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SUBFACTORS FROM BRAIDED C∗ TENSOR CATEGORIES

JULIANA ERLIJMAN AND HANS WENZL

We extend subfactor constructions originally defined for unitary braid rep-
resentations to the setting of braided C∗-tensor categories. The categorical
approach is then used to compute the principal graph of these subfactors.
We also determine the dual principal graph for several important cases.
Here invertibility of the so-called S-matrix of a subcategory and certain
related group actions play an important role.

It was noted by Vaughan Jones that his examples of subfactors gave rise to
unitary braid representations. By this we mean representations of the infinite
braid group B∞ defined by infinitely many generators σ1, σ2, . . . which satisfy
the familiar braid relations. Subsequently, unitary braid representations were used
by A. Ocneanu and by H. Wenzl to construct new examples of subfactors; here
the subfactor is given by the subgroup B2,∞ generated by σ2, σ3, . . . . This con-
struction was denoted as the one-sided subfactor construction by J. Erlijman, as
opposed to her multisided subfactors. Here, for a given integer s > 1, the s-sided
subfactor is obtained as a suitable inductive limit of the embeddings of the quotients
of Bs

n = Bn × · · · ×Bn (s times) into Bns for n →∞. She also computed the
indices of these subfactors and their first relative commutants.

The main motivation for this paper was to calculate the higher relative com-
mutants of Erlijman’s subfactors. To do this it is convenient to generalize the
above mentioned constructions to the setting of a braided C∗-tensor category C

with only finitely many simple objects up to isomorphism. By definition of such
a category, we obtain a unitary representation of Bn in End(X⊗n) for any object
X in C. The constructions in our paper in the category setting follow closely the
above-mentioned braid constructions. They reduce to them in case that End(X⊗n)

is generated by the quotients of Bn for all n ∈N, where X is a generating object of
C. However, the categorical setting makes it easier to calculate the higher relative
commutants, and also contains new nontrivial examples.

The main results of our paper are as follows. We show that the first principal
graph is given by the fusion graph of (C′)s , where C′ is a subcategory of C depend-
ing on the tensor powers of X in which the trivial object appears. The fusion graph
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describes the decomposition of the tensor product of s simple objects of C′ into
irreducible ones; see Theorem 4.6 for details. The situation is more complicated for
the dual (or second) principal graph. If a certain matrix depending on the braiding
structure, called the S-matrix for the category C′, is invertible, the dual principal
graph coincides with the principal graph.

We do not have a general complete result in the case of a noninvertible S-matrix.
It is known that in this case there is a canonical subcategory T of C′ which is
equivalent to the representation category of a finite group G. If G is abelian, we
obtain an action of G on the set of irreducible objects of C, which is given by a
labeling set 3. The dual principal graph can now be fairly precisely characterized
in terms of the orbits of the action of a group Gs

1 on3s ; see Theorem 5.9 for details
and, for an example, Proposition 6.1.

The basic idea of our paper is that we explicitly construct a number of A–B

bimodules, with {A,B}⊂ {N,M} and with N⊂M being our s-sided inclusion. We
show that these examples of bimodules are closed under induction and restriction.
One deduces from this that the induction-restriction graph for these bimodules must
coincide with the principal or dual principal graph under some mild additional
assumptions.

Our findings are related to a number of results by different authors. If s = 2, our
subfactors correspond to the subfactors obtained from the asymptotic inclusion of
certain one-sided subfactors. In this case, the orbifold phenomenon for the dual
principal graph has first been observed by Ocneanu for the example of the Jones
subfactors. Further results have been obtained in [Evans and Kawahigashi 1998]
and [Izumi 2000]. In particular, some of our proofs have been inspired by these
results. More recently, after hearing a talk on this paper, M. Asaeda [2006] obtained
an analogue of the s-sided construction under more general conditions.

More or less the same combinatorics as in our paper also appears in the work of
Feng Xu [2000] on subfactors of type III1 factors related to disconnected intervals.
In spite of the similarity of principal graphs and indices, his construction of these
subfactors is completely different from ours and relies on Wassermann’s loop group
construction, which has not appeared yet in print for all Lie types.

Here is a more detailed description of the contents of this paper. In the first
chapter we review some basic results on bimodules in the type II1 setting. The
second chapter contains definitions concerning braided C∗ tensor categories. In
the third chapter we present the generalization of previous subfactor constructions
to the setting of braided C∗ tensor categories, as well as additional technical results.
This is used in the following section to construct certain bimodules and compute
the principal graph of these subfactors. In the last section we prove the already
mentioned results about the dual principal graph. We then discuss examples of our
construction including the case of the Jones subfactors.
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1. Bimodules

1A. Definitions.

Definition 1.1. Let A and B be type II1 factors, and let H be a Hilbert space.

(i) H is a left A-module if there exists an action of A on H determined by a
normal unital morphism λ : A→ B(H), where B(H) is the von Neumann
algebra of all bounded linear operators on H .

(ii) A right B-module H is a left Bopp-module (here, Bopp denotes the opposite
algebra of B).

(iii) H is an A–B bimodule if it is a left A-module, a right B-module, and if
the left and right actions intertwine. That is, if λ : A → B(H) is the left
action, and if ρ : Bopp

→ B(H) is the right action, then we must have that
λ(a)ρ(b)= ρ(b)λ(a) for all a ∈A, b ∈B.

(iv) If H and K are A–B bimodules, we define the space of intertwiners, denoted
by HomA,B(H, K ), to be the set of linear bounded operators T : H→ K such
that they intertwine the actions, in the sense that TλH (a) = λK (a)T for all
a ∈A and TρH (b)= ρK (b)T for all b ∈B.

(v) Two A–B bimodules H and K are equivalent or isomorphic if there exists a
unitary operator in HomA,B(H, K ).

Definition 1.2. Let H be an A–B bimodule with left action λ and right action ρ.
The inclusion generated by H is the inclusion of factors given by

λ(A)⊂ ρ(B)′.

The dual inclusion generated by H is the inclusion of factors given by

ρ(B)⊂ λ(A)′.

Remark 1.3. Similarly, if we have an inclusion of type II1-factors N⊂M, we can
make L2(M, tr) into an M–M, M–N, N–M or N–N-bimodule via usual left and right
multiplication. If N⊂M is a reducible inclusion, i.e., the relative commutant N′∩M

is larger than C1, then we obtain further examples by reducing by projections in
the relative commutant. For example, if p ∈N′∩M, we obtain the N–M bimodule
L2(pM, tr).

If φi : M→ M are endomorphisms for i = 1, 2, we can also define an M–M-
bimodule structure on L2(M, tr) by perturbing the right and left actions by these
endomorphisms, that is, by defining the action by m1.ξ.m2 = φ1(m1)ξφ2(m2).

All the examples of bimodules encountered in this paper are of one of these
types or tensor products or direct summands of them.
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Definition 1.4. Let A and Bi be type II1 factors for i = 1, 2. Let Hi be A–Bi

bimodules with left actions λi and right actions ρi , respectively, for i = 1, 2, and
assume that dimA(H2) ≤ dimA(H1) <∞. Then we say that H2 is (left)-weakly
reduced or a (left)-weak reduction of H2 if there exists a nonzero projection p ∈
B1 and an isomorphism 9 : B2 ∼= pB1 p such that H1 p := ρ1(b)H1 and H2 are
isomorphic A − B2-bimodules; here the A − B2-bimodule structure on H1 p is
defined by a.ξ.b = λ1(a)ξρ1(9(b)) for a ∈ A, b ∈ B2 and ξ ∈ H1 p.

Remark 1.5. (1) Since right multiplication by p commutes with the left action of
A and also with the commutant of the right action of B1, we obtain isomorphic
inclusions λ1(A) ⊂ ρ1(B1)

′ and λ1(A)p ⊂ ρ1(B1)
′ p. It follows from this and

the fact that isomorphic bimodules define isomorphic inclusions that a left weak
reduction of a bimodule yields an isomorphic inclusion.

(2) If we perturb the right-action on an A–B bimodule H by an outer automorphism
α of B, the resulting bimodule Hα is not isomorphic to H . However, it is a left
weak reduction of H .

(3) One can similarly define a notion of (right)-weak reduction. We shall mostly be
concerned with (left)-weak reduction, and will usually just call it weak reduction.
Also, we shall often suppress the notation λ and ρ if it is clear from which side the
algebras act.

1B. Tensor products. Tensor products of bimodules have been defined by Connes
and Sauvageot. A good review with results for our paper can be found in [Bisch
1997].

Proposition 1.6. Let Hi be A–Bi bimodules for i = 1, 2, and let D be a type II1

factor. If H2 is weakly reduced from H1, then also L⊗A H2 is weakly reduced from
L ⊗A H1, for any D–A bimodule L.

Proof. By definition, since H2 is weakly reduced from H2, there must exist a
projection p ∈ B1 such that H1 p and H2 are isomorphic as A–B2 bimodules,
assuming dimA(H1)≥ dimA(H2). This isomorphism extends in an obvious way to
a spatial isomorphism between L ⊗A H1 p = (L ⊗A H1)(1⊗ p) and L ⊗A H2. �

1C. Higher relative commutants. Let N⊂M be type II1 factors with normalized
trace tr. There exists a canonical extension M1 ⊃M, called Jones’ basic construc-
tion for N⊂M, which is the von Neumann algebra generated by M acting via left
multiplication on L2(M, tr) and by the orthogonal projection eN onto the subspace
L2(N, tr) ⊂ L2(M, tr). It is well-known that the Jones index [M : N] is finite if
and only if M1 is again a type II1 factor; it is given by [M :N] = 1/ tr(eN), with tr
denoting the unique normalized trace on M1. In this case, we can apply the basic
construction again for M ⊂ M1 to obtain an extension M2 ⊃ M1. Iterating this
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construction, we obtain a sequence of II1 factors N⊂M1 ⊂M2 ⊂ · · · . We obtain
important invariants of the original inclusion N⊂M via the so-called higher relative
commutants N′ ∩Mk and M′ ∩Mk . These are finite-dimensional C∗-algebras. If
there exists a uniform bound for the dimensions of the centers of the relative com-
mutants, the subfactor N ⊂ M is called a finite depth subfactor. In this case, the
inclusion diagram for N′∩M2k ⊂N′∩M2k+1 does not depend on k for k sufficiently
large; the corresponding graph is called the principal graph of N ⊂M. Similarly,
one defines the dual principal graph from the inclusion of M′∩M2k⊂M′∩M2k+1 for
k sufficiently large. These graphs are important invariants for the inclusion N⊂M.

The following results are presented in [Bisch 1997] in great detail and with
precise references to the original sources.

Proposition 1.7. Let N⊂M be a finite depth subfactor with finite index. Then

(a) The inclusions N ⊂M2k+1, N ⊂M2k , M ⊂M2k+1, M ⊂M2k are given by the
bimodule M⊗k

=M⊗N M⊗N · · · ⊗N M (k times), viewed, respectively, as an
N–N, N–M, M–N and M–M bimodule.

(b) The embedding of N′ ∩Mk ⊂ N′ ∩Mk+1 coincides with the embedding of the
algebras EndM–N(M

⊗k) ⊂ EndN–N(M
⊗k) for k even. If k is odd, the embed-

ding of N′∩Mk ⊂N′∩Mk+1 coincides with the embedding of EndN–N(M
⊗k)⊂

EndM–N(M
⊗k+1), given by x ∈ EndN–N(M

⊗k)→ 1M⊗ x.

(c) Analogous statements hold for the embedding of M′ ∩Mk ⊂ M′ ∩Mk+1; we
only need to replace HomX–N by HomX–M in all the statements in (b), with
X ∈ {M,N}.

