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SUBFACTORS FROM BRAIDED C* TENSOR CATEGORIES

JULIANA ERLIJMAN AND HANS WENZL

We extend subfactor constructions originally defined for unitary braid rep-
resentations to the setting of braided C*-tensor categories. The categorical
approach is then used to compute the principal graph of these subfactors.
We also determine the dual principal graph for several important cases.
Here invertibility of the so-called S-matrix of a subcategory and certain
related group actions play an important role.

It was noted by Vaughan Jones that his examples of subfactors gave rise to
unitary braid representations. By this we mean representations of the infinite
braid group B, defined by infinitely many generators oy, 03, ... which satisfy
the familiar braid relations. Subsequently, unitary braid representations were used
by A. Ocneanu and by H. Wenzl to construct new examples of subfactors; here
the subfactor is given by the subgroup %, ~, generated by o7, 03, .... This con-
struction was denoted as the one-sided subfactor construction by J. Erlijman, as
opposed to her multisided subfactors. Here, for a given integer s > 1, the s-sided
subfactor is obtained as a suitable inductive limit of the embeddings of the quotients
of B =B, x --- x By, (s times) into B, for n — oo. She also computed the
indices of these subfactors and their first relative commutants.

The main motivation for this paper was to calculate the higher relative com-
mutants of Erlijman’s subfactors. To do this it is convenient to generalize the
above mentioned constructions to the setting of a braided C*-tensor category €
with only finitely many simple objects up to isomorphism. By definition of such
a category, we obtain a unitary representation of %,, in End(X®") for any object
X in ‘€. The constructions in our paper in the category setting follow closely the
above-mentioned braid constructions. They reduce to them in case that End(X®")
is generated by the quotients of &, for all n € N, where X is a generating object of
‘€. However, the categorical setting makes it easier to calculate the higher relative
commutants, and also contains new nontrivial examples.

The main results of our paper are as follows. We show that the first principal
graph is given by the fusion graph of (€¢')*, where €’ is a subcategory of ¢ depend-
ing on the tensor powers of X in which the trivial object appears. The fusion graph
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describes the decomposition of the tensor product of s simple objects of 6’ into
irreducible ones; see Theorem 4.6 for details. The situation is more complicated for
the dual (or second) principal graph. If a certain matrix depending on the braiding
structure, called the S-matrix for the category ', is invertible, the dual principal
graph coincides with the principal graph.

We do not have a general complete result in the case of a noninvertible S-matrix.
It is known that in this case there is a canonical subcategory I of ¢’ which is
equivalent to the representation category of a finite group G. If G is abelian, we
obtain an action of G on the set of irreducible objects of €, which is given by a
labeling set A. The dual principal graph can now be fairly precisely characterized
in terms of the orbits of the action of a group G} on A*; see Theorem 5.9 for details
and, for an example, Proposition 6.1.

The basic idea of our paper is that we explicitly construct a number of —%R
bimodules, with {s, B} C {N, M} and with N' C M being our s-sided inclusion. We
show that these examples of bimodules are closed under induction and restriction.
One deduces from this that the induction-restriction graph for these bimodules must
coincide with the principal or dual principal graph under some mild additional
assumptions.

Our findings are related to a number of results by different authors. If s = 2, our
subfactors correspond to the subfactors obtained from the asymptotic inclusion of
certain one-sided subfactors. In this case, the orbifold phenomenon for the dual
principal graph has first been observed by Ocneanu for the example of the Jones
subfactors. Further results have been obtained in [Evans and Kawahigashi 1998]
and [Izumi 2000]. In particular, some of our proofs have been inspired by these
results. More recently, after hearing a talk on this paper, M. Asaeda [2006] obtained
an analogue of the s-sided construction under more general conditions.

More or less the same combinatorics as in our paper also appears in the work of
Feng Xu [2000] on subfactors of type III; factors related to disconnected intervals.
In spite of the similarity of principal graphs and indices, his construction of these
subfactors is completely different from ours and relies on Wassermann’s loop group
construction, which has not appeared yet in print for all Lie types.

Here is a more detailed description of the contents of this paper. In the first
chapter we review some basic results on bimodules in the type II; setting. The
second chapter contains definitions concerning braided C* tensor categories. In
the third chapter we present the generalization of previous subfactor constructions
to the setting of braided C* tensor categories, as well as additional technical results.
This is used in the following section to construct certain bimodules and compute
the principal graph of these subfactors. In the last section we prove the already
mentioned results about the dual principal graph. We then discuss examples of our
construction including the case of the Jones subfactors.
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1. Bimodules
1A. Definitions.
Definition 1.1. Let o« and % be type II; factors, and let H be a Hilbert space.

(1) H is a left d-module if there exists an action of & on H determined by a
normal unital morphism A : s§ — B(H), where B(H) is the von Neumann
algebra of all bounded linear operators on H.

(ii) A right B-module H is a left B°PP-module (here, B°PP denotes the opposite
algebra of ).

(iii) H is an A-%B bimodule if it is a left sd-module, a right B-module, and if
the left and right actions intertwine. That is, if A : & — B(H) is the left
action, and if p : B°PP — B(H) is the right action, then we must have that
AMa)p(b) = p(b)A(a) forall a € A, b € %B.

(iv) If H and K are s{—% bimodules, we define the space of intertwiners, denoted
by Homy 5 (H, K), to be the set of linear bounded operators T : H — K such
that they intertwine the actions, in the sense that TAy(a) = Ag(a)T for all
aedAand Tpy(b) = pg(b)T for all b € B.

(v) Two % bimodules H and K are equivalent or isomorphic if there exists a
unitary operator in Homgy ¢ (H, K).

Definition 1.2. Let H be an s{—% bimodule with left action A and right action p.
The inclusion generated by H 1is the inclusion of factors given by

r(A) Cp(B).
The dual inclusion generated by H is the inclusion of factors given by
P(B) C A(A).

Remark 1.3. Similarly, if we have an inclusion of type II;-factors N' C M, we can
make L2 (M, tr) into an M—M, M—N', N—AM or N—N-bimodule via usual left and right
multiplication. If N' C Jl is a reducible inclusion, i.e., the relative commutant N’ N
is larger than C1, then we obtain further examples by reducing by projections in
the relative commutant. For example, if p € N’ N, we obtain the N—l bimodule
L2(p L, tr).

If ¢; : M — M are endomorphisms for i = 1, 2, we can also define an JM—/L-
bimodule structure on L2(L, tr) by perturbing the right and left actions by these
endomorphisms, that is, by defining the action by m.E.my = ¢ (m)Epr(my).

All the examples of bimodules encountered in this paper are of one of these
types or tensor products or direct summands of them.
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Definition 1.4. Let o0 and &B; be type II; factors for i = 1,2. Let H; be o-%;
bimodules with left actions A; and right actions p;, respectively, for i = 1, 2, and
assume that dimgy (Hp) < dimy(H;) < co. Then we say that H, is (left)-weakly
reduced or a (left)-weak reduction of H, if there exists a nonzero projection p €
%1 and an isomorphism WV : B, = pR, p such that Hyp := p,(b)H; and H, are
isomorphic & — RBy-bimodules; here the sd — B,-bimodule structure on € p is
defined by a.£.b = X (a)ép; (W (b)) fora € A,b € B, and € € H; p.

Remark 1.5. (1) Since right multiplication by p commutes with the left action of
s and also with the commutant of the right action of %, we obtain isomorphic
inclusions A(A) C p1(B1) and A (A)p C p1(B1) p. It follows from this and
the fact that isomorphic bimodules define isomorphic inclusions that a left weak
reduction of a bimodule yields an isomorphic inclusion.

(2) If we perturb the right-action on an - bimodule H by an outer automorphism
o of 9B, the resulting bimodule H, is not isomorphic to H. However, it is a left
weak reduction of H.

(3) One can similarly define a notion of (right)-weak reduction. We shall mostly be
concerned with (left)-weak reduction, and will usually just call it weak reduction.
Also, we shall often suppress the notation A and p if it is clear from which side the
algebras act.

1B. Tensor products. Tensor products of bimodules have been defined by Connes
and Sauvageot. A good review with results for our paper can be found in [Bisch
1997].

Proposition 1.6. Let H; be AA-RB; bimodules for i = 1, 2, and let D be a type II;
factor. If Hy is weakly reduced from Hy, then also L ® 4 H, is weakly reduced from
L ®y Hy, for any 99— bimodule L.

Proof. By definition, since H, is weakly reduced from H,, there must exist a
projection p € By such that H;p and H, are isomorphic as s{-RB, bimodules,
assuming dimgy (H;) > dimy(H>). This isomorphism extends in an obvious way to
a spatial isomorphism between L Q4 Hip = (L ®y4 H;)(1 ® p) and L Q4 Hy. U

1C. Higher relative commutants. Let N C Jl be type II; factors with normalized
trace tr. There exists a canonical extension Jil; D JL, called Jones’ basic construc-
tion for N' C Jl, which is the von Neumann algebra generated by Jl acting via left
multiplication on L2 (L, tr) and by the orthogonal projection ey onto the subspace
L2(N, tr) C L2(M, tr). It is well-known that the Jones index [l : N] is finite if
and only if Jit; is again a type II; factor; it is given by [M : N] = 1/ tr(ey), with tr
denoting the unique normalized trace on Jl;. In this case, we can apply the basic
construction again for M C Jl; to obtain an extension Jl, D ;. Iterating this
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construction, we obtain a sequence of II; factors N C M; C M, C ---. We obtain
important invariants of the original inclusion N C /il via the so-called higher relative
commutants N’ N Mg and M N Mg. These are finite-dimensional C*-algebras. If
there exists a uniform bound for the dimensions of the centers of the relative com-
mutants, the subfactor N' C M is called a finite depth subfactor. In this case, the
inclusion diagram for NNl C N'NMok+1 does not depend on k for k sufficiently
large; the corresponding graph is called the principal graph of N C Jl. Similarly,
one defines the dual principal graph from the inclusion of M’ Nl C M N Moy for
k sufficiently large. These graphs are important invariants for the inclusion N' C Jl.

