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We give an easy and elementary construction of quotient schemes of mod-
ules of relatively finite rank under very general conditions. The construc-
tion provides a natural, explicit description of an affine covering of the quo-
tient schemes, that is useful in many situation.

Introduction

Quotient schemes were introduced by A. Grothendieck [1966], and belong among
the fundamental tools in algebraic geometry. They generalize simultaneously the
Hilbert schemes and the Grassmann schemes. In most cases where these schemes
appear it suffices to know that they exist. However, there are cases when it is crucial
to have an explicit description of the schemes. We give here, for any morphism of
schemes Proj(R)→ S, where S is arbitrary and R is a quasicoherent graded OS-
algebra, an elementary construction of quotient schemes parametrizing equivalence
classes of surjections from a quasicoherent OProj(R)-module to coherent modules
that are of relatively finite rank over S. The construction provides a natural and
explicit description of an affine covering of the quotient schemes. In a previous
article [Gustavsen et al. 2007] we indicated the usefulness of such a description in
the case of Hilbert schemes of points, and further evidence of this is given by M.
Huibregtse [2002; 2006]. Our proof of the existence of the quotient schemes is a
simplification and clarification of the constructions of these works.

The main new idea is the description of a local version of the quot functor. More
precisely, let A be a ring, B an A-algebra and E and F modules over A with E
free of finite rank, and fix an A-module homomorphism s : E → B⊗A F . We
parametrize B-module structures on E , together with B-module homomorphisms
u : B⊗A F→ E such that us = idE .

When S is locally noetherian and R is locally finitely generated by elements of
degree one, our existence result for the quotient schemes of modules of relatively
finite rank follows from the more general results of Grothendieck [1966]. Appar-
ently the first detailed existence proof of Grothendieck’s result was provided by
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A. Altman and S. Kleiman [1980], valid under quite general conditions, where S
is not assumed to be locally noetherian. A much used method for obtaining these
results was given by D. Mumford [1966] (see also [Sernesi 2006]). In contrast to
these approaches our method relies on simple algebraic constructions and avoids
embeddings into high dimensional grassmannians via Castelnuovo–Mumford reg-
ularity. As a consequence our local description of the quotient schemes is, in most
cases appearing in applications, in terms of explicit natural equations in the affine
space of commuting matrices of smallest possible size, that is, the size is equal to
the finite rank of the modules.

1. The local quot functor

1.1. Let A be a commutative ring with unit, and let A → B be an A-algebra.
Moreover, let E and F be A-modules where E is free of finite rank, and let

s : E→ B⊗A F

be an A-module homomorphism. We want to describe all B-module structures
on E , together with B-module homomorphisms u : B⊗A F → E such that us =
idE . Recall that two surjections are considered equivalent if their kernels coincide,
and that a B-module structure on an A-module E corresponds to an A-algebra
homomorphism B→ EndA(E).

More precisely, we want to describe, for every A-algebra A→ A′, the set con-
sisting of an A′⊗A B-module structure on A′⊗A E together with an A′⊗A B-module
homomorphism A′⊗A B⊗A F u- A′⊗A E such that the composite A′-module
homomorphism

A′⊗A E
idA′ ⊗A s- A′⊗A B⊗A F u- A′⊗A E

is the identity. This clearly defines a functor from A-algebras to sets.
The main objective of Sections 1, 2 and 3 is to show that this functor is rep-

resentable by an A-algebra Qs , and to give a simple explicit description of this
algebra.

We first find a slightly different description of this functor.

Notation 1.2. We shall need evaluation and trace maps. We recall that when G
and K are A-modules with K free of finite rank, we obtain for every submodule
D of HomA(G, K ) the evaluation homomorphisms

ev : D⊗A G→ K or ev : G⊗A D→ K

that maps x⊗Aϕ, or ϕ⊗A x , to ϕ(x). Moreover, we have the trace homomorphism

tr : A→ K ⊗A K ˇ
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obtained from the dual homomorphism of ev : K ˇ⊗A K → A.

Proposition 1.3. There is a natural bijection between

(1) the set of B-module structures on E provided with a surjective homomorphism
u : B⊗A F→ E of B-modules, and

(2) the set of A-algebra homomorphisms ϕ : B → EndA(E) provided with an
A-module homomorphism v : F→ E such that the composite map

B⊗A F
ϕ⊗Av- EndA(E)⊗A E ev- E

is surjective.

The bijection maps a pair (v, ϕ) in (2) to ev(ϕ⊗Av) in (1), where E has the B-
module structure given by ϕ.