Proof. Statement (a) is shown in [Bisch 1997], Proposition 3.2. Statement (b) can
be found in [Bisch 1997], Corollaries 4.2 and 4.4 (with tensoring from the right
instead of tensoring from the left, as we have chosen here). Statement (c) follows
from (b) and (a). �

Let N,M,B be type II1 factors with N ⊂ M a subfactor of finite index. Let
{Hλ}λ and {Kν}ν be a collection of mutually nonisomorphic irreducible N–B and
M–B bimodules, respectively. Observe that M⊗N Hλ is an M–B bimodule for any
N–B bimodule Hλ. Similarly, we can view any M–B bimodule Kν as an N–B

bimodule by restricting the left action to N. We say that the system of bimodules
({Hλ}λ, {Kν}ν) is closed under induction and restriction if

– for each N–B bimodule Hλ the induced M–B bimodule M⊗N Hλ is isomor-
phic to a direct sum of irreducible M–B bimodules each of which is isomor-
phic to an element in {Kν}ν ,

– for each M–B bimodule Kν the N–B bimodule M⊗M Kν obtained from Kν

by restricting the left action to N is isomorphic to a direct sum of irreducible
N–B bimodules each of which is isomorphic to an element in {Hλ}λ.
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The induction-restriction graph for our system of bimodules is the bipartite
graph whose (say) odd vertices are labeled by the elements in {Hλ}λ and whose
even vertices are labeled by the elements in {Kν}ν . A vertex labeled by Hλ is
connected with a vertex labeled by Kν by Lνλ edges, where Lνλ is the multiplicity
of Hλ in Kν , viewed as an N–B bimodule. By Frobenius reciprocity (see [Bisch
1997, Theorem 1.18], for example), this number coincides with the multiplicity of
Kν in M⊗N Hλ.

Proposition 1.8. Let ({Hλ}λ, {Kν}ν) be a system of N–B- and M–B-bimodules
which is closed under induction and restriction.

(a) If {Hλ}λ contains a bimodule H0 which is weakly reduced from the trivial
N–N-bimodule N, then the principal graph for N ⊂ M is given by the con-
nected component of the induction- restriction graph for ({Hλ}λ, {Kν}ν)which
contains H0.

(b) If {Kν}ν contains a bimodule K0 which is weakly reduced from the trivial
M–M-bimodule M, then the dual principal graph for N ⊂ M is given by the
connected component of the induction- restriction graph for ({Hλ}λ, {Kν}ν)

which contains K0.

(c) If φ :B→B is an endomorphism of the II1 factor B and p ∈ φ(B)′∩B such
that [pBp : pφ(B)] = 1, then L2(B, tr)p, with action b1.ξp.b2 = b1ξpφ(b2)

for b1, b2 ∈B, ξ ∈ L2(B, tr) is weakly reduced from the trivial B–B bimodule
L2(B, tr).

Proof. Part (a) follows from Proposition 1.6 and Proposition 1.7(b). Similarly, part
(b) follows from Proposition 1.6 and Proposition 1.7(c). Part (c) follows almost
immediately from Definition 1.4, using the fact that pBp = φ(B)p. �

Remark 1.9. In the setting of Proposition 1.8(a), there may be more than one
bimodule Hλ which is weakly reduced from the trivial N–N-bimodule N. Which
of those will correspond to the trivial N–N-bimodule N will depend on the choice
of the automorphism between pNp and B. The resulting graph will be independent
of this choice. A similar phenomenon may also occur in part (b).

Let H be an A–B bimodule. We define ind(H) to be equal to the index [ρ(B)′ :
λ(A)]=[λ(A)′ :ρ(B)]. In the following lemma, (Hλ)λ and (Kν)ν are bimodules as
in the last proposition, where we now assume for simplicity that they only denote
the bimodules which label the vertices of a given principal graph. Moreover, we
also assume the subfactor to be of finite depth, meaning that both sets only contain
finitely many bimodules.

Lemma 1.10. With notations as above, we have:

(a)
∑

ν ind(Kν)=
∑

λ ind(Hλ).
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(b) Assume that the A–B-bimodule H decomposes as H =
⊕

mi Hi , with Hi

irreducible A–B-bimodules, and let l = dim(EndA,B(H))=
∑

i m2
i . Then we

have
∑

i ind(Hi )≥ ind(H)/ l, with equality only if dimA(Hi )=mi dimA(H)/ l
for all i .

Proof. It is well-known that the inclusion of higher relative commutants M′ ∩

Mk ⊂ N′ ∩Mk defines periodic commuting squares which generate in the limit
a subfactor of index [M : N]. Hence we can use the results of [Wenzl 1988],
Theorem 1.5(iii). It follows that the index is equal to the quotient of the l2-norms
of the weight vectors of M′ ∩Mk and N′ ∩Mk for k sufficiently large. Let pλ and
pµ be minimal idempotents in M′ ∩Mk and N′ ∩Mk respectively. Then we have
ind(pνMk) = tr(pν)2[M : N]k and ind(pλMk) = tr(pλ)2[M : N]k+1. Solving for
tr(pλ)2 and tr(pν)2, we obtain

[M : N] =

∑
ν ind(pνMk)/[M : N]

k∑
λ ind(pλMk)/[M : N]k+1 .

The claimed formula follows from this in the case that our system of bimodules la-
bels the vertices of the principal graph. One obtains the claim for the dual principal
graph by the same proof applied to the inclusion M⊂M1.

Part (b) is proved using Lagrange multipliers as follows: Let xi = dimA(Hi ) and
let d = dimA H . Then the minimum of the function f (x1, . . . , xr )=

∑
x2

i subject
to the condition

∑
mi xi = d is obtained for 2xi = λmi , and we deduce from the

constraint that d = λ
2

∑
m2

i = lλ/2. Hence xi = mi d/ l and∑
i

(dimA Hi )
2
≥

d2

l2

∑
i

m2
i = d2/ l. (∗)

Now observe that if pi is the projection onto the submodule Hi ⊂ H , we have
tr(pi ) = dimA(Hi )/ dimA(H) and ind(Hi ) = tr(pi )

2ind(H) (again see [Wenzl
1988], Theorem 1.5(iii)). The claim follows from this after multiplying (∗) by
ind(H)/d2. �

2. Categories

In this section we deal with categories which can be considered as generalizations
of the representation categories of finite groups. This allows us to deal simulta-
neously with categories of bimodules of von Neumann factors, fusion categories
(which can be constructed using quantum groups or loop groups) and categories ob-
tained from unitary braid representations. For more details, we refer to [Mac Lane
1998], [Freyd 1964] for general categorical notions, and to [Kassel 1995], [Turaev
1994] for tensor categories; our treatment of traces also uses results from [Longo
and Roberts 1997].
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2A. General definitions. We recall some basic definitions and set up notations.
In the following, C will always denote a strict monoidal complex tensor category

with unit 1. This means that C is a category with a functor⊗:C×C→C called the
tensor product which satisfies certain associativity conditions such as the Pentagon
Axiom. There are similar axioms involving the morphisms lX : 1⊗ X → X and
rX : X ⊗ 1→ X called the left and right unit constraints. Moreover, C being a
complex category just means that the homomorphisms Hom(X, Y ) form a complex
vector space for any objects X and Y in C.

The complex tensor category C is called a ∗ tensor category if there exists a
contragredient complex conjugate functor ∗ :C→C which is compatible with ⊗ .
This means in detail that:

– if f ∈ Hom(X, Y ), then f ∗ ∈ Hom(Y, X),

– (α f )∗ = ᾱ f ∗ for all α ∈ C and f ∈ Hom(X, Y ),

– ( f g)∗ = g∗ f ∗ for f ∈ Hom(X, Y ) and g ∈ Hom(U, X),

– ( f ⊗ g)∗ = f ∗⊗ g∗ for f ∈ Hom(X, Y ) and g ∈ Hom(U, V ),

– 1∗X = 1X for the identity morphism 1X for any object X in C.

2B. Duality and Frobenius reciprocity. An object X in a strict monoidal category
C is called left rigid if there exists an object X̄ ∈ C and a pair of morphisms
iX :1→ X⊗ X̄ and dX : X̄⊗X→1 such that the maps (1X ⊗dX )(iX⊗1X ) : X→ X
and (dX ⊗ 1X̄ )(1X ⊗i X̄ ) : X̄→ X̄ are 1X and 1X̄ . An object X is called right rigid
if we can find an object X̄ ′ and morphisms i ′X : 1→ X̄ ′⊗ X and d ′X : X ⊗ X̄ ′→ 1

satisfying analogous identities. It is easy to check that in a ∗ category any left rigid
object is also right rigid, with X̄ ′ = X̄ , i ′X = d∗X and d ′X = i∗X . Hence we will in the
following only talk about rigid objects. A category C is called rigid if every object
of C is rigid.

With this notion of duality, we also have the usual Frobenius reciprocity iso-
morphism between Hom(V,W ⊗ X̄) and Hom(V ⊗ X,W ) for any objects V,W
in C. One checks easily that these isomorphisms are given by the maps

a 7→ (1W ⊗dX ) ◦ (a⊗ 1X ) and b 7→ (b⊗ 1Y ) ◦ (1V ⊗iX )

for a ∈ Hom(V,W ⊗ X) and b ∈ Hom(V ⊗ Y,W ). In particular, one obtains as a
special case that dim Hom(1, X ⊗ X̄) = dim End(X) = 1 if X is a simple object.
Hence the morphisms iX and dX are unique up to scalar multiples for X simple. We
shall say that the rigidity morphisms iX and dX are normalized if i∗X iX = dX d∗X∗.

2C. Dimension, trace and conditional expectation. In the following we always
assume the rigidity morphisms iX and dX to be normalized for any object X . If X is
simple, this can always be assumed after some rescaling in view of the discussion
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in the last section. For normalized rigidity morphisms, we can now define the
dimension of a simple object X to be equal to the scalar

dim(X)= i∗X iX = dX d∗X .

Of course, we would like the dimension to be additive with respect to a decomposi-
tion X =

⊕
Wi , with the Wi being simple objects. To do so, we define morphisms

φi :Wi → X such that φ∗i φ j = δi j 1Wi and
∑

i φiφ
∗

i = 1X , and we define

(2-1) iX =
∑

(φi ⊗ φ̄i )iWi , dX =
∑

dWi (φ̄
∗

i ⊗φ
∗

i ),

where the φ̄i are the analogous morphisms for the decomposition of the dual X̄ =∑⊕
i W̄i . Then it is easy to check that these morphisms satisfy the rigidity axiom,

and they are normalized if the φi are so. Moreover, one also checks that these
morphisms yield the desired additivity property of the dimension function.

Additionally, the dimension function should be multiplicative with respect to
the tensor product. If X ⊗ Y is a tensor product of simple objects X and Y , we
obtain normalized rigidity morphisms

iX⊗Y = (1X ⊗ iY ⊗ 1X̄ )iX , dX⊗Y = dY (1X̄ ⊗ dX ⊗ 1X ).

It can be shown that these rigidity morphisms define the same dimension as the one
we obtain from the decomposition X⊗Y ∼=

⊕
i Wi , with Wi simple and with rigidity

morphisms as defined in the last paragraph. It will be convenient to represent the
rigidity morphisms iX and dX , by the following pictures:

1

dX

XX̄
1

X X̄

iX

Figure 1. Rigidity morphisms.

In a ∗ tensor category we define the categorical trace of an endomorphism f ∈
End(X) by

(2-2) TrX ( f )= i∗X ◦ ( f ⊗ 1X̄ ) ◦ iX ∈ End(1).

