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ON THE LOCAL NIRENBERG PROBLEM FOR THE
Q-CURVATURES

PHILIPPE DELANOË AND FRÉDÉRIC ROBERT

The local image of each conformal Q-curvature operator on the sphere ad-
mits no scalar constraint, although identities of Kazdan–Warner type hold
for its graph.

1. Introduction

Let (m, n) be positive integers such that n > 1, and n ≥ 2m in case n is even.
We work on the standard n-sphere (Sn, g0), with pointwise conformal metric gu =

e2ug0. (All objects will be taken to be smooth.)
We are interested in the structure near u=0 of the image of the conformal 2m-th

order Q-curvature increment operator u 7→ Qm,n[u] = Qm,n(gu)− Qm,n(g0) (see
Section 2), thus considering a local Nirenberg-type problem (Nirenberg’s problem
was for m = 1; see, for example, [Moser 1973; Kazdan and Warner 1974; 1975;
Aubin 1982, p. 122]). At the infinitesimal level, the situation looks as follows
(dropping henceforth the subscript (m, n)):

Lemma 1.1. Let L = d Q[0] stand for the linearization at u = 0 of the conformal
Q-curvature increment operator and 31, for the (n + 1)-space of first spherical
harmonics on (Sn, g0). Then L is self-adjoint and Ker L =31.

Further, the graph0(Q) :={(u,Q[u]), u ∈ C∞(Sn)} of Q in C∞(Sn)×C∞(Sn)

admits scalar constraints which are the analogue for Q of the so-called Kazdan–
Warner identities for the conformal scalar curvature (i.e., the case m = 1); see
[Kazdan and Warner 1974; 1975; Bourguignon and Ezin 1987]. Here, a scalar con-
straint means a real-valued submersion defined near 0(Q) in C∞(Sn)×C∞(Sn)

and vanishing on 0(Q). Specifically:

Theorem 1.2. For each (u, q) ∈ C∞(Sn)×C∞(Sn) and each conformal Killing
vector field X on (Sn, g0), the condition (u, q)∈0(Q) implies the vanishing of the

Delanoë is supported by the CNRS.
MSC2000: primary 58J05; secondary 53C99.
Keywords: conformal Q-curvature, Nirenberg problem, Fredholm theory, Paneitz–Branson

operators, local image, Kazdan–Warner identities.

293

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2007.231-2


294 PHILIPPE DELANOË AND FRÉDÉRIC ROBERT

integral
∫

Sn (X · q) dµu , where dµu = enudµ0 stands for the Lebesgue measure of
the metric gu . In particular, there is no solution u ∈ C∞(Sn) to the equation

Q(gu)= z+ constant with z ∈31.

Due to the naturality of Q (Remark 3.1) and the self-adjointness of d Q[u] in
L2(Mn, dµu) (Remarks 3.2 and 3.3), this theorem holds as a particular case of the
more general Theorem 2.1 below.

Can one do better than Theorem 1.2 and drop the u variable occurring in the con-
straints and find constraints bearing on the sole image of the operator Q? Since L
is self-adjoint in L2(Sn, g0) (see [Graham and Zworski 2003]), Lemma 1.1 shows
that the map u 7→ Q[u]misses infinitesimally at u= 0 a vector space of dimension
n + 1. How does this translate at the local level? Calling a real-valued map K
a scalar constraint for the local image of Q near 0 if K is a submersion defined
near 0 in C∞(Sn) such that K ◦ Q = 0 near 0 in C∞(Sn), a spherical symmetry
argument as in [Delanoë 2003, Corollary 5] shows that if the local image of Q
admits a scalar constraint near 0, it must admit n+1 independent such constraints,
the maximal number to be expected. In this context, our main result is quite in
contrast with Theorem 1.2:

Theorem 1.3. The local image of Q near, 0 admits no scalar constraint.

The picture about the local image of the Q-curvature increment operator on
(Sn, g0) is completed with a remark:

Remark 1.4. The local Nirenberg problem for Q near 0 is governed by the nonlin-
ear Fredholm formula (9) below. Thus, as in [Delanoë 2003, Corollary 5], a local
result of Moser type [1973] holds: If f ∈ C∞(Sn) is close enough to zero and
invariant under a nontrivial group of isometries of (Sn, g0) acting without fixed
points,1 then D( f )= 0 in (9), so f lies in the local image of Q.