The following results are presented in [Bisch 1997] in great detail and with
precise references to the original sources.

Proposition 1.7. Let N C M be a finite depth subfactor with finite index. Then

(a) The inclusions N C Mogy1, N C Moy, M C Mopgy1, M C Moy are given by the
bimodule M®* = U @y M Qy - - - Qx M (k times), viewed, respectively, as an
N=N, N—M, M-N and M—M bimodule.

(b) The embedding of N' N My C N' N My coincides with the embedding of the
algebras End y—y (M®*) C Endy_y (MK for k even. Ifk is odd, the embed-
ding of N'N My C N' Ny coincides with the embedding of End y—y (M®) C
End gy (MBFH1Y, given by x € Endy_y (M®*) — 14 ® x.

(c) Analogous statements hold for the embedding of M' N My C M N My1; we

only need to replace Homgy—y by Homg_y in all the statements in (b), with
x e {M, N}

Proof. Statement (a) is shown in [Bisch 1997], Proposition 3.2. Statement (b) can
be found in [Bisch 1997], Corollaries 4.2 and 4.4 (with tensoring from the right
instead of tensoring from the left, as we have chosen here). Statement (c) follows
from (b) and (a). O

Let N, M, B be type II; factors with N' C Jl a subfactor of finite index. Let
{H,}, and {K,}, be a collection of mutually nonisomorphic irreducible N—%B and
M~ bimodules, respectively. Observe that M ®y H, is an M—RB bimodule for any
N-%B bimodule H,. Similarly, we can view any JM—% bimodule K, as an N-%&
bimodule by restricting the left action to N. We say that the system of bimodules
({H, }5, {K,}y) is closed under induction and restriction if

— for each N—9% bimodule H; the induced M—9% bimodule M ® y H; is isomor-
phic to a direct sum of irreducible M- bimodules each of which is isomor-
phic to an element in {K,},,

— for each M—9% bimodule K, the N-%B bimodule M ® K, obtained from K,
by restricting the left action to N is isomorphic to a direct sum of irreducible
N-9%B bimodules each of which is isomorphic to an element in {H, };.
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The induction-restriction graph for our system of bimodules is the bipartite
graph whose (say) odd vertices are labeled by the elements in {H,}, and whose
even vertices are labeled by the elements in {K,},. A vertex labeled by H, is
connected with a vertex labeled by K, by L} edges, where L) is the multiplicity
of H, in K,, viewed as an N—%B bimodule. By Frobenius reciprocity (see [Bisch
1997, Theorem 1.18], for example), this number coincides with the multiplicity of
K, in Ml @y Hy.

Proposition 1.8. Let ({H,};, {K)})) be a system of N-B- and M~B-bimodules
which is closed under induction and restriction.

(a) If {H\}) contains a bimodule Hy which is weakly reduced from the trivial
N-N-bimodule N, then the principal graph for N C M is given by the con-
nected component of the induction- restriction graph for ({ H, },, {K,},) which
contains Hy.

(b) If {K,}, contains a bimodule Ky which is weakly reduced from the trivial
M—M-bimodule M, then the dual principal graph for N C M is given by the
connected component of the induction- restriction graph for ({Hy},, {Ky}v»)
which contains K.

) If ¢ : B — B is an endomorphism of the Il factor B and p € ¢ (B)' N B such
that [pBp : pdp(B)] = 1, then L>(B, tr) p, with action by.Ep.by = b1Ep¢ (by)
forby, by e B, & € L*(B, tr) is weakly reduced from the trivial B—B bimodule
L*(%, tr).

Proof. Part (a) follows from Proposition 1.6 and Proposition 1.7(b). Similarly, part
(b) follows from Proposition 1.6 and Proposition 1.7(c). Part (c) follows almost
immediately from Definition 1.4, using the fact that pBp = ¢ (B) p. ([

Remark 1.9. In the setting of Proposition 1.8(a), there may be more than one
bimodule H, which is weakly reduced from the trivial N—N-bimodule N. Which
of those will correspond to the trivial N—N-bimodule N will depend on the choice
of the automorphism between pN p and %8. The resulting graph will be independent
of this choice. A similar phenomenon may also occur in part (b).

Let H be an ${-%B bimodule. We define ind(H) to be equal to the index [p(B)’ :
A)]=[A(A) : p(B)]. In the following lemma, (H,); and (K,), are bimodules as
in the last proposition, where we now assume for simplicity that they only denote
the bimodules which label the vertices of a given principal graph. Moreover, we
also assume the subfactor to be of finite depth, meaning that both sets only contain
finitely many bimodules.

Lemma 1.10. With notations as above, we have:

(@) Y, ind(K,) = Y, ind(H,).
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(b) Assume that the dA-B-bimodule H decomposes as H = @ m; H;, with H;
irreducible A-RB-bimodules, and let | = dim(Endy g (H)) =), ml2 Then we
have ). ind(H;) > ind(H)/ I, with equality only if dimy (H;) =m; dimy (H) /1
foralli.

Proof. Tt is well-known that the inclusion of higher relative commutants ' N
M € NN My defines periodic commuting squares which generate in the limit
a subfactor of index [l : N]. Hence we can use the results of [Wenzl 1988],
Theorem 1.5(iii). It follows that the index is equal to the quotient of the />-norms
of the weight vectors of M’ Nl and N” N My for k sufficiently large. Let p; and
p,. be minimal idempotents in " N Al and N N Ay respectively. Then we have
ind(p,ly) = tr(p,)?[M : NT¥ and ind(pydly) = tr(py)?[M : N+ Solving for
tr(p;)? and tr(p,)?, we obtain

>, ind(pydly) /M : N ¢
M: N = .
[ ] Y, ind(pptty) /[ - NTEHT

The claimed formula follows from this in the case that our system of bimodules la-
bels the vertices of the principal graph. One obtains the claim for the dual principal
graph by the same proof applied to the inclusion Al C ;.

Part (b) is proved using Lagrange multipliers as follows: Let x; = dimy(H;) and
let d = dimy H. Then the minimum of the function f(xy,...,x,)=)_ xi2 subject
to the condition ) m;x; = d is obtained for 2x; = Am;, and we deduce from the
constraint that d = % Zml2 =1[X1/2. Hence x; =m;d /!l and

. d?
> (dimy H)* > I_ZZ’""Z =d?*/l. (%)
Now observe that if p; is the projection onto the submodule H; C H, we have
tr(p;) = dimy(H;)/dimy(H) and ind(H;) = tr(pi)zind(H) (again see [Wenzl
1988], Theorem 1.5(iii)). The claim follows from this after multiplying (x) by
ind(H)/d>. O

2. Categories

In this section we deal with categories which can be considered as generalizations
of the representation categories of finite groups. This allows us to deal simulta-
neously with categories of bimodules of von Neumann factors, fusion categories
(which can be constructed using quantum groups or loop groups) and categories ob-
tained from unitary braid representations. For more details, we refer to [Mac Lane
1998], [Freyd 1964] for general categorical notions, and to [Kassel 1995], [Turaev
1994] for tensor categories; our treatment of traces also uses results from [Longo
and Roberts 1997].
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2A. General definitions. We recall some basic definitions and set up notations.

In the following, € will always denote a strict monoidal complex tensor category
with unit 1. This means that € is a category with a functor ® : € x € — € called the
tensor product which satisfies certain associativity conditions such as the Pentagon
Axiom. There are similar axioms involving the morphisms /x : 1 ® X — X and
ry : X ® 1 — X called the left and right unit constraints. Moreover, € being a
complex category just means that the homomorphisms Hom(X, Y) form a complex
vector space for any objects X and Y in €.

The complex tensor category € is called a * tensor category if there exists a
contragredient complex conjugate functor * : ¢ — € which is compatible with & .
This means in detail that:

— if f e Hom(X,Y), then f* € Hom(Y, X),
—(af)*=af*foralla € Cand f € Hom(X, Y),

- (fg)*=g*f* for f e Hom(X, Y) and g € Hom(U, X),

- (f®g* =f*®g" for f € Hom(X, Y) and g € Hom(U, V),

— 1% = 1y for the identity morphism 1y for any object X in €.

2B. Duality and Frobenius reciprocity. An object X in a strict monoidal category
% is called left rigid if there exists an object X € @ and a pair of morphisms
ix:l> X®Xanddy: X®X — 1 such that the maps (1x ®dx)(ix®1x): X —> X
and (dy ® 13)(1x ®ig): X — X are 1y and 15. An object X is called right rigid
if we can find an object X’ and morphisms i} :1 — X'® X and d}y : X @ X' — 1
satisfying analogous identities. It is easy to check that in a x category any left rigid
object is also right rigid, with X’ = X, i’ = d} and d} = i%. Hence we will in the
following only talk about rigid objects. A category 6 is called rigid if every object
of € is rigid.

With this notion of duality, we also have the usual Frobenius reciprocity iso-
morphism between Hom(V, W ® X) and Hom(V ® X, W) for any objects V, W
in 6. One checks easily that these isomorphisms are given by the maps

a—> (lw®dx)o(a®lx) and b~ (b®ly)o(ly Qix)

fora e Hom(V, W ® X) and b € Hom(V ® Y, W). In particular, one obtains as a
special case that dim Hom(1, X ® X) =dimEnd(X)=1if X is a simple object.
Hence the morphisms ix and dx are unique up to scalar multiples for X simple. We
shall say that the rigidity morphisms ix and dx are normalized if iy ix = dxdy*.

2C. Dimension, trace and conditional expectation. In the following we always
assume the rigidity morphisms iy and dy to be normalized for any object X. If X is
simple, this can always be assumed after some rescaling in view of the discussion
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in the last section. For normalized rigidity morphisms, we can now define the
dimension of a simple object X to be equal to the scalar

dim(X) = i;ix = dxd;.