If Z =
⊕

mi X i , where X i is a simple object, and mi is the multiplicity of X i in Z ,
we can write an element f ∈End(Z) in the form f =

⊕
fi , where fi ∈End(mi X i )

can be viewed as an mi × mi matrix. Defining rigidity morphisms iZ , dZ with
respect to this decomposition, and using (2-1), one checks easily that

TrZ ( f )=
∑

dim(X i )Tr( fi ),
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where Tr( fi ) is the usual trace of a matrix. This shows that we obtain a well-
defined trace for End(Z) for any object Z , and that TrZ ( f g) = TrZ (g f ) for any
f, g ∈End(Z). Moreover, using this formula, one shows as well that we can define
the trace also by

TrX ( f )= i∗X̄ ◦ (1X̄ ⊗ f ) ◦ i X̄ ∈ End(1).

This shows that ∗-categories satisfy the axioms of a spherical category (see [Barrett
and Westbury 1999]).

The normalized trace trX on End(X) is defined by trX ( f ) = TrX ( f )/(dim X).
In the following we will often just write Tr, tr for the trace or normalized trace
when it is clear for which object it is defined.

Conditional expectations can also be very naturally defined using our categorical
definitions. Let X be an object. Let A = End(X) ∼= A⊗ 1V ⊂ B = End(X ⊗ V ).
We define the map E A from B onto A by

E A(b)=
1

dim V
(1X ⊗ i∗V )(b⊗ 1V̄ )(1X ⊗ iV );

in the tangle picture, E A(b) is obtained from b by closing up the tangle with color
V and renormalizing by 1/ dim V .

b

X V

EX (b)=
1

dim V

Figure 2. Conditional expectation.

It is known and easy to check that this definition of conditional expectation coin-
cides with the usual definition of conditional expectation in operator algebras (see
[Orellana and Wenzl 2002, Proposition 1.4], for instance). Actually, one can show
more: Let X1, X2, X3 be objects in our ∗ tensor category C. Define the algebras
A=End(X2), B=End(X1⊗X2), C =End(X2⊗X3) and D=End(X1⊗X2⊗X3).
We can consider all these algebras as subalgebras of D, say by identifying A with
1X1 ⊗ End(X2)⊗ 1X3 . The next proposition now follows immediately from the
graphical description of the conditional expectations.

Proposition 2.1. The algebras A, B, C , D form a commuting square; that is,
EB EC = E A = EC EB .

2D. Braided tensor categories. A strict monoidal category C is called braided if,
for any objects X, Y in C, there exists a natural isomorphism cX,Y : X⊗Y→Y⊗X
called the braiding such that:

cX,Y⊗Z = (1Y ⊗ cX,Z )(cX,Y ⊗ 1Z )
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and
cX⊗Y,Z = (cX,Z ⊗ 1Y )(1X ⊗ cY,Z ).

Naturality means that for any morphisms f : X→ X ′ and g : Y → Y ′

(g⊗ f ) ◦ cX,Y = cX ′,Y ′ ◦ ( f ⊗ g).

Finally, we also require that c1,X = 1X = cX,1 under the isomorphisms 1⊗ X ∼=
X ∼= X ⊗1.

2E. C∗ tensor categories. We call a complex ∗ tensor category a C∗ tensor cate-
gory if

(a) for any objects X, Y in C the space Hom(X, Y ) is a Hilbert space with inner
product (a, b)= Tr(b∗a) for a, b ∈ Hom(X, Y ),

(b) for any objects X, Y in C the algebra End(Y ) is a C∗-algebra acting on the
Hilbert space Hom(X, Y ).

Observe that these definitions imply that the dimensions of all objects are posi-
tive. A braided C∗ tensor category is a C∗ tensor category with a braiding for
which all its braiding morphisms are unitary operators. For examples of C∗-tensor
categories, see Section 6A.

3. The multisided construction

3A. Categorical setting. We shall use the following conventions: Let C be a fi-
nite braided C∗ tensor category, where finite means that we only have finitely
many equivalence classes of simple objects in C. Let {Xλ, λ ∈ 3} be a set of
representative nonequivalent simple objects, indexed by some labeling set 3. We
define dλ to be the dimension of Xλ. We shall also assume that the category C

is generated by an object X , so any simple object appears in some tensor power
of X . We define algebras An = End(X⊗n) = EndC(X⊗n). By the definition of
An , the simple components of An are labeled by the equivalence classes of simple
objects which appear in the n-th tensor power of X , i.e., by a certain subset 3n

of 3. We define the embeddings ιr : a ∈ An → a ⊗ 1r ∈ An+r , where we will
often omit the subscript r . It follows from the definitions that the vertices of the
inclusion diagram for ι : An→ An+1 are labeled by the elements of 3n and 3n+1

respectively; the vertex labeled by λ ∈3n is connected with the one labeled by µ
by Lµλ edges, where Lµλ is the multiplicity of the object Xµ in Xλ⊗ X . We have
the commuting diagram of embeddings

(3-1)

1m ⊗ An ⊂ An+m

1m ⊗ An+1

1⊗ ι
?

⊂ An+m+1

ι
?
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We will also assume that the Bratteli diagram for the algebras (An) is strongly
connected. This means that for any Xλ, there exists an r such that Xλ ⊗ X⊗r

contains all irreducible representations which appear in X⊗|λ|+r , where |λ| is the
smallest integer such that Xλ∈ X⊗|λ|. Equivalently, it means that for any projection
p ∈ An there exists an r such that the central support of p in An+r is 1. We define
k = k(X) = gcd{n,1 ⊂ X⊗n

}. Let C′ be the subcategory of C generated by the
simple objects in X⊗mk , m ∈ N.

Lemma 3.1. Let C be a finite C∗-tensor category, not necessarily braided. Then
we have

(a) 3n = 3n+k for n sufficiently large and 3n ∩ 3m = ∅ if |n − m| < k; in
particular 3′ :=3nk for n sufficiently large labels the simple objects of C′.

(b) The weight vector for the trace on the algebra An is Evn = (dλ/(dim X)n)λ∈3n .

(c) The inductive limit of (1m ⊗ An ⊂ An+m), for n →∞, defines an inclusion
B ⊂ A of hyperfinite II1 factors with index (dim X)2m .

(d)
∑

λ∈3n
d2
λ =

1
k

∑
λ∈3 d2

λ for n sufficiently large.

Proof. If the trivial object 1 appears in the r -th tensor power of X and Xλ ⊂ X⊗n ,
then we have

Xλ ∼= Xλ⊗ 1⊂ Xλ⊗ X⊗r
⊂ X⊗n+r .

Hence 3n ⊂3n+r for all n ∈N. As 3 is finite, these inclusions become equalities
for n sufficiently large. Applying this to any r such that 1⊂ X⊗r , we can similarly
prove 3n = 3n+k for k the gcd of all such r and n sufficiently large. Finally, if
0<m−n= k ′< k and λ∈3n∩3m , then we also have ν ∈3n+r∩3m+r =3n+k′+r

for any Xν ⊂ Xλ ⊗ X⊗r and r ∈ N. As the Bratteli diagram for (An) is strongly
connected, we obtain3n+r =3n+r+k′ for r sufficiently large. Using the convention
X0 = 1, we can find r such that 0 ∈3n+r =3n+r+k′ , contradicting the definition
of k. This shows (a).

Statement (b) follows from the fact that the value of the normalized trace of a
projection pλ corresponding to a simple object Xλ ⊂ X⊗n is given by tr(pλ) =
dλ/(dim X)n .

For statement (c) observe that Diagram (3-1) defines a commuting square by
Proposition 2.1. Moreover, the sequence of algebras as in the statement has a k-
periodic pattern: By part (a), we have the same labeling sets for the algebras in
Diagram (3-1) if we substitute n by n + k everywhere, for n sufficiently large.
Moreover, also the inclusion pattern remains the same by the discussion before
Diagram (3-1). It follows from [Wenzl 1988], Theorem 1.5(iii), that the index
[A : B] is given by the ratio ‖Evn‖

2/‖Evn+1‖
2, for n large enough. As this holds for
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any sufficiently large n, we have

[A : B]k =
k∏

i=1

‖Evn−1+i‖
2

‖Evn+i‖
2 =

‖Evn‖
2

‖Evn+k‖
2 .

The claim now follows from the fact that Evn= (dim X)k Evn+k , by (a) and (b). Finally
observe that (dim X)2‖Evn+1‖

2
= ‖Evn‖

2 implies
∑

λ∈3n
(dλ)2 =

∑
µ∈3n+1

(dµ)2 for
all n sufficiently large. As3n∩3m=∅ whenever |n−m|< k, we obtain Statement
(d). �

3B. Multisided construction. The subfactors constructed in the last section will
sometimes be denoted as one-sided subfactors. We will now generalize the con-
struction in [Erlijman 2001] to the setting of braided C∗-tensor categories, which
we call multisided subfactors in analogy to the notation in [Erlijman 2001]. We
will fix a positive integer s. For the s-sided construction, we will have to define
an embedding of algebras A⊗s

n ⊂ Ans such that we will obtain a subfactor if we
consider the inductive limit over n.

We shall need special braids γn ∈ Bsn , which can be defined inductively by
γ1 = 1s and by Figure 3.

s(n+1) sn s
. . .

. . .. . .

n+1 n n n

=

n+1 n+1

γn+1 γn

Figure 3. Inductive property of intertwining braids.

Alternatively, the braid γn can be described as follows: arrange the points labeled
by the numbers 1 up to ns in a rectangular pattern with height n and width s. Now
we can numerate the points either by first going down the columns, or by first going
to the right in each row. This defines a permutation π mapping the i-th point in
the column-first count to the i-th point in the row-first count. The braid γn is now
defined by this permutation where the i-th lower point is connected with the π(i)-
th upper point and where we assume all crossings to be positive (i.e., the strand
going from southwest to northeast crosses over the one going from southeast to
northwest). A picture for this braid can be found in [Erlijman 2003, p. 83].
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Let c= cX,X be the braiding morphism for X . By definition, we obtain a unitary
representation ρ of the braid group Bn into An by mapping the generator σi to
ci = 1i−1⊗c⊗1n−1−i . We define the unitary un = u(s)n = ρ(γn), with γn defined as
in Figure 3. Finally, the embedding from A⊗s

n into Ans is given by first identifying
A⊗s

n with End(X⊗n)⊗s
⊂ End(X⊗ns)= Ans and by then conjugating this with un ,

i.e., by

(a1⊗ · · ·⊗ as)
ûn
7−→ un(a1⊗ · · ·⊗ as)u∗n;

throughout this paper, û will denote the inner automorphism given by conjugation
via the unitary u unless stated otherwise. We now obtain the following diagram of
maps, where the vertical arrows are labeled by ι⊗s

= ι⊗s
1 and ι= ιs respectively:

(3-2)

A⊗s
n

ûn - Ans

A⊗s
n+1

?

ûn+1

- A(n+1)s

?

Then we have the following lemma which has essentially already been proved in
[Erlijman 2001], Section 3.2; the case proved there would correspond to the special
case in which An is generated by the image of Bn .

Lemma 3.2. The diagram (3-2) above commutes and also forms a commuting
square. Moreover, the inclusion pattern is k-periodic.

Proof. We check first that Diagram (3-2) is a commuting diagram: This is most
easily seen by the following pictures (these proofs by pictures contain all the nec-
essary details and translate faithfully to the algebraic proofs by simply rewriting
the definitions already included in this article). We take s = 3 for simplicity. For
b ∈A⊗s

n , we have:

u∗n u∗nid3 id3

id3id3
nnn 3

(ûn+1 ◦ ι)(b)= b3b2b1 = (ι ◦ ûn)(b)

unun

b3b2b1=

Figure 4. Diagram (3-2) is a commuting diagram.