The outline of the paper is as follows. In Section 2 we present an independent
account on general Kazdan–Warner type identities, implying Theorem 1.2. Then
we focus on Theorem 1.3: we recall basic facts for the Q-curvature operators on
spheres in Section 3 and sketch the proof of Theorem 1.3 in Section 4, relying on
[Delanoë 2003] and reducing it to Lemma 1.1 and another key lemma. In the last
two sections we carry out the proofs of these lemmas, deferring to an Appendix
some eigenvalues calculations.

2. General identities of Kazdan–Warner type

The following statement is essentially due to Jean–Pierre Bourguignon [1986]:

1This condition is more general than a free action.



ON THE LOCAL NIRENBERG PROBLEM FOR THE Q-CURVATURES 295

Theorem 2.1. Let Mn be a compact n-manifold and g 7→ D(g) ∈ C∞(M) be a
scalar differential operator defined on the open cone of Riemannian metrics on Mn ,
and natural in the sense of [Stredder 1975] (see (5) below). Given a conformal
class c and a Riemannian metric g0 ∈ c, sticking to the notation gu = e2ug0 for
u ∈C∞(M), consider the operator u 7→ D[u] := D(gu) and its linearization Lu =

d D[u] at u. Assume that, for each u ∈ C∞(M), the linear differential operator
Lu is formally self-adjoint in L2(M, dµu), where dµu = enudµ0 stands for the
Lebesgue measure of gu . Then, for any conformal Killing vector field X on (Mn, c)
and any u ∈ C∞(M), we have∫

M
X · D[u] dµu = 0.

In particular, if (Mn, c) is equal to Sn equipped with its standard conformal class,
there is no solution u ∈ C∞(Sn) to the equation

D[u] = z+ constant with z ∈31

(a first spherical harmonic).

Proof. We rely on Bourguignon’s functional integral invariants approach and follow
the proof of [Bourguignon 1986, Proposition 3] (using freely notations from p. 101
of the same paper), presenting its functional geometric framework with some care.
We consider the affine Fréchet manifold 0 whose generic point is the volume form
(possibly of odd type in case M is not orientable [de Rham 1960]) of a Riemannian
metric g ∈ c; we denote by ωg the volume form of a metric g (recall the tensor ωg

is natural [Stredder 1975, Definition 2.1]). The metric g0 ∈ c yields a global chart
of 0 defined by

ωg ∈ 0 7→ u := 1
n

log
dωg

dωg0

∈ C∞(Mn)

(viewing volume-forms like measures and using the Radon–Nikodym derivative)
— in other words, such that ωg = enuωg0 ; changes of such charts are indeed affine
(and pure translations). It will be easier, though, to avoid the use of charts on 0,
except for proving that a 1-form is closed (see below). The tangent bundle to 0 is
trivial, equal to T0 = 0×�n(Mn) (setting �k(A) for the k-forms on a manifold
A), and there is a canonical Riemannian metric on 0 of Fischer type [Friedrich
1991], given at ωg ∈ 0 by

<<v,w>> :=

∫
M

dv
dωg

dw
dωg

ωg for (v,w) ∈ Tωg0.

From Riesz’s theorem, a tangent covector a ∈ T ∗ωg
0 may thus be identified with a

tangent vector a] ∈�n(Mn) or else with the function da]/dωg=:ρg(a)∈C∞(Mn)



296 PHILIPPE DELANOË AND FRÉDÉRIC ROBERT

such that

(1) a($)=
∫

M
ρg(a)$ for $ ∈ Tωg0.

