e, c]∩6(b, c, ξd,a)={c}. Moving from ξa,d to c

along [∂Fc]
+, the intersection of [e, f ]with6(b, c, ξd,a)moves continuously with

f in 6(b, c, ξd,a). But since f ∈ [∂Fc]
+ implies [e, f ]∩6(b, c, ξd,a) /∈ {b, ξd,a},

this point of intersection has to leave [b, ξa,d ] continuously in its relative interior.
Since all these intersection points belong to ∂D, we deduce 1◦(b, c, ξd,a) ⊂ ∂D,
which completes Case 2.

Case 3: At most one of the triangles is a boundary flat. We assume without loss
of generality that none of the triangles with vertex d is a boundary flat. (1(a, b, c)
might be a boundary flat or not.) Let H = H+(a, b, c; d) be the connected com-
ponent of E3

\6(a, b, c) containing d .

(1) We first prove that H ∩E= {d}.
In order to reach a contradiction, suppose that there exists d ′∈H∩E with d ′ 6=d.

Since none of the three triangles with vertex d is a boundary flat, we deduce that
d ′ /∈ Chull(a, b, c, d), the Euclidean convex hull of the points a, b, c, and d . In
particular, d ′ is separated from one of the points a, b and c by the plane spanned
by the two others and d .

Assume without loss of generality that d ′ is separated from a by 6(b, c, d).
Then [a, d ′] intersects6(b, c, d) in one of the sides [c, d] or [d, b], since1(b, c, d)
is not a boundary flat, and [a, d ′] ⊂ ∂D, due to Lemma 4.2.

Without loss of generality, assume [b, d] ∩ [a, d ′] 6= ∅. Then 1(a, b, d) is a
boundary flat, by Remark 2.2(c); a contradiction.

(2) From H ∩E= {d} it follows by the Endpoint Alternative that the endpoint map
jumps from d to some f ∈ E3

\ H . Let f ′ be the single point in [d, f ]∩ <<a, b, c>> .
Due to Lemma 4.2 we have [d, f ] ⊂ ∂D, and since none of the triangles with
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vertex d is contained in a boundary flat, f ′ is separated in 6(a, b, c) from one of
the points a, b and c by the line through the other two points.

Assume without loss of generality that f ′ and a are on different sides of L(b, c)
in 6(a, b, c). Since the endpoint map jumps from d to f , the claim in our proof
of the Endpoint Alternative yields f ∈ [d, ξ f,d ]

◦. Hence it follows from Remark
2.2 that 1(a, ξ f,d , d)⊂ ∂D.

Now l =1(a, d, ξ f,d) ∩6(b, c, d)⊂ ∂D is a line segment with vertex d. But,
since 1(b, c, d) is not a boundary flat, we have

6(b, c, d)∩ ∂D = [b, c] ∪ [c, d] ∪ [b, d],

and it follows that [d, b] ⊂ l or [c, d] ⊂ l, contradicting the fact that neither
1(a, b, d) nor 1(a, c, d) are boundary flats. �

Proof of Theorem 1.1. From Proposition 4.5 and Proposition 4.6 it follows that
all we have to show is that E is not contained in a two-dimensional plane which
intersects D, i.e. that E does not consist of exactly three points a, b, and c with
1◦(a, b, c) ⊂ D, where 1◦(a, b, c) = 1(a, b, c) \ ([a, b] ∪ [a, c] ∪ [b, c]) is the
relative interior of 1(a, b, c). This, however, follows from our claim in the proof
of the Endpoint Alternative, since none of the three points lies in the interior of an
open line segment in ∂D contained in the line spanned by this and any of the other
endpoints. �
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UNIVERSITÄT WUERZBURG

AM HUBLAND

97074 WUERZBURG

GERMANY

bletz-siebert@mathematik.uni-wuerzburg.de

THOMAS FOERTSCH

MATHEMATISCHES INSTITUT

RHEINISCHE FRIDRICH-WILHELMS-UNIVERSITÄT BONN
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