Now we check that Diagram (3-2) is a commuting square, i.e., that (E Asn ◦

ûn+1)(b) = (ûn ◦ E A⊗s
n
)(b) for b ∈ A⊗s

n+1. We use the categorical definition for a
conditional expectation as described in Section 2C, Figure 2. For b=b1⊗· · ·⊗bs ∈

A⊗s
n+1, we have
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(E Asn ◦ ûn+1)(b)=

1
(dim X)s

=
1

(dim X)s

3

id3

id3

un

b3b2b1

u∗n

1 1 1

un

b3b2b1

u∗n

Figure 5. Diagram (3-2) is a commuting square.

which in turn equals (ûn ◦ E A⊗s
n
)(b). To show that the inclusion diagrams are k-

periodic for large n, observe that Lemma 3.1(a) implies that we have a one-to-one
correspondence between the labeling sets of simple components of A⊗s

n and A⊗s
n+k

as well as between the components of Ans and A(n+1)s . This identification of edges
is compatible with the number of edges between them, which again is just given
by tensor product multiplicities. �

Theorem 3.3. Fix s ∈ N, s > 1. There is an embedding of the factor N :=

lim ind A⊗s
n (inductive limit) in M := lim ind Ans given by û := lim ind ûn , with un

as above. The index of the resulting inclusion is(∑
λ∈3′

d2
λ

)s−1

,

where 3′ is an indexing set for the simple objects of the subcategory C′ as defined
at the beginning of this subsection and dλ = dim(Xλ).

Proof. This was done in [Erlijman 2001] in the case that the An’s are generated by
braid elements only. By Lemma 3.2, Diagram (3-2) is a periodic commuting square
for large n. Thus, by [Wenzl 1988], Theorem 1.5(iii), û : N ↪→M is an inclusion
of hyperfinite II1 factors with index given by ‖Etn‖2/‖Evn‖

2 for n sufficiently large,
where Etn and Evn are the trace vectors for the trace in M restricted to the finite-
dimensional approximants A⊗s

n and Ans , respectively. For this observe that if k|n
the dimension vectors for A⊗s

n and Ans are given by Etns = (dEλ/(dim X)ns)Eλ and
Evns = (dν/(dim X)ns)ν , with Eλ ∈ (3′)s and ν ∈3′; here dEλ =

∏s
i=1 dλi . Hence we

obtain

[M : N] =
‖Etn‖2

‖Evn‖
2 =

∑
Eλ∈(3′)s d2

Eλ∑
ν∈3′ d2

ν

=

(∑
λ∈3′

d2
λ

)s−1

. �

3C. More embeddings. We shall need a variation of the embeddings in the last
section for the construction of certain bimodules.
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Lemma 3.4. Let Em = (m1, . . . ,ms), where mi ∈ Z≥0, and m1 ≥ m2 ≥ · · · ≥ ms ,
and let | Em| =

∑
i |mi |. Then there exist unitaries u Em,n = u Em,n(s) ∈ A| Em|+sn such

that we obtain k periodic commuting squares

(3-3)

An+m1 ⊗ · · ·⊗ An+ms

û Em,n - A| Em|+ns

An+1+m1 ⊗ · · ·⊗ An+1+ms

?

û Em,n+1

- A| Em|+(n+1)s

?

which produce an inclusion û Em : N→ M isomorphic to the map û : N→ M of
Theorem 3.3.

Proof. We shall give diagrammatic representations of the unitaries u Em,n=u Em,n(s)∈
A| Em|+sn as follows. Let t Em = t Em(s) be the unitary in A| Em| given by

u(2)m2−m3
u(1)m1−m2

t Em = u(s)ms
u(3)m3−m4

· · · · · ·· · ·

· · ·

m1 m2 m3 ms

· · ·

· · ·

Figure 6

where the unitary u(s)r is given by Figure 3 for s > 1 (with n+1 replaced by r ) and
is equal to idr for s = 1, with any positive integer r .

The unitary u Em,n is then defined from t Em and u(s)n as in Figure 7.

u(s)n

nn n

m2+ nm1+ n

m2m1 ms
u(s)
Em,n =

t Em

· · ·

· · · · · ·

ms + nFigure 7

We proceed as in Lemma 3.2 to show that Diagram (3-3) is a commuting square.
First we check that our diagram is a commuting diagram; we shall denote the
vertical arrows by ι⊗s and ι respectively. Assume s = 3 again for simplicity. For
b ∈ An+m1 ⊗ · · · ⊗ An+ms , we have (û Em,n+1 ◦ ι

⊗s)(b) = = (ι ◦ û Em,n)(b). The
commuting square property as well as k periodicity is shown in the same way as
in Lemma 3.2.

It remains to show that the subfactor constructed in this lemma is conjugate
to the one in Theorem 3.3. We define an automorphism 8 of the factor M =
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b1 b2 b3 =

m1 m2 m3 n n n 1 1 1

t Em un id3

t∗
Em u∗n id3

m3 n n n

t Em un id3

t∗
Em u∗n id3

b1 b2 b3

3m2m1

Figure 8. Diagram (3-3) is a commuting diagram.

lim ind Asn+| Em| = lim ind As(n+m1) that will carry the subfactor defined here,

û Em(N)= lim ind u Em,n(An+m1 ⊗ · · ·⊗ An+ms )u
∗

Em,n,

to the subfactor û(N) = lim ind un A⊗s
n u∗n from Theorem 3.3. Define 8n at the

finite-dimensional level by

M M

⊂ 8n ⊂

Asn+| Em| - As(n+m1)

∈ ∈

a - un+m1bnι(u∗Em,nau Em,n)b∗nu∗n+m1
,

where bn ∈ As(n+m1) is a unitary described in Figure 9 on the next page, and where
ι : Asn+| Em|→ As(n+m1) is the usual inclusion (recall m1 ≥ mi ). Observe that

bn(An+m1 ⊗ · · ·⊗ An+ms ⊗ 1sm1−| Em|)b
∗

n

equals the image of the natural inclusion map An+m1 ⊗ · · ·⊗ An+ms → A⊗s
n+m1

.
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n+m1 n+m2 m1−m2 n+m3 n+m4m1−m3 n+ms· · · m1−ms−1 m1−ms

n+m1 n+m3 n+m4 · · · m1−m2 m1−m3

bn =

n+ms m1−ms−1· · ·n+m2 m1−ms

Figure 9. Pictorial description of bn ∈ As(n+m1).

It is easy to check that the maps 8n are compatible with respect to n, and so we
can define 8 : M = lim ind Asn+| Em|→ M = lim ind As(n+m1) by 8 := lim ind8n .
We observe that

u Em,n(a1⊗ · · ·⊗ as)u∗Em,n
8
7→ un+m1(a1⊗ · · ·⊗ as)u∗n+m1

for ai ∈ An+mi , so 8 carries û Em(N) to û(N). To check that 8 is an automorphism,
one first observes that 8 = lim ind8n = lim ind

(
ûn+m1 ◦ b̂n ◦ ι ◦ û∗

Em,n

)
(the ”hat”

morphisms denote the adjoint morphisms ŵ(x) := wxw∗). Then one checks that
8 has left inverse given by 8−1

l := lim ind
(
û Em,n+m1 ◦ ι ◦ b̂∗n ◦ û∗n+m1

)
, where ι :

As(n+m1)→ As(n+m1)+m1 also denotes the canonical inclusion, and a right inverse
given by8−1

r := lim ind
(
û Em,n◦ι◦b∗n−m1

◦û∗n
)
, where ι : Asn→ Asn+| Em| again denotes

the canonical inclusion, also observing that in the inductive limit the canonical
inclusions turn out to be the identity map. �

3D. Endomorphisms. We now want to construct bimodules with respect to the
just constructed factors N and M in the proof of the last theorem. This will be
done according to the recipe described in Remark 1.3. To do so, we need to define
the endomorphisms mentioned in the braid setting before, in the categorical setting.

Lemma 3.5. Fix mi ∈ Z≥0, i = 1, 2, . . . , s, with m1 ≥ m2 ≥ · · · ≥ ms .

(a) For n ∈ N, the maps

A⊗s
n → Am1+n ⊗ · · ·⊗ Ams+n

a1⊗ · · ·⊗ as 7→ (1m1 ⊗ a1)⊗ · · ·⊗ (1ms ⊗ as)

extend to an endomorphism ShiftN
Em : N→ N, where Em := (m1, . . . ,ms).

(b) Let û denote the embedding of N ↪→ M. The endomorphism ShiftN
Em extends

to an endomorphism of M, denoted by ShiftM
Em . In other words, we have a
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commuting diagram

N ⊂
û - M

N

ShiftN
Em

?
⊂

û Em
- M

ShiftM
Em

?

(c) (ShiftM
Em ◦ û) only depends on the norm | Em| of Em, and it is of the form

A⊗s
n → A| Em|+sn

(a1⊗ · · ·⊗ as) 7→ 1| Em|⊗ un(a1⊗ · · ·⊗ as)u∗n.

Proof. (a) If s = 1, N=R= lim ind An , and we obtain the familiar one-sided shift
Shiftm . For s> 1, N=R⊗· · ·⊗R (s factors) and Shift Em = Shiftm1⊗· · ·⊗Shiftms .
The following formalization of these facts will also be useful for the proofs of (b)
and (c). Let v Em,n ∈ A| Em|+sn be the unitary image under ρ of the braid described by:

v Em,n =

. . .

nnn msm2m1

Figure 10

It is easy to see pictorially that for any element a1 ⊗ · · · ⊗ as ∈ A⊗s
n , the maps

defined in the statement of (a) are given by

(a1⊗ · · ·⊗ an) 7→ v Em,n(a1⊗ · · ·⊗ an ⊗ id | Em|)v∗Em,n ∈ An+m1 ⊗ · · ·⊗ An+ms .

That these maps extend to the von Neumann algebra inductive limit N= lim ind A⊗s
n

follows from the fact that the following are commuting diagrams with respect to
the canonical inclusions:

(3-4)

A⊗s
n

⊂ - A⊗s
n ⊗ A| Em|

v̂ Em,n - An+m1 ⊗ · · ·⊗ An+ms

A⊗s
n+1

?
⊂ - A⊗s

n+1⊗ A| Em|
?

v̂ Em,n+1- An+1+m1 ⊗ · · ·⊗ An+1+ms

?

and from the fact that the maps are norm and trace preserving. We denote the
resulting endomorphism by ShiftN

Em .

(b) We shall extend the map ShiftN
Em to M after embedding N in M via û (given by

the inductive limit of conjugation of unitaries un or u Em,n as in Figures 7 and 3). At
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the finite-dimensional level we define ShiftM
Em : lim ind Asn→ lim ind A| Em|+sn by

(3-5) ω̂n : Asn ↪→ A| Em|+sn → A| Em|+sn,

where the first arrow stands for the standard inclusion a ∈ Asn 7→ a⊗1 ∈ A| Em|+sn ,
and where the second arrow stands for conjugation by the unitary ωn =ωn(s, Em)∈
A| Em|+sn defined by

(3-6) ωn := u Em,nv Em,n(u∗n ⊗ id | Em|);

here u Em,n and v Em,n are given by Figures 6, 7, and 10. We give a diagrammatic
representation for s = 3 in Figure 11, with b ∈ Asn:

m1

n n n

t Em

t Em un

u∗nt∗
Em

id| Em|

t∗
Em

un

u∗nbun

u∗n

·

n

= u∗nbun

m2 m3m1

m2 m3 n n

Figure 11. Pictorial representation of ShiftM
Em (b)∈ A| Em|+sn , for b∈

Asn (s=3).