We also consider the Lie group G of conformal maps on (Mn, c), acting on the
manifold 0 by

(ϕ, ωg) ∈ G×0→ ϕ∗ωg ∈ 0

(indeed, we have ϕ∗ωg = ωϕ∗g by naturality and ϕ ∈ G ⇒ ϕ∗g ∈ c). For each
conformal Killing field X on (Mn, c), the flow of X as a map t ∈ R→ ϕt ∈ G
yields a vector field X̄ on 0 defined by

ωg 7→ X̄(ωg) :=
d
dt

(
ϕ∗t ωg

)
t=0 ≡ L Xωg

(L X standing here for the Lie derivative on Mn). In this context, regardless of any
Banach completion, one may define the (global) flow t ∈ R→ ϕ̄t ∈ Diff(0) of X̄
on the Fréchet manifold 0 by setting

ϕ̄t(ωg) := ϕ
∗

t ωg for ωg ∈ 0;

indeed, the latter satisfies

d
dt

(
ϕ∗t ωg

)
= ϕ∗t (L Xωg)≡ L X (ϕ

∗

t ωg)= X̄
[
ϕ̄t(ωg)

]
(see [Kobayashi and Nomizu 1963, p. 33], for example). With the flow (ϕ̄t)t∈R

at hand, we can define the Lie derivative L X̄ of forms on 0 as usual, by setting
L X̄ a := (d/dt) (ϕ̄t

∗a)t=0. Finally, one can check Cartan’s formula for X̄ , namely

(2) L X̄ = i X̄ d + di X̄ ,

where i X̄ denotes the interior product with X̄ , by verifying it for a generic function
f on 0 and for its exterior derivative d f (with d defined as in [Lang 1962]).

Following [Bourguignon 1986], and using our global chart ωg 7→ u, we apply
(2) to the 1-form σ on 0 defined at ωg by the function ρg(σ ) := D[u]; see (1).
Arguing as on p. 102 of the same reference, one readily verifies in the chart u
(and using constant local vector fields on 0) that the 1-form σ is closed due to
the self-adjointness of the linearized operator Lu in L2(Mn, dµu); furthermore
(dropping the chart u), one derives at once the G-invariance of σ from the naturality
of g 7→ D(g). We thus have dσ = 0 and L X̄σ = 0, hence d(i X̄σ) = 0 by (2). So
the function i X̄σ is constant on 0; in other words,

∫
M D[u] L Xωu is independent

of u, or else, integrating by parts, so is
∫

M X · D[u] dµu (where X · stands for X
acting as a derivation on real-valued functions on Mn).

To complete the proof of the first part of Theorem 2.1, we show that the integrand
X ·D(g0) of the latter expression at u=0 vanishes for a suitable choice of the metric
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g0 in the conformal class c. We recall the Ferrand–Obata theorem [Lelong-Ferrand
1969; Obata 1971/72], according to which either the conformal group G is compact
or (Mn, c) is equal to Sn equipped with its standard conformal class. In the former
case, averaging on G, we may pick g0 ∈ c invariant under the action of G: with this
choice, D(g0) is also G-invariant by naturality, hence X · D(g0)≡ 0 as needed. In
the latter case, as observed in the proof of Proposition 4.2 below, D(g0) is constant
on Sn , and again the desired result follows.

Finally, the last assertion of the theorem (consistently with Proposition 4.2 below
and the Fredholm theorem if L0 is elliptic) follows from the first one, by taking
for the vector field X the gradient of z with respect to the standard metric of Sn ,
which is known to be conformal Killing. �

3. Back to Q-curvatures on spheres: basic facts recalled

The special case n = 2m. Here we will consider the Q-curvature increment oper-
ator given by Q[u] = Q(gu)− Q0, with

(3) Q(gu)= e−2mu(Q0+ P0[u])

where Q0 = Q(g0) is equal to Q0 = (2m− 1)! on (Sn, g0), and where

(4) P0 =
m∏

k=1

(
10+ (m− k)(m+ k− 1)

)
(see [Branson 1987; Beckner 1993]), 10 denoting the positive laplacian relative to
g0. We call P0 the Paneitz–Branson operator of the metric g0.

Remark 3.1. Following [Branson 1995], one can define a Paneitz–Branson opera-
tor P0 for any metric g0 (given by a formula more general than (4) of course), and
a Q-curvature Q(g0) transforming like (3) under the conformal change of metrics
gu = e2ug0. Importantly then, the map g 7→ Q(g) ∈ C∞(Sn) is natural, mean-
ing (see [Stredder 1975, Definition 2.1], for instance) that any diffeomorphism ψ

satisfies

(5) ψ∗Q(g)= Q(ψ∗g).