Of course, we would like the dimension to be additive with respect to a decomposi-
tion X = @ W;, with the W; being simple objects. To do so, we define morphisms
@i : W; — X such that ¢*¢; = 8;; 1w, and ), ¢;¢p) = 1x, and we define

@-1) ix=Y G ®iw, dx=) dw (P @),

where the ¢; are the analogous morphisms for the decomposition of the dual X =
> D, W;. Then it is easy to check that these morphisms satisfy the rigidity axiom,
and they are normalized if the ¢; are so. Moreover, one also checks that these
morphisms yield the desired additivity property of the dimension function.

Additionally, the dimension function should be multiplicative with respect to
the tensor product. If X ® Y is a tensor product of simple objects X and Y, we
obtain normalized rigidity morphisms

ixgy = (Ix @iy @ 1g)ix, dxgy =dy(lz ®dx Q lx).

It can be shown that these rigidity morphisms define the same dimension as the one
we obtain from the decomposition X®Y =P, W;, with W; simple and with rigidity
morphisms as defined in the last paragraph. It will be convenient to represent the
rigidity morphisms iy and dy, by the following pictures:

1
X X \/l.x

Figure 1. Rigidity morphisms.
In a * tensor category we define the categorical trace of an endomorphism f €
End(X) by

(2-2) Trx(f) =iy o(f ®1z)oix € End(1).

If Z=¢& m; X;, where X; is a simple object, and m; is the multiplicity of X; in Z,
we can write an element f € End(Z) in the form f =P f;, where f; € End(m; X;)
can be viewed as an m; x m; matrix. Defining rigidity morphisms iz, dz with
respect to this decomposition, and using (2-1), one checks easily that

Trz(f) =Y dim(X;) Tr(fi),
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where Tr(f;) is the usual trace of a matrix. This shows that we obtain a well-
defined trace for End(Z) for any object Z, and that Trz(fg) = Trz(gf) for any
f, g € End(Z). Moreover, using this formula, one shows as well that we can define
the trace also by

Trx(f) = i;"-( o(lg®f)oig € End(1).
This shows that x-categories satisfy the axioms of a spherical category (see [Barrett
and Westbury 1999]).

The normalized trace try on End(X) is defined by trx(f) = Trx(f)/(dim X).
In the following we will often just write Tr, tr for the trace or normalized trace
when it is clear for which object it is defined.

Conditional expectations can also be very naturally defined using our categorical
definitions. Let X be an object. Let A=End(X) = A® 1y C B=End(X® V).
We define the map E4 from B onto A by

Ea(b) =

dimV(lx Rip)BR1y)(1x Qiy);

in the tangle picture, E 4(b) is obtained from b by closing up the tangle with color
V and renormalizing by 1/dim V.
XV

Ex(b) =

dimV

Figure 2. Conditional expectation.

It is known and easy to check that this definition of conditional expectation coin-
cides with the usual definition of conditional expectation in operator algebras (see
[Orellana and Wenzl 2002, Proposition 1.4], for instance). Actually, one can show
more: Let X, X7, X3 be objects in our * tensor category €. Define the algebras
A=End(X>,), B=End(X;®X>), C =End(X,®X3) and D =End(X; ® X, ® X3).
We can consider all these algebras as subalgebras of D, say by identifying A with
l1x, ® End(X3) ® 1x,. The next proposition now follows immediately from the
graphical description of the conditional expectations.

Proposition 2.1. The algebras A, B, C, D form a commuting square; that is,
EpEc =Es = EcEs.

2D. Braided tensor categories. A strict monoidal category 6 is called braided if,
for any objects X, Y in 6, there exists a natural isomorphismcx y : X®@Y - Y ®X
called the braiding such that:

cxyez =1y ®cx,z)(cx,y ®1z)
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and
cxeyr,z =(cx,z®ly)(1x ®cy 7).

Naturality means that for any morphisms f: X — X and g:Y — Y’

(E® flocxy=cx yo(f®g).

Finally, we also require that ¢y x = 1lx = cx 1 under the isomorphisms 1 ® X =
X=EXRI1.

2E. C* tensor categories. We call a complex * tensor category a C* tensor cate-
gory if

(a) for any objects X, Y in € the space Hom(X, Y) is a Hilbert space with inner
product (a, b) = Tr(b*a) for a, b € Hom(X, Y),

(b) for any objects X, Y in € the algebra End(Y) is a C*-algebra acting on the
Hilbert space Hom(X, Y).

Observe that these definitions imply that the dimensions of all objects are posi-
tive. A braided C* tensor category is a C* tensor category with a braiding for
which all its braiding morphisms are unitary operators. For examples of C*-tensor
categories, see Section 6A.

3. The multisided construction

3A. Categorical setting. We shall use the following conventions: Let € be a fi-
nite braided C* tensor category, where finite means that we only have finitely
many equivalence classes of simple objects in 6. Let {X,,A € A} be a set of
representative nonequivalent simple objects, indexed by some labeling set A. We
define d, to be the dimension of X;. We shall also assume that the category €
is generated by an object X, so any simple object appears in some tensor power
of X. We define algebras A, = End(X®") = End¢(X®"). By the definition of
A,, the simple components of A, are labeled by the equivalence classes of simple
objects which appear in the n-th tensor power of X, i.e., by a certain subset A,
of A. We define the embeddings ¢, : a € A, > a® 1, € A,4+,, where we will
often omit the subscript r. It follows from the definitions that the vertices of the
inclusion diagram for ¢ : A, — A,+ are labeled by the elements of A, and A,
respectively; the vertex labeled by A € A, is connected with the one labeled by u
by Lf edges, where Lf is the multiplicity of the object X, in X; ® X. We have
the commuting diagram of embeddings

1m ®An C An+m
3-1) 1®Ll lt
In®Ant1 C Angmti
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We will also assume that the Bratteli diagram for the algebras (A,) is strongly
connected. This means that for any X;, there exists an r such that X; ® X®"
contains all irreducible representations which appear in X®*+" where |A| is the
smallest integer such that X, € X®*. Equivalently, it means that for any projection
p € A, there exists an r such that the central support of p in A,4, is 1. We define
k =k(X) = gecd{n,1 C X®"}. Let ¢’ be the subcategory of ¢ generated by the
simple objects in X®" m e N.

Lemma 3.1. Let € be a finite C*-tensor category, not necessarily braided. Then
we have

(@) A, = Apyr for n sufficiently large and A, N Ay, = D if [n —m| < k; in
particular A’ := A,y for n sufficiently large labels the simple objects of 6’

(b) The weight vector for the trace on the algebra A, is v, = (dy/(dim X)");cx,-

(c) The inductive limit of (1,, ® A, C Ay1m), for n — 00, defines an inclusion
B C A of hyperfinite I factors with index (dim X)".

(d) Ysen, dF =1 Xscn di for n sufficiently large.

Proof. If the trivial object 1 appears in the r-th tensor power of X and X, C X®",
then we have

X 2X,Q01CX, X% ¢ xentr

Hence A, C A, 4, foralln e N. As A is finite, these inclusions become equalities
for n sufficiently large. Applying this to any r such that 1 C X®”, we can similarly
prove A, = A4k for k the ged of all such r and n sufficiently large. Finally, if
O<m—n=k'<kand A e A,NA,,, then we alsohave ve A, 1, NAyir = Apiptr
for any X, C X, ® X® and r € N. As the Bratteli diagram for (A,) is strongly
connected, we obtain A, 4, = A, for r sufficiently large. Using the convention
Xo =1, we can find r such that 0 € A, , = A, 4r4r, contradicting the definition
of k. This shows (a).

Statement (b) follows from the fact that the value of the normalized trace of a
projection p; corresponding to a simple object X; C X®" is given by tr(p;) =
d,./(dim X)".

For statement (c) observe that Diagram (3-1) defines a commuting square by
Proposition 2.1. Moreover, the sequence of algebras as in the statement has a k-
periodic pattern: By part (a), we have the same labeling sets for the algebras in
Diagram (3-1) if we substitute n by n + k everywhere, for n sufficiently large.
Moreover, also the inclusion pattern remains the same by the discussion before
Diagram (3-1). It follows from [Wenzl 1988], Theorem 1.5(iii), that the index
[A : B] is given by the ratio ||U, 1%/ |Vps1 |2, for n large enough. As this holds for
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any sufficiently large n, we have

2
I

k - 2 >
Yy QLLISEEL
Wl ™ Mol

The claim now follows from the fact that v,, = (dim X)* Untk, by (a) and (b). Finally
observe that (dim X)?|[U,11[|* = [0, 1> implies Y~ ., (d2)* =Y ,¢ Avas (dy)? for
all n sufficiently large. As A,NA,, = whenever |n—m| < k, we obtain Statement
(d). U

3B. Multisided construction. The subfactors constructed in the last section will
sometimes be denoted as one-sided subfactors. We will now generalize the con-
struction in [Erlijman 2001] to the setting of braided C*-tensor categories, which
we call multisided subfactors in analogy to the notation in [Erlijman 2001]. We
will fix a positive integer s. For the s-sided construction, we will have to define
an embedding of algebras A®* C A, such that we will obtain a subfactor if we
consider the inductive limit over .

We shall need special braids y, € $B;,, which can be defined inductively by
y1 = 1, and by Figure 3.

s(n+1)

Vn+1 =

n+1 n+1 n+1 n

Figure 3. Inductive property of intertwining braids.

Alternatively, the braid y,, can be described as follows: arrange the points labeled
by the numbers 1 up to ns in a rectangular pattern with height n» and width s. Now
we can numerate the points either by first going down the columns, or by first going
to the right in each row. This defines a permutation = mapping the i-th point in
the column-first count to the i-th point in the row-first count. The braid y,, is now
defined by this permutation where the i-th lower point is connected with the 7 (i)-
th upper point and where we assume all crossings to be positive (i.e., the strand
going from southwest to northeast crosses over the one going from southeast to
northwest). A picture for this braid can be found in [Erlijman 2003, p. 83].
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Let ¢ = cx, x be the braiding morphism for X. By definition, we obtain a unitary
representation p of the braid group %, into A, by mapping the generator o; to
¢i=1;_1®c®1,_1_;. We define the unitary u, = uff) = p(yy), with y,, defined as
in Figure 3. Finally, the embedding from A®* into A, is given by first identifying
A%S with End(X®")®* C End(X®"™) = A, and by then conjugating this with u,,
i.e., by

(@1® - ®ay) > 1y (a1 ® - @ a)uy;
throughout this paper, & will denote the inner automorphism given by conjugation
via the unitary u unless stated otherwise. We now obtain the following diagram of
maps, where the vertical arrows are labeled by (®% = t?s and ¢ = ¢, respectively:

®s Un
Ay A

(3-2) l |

®s
A,H_] < " A(n+1)s
Up41

Then we have the following lemma which has essentially already been proved in
[Erlijman 2001], Section 3.2; the case proved there would correspond to the special
case in which A, is generated by the image of %&,,.