We want to show that these maps extend to a well-defined map ShiftM
Em on the

inductive limit lim ind Asn , i.e., we have to show that ω̂n+1(ι(b))= ι
(
ω̂n(b)

)
, where

we use the notation ι for the standard inclusions of Asn → As(n+1) as well as
for A| Em|+sn → A| Em|+s(n+1). To show this, we need the inductive property of the
unitaries u(s)n mentioned already at the braid level, seen in Figure 3, to write u Em,n+1

in terms of u Em,n and of ids . We then have for b ∈ Asn that ω̂n+1(ι(b))= ι
(
ω̂n(b)),

as shown in Figure 12. Hence ShiftM
Em = lim ind ω̂n is well defined.

We still need to show that ShiftM
Em extends ShiftN

Em , i.e., that (ShiftM
Em ◦ û)= (û Em ◦

ShiftN
Em). From the definition, for a = a1⊗ · · ·⊗ as ∈ A⊗s

n ,

(ShiftM
Em ◦ lim ind ûn)(a)= (ω̂n ◦ ι ◦ ûn)(a)= (û Em,n ◦ v̂ Em,n)(a⊗ id | Em|)

= (lim ind û Em,n ◦ShiftN
Em)(a).
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u∗nbun

nnnm3

unt Em

u∗nbun

nnn
unt Em

u∗nbun

nnn
unt Em t Em

m3m2m1

id3

m2m1

=id3

id3
3

id3

id3

id3

u∗nt∗
Em u∗nt∗

Em u∗nt∗
Em

un

u∗nbun

nnn

Figure 12. ShiftM
Em is well-defined.

(c) This follows from the definition. Take (a1⊗· · ·⊗as) ∈ A⊗s
n . Using Figure 11,

we obtain that ShiftM
Em (un(a1⊗ a2⊗ a3)u∗n) equals

t∗
Em u∗n

a1 a2 a3

t Em un
m1 nn nm2 m3

and this in turn equals 1| Em|⊗ un(a1⊗ a2⊗ a3)u∗n . �

Proposition 3.6. Let Shift Em be as in Lemma 3.5.

(a) ShiftM
Em (M) ⊂ M is an inclusion of II1 factors with index (dim(X))2| Em|, where

| Em| =
∑

mi and ShiftM
Em (M)

′
∩M has a subalgebra isomorphic to

Am1 ⊗ · · ·⊗ Ams .

(b) (û Em ◦ShiftN
Em)(N)⊂M is an inclusion of II1 factors with index

[M : N](dim(X))2| Em|

and relative commutant (û Em ◦ShiftN
Em)(N)

′
∩M∼= A| Em|.

(c) ShiftN
Em(N) ⊂ N is an inclusion of II1 factors with index (dim(X))2| Em| and rel-

ative commutant ShiftN
Em(N)

′
∩N∼= Am1 ⊗ · · ·⊗ Ams .

Proof. For (a), we first show that the maps ω̂n in (3-5) define periodic commuting
squares with respect to n (which generate ShiftM

Em (M)⊂M by definition). For this,
one simply uses the fact that these maps are compositions involving the maps v̂ Em,n ,
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û Em,n and ûn (see (3-6)). The desired diagrams are then built from compositions of
the periodic commuting squares in diagrams (3-4), (3-2) and (3-3); see Lemma 3.2
and Lemma 3.4. Hence the desired diagrams are commuting squares. Periodicity
is shown as in Lemma 3.2, and we can use the formula for the index, as done there.
It follows from parts (b) and (d) of Lemma 3.1 that the ratio of the square lengths
of the weight vectors for Asn and Asn+| Em| is equal to (dim X)2| Em|.

The statement on the relative commutant follows from the definition of ShiftM
Em .

Let us represent ShiftM
Em (b), for b ∈ Asn (s = 3 to make things simpler) as it appears

in Figure 11. Then for a ∈ (t Em ⊗ 1sn)(Am1 ⊗· · ·⊗ Ams ⊗ 1sn)(t∗Em ⊗ 1sn) ∈ A| Em|+sn

we have a ShiftM
Em (b)= ShiftM

Em (b)a, as follows from this figure representing the two
sides:

nm3 n n

t Em un

=u∗nbun

t∗
Em u∗n

a1 a2 a3

u∗nbun

t∗
Em u∗n

m2

a1 a2 a3
m1 m2 nm3 n n

t Em un

m1

Hence, (t Em⊗1sn)(Am1⊗· · ·⊗Ams⊗1sn)(t∗Em⊗1sn)∼= Am1⊗· · ·⊗Ams commutes
with ShiftM

Em (b) for b ∈ Asn , for every n, so that ShiftM
Em (M)

′
∩M has a subalgebra

isomorphic to Am1 ⊗ · · ·⊗ Ams . This proves the last statement of (a).
For (b), one observes that the generating square for (û Em ◦ ShiftN

Em)(N) ⊂ M is
obtained from the double-square given in (3-4) of proof of Lemma 3.5(a) (which
defines the endomorphism ShiftN

Em), composed with the square given in (3-3) (which
defines the inclusion û Em :N→M). These squares are commuting squares (the one
in (3-4) because it involves maps that are trace preserving, and the one in (3-3) was
shown in Lemma 3.4). So their composition, which generates (û Em ◦ShiftN

Em)(N)⊂

M, gives also a commuting square. The indices for parts (b) and (c) can now be
computed as before, using Lemma 3.1. It only remains to show the statement about
the relative commutant.

Lemma 3.5(c) implies that ShiftM
Em (un A⊗s

n u∗n)= 1| Em|⊗un A⊗s
n u∗n for every n. So

A| Em|⊗ 1sn commutes with ShiftM
Em (un A⊗s

n u∗n) for every n and (ShiftM
Em ◦ û)(N)′ ∩M

(= (û Em ◦ ShiftN
Em)(N)

′
∩M) has a subalgebra isomorphic to A| Em|. Conversely, for

the other inclusion, we apply a dimension upper bound result for relative commu-
tants of inclusions generated by periodic commuting squares (see [Wenzl 1988],
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Theorem 1.6):

dim
(
(ShiftM

Em ◦ û)(N)′ ∩M
)
≤ dim

(
(1| Em|⊗ un A⊗s

n u∗n)
′

p ∩ (A| Em|+sn)p

)
≤ dim (A| Em|+sn)p,

for any projection p ∈ 1| Em| ⊗ un A⊗s
n u∗n , and n large. If n is divisible by k and

sufficiently large, then X⊗n contains a subobject isomorphic to 1; let p1 ∈ An be
the projection onto it. If p=1| Em|⊗un(p⊗s

1
)u∗n ∈ A| Em|+ns , then we have p A| Em|+ns p∼=

A| Em|. This shows (b).
For (c), it is even easier than in (a) to show that the generating Diagram (3-4)

for ShiftN
Em(N)⊂N is a periodic commuting square; one can see that pictorially, as

it was done in Lemmas 3.2 and 3.4, which is left to the reader. The statement about
the relative commutant in (c) is proved in the same manner as in (b): By definition,
ShiftN

Em(a1⊗ · · · ⊗ as) = (1m1 ⊗ a1)⊗ · · · ⊗ (1ms ⊗ as). Thus, (Am1 ⊗ 1n)⊗ · · · ⊗

(Ams ⊗ 1n) commutes with ShiftN
Em(A
⊗s
n ) for every n, and so ShiftN

Em(N)
′
∩N has a

subalgebra isomorphic to Am1⊗· · ·⊗ Ams . For the other inclusion we apply again
the upper bound result for the dimension of the relative commutant:

dim
(
ShiftN

Em(N)
′
∩N

)
≤ dim

(
(1m1 ⊗ An)⊗ · · ·⊗ (1ms ⊗ An)

)′
p ∩ (An+m1 ⊗ · · ·⊗ An+ms )p

≤ dim(An+m1 ⊗ · · ·⊗ An+ms )p,

for any projection p ∈ (1m1⊗ An)⊗· · ·⊗ (1ms ⊗ An). One shows as in (b) that for
p= (1m1⊗p1)⊗· · ·⊗(1ms⊗p1)we have (An+m1⊗· · ·⊗An+ms )p∼= Am1⊗· · ·⊗Ams ,
from which one deduces (c). �

4. Bimodules and the principal graph

4A. Examples of bimodules. We are going to construct systems of bimodules in
order to calculate the principal and the dual principal graph, as described in Propo-
sition 1.8. This will be done using the endomorphisms Shift defined in the last
section.

The N–N-bimodules. Let λi ∈ 3 and let Ami ,λi be the simple component of Ami

corresponding to the simple object Xλi ⊂ X⊗mi with mi being large multiples
of k for i = 1, 2, . . . , s. We first fix minimal projections pλi ∈ Ami ,λi . Define
pEλ = pλ1 ⊗ · · · ⊗ pλs , where Eλ = (λ1, . . . , λs). The underlying Hilbert space will
be given by

L2(N, tr)pEλ := {ζ pEλ, ζ ∈ L2(N, tr)}.

The N–N bimodule structure is defined by

x .ξ.y = xξShiftN
Em(y), for x, y ∈ N, ξ ∈ L2(N, tr)pEλ,
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where we use the usual right and left multiplication in N on the right hand side. It
follows from Proposition 3.6 that this indeed defines an N–N bimodule structure
on L2(N, tr)pEλ.

Definition 4.1. The N–N bimodules defined above will be denoted by NEλ, Em .

The M–N-bimodules. Again let Em := (m1, . . . ,ms)∈Ns , with m :=m1+· · ·+ms .
We fix a minimal projection pµ ∈ (ShiftM

Em ◦ û)(N)′∩M∼= Am (see Proposition 3.6)
belonging to the simple component of Am labeled µ ∈3. The underlying Hilbert
space for all these bimodules will be given by

L2(M, tr)pµ := {ζ pµ / ζ ∈ L2(M, tr)}.

The M–N bimodule structure is defined by

x .ξ.y = xξ(ShiftM
Em ◦ û)(y), for x ∈M, y ∈ N, ξ ∈ L2(M, tr)pµ.

Definition 4.2. The M–N-bimodules defined above will be denoted by Hµ, Em .

The N–M-bimodules. With notations as in the last definition, we define similarly
N–M-bimodules based on Hilbert spaces pµL2(M, tr) := {pµζ / ζ ∈ L2(M, tr)},
and with the N–M bimodule structure defined by

x .ξ.y = (ShiftM
Em ◦ û)(x)ξ y, for x ∈ N, y ∈M, ξ ∈ pµL2(M, tr).

Definition 4.3. The N–M-bimodules defined above will be denoted by Kµ, Em .

The M–M-bimodules. Similarly as for the N–N-bimodules, we fix minimal projec-
tions pλi ∈ Ami ,λi , with λi ∈3, but now only requiring that

∑
mi being divisible

by k. The underlying Hilbert space for all these bimodules will be given by

pEλL2(M, tr) := {pEλζ/ ζ ∈ L2(M, tr)}.

The M–M bimodule structure is defined by

x .ξ.y = ShiftM
Em (x)ξ y, for x, y ∈M, ξ ∈ pEλL2(M, tr),

Definition 4.4. The M–M-bimodules defined above will be denoted by MEλ, Em .

Lemma 4.5. Let the notation be as above.

(a) If we view both NEλ, Em and Hν, Em as left N-modules, then

dimN NEλ, Em = dEλ/(dim X)| Em| and dimN Hν, Em = dν[M : N]/(dim X)| Em|.