Remark 3.2. From (3) and the formal self-adjointness of P0 in L2(Sn, dµ0) [Gra-
ham and Zworski 2003, p. 91], one readily verifies that, for each u ∈ C∞(Sn), the
linear differential operator d Q[u] is formally self-adjoint in L2(Sn, dµu).

The case n 6= 2m. The expression of the Paneitz–Branson operator on (Sn, g0)

becomes

(6) P0 =
m∏

k=1

(
10+

( 1
2 n− k

) (1
2 n+ k− 1

))
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(see [Guillarmou and Naud 2006, Proposition 2.2]), while that for the metric gu =

e2ug0 is given by

(7) Pu( · )= e−
( 1

2 n+m
)
u P0

(
e
( 1

2 n−m
)
u
·
)
,

with the Q-curvature of gu given accordingly by
( 1

2 n−m
)

Q(gu) = Pu(1). The
analogue of Remark 3.1 still holds (now see [Graham et al. 1992; Graham and
Zworski 2003]). We will consider the (renormalized) Q-curvature increment op-
erator Q[u] =

( 1
2 n−m

)
(Q(gu)− Q0), now with

(8)
( 1

2 n−m
)

Q0 =
( 1

2 n−m
)

Q(g0)= P0(1)=
2m−1∏
k=0

(
k+ 1

2 n−m
)
.

Remark 3.3. Finally, we note again that the linearized operator d Q[u] is formally
self-adjoint in L2(Sn, dµu). Indeed, a straightforward calculation yields

d Q[u](v)=
(1

2 n−m
)

Pu(v)−
( 1

2 n+m
)

Pu(1) v,

and the Paneitz–Branson operator Pu is known to be self-adjoint in L2(Sn, dµu)

[Graham and Zworski 2003, p. 91].

For later use, and in all the cases for (m, n), we will set p0 for the degree m
polynomial such that P0 = p0(10).

4. Proof of Theorem 1.3

The case m = 1 was settled in [Delanoë 2003] with a proof robust enough to be
followed again. For completeness, let us recall how it goes (see [Delanoë 2003]
for details).

If P1 stands for the orthogonal projection of L2(Sn, g0) onto 31, Lemma 1.1
and the self-adjointness of L imply [Delanoë 2003, Theorem 7] that the modified
operator

u 7→ Q[u] +P1u

is a local diffeomorphism of a neighborhood of 0 in C∞(Sn) onto another one: set
S for its inverse and D = P1 ◦ S (defect map). Then u = S f satisfies the local
nonlinear Fredholm-like equation

(9) Q[u] = f −D( f ).

By [Delanoë 2003, Theorem 2], if a local constraint exists for Q at 0, then D◦Q=0
(recalling the symmetry fact above). Fixing z ∈31, we will prove Theorem 1.3 by
showing that D ◦ Q[t z] 6= 0 for small t ∈ R; here is how. On the one hand, setting

ut = S ◦ Q[t z] := tu1+ t2u2+ t3u3+ O(t4),
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Lemma 1.1 yields u1 = 0; also, as and easily verified general fact, we have

(10) Q[ut ] +P1ut = t2(L +P1)u2+ t3(L +P1)u3+ O(t4).

On the other hand, consider the expansion of Q[t z]:

(11) Q[t z] = t2c2[z] + t3c3[z] + O(t4),

and focus on its third order coefficient c3[z], for which we will prove:

Lemma 4.1. Let (m, n) be positive integers such that n > 1 and n ≥ 2m in case n
is even. Then ∫

Sn
z c3[z] dµ0 6= 0.

Granted this lemma, we are done: indeed, the equality

Q[ut ] +P1ut = Q[t z],

combined with (10)–(11), yields

(L +P1)u3 = c3[z],

which, integrated against z, implies that∫
Sn

zP1u3 dµ0 6= 0

(recalling that L is self-adjoint and z ∈Ker L by Lemma 1.1). Therefore P1u3 6= 0,
hence also D ◦ Q[t z] 6= 0.