Lemma 3.2. The diagram (3-2) above commutes and also forms a commuting
square. Moreover, the inclusion pattern is k-periodic.

Proof. We check first that Diagram (3-2) is a commuting diagram: This is most
easily seen by the following pictures (these proofs by pictures contain all the nec-
essary details and translate faithfully to the algebraic proofs by simply rewriting
the definitions already included in this article). We take s = 3 for simplicity. For
b € A%, we have:

= (toiln)(b)

o e | [ L |

Figure 4. Diagram (3-2) is a commuting diagram.

Now we check that Diagram (3-2) is a commuting square, i.e., that (E4, o

fnt1)(b) = (o E a2:)(b) for b € Aff’il. We use the categorical definition for a
conditional expectation as described in Section 2C, Figure 2. Forb=5,Q- - -®b; €

A®S

nals WE have
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3
e | e
| — T T T
Gy no | |k = Gy | D\@B\@B
| ; ‘ ‘
o i | |

Figure 5. Diagram (3-2) is a commuting square.

which in turn equals (i, o E @) (D). To show that the inclusion diagrams are k-
periodic for large n, observe that Lemma 3.1(a) implies that we have a one-to-one
correspondence between the labeling sets of simple components of A% and A?jk
as well as between the components of A,; and A(,+1)s. This identification of edges
is compatible with the number of edges between them, which again is just given

by tensor product multiplicities. U

Theorem 3.3. Fix s € N, s > 1. There is an embedding of the factor N :=
limind A®* (inductive limit) in M := limind A, given by & := limind ii,,, with u,,
as above. The index of the resulting inclusion is

s—1
(ze)"
reN

where A’ is an indexing set for the simple objects of the subcategory 6’ as defined
at the beginning of this subsection and d, = dim(X).

Proof. This was done in [Erlijman 2001] in the case that the A,’s are generated by
braid elements only. By Lemma 3.2, Diagram (3-2) is a periodic commuting square
for large n. Thus, by [Wenzl 1988], Theorem 1.5(iii), i : N <> Jl is an inclusion
of hyperfinite II; factors with index given by |7, ]|12/[|0,|1> for n sufficiently large,
where 7, and v, are the trace vectors for the trace in Jl restricted to the finite-
dimensional approximants A®* and A,;, respectively. For this observe that if k|n
the dimension vectors for Af?s and A, are given by P (d; /(dim X)"*); and
Ups = (d,/(dim X)™),,, with A€ (A)S and v € A’; here d; =T1;_, d),. Hence we

obtain
2 - 2 s—1
lEal®  Xiean % )
" = A = Z d}\. . D

[M:N]=—= =
1al2 Dpen di =

3C. More embeddings. We shall need a variation of the embeddings in the last
section for the construction of certain bimodules.
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Lemma 3.4. Let m = (my, ..., my), where m; € Z>o, and my > my > -+ > my,
and let |m| = > ; Imil. Then there exist unitaries up, , = U () € Ajn|sn SUch
that we obtain k periodic commuting squares

m,n

Apim @+ @ Apsm, Al ns

| |

An+1+m1 ® - An+1+ms ~ Allﬁl-‘,—(n-i—l)s
m,n+1

which produce an inclusion ui; : N — M isomorphic to the map i : N — M of
Theorem 3.3.

Proof. We shall give diagrammatic representations of the unitaries u; , =u;; ,(s) €
A\ |+sn as follows. Let t; = t;(s) be the unitary in A} given by

L (Y] 2 3
Iin = U —my Uiy —m3 Uyps—my e ”r(iis)
| |
| |
. - -
Figure 6 m) ms ms ms

where the unitary ul® is given by Figure 3 for s > 1 (with n+ 1 replaced by r) and
is equal to id, for s = 1, with any positive integer r.
The unitary u; , is then defined from ¢#; and uf,s) as in Figure 7.

| [

my| myp myg

|
n n n
\

Figure7 mp+n mpy+n mg+n

We proceed as in Lemma 3.2 to show that Diagram (3-3) is a commuting square.
First we check that our diagram is a commuting diagram; we shall denote the
vertical arrows by (®5 and ¢ respectively. Assume s = 3 again for simplicity. For
b e Apim Q- ® Appm,, we have (il 11 0 (®)(b) = = (10 itj3.,)(b). The
commuting square property as well as k periodicity is shown in the same way as
in Lemma 3.2.

It remains to show that the subfactor constructed in this lemma is conjugate
to the one in Theorem 3.3. We define an automorphism & of the factor M =
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P H Un H ids

o H uk H ids

Figure 8. Diagram (3-3) is a commuting diagram.
limind Ay, 47 = limind A4, that will carry the subfactor defined here,
iy (N) =limind Uiiin(Antm, - @ Al’l+ms)l’t:;'1’n’

to the subfactor #(N) = limind u, A®*u* from Theorem 3.3. Define &, at the
finite-dimensional level by

M M
V) ), U
Asnti| As(rtmy)
w w
a > tppm, pt (U QUG )byt s

where b, € As(14+m,) 1s a unitary described in Figure 9 on the next page, and where
L2 Agntpin) = Assmy) 18 the usual inclusion (recall my > m;). Observe that

bn (An+m1 Q- ® An-&—ms ® lsm17|rﬁ\)b:

equals the image of the natural inclusion map A, 1, ® - Q@ Apym, — Af?jml.
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n+myp n+my mip—my n+msz mjp—ms3 n+my --- my—mg_| n+mg mip—mg
by = \\\
n+myp n+my n+ms n+my -+ n+mg mp—my mp— . —Mg_| M| —Mg

Figure 9. Pictorial description of b, € Asp4m,)-

It is easy to check that the maps ®,, are compatible with respect to n, and so we
can define ® : M = limind Ay, 43 — M = limind As(,4p,) by ® :=limind ®,.
We observe that

- * ® *
Ui (@ - Q as)u,ﬁ,n = Upim (@ @+ ® as)un+ml

for a; € Aym;, so ® carries i;; (N) to i (N). To check that ¢ is an automorphism,
one first observes that ® = limind ®, = limind (ﬁ,,+m] obyoto ﬁf;ln) (the ”hat”
morphisms denote the adjoint morphisms w(x) := wxw*). Then one checks that
® has left inverse given by &, !':= limind (fjnntm, 0 L0 b* o %, ), where ¢ :
Astntmy) = Astm)+m, also denotes the canonical inclusion, and a right inverse
givenby & I:=limind (um notoby_ m; © Az), where (: A, — Agpqm) again denotes
the canomcal inclusion, also observing that in the inductive limit the canonical
inclusions turn out to be the identity map. (|

3D. Endomorphisms. We now want to construct bimodules with respect to the
just constructed factors N and Jl in the proof of the last theorem. This will be
done according to the recipe described in Remark 1.3. To do so, we need to define
the endomorphisms mentioned in the braid setting before, in the categorical setting.

Lemma 3.5. Fixm; € Z>o,i =1,2,...,s,withm| >my > --- > my.
(a) Forn € N, the maps

A?S — Am1+n®" '®Ams+n
a® - Qas — (lml ®a1)®---®(1mx®as)

extend to an endomorphism Shiftjn{ ‘N — N, where m := (my, ..., my).

(b) Let u denote the embedding of N <> JM. The endomorphism Shiftjnlﬁ extends
to an endomorphism of M, denoted by Shiftfnft. In other words, we have a



SUBFACTORS FROM BRAIDED C* TENSOR CATEGORIES 379

commuting diagram

Shift!
M

Shiftﬁ{l
Ne——

A

Up
(c) (Shift¥ o i) only depends on the norm |m| of m, and it is of the form
AS?S g A\ﬁzl-i—sn
(@ ®- - Qas) — lllﬁ\ Qup(@1 ®--- ®as)uz-

Proof. (a) If s =1, N =% =Ilimind A,, and we obtain the familiar one-sided shift
Shift,,. Fors > 1, N=R®- - - QR (s factors) and Shift; = Shift,,, ®- - - ® Shift,, .
The following formalization of these facts will also be useful for the proofs of (b)
and (c). Let vy ,, € Ajjij+sn be the unitary image under p of the braid described by:

m

1
/
Viin =
Figure 10 /

It is easy to see pictorially that for any element a; ® --- ® a; € A®*, the maps
defined in the statement of (a) are given by

(@ ®--®ay) = Vi@ ® - ®ay ®id|r7l|)v;;lyn € Antm @ ® Apim,-

That these maps extend to the von Neumann algebra inductive limit \'=lim ind A®*
follows from the fact that the following are commuting diagrams with respect to
the canonical inclusions:

A AP Q@ Al
S |

®s ¢ s R
An-‘rl An+1 ®A|m|

An+1n1 Q- An—i—mx

A

Uni,n+1

An+l+m1 Q- An+1+m5

and from the fact that the maps are norm and trace preserving. We denote the
resulting endomorphism by Shiftﬁ.