Moreover, we have ind(NEλ, Em) = d2
Eλ
= ind(MEλ, Em), where dEλ =

∏
dλi , and

ind(Hν, Em)= d2
ν [M : N].

(b) If | Em| = |Ek|, then Hµ, Em ∼= Hµ,Ek as M–N-bimodules, and Kµ, Em ∼= Kµ,Ek as
N–M-bimodules.
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(c) If | Em| = |Ek|, we have

HomM–M(MEλ, Em,M
Eµ,Ek)⊂ HomN–M(MEλ, Em,M

Eµ,Ek)
∼= HomC(XEλ, X Eµ),

where XEλ =⊗
s
i=1 Xλi and X Eµ =⊗s

i=1 Xµi .

Proof. It is well known (see [Jones 1983], for instance) that dimN L2(N, tr)p =
tr(p) and dimN L2(M, tr)q = tr(q)[M : N] for any projections p ∈ N, q ∈M. The
dimension statements in (a) follow. For the index statements in (a), let ` and r
denote left and right multiplication by N on L2(N, tr) or suitable submodules of it.
Observe that `(N)′

|L2(N,tr)p is equal to r(pNp) for any p ∈ Shift Em(N)′ ∩N. Recall

that Shift Em(N)⊂N has index (dim X)2| Em|. Moreover, tr(pEλ)= dEλ/(dim X)| Em| for a
minimal idempotent pEλ∈Shift Em(N)′∩N; see Proposition 3.6. Using the formula for
local indices [Wenzl 1988, Theorem 1.5(iii)] and the index formula in Proposition
3.6(c), we obtain

ind(NEλ, Em)= [pEλNpEλ : pEλShift Em(N)] = tr(pEλ)
2(dim X)2| Em| = (dEλ)

2.

The indices for Hν, Em and MEλ, Em are computed similarly. By Lemma 3.5, (c), we
have ShiftN

Em = ShiftN
Ek

, from which (b) follows.
Let Em L2(M, tr) be the Hilbert space L2(M, tr) with M–M bimodule structure

x .ξ.y = ShiftM
Em (x)ξ y for x, y ∈M and ξ ∈ L2(M, tr). Define Ek L2(M, tr) similarly.

These bimodules are isomorphic as N–M bimodules, again by Lemma 3.5(c). This,
combined with Lemma 3.5(b), results in

HomM–M( Em L2(M, tr), Ek L2(M, tr))⊂ HomN–M( Em L2(M, tr), Ek L2(M, tr))∼=

∼= EndN–M( Em L2(M, tr))∼= A| Em| = EndC(X⊗| Em|), (∗)

where the second isomorphism follows from Proposition 3.6(b), and (b). By con-
struction, we have MEλ, Em = pEλ( Em L2(M, tr)) and M

Eµ,Ek = p Eµ(Ek L2(M, tr)), where
pEλ= pλ1⊗· · ·⊗ pλs and p Eµ= pµ1⊗· · ·⊗ pµs . Hence we can interpret an element
f ∈HomM–M(MEλ,M Eµ) as an element in HomN–M( Em L2(M, tr), Ek L2(M, tr)) which
satisfies p Eµ f pEλ = f . Using this together with (∗) proves claim (c). �

4B. Principal graph. Let Eλ= (λ1, . . . , λs) ∈ (3
′)s , and let Lν

Eλ
be the multiplicity

of the object Xν in⊗Xλi . Observe that Lν
Eλ

is also equal to the rank of the projection⊗
pλi in the simple component of A

|Eλ| labeled by ν.
In the following we will fix a vector Em = (mi ) where all its coordinates are

divisible by k, and with mi large enough that all simple objects of C′ will appear
in X⊗mi for i = 1, . . . , s. We shall hence omit Em in the indices of the bimodules
and will just write NEλ and Kν for NEλ, Em and Kν, Em , respectively.

Theorem 4.6. With the notation as above:

(a) The bimodules NEλ and Hν defined above are irreducible.
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(b) The principal graph for N ⊂ M is the connected component of the fusion
graph from (C′)s to C′ which contains the trivial object of C. Recall that the
even vertices of the fusion graph are labeled by s-tuples of elements of 3′,
the odd vertices are labeled by the elements of 3′, and the vertex labeled by
Eλ= (λ1, . . . , λs) is connected with the vertex labeled by ν by Lν

Eλ
edges.

(c) The subfactor N⊂M has finite depth.

Proof. Statement (a) follows from Proposition 3.6. For (b), it suffices to calculate
the principal graph for the isomorphic inclusion N ⊂M given by û Em (see Lemma
3.4). In this case the M–N bimodule structure of L2(M, tr) is given by x .ξ.y =
xξ û Em(y). It follows from the definitions that L2(M, tr)⊗N NEλ ∼= L2(M, tr)pEλ ∼=
⊕Lν
Eλ

Hν ; the decomposition of L2(M, tr)pEλ into irreducible M–N bimodules fol-
lows from Proposition 3.6(b) and the remarks at the beginning of this subsection.
Hence our system of bimodules (NEλ)Eλ∈(3′)s and (Hν)ν∈3′ is closed under induction.
To prove closedness under restriction, observe that the multiplicity of the N–N

bimodule NEλ in the M–N-bimodule Hν , viewed as an N–N-bimodule, is equal to
Lν
Eλ
, by Frobenius reciprocity. To show that Hν ∼=

⊕
Eλ Lν
Eλ
NEλ as an N–N-bimodule,

it suffices to prove that both sides have the same dimension, i.e., by Lemma 4.5(a),
that

(4-1) [M : N]dν =
∑
Eλ

Lν
Eλ
dEλ.

For this observe that the dimension vectors for A⊗s
n and Ans , with n a multiple of k,

are given by Etns = (dEλ/(dim X)ns)Eλ and Evns = (dν/(dim X)ns)ν , with Eλ∈ (3′)s and
ν ∈ 3′. Observe that the subfactor N ⊂ M is generated by the periodic sequence
(A⊗s

n ⊂ Ans), with the inclusion matrix for A⊗s
n ⊂ Ans given by G= (Lν

Eλ
)with Eλ and

ν as above, provided k|n. Hence it follows from [Wenzl 1988], Theorem 1.5(ii),
that GEvns = [M :N]Etns . This implies (4-1). Finally, if we choose Eλ= (1,1, . . . ,1)
(s times), where 1 stands for the trivial object of C, ind(NEλ) = 1 and hence NEλ is
weakly reduced from the trivial N–N bimodule by Proposition 1.8(c). This shows
(b), by Proposition 1.8(a). Statement (c) is a consequence of (b). �

Remark 4.7. The fusion graph from (C′)s to C′ may not be connected. An easy
example is obtained for C being the representation category of a finite abelian
group G, where it decomposes into |G| connected components.

5. Dual principal graph

5A. Ring lemma. The precise structure of Shift Em(M)′∩M is still open after Propo-
sition 3.6. To say more about this, we need the following lemma. Similar tech-
niques have appeared before in topological quantum field theory, and within sub-
factors in work of Ocneanu and others; see [Evans and Kawahigashi 1998; Müger
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2003], for example. Dual principal graphs in a similar setting (corresponding to
the case s = 2) have also been calculated in [Izumi 2000] by somewhat different
techniques.

Lemma 5.1. If a ∈ Shift Em(M)′ ∩M, take ã := t∗
Emat Em with t Em ∈ A| Em| as in Figure 6.

Then, for r = 2, . . . , s, we have

m1
2n

=

2n

mr+1 msmrmr−1

· · ·· · ·

ã
· · ·

ã

msmrm1

· · ·

Figure 13

(the picture is the translation of an algebraic expression of the form ιrX (ã⊗1sn)ι
r
X
∗
=

ιrX xr (ã⊗ 1sn)x∗r ι
r
X
∗ for certain morphisms xr and ιrX defined below).

Proof. By Proposition 3.6(b) and our definition of the inductive limit, we have
Shift Em(M)′ ∩M∩ A| Em|+ns ⊂ A| Em|⊗ 1ns . Take t Em ∈ A| Em| as in Figure 6 in Lemma
3.4. If a ∈ Shift Em(M)′ ∩M then set

ã⊗ 1sn := (t∗Em ⊗ u∗n)a(t Em ⊗ un)= t∗
Emat Em ⊗ 1sn ∈ A| Em|⊗ 1sn,

and note that ã⊗1sn ∈
(
(t∗
Em⊗u∗n)Shift Em(M)(t Em⊗un)

)′
∩M. In particular, take the

element xr := (t∗Em⊗u∗n)Shift Em(unTr u∗n)(t Em⊗un), for r = 2, . . . , s, where Tr ∈ Asn

is obtained from the braiding morphisms and can be represented by

. . .. . .
nnnn n

(r−1)n

n

(s−r+1)n

Tr =

We use Figure 11 in the proof of Lemma 3.5 to see that xr is as in Figure 14.
Also note that xr is a unitary, so that (ã⊗1sn)xr = xr (ã⊗1sn) implies (ã⊗1sn)=

xr (ã⊗ 1sn)x∗r :
To obtain the relations in our statement in Figure 15, we proceed by closing

strands in Figure 15 with cups and caps to form the loops (the caps and cups
correspond to dual morphisms as described in Section 2B). This is done as follows:
Let rh and lh be the left and right hand sides of Figure 15. Then we also obtain
rh⊗1(X̄)sn = lh⊗1(X̄)sn . We now multiply both sides with 1X⊗| Em|⊗ iX⊗sn from the
right (below) and by its conjugate from the left (above). The morphism iX⊗sn and
its conjugate correspond to the pictures in Figure 16, which are obtained from the
properties of the duality morphisms; see Section 2B. It is easy to check that we
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(s−r)n nn(r−2)n

sn| Em|

mr

. . . . . .xr =

msm1

Figure 14. xr := (t∗Em⊗u∗n)Shift Em(unTr u∗n)(t Em⊗un).

(s−r)n

n(r−2)n

sn| Em|

nms

ã ã

m1 mr

. . .

. . .

snmsm1

=

. . .

Figure 15. (ã⊗1sn)= xr (ã⊗1sn)x∗r .

1

XX X

X⊗(sn)

. . . . . .

X⊗(sn)

X

X⊗(sn)X⊗(sn)

XXX
. . .. . .

1

X

Figure 16. ι∗X⊗(sn) and ιX⊗(sn) .

obtain (s − 2)n unlinked circles on the right hand side, which correspond to the
scalar (dim X)(s−2)n . Canceling this with the same number of circles on the left
hand side, we obtain the picture as claimed in the statement. �

Corollary 5.2. The equality in Lemma 5.1 still holds if the rings on both sides are
labeled by an irreducible object in C′.

Proof. Assume that k|n. Then the proof of Lemma 5.1 works as well if we multiply
Tr by 1(r−1)n⊗p1⊗1(s−r+1)n⊗pµ where p1 and pµ are projections onto irreducible
objects appearing in X⊗n isomorphic to 1 and to Xµ, respectively. Going through
the proof of Lemma 5.1, we obtain the statement of the corollary at the end. �



SUBFACTORS FROM BRAIDED C∗ TENSOR CATEGORIES 389

5B. Notations and preliminaries. For any braided semisimple tensor category C

we can define a scalar sλµ=Tr(cµ,λcλ,µ), where cλ,µ is the braiding morphism for
Xλ ⊗ Xµ. The S-matrix is then given by (sλµ), where the rows and columns are
labeled by the simple objects of C.