Thus we have reduced the proof of Theorem 1.3 to that of Lemmas 1.1 and 4.1,
which we now present.

Proof of Lemma 1.1. (1) Proof of the inclusion31 ⊂Ker L. We need neither ellip-
ticity nor conformal covariance for this inclusion to hold; the naturality property
(5) suffices. We state a general result that implies at once what we need:

Proposition 4.2. Let g 7→ D(g) be any scalar natural differential operator on
Sn , defined on the open cone of Riemannian metrics, valued in C∞(Sn). For each
u ∈ C∞(Sn), set D[u] = D(gu)− D(g0) and L = d D[0], where gu = e2ug0. Then
31 ⊂ Ker L.

Proof. Let us first observe that D(g0) must be constant. Indeed, for each isometry
ψ of (Sn, g0), the naturality of D implies ψ∗D(g0)≡ D(g0); so the result follows
because the group of such isometries acts transitively on Sn . Morally, since g0 has
constant curvature, this result is also expectable from the theory of Riemannian
invariants (see [Stredder 1975] and references therein), here though, without any
regularity (or polynomiality) assumption.
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Given an arbitrary nonzero z ∈31, let S= S(z)∈Sn stand for its corresponding
south pole (where z(S)=−M is minimum) and, for each small real t , let ψt denote
the conformal diffeomorphism of Sn fixing S and composed elsewhere of: SterS ,
the stereographic projection with pole S, the dilation X ∈ Rn

7→ eMt X ∈ Rn , and
the inverse of SterS . As t varies, the family ψt satisfies

ψ0 = I,
d
dt
(ψt)t=0 =−∇0z,

where ∇0 denotes the gradient relative to g0. If we set e2ut g0 = ψ
∗
t g0, we get

d
dt
(ut)t=0 ≡ z.

Recalling that D(g0) is constant, the naturality of D implies

D[ut ] = ψ
∗

t D(g0)− D(g0)= 0;

in particular, differentiating this equation at t = 0 yields Lz= 0 hence we conclude
that 31 ⊂ Ker L .

(2) Proof of the reverse inclusion ker L ⊂31. For a contradiction, assume the exis-
tence of a nonzero v ∈3⊥1 ∩Ker L . If B is an orthonormal basis of eigenfunctions
of 10 in L2(Sn, dµ0), there exists an integer i 6= 1 and a function ϕi ∈ 3i ∩B

(where 3i henceforth denotes the space of i-th spherical harmonics) such that∫
Sn
ϕiv dµ0 6= 0

(actually i 6= 0, due to
∫

Sn v dµ0 = 0, obtained just by averaging Lv = 0 on Sn).
By the self-adjointness of L , we may write

0=
∫

Sn
ϕi Lv dµ0 =

∫
Sn
vLϕi dµ0,

then infer (see below) that

0=
(

p0(λi )− p0(λ1)
) ∫

Sn
ϕiv dµ0,

and finally get the desired contradiction, because p0(λi ) 6= p0(λ1) for i 6= 1 (see the
Appendix). Here, we used the following auxiliary facts, obtained by differentiating
(3) or (7) at u = 0 in the direction of w ∈ C∞(Sn):

n = 2m ⇒ Lw = P0(w)− n!w,

n 6= 2m ⇒ Lw =
( 1

2 n−m
)

P0(w)−
( 1

2 n+m
)

p0(λ0)w.
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From 31 ⊂ Ker L , we get, taking w = z ∈31:

(12)
n = 2m ⇒ p0(λ1)− n! = 0,

n 6= 2m ⇒
( 1

2 n−m
)

p0(λ1)−
( 1

2 n+m
)

p0(λ0)= 0.