(b) We shall extend the map Shiftﬁ; to J after embedding N in Jl via & (given by
the inductive limit of conjugation of unitaries u, or u;; , as in Figures 7 and 3). At
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the finite-dimensional level we define Shift% :limind Ay, — limind A4, by
(3-5) C/U; A = Aliﬁ|+sn - A|n2|+snv

where the first arrow stands for the standard inclusion a € Ay, = a® 1 € A5 105
and where the second arrow stands for conjugation by the unitary w, = w, (s, m) €
A\ii|+sn defined by

(3-6) On = Wi p Vi (U @ id i)

here u; , and vj; , are given by Figures 6, 7, and 10. We give a diagrammatic
representation for s = 3 in Figure 11, with b € Ag,:

b I
mi mz‘ m31
I
, . — o]
my my m3| n| n|n
- |
I
| |
u*,buy, ‘ ‘ id}z, ‘ — ‘ ulbuy ‘
‘ T
I
\ T
* *
| | : [
b N

Figure 11. Pictorial representation of Shift‘”mf(b) € Ajji|4sn. forb e
Agn (S=3)~

We want to show that these maps extend to a well-defined map ShiftﬁéL on the
inductive limit limind Ay, i.e., we have to show that @, 11 (t(b)) = 1(@, (b)), where
we use the notation ¢ for the standard inclusions of Ay, — Agu+1) as well as
for Ajij+sn —> Aji|+sm+1)- To show this, we need the inductive property of the
unitaries u ,(,‘Y) mentioned already at the braid level, seen in Figure 3, to write u; ,,+1
in terms of u;; ,, and of id;. We then have for b € Ay, that @,+1(¢(b)) = L(@n(b)),
as shown in Figure 12. Hence Shiftﬁ—f = limind , is well defined.

We still need to show that ShiftfnfL extends Shiftg, i.e., that (Shift% o) = (o
Shiftjng). From the definition, fora =a; ® - - - @ a; € A®S,

(Shift! o limind &, (@) = (@ 0 L 0 1) (@) = (fiji.n © Dj.n) (@ @ id )

= (limind i3 , o Shift})(a).
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o T

my mzﬂnn
|

S 71—

Figure 12. Shift! is well-defined.

(¢) This follows from the definition. Take (a| ®--- ®ay) € A,?s. Using Figure 11,
we obtain that Shift¥(u,(a) ® a» ® az)u) equals

I o]
enlicalice
=
| L

and this in turn equals 17 @ u, (a1 ® a> @ az)u;,. O

Proposition 3.6. Let Shift;, be as in Lemma 3.5.
(a) ShiftJn%"(Jl/t) C M is an inclusion of 1l factors with index (dim(X ))2“;", where
|m|=> m; and ShiftﬁgL (M) N M has a subalgebra isomorphic to
An, ® - QAp,.
(b) (i 0 Shifti}lr)(J\f) C JM is an inclusion of Il factors with index
[ 2 NT(dim(X))*"!

and relative commutant (ii; o Shift%)(N)/ NM= Az
(c) Shiftf}lr (N) C N is an inclusion of 11, factors with index (dim(X ))ZW| and rel-
ative commutant Shift} (N) NN = Ay, ® -+ ® Ap,.
Proof. For (a), we first show that the maps @, in (3-5) define periodic commuting

squares with respect to n (which generate Shiftj% (M) C JM by definition). For this,
one simply uses the fact that these maps are compositions involving the maps v,
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Ui and i, (see (3-6)). The desired diagrams are then built from compositions of
the periodic commuting squares in diagrams (3-4), (3-2) and (3-3); see Lemma 3.2
and Lemma 3.4. Hence the desired diagrams are commuting squares. Periodicity
is shown as in Lemma 3.2, and we can use the formula for the index, as done there.
It follows from parts (b) and (d) of Lemma 3.1 that the ratio of the square lengths
of the weight vectors for Ay, and Ay, 4z is equal to (dim X)?!,

The statement on the relative commutant follows from the definition of Shifthif.
Let us represent Shift% (b), for b € Ay, (s =3 to make things simpler) as it appears
in Figure 11. Then for a € (t; ® 15,) (A, ® -+ - @ A, ® 1) (27 @ 15n) € Ajinjysn
we have a Shiftf;jL (b)= Shift% (b)a, as follows from this figure representing the two
sides:

| i [ b ||
[ [ [
al e ]
my my m3‘ nin|ln my my m3| n|in|n
I I
‘ uibup ‘ = ‘ uibup ‘

1

Hence, (1 @ 151) (A, ®- - @Ay, @ 13n) (1 @ 150) = Ay @ - -® Ay, cOmmutes
with Shift%(b) for b € Ay, for every n, so that Shiftj% ()’ N M has a subalgebra
isomorphic to A,,, @ - - - ® A, . This proves the last statement of (a).

For (b), one observes that the generating square for (it;; o Shiftf;i)(N ) C M is
obtained from the double-square given in (3-4) of proof of Lemma 3.5(a) (which
defines the endomorphism Shiftf;i), composed with the square given in (3-3) (which
defines the inclusion it;; : N — ). These squares are commuting squares (the one
in (3-4) because it involves maps that are trace preserving, and the one in (3-3) was
shown in Lemma 3.4). So their composition, which generates (ii; o Shiftfg YN) C
M, gives also a commuting square. The indices for parts (b) and (c) can now be

\
Exlliy
| b i) ’Z% [

computed as before, using Lemma 3.1. It only remains to show the statement about
the relative commutant.

Lemma 3.5(c) implies that Shift¥ (u, A®*u?) = 1)z @ u, A®*u’; for every n. So
A ® 1y, commutes with Shift%(unAffsu;) for every n and (Shiftj%t on)(N)Y Nt
(= (W 0 Shiftf};)(J\f )’ N ) has a subalgebra isomorphic to Az . Conversely, for
the other inclusion, we apply a dimension upper bound result for relative commu-
tants of inclusions generated by periodic commuting squares (see [Wenzl 1988],
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Theorem 1.6):
dim ((Shift}; o &) (N) ML) < dim (1) ® un A us), N (A|,;1|+m)p)

=< dim (Ajgij45n) p,

for any projection p € 1 ® u,A®*u’, and n large. If n is divisible by k and

sufficiently large, then X®" contains a subobject isomorphic to 1; let py € A, be
the projection ontoit. If p =15 ®un(pff’s)uﬁ € Ajji|4ns, then we have pA j 1ps p =
Ay . This shows (b).

For (c), it is even easier than in (a) to show that the generating Diagram (3-4)
for Shiftjnl; (N) C N'is a periodic commuting square; one can see that pictorially, as
it was done in Lemmas 3.2 and 3.4, which is left to the reader. The statement about
the relative commutant in (c) is proved in the same manner as in (b): By definition,
ShiftY (a1 ® -+ ®a,) = (I, ®a1) ® -+ ® (Ly, ®a,). Thus, (A, ®1,) @+ @
(A, ® 1,) commutes with Shiftg (A,‘?S) for every n, and so Shiftf;i (M)'NN has a
subalgebra isomorphic to A,,; ® - - - ® A, . For the other inclusion we apply again
the upper bound result for the dimension of the relative commutant:

dim (Shift} (\)' N.N)
< dim ((lm1 RANR- - ® (lmb [ An));7 N (An+m1 R --® An—&-my)p
< dim(An+m] R Q An—i—ms)p’

for any projection p € (1,,, ® Ap) ® - - - ® (1,5, ® A,). One shows as in (b) that for
pP= (1m1®p]l)®' . ®(1my®p]l) we have (An+m1®' . '®An+mx)p ;Am1®‘ . ‘®Amx’
from which one deduces (c). O

4. Bimodules and the principal graph

4A. Examples of bimodules. We are going to construct systems of bimodules in
order to calculate the principal and the dual principal graph, as described in Propo-
sition 1.8. This will be done using the endomorphisms Shift defined in the last
section.

The N-N-bimodules. Let A; € A and let A, ,, be the simple component of A,,,
corresponding to the simple object X;, C X®™ with m; being large multiples
of k fori =1,2,...,s. We first fix minimal projections p;, € A, »,. Define
P; =P ® - py,, where A= (A1, ..., As). The underlying Hilbert space will
be given by

LN, tr) p; := {¢ps, ¢ € LA(N, ).

The N—N bimodule structure is defined by

x.£.y = xEShifts (y), forx,yeN, & € L*(N, tr) p;,
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where we use the usual right and left multiplication in N on the right hand side. It
follows from Proposition 3.6 that this indeed defines an N—N bimodule structure
on L2(N, tr) p;.

Definition 4.1. The N-N\" bimodules defined above will be denoted by N5 ..

The M—N-bimodules. Againletm := (my, ..., my) €N, withm :=m+---+my.
We fix a minimal projection p,, € (Shiftﬁq’L oi)(N) NM = A,, (see Proposition 3.6)
belonging to the simple component of A,, labeled u € A. The underlying Hilbert
space for all these bimodules will be given by

LM, tr)py :={¢py / ¢ € L*(M, tr)}.
The M~N bimodule structure is defined by
x.£.y =xE(Shifth o i) (y), forxedl, yeN, & € L*(M, tr)p,,.
Definition 4.2. The .Il—N-bimodules defined above will be denoted by H,, ;7.

The N-JM-bimodules. With notations as in the last definition, we define similarly
N—Jl-bimodules based on Hilbert spaces pMLQ(./l/L, tr):={p.l /¢ € L2, tr)},
and with the N—Al bimodule structure defined by

x.£.y = (Shifth o 0)(x)Ey, forx eN, yel, &€ p,L*(M, tr).
Definition 4.3. The N—./l-bimodules defined above will be denoted by K, ;7.

The M—M-bimodules. Similarly as for the N—N-bimodules, we fix minimal projec-
tions py, € A, »,» With A; € A, but now only requiring that ) m; being divisible
by k. The underlying Hilbert space for all these bimodules will be given by

p; L2 (M, tr) := (p3¢/ & € L2, ).
The M~ bimodule structure is defined by
x.&.y = Shift¥(x)&y, forx,yedl, & € p; L*(M, tr),
Definition 4.4. The {{—(l-bimodules defined above will be denoted by Mj ..
Lemma 4.5. Let the notation be as above.
(a) If we view both NX,n? and H, ; as left N-modules, then
dimy Nj ; =d; /(dim X))/ and dimy H, ;; = d,[M : N1/(dim X)".
Moreover, we have ind(NX’,;l) = d% = ind(MXﬁ), where d; = []d,,, and
ind(H, ;) = d*[M : N].