Let now D be a full subcategory of C. We define TD to be the set of simple
objects Xλ in D for which sλµ= dim(Xλ) dim(Xµ) for all simple objects Xµ in C′.
We will primarily be interested only in the cases D = C and D = C′. We usually
assume D to be fixed, in which case we may just write T for TD.

Let X =
⊕

λ mλXλ, Y =
⊕

nλXλ be objects in C, and let f : X → Y be a
morphism. Then f can be written as f =

⊕
fλ, where fλ : mλXλ→ nλXλ. For

given f : X→ Y , we define the morphism fT : XT→ YT, where fT =
⊕

Xλ∈T fλ,
and XT, YT are defined accordingly. Also, we define pT(X) ∈ End(X) to be the
projection from X onto XT.

For a fixed object Z in C and a morphism f : X → Y we define the morphism
PZ ( f ) : X→ Y by

f

X

Y

ZPZ ( f )=

Of course this picture corresponds to an algebraic expression involving rigidity
and braiding morphisms. One can also check that for Z = Z1⊗ Z2, the operation
PZ is also given by a picture involving two parallel rings labeled by Z1 and Z2.
If Xλ, Xµ are simple objects in C, it follows from the definitions that PXµ(1Xλ)=

(sλµ/dλ)1Xλ . For a formal linear combination � =
∑

µ ωµXµ, with Xµ simple
objects in C, the morphism P�( f ) can also be expressed as the sum

∑
µ ωµPXµ( f ).

The following lemma is well-known and follows from the definitions:

Lemma 5.3. With notations above,

PXµ( f )=
∑
λ

sλµ
dλ

fλ and P�( f )=
∑
λ,µ

ωµ
sλµ
dλ

fλ.

We now state a straightforward generalization of the results in [Bruguières 2000,
Lemma 1.3].

Proposition 5.4. Fix the category D and let T=TD. There exists a linear combina-
tion�=

∑
µ∈3′ ωµXµ such that P�( f )= fT for any morphism f in D. Moreover,∑

µ ωµdµ = 1.



390 JULIANA ERLIJMAN AND HANS WENZL

Proof. We adapt the arguments in the proofs of [Bruguières 2000, Lemmas 1.2
and 1.3] to our setting. By Lemma 5.3, we have to find scalars ωµ, µ ∈ 3′ such
that

∑
µ∈3′ ωµ(sλµ/dλ) is equal to 1 or 0 depending on whether Xλ ∈ T or not.

Observe that the second statement will also follow from this as sλµ = dλdµ for
Xλ ∈ T.

To do so, pick an object X =
⊕

λ∈3(D) mλXλ in D with mλ 6= 0 for all λ∈3(D).
Let zλ denote the corresponding minimal idempotent in the center of End(X). Then
PXµ(zλ)=

sλµ
dλ

zλ. It also follows immediately by drawing pictures that PZ1⊗Z2( f )=
PZ1(PZ2( f )) for any f ∈End(X) (see also the proof of [Bruguières 2000], Lemma
1.2). Hence we obtain a representation of the fusion algebra of C′ on V , the C-span
of the idempotents zλ, λ ∈3(D), with each PXµ acting via a diagonal matrix with
respect to the basis of zλ’s. It follows from Lemma 5.3 that PXµ acts via the same
scalar on the central idempotent zλ as on z1, for all simple objects Xµ in C′, if and
only if λ ∈ T. Hence the projection onto span{zλ, Xλ ∈ T} is in the image of the
fusion algebra, which is spanned by the PXµ’s. So we can find scalars ωµ such that
this projection is written as

∑
µ∈3′ ωµPXµ . The claim follows from this. �

5C.. Let f :
⊗s

i=1 Xλi →
⊗s

i=1 Xµi be a morphism. We define, for r = 1, . . . , s,
the morphism f̂r :

⊗s
i=r+1 Xλi ⊗ Xµi →

⊗r
i=1 Xλi ⊗ Xµi using rigidity and braid-

ing morphisms for suitable objects as indicated in Figure 17; if r = s, the source
of f̂s is defined to be 1. For instance, we have

f̂1 = α ◦ (1λ̄1
⊗ f ⊗ 1µ̄2 ⊗ · · ·⊗ 1µ̄s ) ◦β,

. . .

. . . . . .. . .

f

. . .

µrµ2µ1

λ1 λ2

. . .

λr

λr+1 λsλs−1

µs−1 µs

µr+1

. . .

f̂r =

. . .

. . . . . .

Figure 17. f̂r :
⊗s

i=r+1 Xλi ⊗ Xµi →
⊗r

i=1 Xλi ⊗ Xµi .
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for suitable morphisms α and β. We set f̂ = f̂s .

Corollary 5.5. Let f ∈ HomM–M(MEλ,M Eµ) (with the notation as explained at the
beginning of Section 4B), viewed as an element in HomC(XEλ, X Eµ) (see Lemma
4.5(c)), and let P� be as in Proposition 5.4. Then f̂r = P�( f̂r )= ( f̂r )T.

Proof. Fix r , and put a ring around f as it was done for ã in Lemma 5.1. By
Corollary 5.2 the equality there also holds if we label the ring by � =

∑
ωµXµ,

with the ωµ as in Proposition 5.4. Observe that the ring on the left hand side
becomes the scalar

∑
µ ωµdµ = 1, by Proposition 5.4. Now multiply both sides

with suitable morphisms which change f to f̂r , such that all strands ending up go
under the ring, and all strands ending at the bottom go above the ring. Then the
right-hand side is equal to P�( f̂r ), which is equal to the left-hand side, f̂r . But by
Proposition 5.4 P�( f̂r )= ( f̂r )T. �

Lemma 5.6. If f ∈ Hom(MEλ,M Eµ) then f̂ = (⊗s
i=1 pT(Xλi ⊗ Xµi )) f̂ .

Proof. We will prove by induction on r that f̂r = (⊗
r
i=1 pT(Xλi ⊗ Xµi )) f̂r . For

r = 1, we have
f̂1 = P�( f̂1)= ( f̂1)T,

by Corollary 5.5. This proves the claim for r = 1, as the target of the morphism
f̂1 is X̄λ1 ⊗ Xµ1 . For the induction step we use the inductive formula for f̂r+1, as
given in the figure:

f̂rf̂r+1 =

λr+2 λsλs−1

. . .

. . .

µr−1 µr

λr+1 µ̄r+1

λ̄2µ1λ̄1

µ̄s

λ̄r

We obtain from this and the induction assumption that

f̂r+1 = [(⊗
r
i=1 pT(Xλi ⊗ Xµi ))⊗ 1Xλr+1⊗Xµr+1

] f̂r+1.

By Corollary 5.5 (as for the case r = 1) we also obtain

f̂r+1 = P�( f̂r+1)= pT(⊗
r+1
i=1 Xλi ⊗ Xµi ) f̂r+1.
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If Xλ is an object in T, then so is X̄λ. It follows that the tensor product of simple
objects Xλ⊗ Xµ is in T for Xλ ∈T only if also Xµ is in T. One deduces from this
and the last two formulas that

f̂r+1 = pT(
⊗r+1

i=1 Xλi ⊗ Xµi )
(
(
⊗r

i=1 pT(Xλi ⊗ Xµi ))⊗ 1Xλr+1⊗Xµr+1

)
f̂r+1

=
⊗r+1

i=1 pT(Xλi ⊗ Xµi ) f̂r+1.

This proves the claim by induction on r . �

5D.. It can be shown under fairly weak conditions that the category T is equivalent
to the representation category of a finite group G, see the papers [Bruguières 2000]
and [Müger 2000]. In the following, we shall require in addition that T is equivalent
to the representation category of a finite abelian group G, for any choice of D. In
this case, every simple object in the subcategory T is invertible. Moreover, we
can and will label the simple objects of T by the elements of G in such a way that
Xg⊗Xh∼= Xgh for any g, h ∈G. Then we get a G-action on the index set3 defined
by Xg.λ = Xg ⊗ Xλ. We shall also need the subgroup Gs

1 of Gs consisting of all
s-tuples (g1, g2, . . . , gs) which satisfy g1g2 · · · gs = 1. The just defined G-action
extends to an action of Gs

1 on 3s in the obvious way.

Proposition 5.7. Under the above assumptions we have

(a) Hom(MEλ,M Eµ) 6= 0 only if there exists a g ∈ Gs
1 such that Eµ= g.Eλ.

(b) dim End(MEλ)≤ |StabGs
1
Eλ|.

Proof. We use notations as in Lemma 5.6. By our assumptions, we have pT(Xλi ⊗

Xµi ) = 0 unless we can find an element gi ∈ G such that Xgi ⊂ Xλi ⊗ Xµi . This
implies gi .λi = µi , and hence Eµ = g.Eλ for some g ∈ Gs . Moreover, we have a
nonzero morphism from 1 to⊗Xgi if and only if

∏
gi = 1. This shows that g ∈Gs

1,
by Lemma 5.6.

By the discussion in the previous paragraph, the dimension of

Hom(1,⊗i pG(Xλi ⊗ Xλi ))

is equal to the cardinality of all s-tuples g= (gi ) of elements of G for which g.Eλ=Eλ
and whose product

∏
gi is equal to 1. These are exactly the elements of StabGs

1
Eλ.

The claim now follows from the fact that the map f 7→ f̂ is injective; indeed, it is
easy to construct a left-inverse by multiplying f̂ by a suitable combination of ∩’s
and ∪’s to get back f . �

Theorem 5.8. If the S-matrix for the category C′ is invertible, the dual principal
graph for the inclusion N ⊂ M coincides with its principal graph. In particular,
each M–M bimodule MEλ, with Eλ= (λi ) such that each λi labels a simple object in
C′ is irreducible.
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Proof. We will use the results of Lemma 5.6 and of Proposition 5.7 for the category
C′ (recall that its simple objects appear in tensor powers of X whose exponents are
divisible by k). If the S-matrix is invertible, the group G corresponding to the
category TC′ is the trivial group. Hence there are no nonzero morphisms between
MEλ and M Eµ for Eλ 6= Eµ, and each M–M-bimodule MEλ is irreducible by Proposition
5.7. It follows from the definitions (see before Theorem 4.6) that the multiplicity
of a simple N–M bimodule Kν in the simple M–M bimodule MEλ is equal to Lν

Eλ
.

Observe that ind(Kν)= d2
ν [M : N] and ind(MEλ)=

∏
i d2
λi

. It follows that∑
ν∈3′

d2
ν [M : N] =

(∑
ν∈3′

d2
ν

)s

=

∑
Eλ∈(3′)s

∏
i

d2
λi
.

Hence
∑

ν∈3′ ind(Kν) =
∑
Eλ∈(3′)s ind(MEλ). Hence any simple N–M-bimodule in

a higher relative commutant has as a weak reduction an element in (Kν)ν∈3′ , by
Theorem 4.6. As our original inclusion N ⊂ M is of finite depth by Theorem
4.6(c), it follows from Lemma 1.10(a) that there can not be any additional M–M-
bimodules in the higher relative commutants. �

5E. Noninvertible S-matrix. We shall make the following assumptions: We as-
sume that the category T for our chosen category D = C is equivalent to the
representation category of a finite abelian group G, and, moreover, that |G| = k,
with k as defined in Section 3A. This also implies that |Gs

1| = ks−1. For λ ∈ 3
we also define |λ| to be the residue class mod k such that |λ| ≡ n mod k whenever
Xλ ⊂ X⊗n .

Theorem 5.9. Let the conditions be as just stated.

(a) EndM–M(MEλ) has dimension |StabGs
1
Eλ| for any Eλ∈3s

0 :=
{
Eλ∈3s

: k|
∑
|λi |

}
.