Moreover, taking w = ϕi ∈3i , we then have

n = 2m ⇒ Lϕi =
(

p0(λi )− p0(λ1)
)
ϕi ,

n 6= 2m ⇒ Lϕi =
( 1

2 n−m
) (

p0(λi )− p0(λ1)
)
ϕi . �

Proof of Lemma 4.1. (1) The case m = 2n. For fixed z ∈ 31 and for t ∈ R close
to 0, we compute the third order expansion of Q[t z]. By Lemma 1.1 it vanishes
up to first order. Noting the identity Q[v]/Q0 ≡ e−nv(1+ nv)− 1, valid for all
v ∈31, we find at once

Q[t z]
Q0
=−2m2t2z2

+
8
3 m3t3z3

+ O(t4);

in particular (with the notation of Section 1), we have c3[z] = 8
3 m3 Q0z3, and

Lemma 4.1 holds trivially.

(2) The case m 6= 2n. In this case, calculations are drastically simplified by picking
the nonlinear argument of P0 in Pu(1), namely w := exp

(
( 1

2 n−m)u
)

(see (7)), as
new parameter for the local image of the conformal curvature-increment operator.
Since w is close to 1, we further set w = 1+ v, so the conformal factor becomes

e2u
= (1+ v)4/(n−2m)

and the renormalized Q-curvature increment operator accordingly becomes

(13) Q[u] ≡ Q̃[v] := (1+ v)1−2? P0(1+ v)−
( 1

2 n−m
)

Q0

where 2? stands for 2n/(n− 2m) in our context (admittedly a loose notation, cus-
tomary for critical Sobolev exponents). Of course, Lemma 1.1 still holds for the
operator Q̃ (with L̃ := d Q̃[0] ≡ (2?/n)L) and proving Theorem 1.3 for Q̃ is
equivalent to proving it for Q. Altogether, we may thus focus on the proof of
Lemma 4.1 for Q̃ instead of Q. (The reader can instead prove Lemma 4.1 directly
for Q, but it takes a few pages.)

Picking z and t as above, plugging v = t z in (13), and using the equality

P0(z)= p0(λ1)z ≡ (2?− 1)
( 1

2 n−m
)

Q0z,

obtained from (12), we readily calculate the expansion

1( 1
2 n−m

)
Q0

Q̃[t z] =−1
2(2

?
−2)(2?−1) t2z2

+
1
3(2

?
−2)(2?−1)2? t3z3

+O(t4),
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thus finding for its third order coefficient

1( 1
2 n−m

)
Q0

c̃3[z] = 1
3(2

?
− 2)(2?− 1)2? z3.

So Lemma 4.1 obviously holds, and with it Theorem 1.3. �

Appendix: Eigenvalue calculations

As well known (see [Berger et al. 1971], for instance), for each i ∈ N, the i-th
eigenvalue of 10 on Sn equals λi = i(i+n−1). Recalling (6), we must calculate

p0(λi )=
m∏

k=1

(
λi +

( 1
2 n− k

) (1
2 n+ k− 1

))
.

Setting provisionally
r = 1

2(n− 1), sk = k− 1
2 ,

so that 1
2 n− k = r − sk , 1

2 n+ k− 1= r + sk and λi = i2
+ 2ir , we can rewrite

p0(λi )=
m∏

k=1

(
(i + r)2− s2

k )

=

m∏
k=1

( 1
2 + i + r − k

) (1
2 + i + r + k− 1

)
≡

2m−1∏
k=0

( 1
2 + i + r −m+ k

)
,

getting (back to m, n and k only)

p0(λi )=
2m−1∏
k=0

(
i + 1

2 n−m+ k
)
.

In particular,

P0(1)≡ p0(λ0)=
( 1

2 n−m
) 2m−1∏

k=1

( 1
2 n−m+ k

)
as asserted in (8) (and consistently there with the value of Q0 in case n = 2m). An
easy induction argument yields

p0(λi+1)=

( 1
2 n+m+ i

)( 1
2 n−m+ i

) p0(λi ) for all i ∈ N

(consistently when i = 0 with (12)), which implies that |p0(λi+1)| > |p0(λi )| for
all i ∈N, hence in particular p0(λi ) 6= p0(λ1) for i > 1, as required in the proof of
Lemma 1.1. This also implies the final formula

p0(λi )=

( 1
2 n+m

)
. . .
(1

2 n+m+ i − 1
)( 1

2 n−m
)
. . .
(1

2 n−m+ i − 1
) p0(λ0) for all i ≥ 1.
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FRÉDÉRIC ROBERT
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