(b) If |m| = |l€|, then H, ; = H, ; as M—N-bimodules, and K, z; = K, i as
N—M-bimodules.
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(©) If m| = |k|, we have
Hom y—u (M5 7, Mﬂ’,;) C Homy— (M; Mﬂ,,;) = Home (X5, Xi),

Am?

where X; = ®;_; X, and Xj; = ®;_; X ;.

Proof. 1t is well known (see [Jones 1983], for instance) that dimy L2(N, tr) p=
tr(p) and dimy L?(M, tr)g = tr(g)[AL : N'] for any projections p € N, g € Jl. The
dimension statements in (a) follow. For the index statements in (a), let £ and r
denote left and right multiplication by N on L?(N, tr) or suitable submodules of it.
Observe that £(N )1 L2Nmp is equal to r(pN p) for any p € Shift; (N) NN. Recall
that Shift; (N) C N has index (dim X)2|’71|. Moreover, tr(p;) = d5 /(dim X)"m fora
minimal idempotent p; € Shift;; (N)'NN; see Proposition 3.6. Using the formula for
local indices [Wenzl 1988, Theorem 1.5(iii)] and the index formula in Proposition
3.6(c), we obtain

ind(N; ;) = [p;:N'p; : p;Shift; (V)] = tr(p;)? (dim X)) = (dp)>.

The indices for H, 5 and Mj . are computed similarly. By Lemma 3.5, (c), we
have Shift} = Shift, from which (b) follows.

Let ;L%(M, tr) be the Hilbert space L?(M, tr) with J—AM bimodule structure
x.£.y = Shift¥(x)&y for x, y € M and & € L2(AM, tr). Define ;L2(AL, tr) similarly.
These bimodules are isomorphic as N—Al bimodules, again by Lemma 3.5(c). This,
combined with Lemma 3.5(b), results in

Hom,g—u (i L (M, tr), z L2 (M, tr)) € Homy—g G L2 (M, tr), L2 (M, tr)) =

= Endy—u (i L (M, tr)) = Ay = End (X®), ()
where the second isomorphism follows from Proposition 3.6(b), and (b). By con-
struction, we have M; ;. = pX(,;qLZ(Jl/L, tr)) and Mﬁ,,g = pl;(,ng(./(/t, tr)), where
P;=pn® --Qp,, and p; = p,, ®---® p,,. Hence we can interpret an element
f € Homy—(M;, My) as an element in Homy—y Gz L2 (M, tr), ,;Lz(./I/L, tr)) which
satisfies pj fp; = f. Using this together with (x) proves claim (c). (]

4B. Principal graph. Let A= Aty ...y Ag) € (A)*, and let L;{ be the multiplicity
of the object X, in ®X,,. Observe that L E is also equal to the rank of the projection
Q) py, in the simple component of A5, labeled by v.

In the following we will fix a vector m = (m;) where all its coordinates are
divisible by k, and with m; large enough that all simple objects of ¢’ will appear
in X®" fori =1,...,s. We shall hence omit 7 in the indices of the bimodules
and will just write N; and K, for N5 . and K, ;;, respectively.

Theorem 4.6. With the notation as above:
(a) The bimodules N; and H, defined above are irreducible.
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(b) The principal graph for N C M is the connected component of the fusion
graph from (€')* to €’ which contains the trivial object of 6. Recall that the
even vertices of the fusion graph are labeled by s-tuples of elements of A,
the odd vertices are labeled by the elements of A', and the vertex labeled by
A= (A1, ..., Ag) is connected with the vertex labeled by v by L‘){ edges.

(¢) The subfactor N C M has finite depth.

Proof. Statement (a) follows from Proposition 3.6. For (b), it suffices to calculate
the principal graph for the isomorphic inclusion N' C .l given by u,; (see Lemma
3.4). In this case the M-N bimodule structure of L?(M, tr) is given by x.§.y =
x&i;(y). It follows from the definitions that L2( M, tr) @y N3 = LM, tr) p; =
GBL%HU; the decomposition of L2(M, tr) p;. into irreducible M—N" bimodules fol-
lows from Proposition 3.6(b) and the remarks at the beginning of this subsection.
Hence our system of bimodules (NV3); . (A and (H,),cx’ is closed under induction.
To prove closedness under restriction, observe that the multiplicity of the N—N
bimodule N; in the M-N-bimodule H,, viewed as an N—N-bimodule, is equal to
L;, by Frobenius reciprocity. To show that H, = @5 L;‘( Nj; as an N-N-bimodule,
it suffices to prove that both sides have the same dimension, i.e., by Lemma 4.5(a),
that

(4-1) [AL: N1dy = L¥d;.
i

For this observe that the dimension vectors for Af?s and A,;, with n a multiple of &,
are given by fns = (d5 /(dim X)"*); and Ups = (d,/(dim X)"),, with xe (A"’ and
v € A’. Observe that the subfactor N' C Jl is generated by the periodic sequence
(A®* C Apy), with the inclusion matrix for A®S C A, givenby G = (L) with  and
v as above, provided k|n. Hence it follows from [Wenzl 1988], Theorem 1.5(ii),
that GT,s = [M : N1Z,,. This implies (4-1). Finally, if we choose A = (1, 1, ..., 1)
(s times), where 1 stands for the trivial object of €, ind(N5) = 1 and hence Nj; is
weakly reduced from the trivial N—N bimodule by Proposition 1.8(c). This shows
(b), by Proposition 1.8(a). Statement (c) is a consequence of (b). O

Remark 4.7. The fusion graph from (¢’)* to ¢’ may not be connected. An easy
example is obtained for € being the representation category of a finite abelian
group G, where it decomposes into |G| connected components.

5. Dual principal graph

5A. Ring lemma. The precise structure of Shift; ()’ N is still open after Propo-
sition 3.6. To say more about this, we need the following lemma. Similar tech-
niques have appeared before in topological quantum field theory, and within sub-
factors in work of Ocneanu and others; see [Evans and Kawahigashi 1998; Miiger
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2003], for example. Dual principal graphs in a similar setting (corresponding to
the case s = 2) have also been calculated in [Izumi 2000] by somewhat different
techniques.

Lemma 5.1. If a € Shift; (M) N M, take a =t} aty; with t;; € Az as in Figure 6.

Then, forr =2, ...,s, we have

mp  my  mg
2n

Q
I

Figure 13 ‘

(the picture is the translation of an algebraic expression of the form 'y (a®1,)y" =

Uyx-(a® lsn)x;"tg(*for certain morphisms x, and t'y defined below).

Proof. By Proposition 3.6(b) and our definition of the inductive limit, we have
Shiftg (M) MM N Apij4ns C Apiny ® 1ys. Take 1 € Az as in Figure 6 in Lemma
3.4. If a € Shift; (M) N M then set

a®lg, = (t,i,; ® u:)a(trﬁ Quy) = t:qatn? ® s, € AW| ® g,

and note that a ® 15, € ((t;iq ® u)Shift; (M) (17 @ un))/ NJL. In particular, take the
element x, := (¢ @uy)Shifty (u, Truy) (t; Quy), forr =2, ..., s, where T, € Ay,
is obtained from the braiding morphisms and can be represented by

n nnn nn
NV

/

n=| | X
/ N

(r—=Dn (s—r+1)n

We use Figure 11 in the proof of Lemma 3.5 to see that x, is as in Figure 14.

Also note that x, is a unitary, so that (a® 15,)x, = x,(@®15,) implies (a®1,,) =
x-(a® lsn)x;k:

To obtain the relations in our statement in Figure 15, we proceed by closing
strands in Figure 15 with cups and caps to form the loops (the caps and cups
correspond to dual morphisms as described in Section 2B). This is done as follows:
Let rh and /A be the left and right hand sides of Figure 15. Then we also obtain
rh®1zym =1h®1 z)m. We now multiply both sides with 1ysii ®@ixen from the
right (below) and by its conjugate from the left (above). The morphism ixes: and
its conjugate correspond to the pictures in Figure 16, which are obtained from the
properties of the duality morphisms; see Section 2B. It is easy to check that we
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mi my mg (r—=2)n n (s—r)n n
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|| sn
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Figure 14. x, := (t> ®uy)Shift;; (u, T,uy) (1; Quy).

mq my mg @¢—2)n n n
mp  mg sn ‘ ‘ ‘ ‘/? _
é/

= ‘ | a D (s—r)n
‘ \

|m| sn

Figure 15. (a®1,) = x-(a®15,)x}.

x®6n) T®6n)

x®Gn) X®Gn)

Figure 16. ¢}, and txeen.

obtain (s — 2)n unlinked circles on the right hand side, which correspond to the
scalar (dim X)&—2n, Canceling this with the same number of circles on the left
hand side, we obtain the picture as claimed in the statement. U

Corollary 5.2. The equality in Lemma 5.1 still holds if the rings on both sides are
labeled by an irreducible object in 6.

Proof. Assume that k|n. Then the proof of Lemma 5.1 works as well if we multiply
T, by 14—1)n®p1®1(s—r+1)n® p,. Where pq and p,, are projections onto irreducible
objects appearing in X®" isomorphic to 1 and to X, respectively. Going through
the proof of Lemma 5.1, we obtain the statement of the corollary at the end. [J
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5B. Notations and preliminaries. For any braided semisimple tensor category €
we can define a scalar s, =Tr(c, icx, ), where ¢;, , is the braiding morphism for
X; ® X,,. The S-matrix is then given by (s;,), where the rows and columns are
labeled by the simple objects of 6.

Let now & be a full subcategory of €. We define Jg to be the set of simple
objects X, in @ for which s,,, = dim(X; ) dim(X,) for all simple objects X, in €’.
We will primarily be interested only in the cases @ = % and % = %’. We usually
assume 9 to be fixed, in which case we may just write J for Jg.