(b) The even vertices of the dual principal graph of the inclusion N ⊂ M are
labeled by the equivalence classes of irreducible components of the bimodules
MEλ, with Eλ ∈3s

0.

Proof. Let MEλ =
⊕

i mi QEλ,i be the decomposition of the M–M bimodule MEλ
into irreducible M–M-bimodules, the mi being multiplicities. Then it follows from
Lemma 1.10(b), and Proposition 5.7 that∑

i

ind(QEλ,i )≥
ind(MEλ)

dim(End(MEλ))
≥

ind(MEλ)

|StabGs
1
Eλ|
.

Now let (Q j ) j =
⋃
Eλ(QEλ,i )i be the collection of nonisomorphic representatives of

irreducible M–M submodules of any module MEλ with Eλ ∈3s
0. Then∑

j

ind(Q j )≥
∑

Gs
1−orbits∈3s

0

ind(MEλ)

|StabGs
1
Eλ|
=

1
ks−1

∑
Eλ∈3s

0

ind(MEλ).
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Using Lemma 4.5(a) and Lemma 3.1(d) one sees that this equals

=
1

ks−1

(
1
k

∑
Eλ∈3s

d2
Eλ

)
=

(∑
λ∈3′

d2
λ

)s

.

But the last sum is equal to
∑

ν∈3′ ind(Kν), as was already shown in the proof
of Theorem 5.8. Hence the inequalities above must be equalities, and our set of
bimodules (Q j ) j must already exhaust all possible M–M-bimodules in the higher
relative commutant, by Lemma 1.10. �

Remark 5.10. If the stabilizer StabGs
1
Eλ is trivial, which usually is the case for most

labels, the bimodule MEλ is irreducible, and its decomposition into N–M-bimodules
is again determined by the fusion coefficients Lν

Eλ
. Unfortunately, our theorem does

not say anything about what End(MEλ) looks like if |StabGs
1
Eλ| ≥ 4. For example,

if the stabilizer has four elements, End(MEλ) could be isomorphic to C4 or to the
2× 2 matrices. Neither does it say how the submodules of MEλ decompose into
irreducible N–M modules in these cases.

6. Examples

6A. Examples of C∗-tensor categories. (1) The easiest example for our set-up is
the representation category Rep(G) of finite-dimensional unitary representations
of a finite group. In order to avoid degenerate trivial cases, we take for X in our
construction an object such that some tensor power of it contains the whole group
ring CG as a subobject. For example, for G a finite cyclic group, we could take
the direct sum of the trivial and of a faithful one-dimensional representation. For
these examples, the braiding structure is just given by the permutation of tensor
factors, which commutes with the group action. This makes the S-matrix a rank 1
matrix, meaning it is noninvertible unless G is trivial. However, at least in principle,
the dual principal graph can be computed from a general result about fixed point
algebras of a group K and its subgroup H . In our setting, K = Gs and H ∼= G,
which is embedded by g ∈ G 7→ (g, g, . . . , g) (s times). See [Kosaki et al. 1997]
for details.

In the special case when the subgroup K is normal, we obtain principal and dual
principal graphs of the factor group H/K . This is the case in our setting if G is
abelian.

(2) Let ρ be a II1 factor representation of the infinite braid group B∞ such that
the Jones index for the inclusion of factors ρ(B2,∞)

′′
⊂ ρ(B∞)

′′ is finite. Let us
define An = ρ(Bn+1,∞)

′
∩ρ(B∞)′′ (recall that finite index implies that the relative

commutant is finite-dimensional). We moreover assume that there exists, for some
k ∈ N, a projection p ∈ Ak such that pρ(B∞)′′ p = pρ(Bk+1,∞)

′′. It is possible to
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define from this a C∗-tensor category, with the objects being the projections in An .
Most of this has already been done in [Wenzl 1993], Section 2, without mentioning
categories. We shall not do this here. We just remark that the constructions of this
paper will work in this setting without explicitly exhibiting the category; this has
already been done in [Erlijman 2001]. In particular, this can be applied to the Jones
subfactors as well as to the Hecke algebra and BCD type subfactors.

(3) Let Uqg be the Drinfeld–Jimbo deformation of the universal enveloping algebra
Ug of a semisimple Lie algebra g. It is well-known that the category of its finite-
dimensional representations has a braiding structure. It can not be unitarized except
for q = 1. If q is a root of unity 6= 1, one can define a special class of represen-
tations called tilting modules which again forms a braided tensor category. It can
be shown that the category of tilting modules has a semisimple quotient with only
finitely many simple modules up to equivalence; this is often referred to as a fusion
category (see [Andersen 1992],[Andersen and Paradowski 1995]). Moreover, for
q being certain roots of unity (usually of the form q = e±2π i/ l for suitable integers
l (see [Wenzl 1998] for precise values), this quotient can be unitarized. This yields
a large and important class of C∗ tensor categories. Using the one-sided subfactor
construction, one obtains the Jones subfactors for X being the Uqsl2-analog of
the 2-dimensional representation of sl2. Similarly, Hecke algebra subfactors and
BCD type subfactors can be obtained from fusion categories of quantum groups of
classical Lie types.

These C∗-fusion categories can also be obtained by a completely different con-
struction using the category of positive energy representation of a loop group. The
difficulty in this construction comes from the fact that one can not use the usual
tensor product for representations; instead one has to define a new, so-called fusion
tensor product (see [Wassermann 1998]).

(4) Let N ⊂ M be an inclusion of II1 factors with finite index and finite depth.
Then the category of N–N bimodules obtained as direct sums of summands of the
bimodules

M⊗n
= M ⊗N M ⊗N · · · ⊗N M

(n times), n ∈ N defines a C∗-tensor category which may or may not be braided.
One can similarly also define the C∗-tensor category of M-M bimodules generated
by M⊗n .

If these categories are not braided, one can apply a general construction, called
the categorical quantum double construction to construct from our category of bi-
modules a larger braided C∗ tensor category. It was shown that this category is
equivalent to the category of M–M-bimodules for the asymptotic inclusion N⊂M

derived from N ⊂ M ; see [Müger 2003]. If the original category already was
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braided, the asymptotic inclusion coincides with the 2-sided inclusion constructed
in this paper.

(5) Our constructions of bimodules in this paper are based on certain endomor-
phisms of II1 factors. The approach to categories via endomorphisms has been
used for a long time for type III factors in the framework of algebraic quantum
field theory (see [Longo and Roberts 1997; Fredenhagen et al. 1989; Xu 2000], for
example). Here subtleties involving coupling constants do not matter, and objects
are given directly by morphisms.

6B. Examples for our construction. (1) We first list examples of C∗-tensor cate-
gories with invertible S-matrix.

(a) The S-matrix for the full fusion tensor categories as constructed in [Andersen
1992],[Andersen and Paradowski 1995] is invertible under the conditions for uni-
tarizability, as stated in [Wenzl 1998]. Hence if we can find an object X such that
all irreducible representation of the fusion category appear in some tensor power
of X , we have C′ = C and the dual principal graph is equal to the principal graph.
Such representations can be found in all cases, but usually can not be chosen to be
irreducible. For instance, for Lie type A (the case of Jones subfactors and Hecke
algebra subfactors), one can choose X =1⊕V , where V is the analog of the vector
representation.

(b) Similarly, the S-matrix for the quantum double of a C∗ tensor category is always
invertible (see [Müger 2003], for instance). Hence, as soon as we have found an
object X for which all irreducible representations of the double category appear
in some tensor power of X , the dual principal graph of our s-sided inclusion with
respect to X is equal to the principal graph.

(2) It turns out that our construction not only depends on the category C, but also
on the choice of the object X . Even though in the case of the fusion tensor cate-
gories the S-matrix for C is invertible, the S matrix for the category C′ may not
be invertible. For instance, for type A if one takes X = V , the S-matrix for C′ is
invertible only if the degree of the root of unity is coprime to k. If this is not the
case, however, our results for noninvertible S-matrices apply. This will be shown
in more detail in the following subsection at an example.

6C. Subfactors related to Jones subfactors. We illustrate our examples in some
detail for the fusion category C of Uqsl2, with q = e2π i/ l . There also exist other,
more elementary methods to construct these categories using the Temperley–Lieb
algebras; see [Turaev 1994], for example. As mentioned before, this is also one
of the cases where the subfactor constructions can be done on the level of braid
representations, as it was carried out in the original paper [Erlijman 2001].
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We give a brief description of this category. Up to isomorphism, we have exactly
l−1 simple objects in C, which are denoted by [i], 1≤ i ≤ l−1. The decomposition
of tensor products is given by

(6-1) [i]⊗ [ j] = [|i− j | + 1]⊕ [|i− j | + 3]⊕ · · ·⊕ [m],

where m is the minimum of i + j − 1 and 2l − 1− i − j . One sees easily that
[1] corresponds to the trivial object. It follows from the tensor product rules by
induction on n that all simple objects in [2]⊗n are labeled by even numbers if n is
odd, and by odd numbers if n is even. Hence k= 2 and the simple objects of C′ are
labeled by odd numbers. This explicitly describes the principal graph for N ⊂M,
constructed with X = [2], by Theorem 4.6.

Observe that [i] ⊗ [l − 1] = [l − i] for all 1 ≤ i < l. Hence the objects [1] and
[l−1] together with the operation⊗ form a group G which is isomorphic to Z/2Z.
Moreover, the S matrix is well-known to be of the form S = (sin(i jπ/ l)), up to a
scalar.

It is very easy to check that if l is even, then sin(i(l − 1)π/ l) = sin(iπ/ l) for
any odd i = 1, 3, . . . , l− 1. Hence the category T contains at least the objects [1]
and [l−1]. It contains no more simple objects as obviously sin(iπ/ l)= sin(i jπ/ l)
for 1 < j < l only if j = l − 1. So the conditions at the beginning of Section 5B
are satisfied with |G| = 2= k. We have shown most of the following

Proposition 6.1. Let N⊂M be the subfactor constructed from the s-sided inclusion
from the Jones subfactor at an l-th root of unity, with l even. Then we have

(a) The even vertices of the principal graph are labeled by all s-tuples of odd
positive numbers less than l and the odd vertices are labeled by all odd pos-
itive numbers less than l. The number of edges between two vertices can be
computed from the tensor product rule stated in (6-1).

(b) Each s-tuple of positive integers less than l whose sum is even and which con-
tains the number l/2 at most once labels an even vertex of the dual principal
graph; the number of edges emanating from such a vertex can be computed as
in (a). The M–M bimodules MEλ labeled by an s-tuple Eλ containing the number
l/2 exactly r > 1 times satisfies dim(End(MEλ))= 2r−1.

Proof. Part (a) follows from Theorem 4.6 and our explicit description of the simple
objects of C′. For part (b), we have already checked the conditions stated at the
beginning of Section 5B. It remains to calculate StabGs

1
Eλ for any Eλ∈3s . Recall that

the action of the nontrivial element of G on our labeling set is given by i 7→ l− i .
Obviously, the only fixed point is l/2 for l odd. It is now not hard to show that
Eλ ∈ 3s has a nontrivial stabilizer in Gs

1 if and only if r ≥ 2 of its components
are equal to l/2, and that in this case the stabilizer has exactly 2r−1 elements.
Statement (b) now follows from Theorem 5.9. �
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Remark 6.2. If s = 3, part (b) of the last proposition completely determines the
number of edges in the dual principal graph except for the decomposition of the
bimodule MEλ with Eλ= (l/2, l/2, l/2), which could decompose into the direct sum
of four nonisomorphic irreducible M–M bimodules or into the direct sum of two
isomorphic irreducible M–M bimodules.
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