Let X = @, m; X,, Y = @ ny X, be objects in 6, and let f : X — Y be a
morphism. Then f can be written as f = € fi, where f; : m X, — n; X,. For
given f: X — Y, we define the morphism f7 : Xg — Y7, where fg = @Xxeg Fis
and Xg, Y7 are defined accordingly. Also, we define pg(X) € End(X) to be the
projection from X onto Xg.

For a fixed object Z in ¢ and a morphism f : X — Y we define the morphism

Pz(f): X — Y by y

Pz(f) = 7 Z

~

X

Of course this picture corresponds to an algebraic expression involving rigidity
and braiding morphisms. One can also check that for Z = Z; ® Z,, the operation
Pz is also given by a picture involving two parallel rings labeled by Z; and Z5.
If X;, X, are simple objects in 6, it follows from the definitions that Px, (1x,) =
($5./d))1x,. For a formal linear combination € = ) M w, X, with X, simple
objects in 6, the morphism Pgq(f) can also be expressed as the sum ) pen Px, (f).
The following lemma is well-known and follows from the definitions:

Lemma 5.3. With notations above,

S), S)
Px,(f)=Y ZLf and Po(f)=) w,~f.
d)L dA
A AL
We now state a straightforward generalization of the results in [Bruguieres 2000,
Lemma 1.3].

Proposition 5.4. Fix the category D and let T = T g. There exists a linear combina-
tion Q = ZME[\/ wy X, such that Po(f) = fg for any morphism f in%. Moreover,

> oudy = 1.
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Proof. We adapt the arguments in the proofs of [Bruguieres 2000, Lemmas 1.2
and 1.3] to our setting. By Lemma 5.3, we have to find scalars w,, u € A’ such
that ZﬂeA, . (83./dy) 1s equal to 1 or O depending on whether X; € J or not.
Observe that the second statement will also follow from this as s;,, = d,d,, for
X, € T.

To do so, pick an object X = D; (5 @) M1 X in @ with m; # 0 for all 1 € A (D).
Let z, denote the corresponding minimal idempotent in the center of End(X). Then
Px, (z:)= sg—i‘z . It also follows immediately by drawing pictures that Pz, gz, (f) =
Pz,(Pz,(f)) for any f € End(X) (see also the proof of [Bruguieres 2000], Lemma
1.2). Hence we obtain a representation of the fusion algebra of ¢’ on V, the C-span
of the idempotents z;, A € A(%), with each Py, acting via a diagonal matrix with
respect to the basis of z;’s. It follows from Lemma 5.3 that Px, acts via the same
scalar on the central idempotent z, as on zq, for all simple objects X, in €', if and
only if A € J. Hence the projection onto span{z,, X, € J} is in the image of the
fusion algebra, which is spanned by the Px,’s. So we can find scalars w,, such that
this projection is written as x> @, Px,,. The claim follows from this. d

5C.. Let f:Q;_, X», — @i_; X,, be a morphism. We define, forr =1,...,s,
the morphism f, : Qi1 X0 ® X, — Qi_; X5, ® X, using rigidity and braid-
ing morphisms for suitable objects as indicated in Figure 17; if r = s, the source
of ﬁ is defined to be 1. For instance, we have

fimao(l;, ® f® 17,0 - ®1z) 08,

K1 W2 oo W

_

Hr+1

—1f

SR W

Figure 17. f,: Q'_, . X0, ® X, = Q/_; X1, ® X,
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for suitable morphisms « and 8. We set f = fs

Corollary 5.5. Let f € Homy—y(M;, M};) (with the notation as explained at the
beginning of Section 4B), viewed as an element in Hom« (X5, Xj;) (see Lemma
4.5(¢c)), and let Pg be as in Proposition 5.4. Then f, = Pg(ﬁ) = (f,)g.

Proof. Fix r, and put a ring around f as it was done for a in Lemma 5.1. By
Corollary 5.2 the equality there also holds if we label the ring by Q@ = > w, X,
with the w, as in Proposition 5.4. Observe that the ring on the left hand side
becomes the scalar Z w,d, =1, by Propos1t10n 5.4. Now multiply both sides
with suitable morphlsms which change f to fr, such that all strands ending up go
under the ring, and all strands ending at the bottom go above the ring. Then the
right-hand side is equal to Pgq( fr), which is equal to the left-hand side, fr But by
Proposition 5.4 Po(f,) = (f.)g. O

Lemma 5.6. If f € Hom(M;, My) then f = (®)_, pg (X1, ® X)) f-

Proof. We will prove by induction on r that f, = (®/_, ps (X5, ® X,,,)) f. For
r =1, we have

fi=Pa(f) = ()7,
by Corollary 5.5. This proves the claim for » = 1, as the target of the morphlsm

f1 is X » ® X, . For the induction step we use the inductive formula for f,+1, as
given in the figure:

Mopy A Hr—1 Ar tr

/

fri= Ir

Al g |

Ar42 As—1 fs As
We obtain from this and the induction assumption that
frin =1®]_ p7 (X5, ® X)) ® I, . ox,  fre1
By Corollary 5.5 (as for the case r = 1) we also obtain

fro1 = Pa(fri1) = pa( @1 X5, @ X)) fri1-
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If X, is an object in T, then so is X,. It follows that the tensor product of simple
objects X; ® X, is in J for X; € J only if also X, is in 7. One deduces from this
and the last two formulas that

fAr-H = P9(®Ir:11 )?)L,- ® Xl/«i)((®;:] pg(}?ki ® X)) ® 1)?)\,+]®xur+l)fr+1
= @ ps (X5, ® X)) frin.

This proves the claim by induction on r. U

SD.. Itcan be shown under fairly weak conditions that the category J is equivalent
to the representation category of a finite group G, see the papers [Bruguieres 2000]
and [Miiger 2000]. In the following, we shall require in addition that I is equivalent
to the representation category of a finite abelian group G, for any choice of &. In
this case, every simple object in the subcategory I is invertible. Moreover, we
can and will label the simple objects of J by the elements of G in such a way that
X,®X, =X, forany g, h € G. Then we get a G-action on the index set A defined
by X = Xz ® X;.. We shall also need the subgroup G} of G* consisting of all
s-tuples (g1, g2, .- ., &) which satisfy g1g> - - - g = 1. The just defined G-action
extends to an action of G| on A in the obvious way.

Proposition 5.7. Under the above assumptions we have
(a) Hom(M;, Mj) # 0 only if there exists a g € G such that i = g.X.
(b) dimEnd(Mj;) < |Stabgs .

Proof. We use notations as in Lemma 5.6. By our assumptions, we have pg(X;, ®
X,,;) = 0 unless we can find an element g; € G such that X,, C X;, ® X,,,. This
implies g;.A; = u;, and hence i = g.X for some g € G°. Moreover, we have a
nonzero morphism from 1 to ® X, if and only if [ [ g; = 1. This shows that g € G},
by Lemma 5.6.

By the discussion in the previous paragraph, the dimension of

Hom(1, ®; p6(Xs, ® X5,))

is equal to the cardinality of all s-tuples g = (g;) of elements of G for which g.X =X
and whose product | [ g; is equal to 1. These are exactly the elements of Stabgs 2.

The claim now follows from the fact that the map f +— f is injective; indeed, it is
easy to construct a left-inverse by multiplying f by a suitable combination of N’s
and U’s to get back f. U

Theorem 5.8. If the S-matrix for the category €’ is invertible, the dual principal
graph for the inclusion N C M coincides with its principal graph. In particular,
each M—M bimodule M5, with A= (A;) such that each A; labels a simple object in
©' is irreducible.
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Proof. We will use the results of Lemma 5.6 and of Proposition 5.7 for the category
@’ (recall that its simple objects appear in tensor powers of X whose exponents are
divisible by k). If the S-matrix is invertible, the group G corresponding to the
category J is the trivial group. Hence there are no nonzero morphisms between
M; and M; for A # (i, and each J(—Jl-bimodule Mj is irreducible by Proposition
5.7. It follows from the definitions (see before Theorem 4.6) that the multiplicity
of a simple N—{l bimodule K, in the simple -/ bimodule Mj; is equal to L;‘{.

Observe that ind(K,) = df[Jl/L :Nland ind(M;) =[], d/%,-' It follows that

de[M:N]:(de)s = > [14-

veA’ veA’ (A i

Hence ), _, ind(K,) = ZXG(A,)S ind(M;). Hence any simple N—/(-bimodule in
a higher relative commutant has as a weak reduction an element in (K, ),ea’, by
Theorem 4.6. As our original inclusion N' C Jl is of finite depth by Theorem
4.6(c), it follows from Lemma 1.10(a) that there can not be any additional J—Jl-
bimodules in the higher relative commutants. U

SE. Noninvertible S-matrix. We shall make the following assumptions: We as-
sume that the category J for our chosen category % = € is equivalent to the
representation category of a finite abelian group G, and, moreover, that |G| = k,
with k as defined in Section 3A. This also implies that |G]| = k*=!. For A € A
we also define |A| to be the residue class mod k such that |A| = n mod k whenever
X, CcX ®n,

Theorem 5.9. Let the conditions be as just stated.
(a) End—u(M;) has dimension |StabG.;X|f0r any AEAS = {X AN K|D |Ai|}.
(b) The even vertices of the dual principal graph of the inclusion N C M are
labeled by the equivalence classes of irreducible components of the bimodules
M;, with A € Ay,
Proof. Let M; = P, m; Q5 ; be the decomposition of the .~/ bimodule M;
into irreducible JM—J/l-bimodules, the m; being multiplicities. Then it follows from

Lemma 1.10(b), and Proposition 5.7 that

_ ind(M;) ind(M;)
> ind(Q5) = — > .
l. 7 dim(End(M;)) = |Stabg |

Now let (Q); = UX(QX,i)i be the collection of nonisomorphic representatives of
irreducible -/ submodules of any module M; with A € Aj. Then

Yindgy= Y ind(Mp) _ 1 3 ind(M3).

cn| kST
|StabG|A| ey

J G —orbits€ A
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Using Lemma 4.5(a) and Lemma 3.1(d) one sees that this equals

1 /1 .
(i 24)-(24):
rEAS ren
But the last sum is equal to ), _, ind(K,), as was already shown in the proof
of Theorem 5.8. Hence the inequalities above must be equalities, and our set of
bimodules (Q;); must already exhaust all possible Jl—.(-bimodules in the higher
relative commutant, by Lemma 1.10. ([

-

Remark 5.10. If the stabilizer Stabgs A is trivial, which usually is the case for most
labels, the bimodule M; is irreducible, and its decomposition into N—/(-bimodules
is again determined by the fusion coefficients L;. Unfortunately, our theorem does

not say anything about what End(M;) looks like if |StabGsl-)i| > 4. For example,
if the stabilizer has four elements, End(Mj5) could be isomorphic to C* or to the
2 x 2 matrices. Neither does it say how the submodules of .l; decompose into
irreducible N—Al modules in these cases.

6. Examples

6A. Examples of C*-tensor categories. (1) The easiest example for our set-up is
the representation category Rep(G) of finite-dimensional unitary representations
of a finite group. In order to avoid degenerate trivial cases, we take for X in our
construction an object such that some tensor power of it contains the whole group
ring CG as a subobject. For example, for G a finite cyclic group, we could take
the direct sum of the trivial and of a faithful one-dimensional representation. For
these examples, the braiding structure is just given by the permutation of tensor
factors, which commutes with the group action. This makes the S-matrix a rank 1
matrix, meaning it is noninvertible unless G is trivial. However, at least in principle,
the dual principal graph can be computed from a general result about fixed point
algebras of a group K and its subgroup H. In our setting, K = G* and H = G,
which is embedded by g € G — (g, g, ..., g) (s times). See [Kosaki et al. 1997]
for details.

In the special case when the subgroup K is normal, we obtain principal and dual
principal graphs of the factor group H/K. This is the case in our setting if G is
abelian.

(2) Let p be a II; factor representation of the infinite braid group B~ such that
the Jones index for the inclusion of factors p(B2.~)" C p(Boo)” is finite. Let us
define A, = p(By+1.00) NP (Bxo)” (recall that finite index implies that the relative
commutant is finite-dimensional). We moreover assume that there exists, for some
k € N, a projection p € Ay such that pp(Bso)”p = pp(Bik+1.00)"- It is possible to
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define from this a C*-tensor category, with the objects being the projections in A,,.
Most of this has already been done in [Wenzl 1993], Section 2, without mentioning
categories. We shall not do this here. We just remark that the constructions of this
paper will work in this setting without explicitly exhibiting the category; this has
already been done in [Erlijman 2001]. In particular, this can be applied to the Jones
subfactors as well as to the Hecke algebra and BCD type subfactors.

(3) Let U, g be the Drinfeld—Jimbo deformation of the universal enveloping algebra
Ug of a semisimple Lie algebra g. It is well-known that the category of its finite-
dimensional representations has a braiding structure. It can not be unitarized except
for g = 1. If g is a root of unity # 1, one can define a special class of represen-
tations called tilting modules which again forms a braided tensor category. It can
be shown that the category of tilting modules has a semisimple quotient with only
finitely many simple modules up to equivalence; this is often referred to as a fusion
category (see [Andersen 1992],[Andersen and Paradowski 1995]). Moreover, for
g being certain roots of unity (usually of the form ¢ = e*2"/! for suitable integers
[ (see [Wenzl 1998] for precise values), this quotient can be unitarized. This yields
a large and important class of C* tensor categories. Using the one-sided subfactor
construction, one obtains the Jones subfactors for X being the U,sl;-analog of
the 2-dimensional representation of s/,. Similarly, Hecke algebra subfactors and
BCD type subfactors can be obtained from fusion categories of quantum groups of
classical Lie types.

These C*-fusion categories can also be obtained by a completely different con-
struction using the category of positive energy representation of a loop group. The
difficulty in this construction comes from the fact that one can not use the usual
tensor product for representations; instead one has to define a new, so-called fusion
tensor product (see [Wassermann 1998]).

(4) Let N C M be an inclusion of II; factors with finite index and finite depth.
Then the category of N—N bimodules obtained as direct sums of summands of the
bimodules

MP"=MQONM®y--- Qv M

(n times), n € N defines a C*-tensor category which may or may not be braided.
One can similarly also define the C*-tensor category of M-M bimodules generated
by M®",

If these categories are not braided, one can apply a general construction, called
the categorical quantum double construction to construct from our category of bi-
modules a larger braided C* tensor category. It was shown that this category is
equivalent to the category of JM—JAl-bimodules for the asymptotic inclusion N' C M
derived from N C M; see [Miiger 2003]. If the original category already was
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braided, the asymptotic inclusion coincides with the 2-sided inclusion constructed
in this paper.

(5) Our constructions of bimodules in this paper are based on certain endomor-
phisms of II; factors. The approach to categories via endomorphisms has been
used for a long time for type III factors in the framework of algebraic quantum
field theory (see [Longo and Roberts 1997; Fredenhagen et al. 1989; Xu 2000], for
example). Here subtleties involving coupling constants do not matter, and objects
are given directly by morphisms.

6B. Examples for our construction. (1) We first list examples of C*-tensor cate-
gories with invertible S-matrix.

(a) The S-matrix for the full fusion tensor categories as constructed in [Andersen
1992],[Andersen and Paradowski 1995] is invertible under the conditions for uni-
tarizability, as stated in [Wenzl 1998]. Hence if we can find an object X such that
all irreducible representation of the fusion category appear in some tensor power
of X, we have ¢’ = % and the dual principal graph is equal to the principal graph.
Such representations can be found in all cases, but usually can not be chosen to be
irreducible. For instance, for Lie type A (the case of Jones subfactors and Hecke
algebra subfactors), one can choose X =1 @V, where V is the analog of the vector
representation.

(b) Similarly, the S-matrix for the quantum double of a C* tensor category is always
invertible (see [Miiger 2003], for instance). Hence, as soon as we have found an
object X for which all irreducible representations of the double category appear
in some tensor power of X, the dual principal graph of our s-sided inclusion with
respect to X is equal to the principal graph.

(2) It turns out that our construction not only depends on the category 6, but also
on the choice of the object X. Even though in the case of the fusion tensor cate-
gories the S-matrix for € is invertible, the S matrix for the category 6’ may not
be invertible. For instance, for type A if one takes X = V, the S-matrix for €’ is
invertible only if the degree of the root of unity is coprime to k. If this is not the
case, however, our results for noninvertible S-matrices apply. This will be shown
in more detail in the following subsection at an example.

6C. Subfactors related to Jones subfactors. We illustrate our examples in some
detail for the fusion category € of U,sl,, with g = e?/! There also exist other,
more elementary methods to construct these categories using the Temperley—Lieb
algebras; see [Turaev 1994], for example. As mentioned before, this is also one
of the cases where the subfactor constructions can be done on the level of braid
representations, as it was carried out in the original paper [Erlijman 2001].
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We give a brief description of this category. Up to isomorphism, we have exactly
[—1 simple objects in €, which are denoted by [i], 1 <i </—1. The decomposition
of tensor products is given by

(6-1) LIQLl=Mli—jl+1H&i—jl+3]®- - - &[m],

where m is the minimum of i + j — 1 and 2/ — 1 —i — j. One sees easily that
[1] corresponds to the trivial object. It follows from the tensor product rules by
induction on 7 that all simple objects in [2]®" are labeled by even numbers if 7 is
odd, and by odd numbers if n is even. Hence k =2 and the simple objects of €’ are
labeled by odd numbers. This explicitly describes the principal graph for N' C J,
constructed with X = [2], by Theorem 4.6.

Observe that [i]® [/ — 1] =[] —i] for all 1 <i < [. Hence the objects [1] and
[/ —1] together with the operation ® form a group G which is isomorphic to Z/27.
Moreover, the S matrix is well-known to be of the form S = (sin(ijz/[)), up to a
scalar.

It is very easy to check that if / is even, then sin(i(/ — 1)z /[) = sin(iz/[) for
anyoddi=1,3,...,]—1. Hence the category J contains at least the objects [1]
and [/ —1]. It contains no more simple objects as obviously sin(iz /1) =sin(ijr /1)
forl < j <l onlyif j =1—1. So the conditions at the beginning of Section 5B
are satisfied with |G| = 2 = k. We have shown most of the following

Proposition 6.1. Let N C M be the subfactor constructed from the s-sided inclusion
from the Jones subfactor at an l-th root of unity, with [ even. Then we have

(a) The even vertices of the principal graph are labeled by all s-tuples of odd
positive numbers less than | and the odd vertices are labeled by all odd pos-
itive numbers less than . The number of edges between two vertices can be
computed from the tensor product rule stated in (6-1).

(b) Each s-tuple of positive integers less than | whose sum is even and which con-
tains the number /2 at most once labels an even vertex of the dual principal
graph;, the number of edges emanating from such a vertex can be computed as
in (a). The M—M bimodules M; labeled by an s-tuple A containing the number
/2 exactly r > 1 times satisfies dim(End(M3)) = 2" -1

Proof. Part (a) follows from Theorem 4.6 and our explicit description of the simple
objects of €¢’. For part (b), we have already checked the conditions stated at the
beginning of Section 5B. It remains to calculate Stabcs]'X for any % € A*. Recall that
the action of the nontrivial element of G on our labeling set is given by i — [ — .
Obviously, the only fixed point is [/2 for [ odd. It is now not hard to show that
A € A* has a nontrivial stabilizer in G if and only if r > 2 of its components
are equal to //2, and that in this case the stabilizer has exactly 2" ! elements.
Statement (b) now follows from Theorem 5.9. O
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Remark 6.2. If s = 3, part (b) of the last proposition completely determines the
number of edges in the dual principal graph except for the decomposition of the
bimodule M; with A= (1/2,1/2,1/2), which could decompose into the direct sum
of four nonisomorphic irreducible /M—Al bimodules or into the direct sum of two
isomorphic irreducible M—Al bimodules.
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