Proof. We first note that B-module structures on E correspond to A-algebra ho-
momorphisms ϕ : B→ End(E).

Given a B-module structure on E , a surjection u : B⊗A F → E of B-modules
determines a B-module structure on E uniquely. Moreover an A-module homo-
morphism u : B⊗A F→ E determines an A-module homomorphism v : F→ E by
restriction of scalars, and conversely, u is determined by v by extension of scalars.

Finally, an A-module homomorphism v : F → E and a B-module structure
ϕ : B→ EndA(E) on E makes the composite map

B⊗A F
ϕ⊗Av- EndA(E)⊗A E ev- E

into a B-module homomorphism, since ev is an EndA(E)-module homomorphism
and ϕ : B→ EndA(E) is a ring homomorphism. �

Corollary 1.4. The bijection of the proposition induces a bijection between

(1) B-module structures on E provided with a homomorphism of B-modules u :
B⊗A F→ E such that

E s- B⊗A F u- E

is the identity, and

(2) A-algebra homomorphisms ϕ : B → EndA(E) provided with an A-module
homomorphism v : F→ E such that

E s- B⊗A F
ϕ⊗Av- EndA(E)⊗A E ev- E

is the identity.

Proof. This follows from the proposition since the surjectivity of u and ev(ϕ⊗Av)

is automatic. �
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2. The local Hilbert scheme

The material of this section will basically give a construction of Hilbert schemes
of points, as in [Gustavsen et al. 2007], but the presentation here is different from
that of that paper. We use that the A-algebra SymA(G⊗A EndA(E)ˇ) parametrizes
module homomorphisms u :G→EndA(E). Then we explicitly construct a residue
algebra H of SymA(G⊗A EndA(E)ˇ) that parametrizes those u such that the el-
ements of the image commute. Then H also parametrizes A-algebra homomor-
phisms SymA(G)→ EndA(E).

Notation 2.1. Let G be an A-module and K a free A-module of finite rank. We
denote by

uK : SymA(G⊗A K ˇ)⊗A G→ SymA(G⊗A K ˇ)⊗A K

the SymA(G⊗A K ˇ)-module homomorphism defined by uK (1⊗A x)= x⊗A tr(1A)

for all x ∈ G, where G⊗A K ˇ is considered as a submodule of SymA(G⊗A K ˇ).

Lemma 2.2. For every A-algebra homomorphism A→ A′ there is a natural bijec-
tion between

(1) A′-module homomorphisms A′⊗A G→ A′⊗A K , and

(2) A-algebra homomorphisms SymA(G⊗A K ˇ)→ A′.

The bijection maps ϕ : SymA(G⊗A K ˇ)→ A′ to the homomorphism u defined by
u(1A′⊗A x)= (ϕ⊗A idK )uK (1⊗A x) for all x ∈ G.

Proof. The set (2) is mapped to the set (1) via three isomorphisms:

(1) HomA -alg(SymA(G⊗A K ˇ), A′)→HomA(G⊗A K ˇ, A′) that follows from the
definition of the symmetric algebra.

(2) HomA(G⊗A K ˇ, A′)→ HomA(G, A′⊗A K ), that is a canonical standard iso-
morphism, when K is free, that maps u : G⊗A K ˇ → A′ to the composite
homomorphism G idG ⊗A tr- G⊗A K ˇ⊗A K u⊗A idK- A′⊗A K .

(3) HomA(G, A′⊗A K )→HomA′(A′⊗AG, A′⊗A K ), that is the standard isomor-
phism obtained by extension of scalars. �

Notation 2.3. Let u : G→ K be a homomorphism of A-modules with K free of
finite rank. We denote by IZ (u) the image of the composite homomorphism

G⊗A K ˇ u⊗A id K ˇ- K ⊗A K ˇ ev- A.

Lemma 2.4. For every A-algebra A→ A′ the A′-module homomorphism

A′⊗A G
idA′ ⊗A u- A′⊗A K
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is zero if and only if the homomorphism A→ A′ factors via the residue homomor-
phism A→ A/IZ (u).

Proof. This is an immediate consequence of the definition of IZ (u). �

Notation 2.5. Let

v : SymA(G⊗A EndA(E)ˇ)⊗A G⊗A G→ SymA(G⊗A EndA(E)ˇ)⊗A EndA(E)

be the SymA(G⊗A EndA(E)ˇ)-module homomorphism defined by

v(1⊗A x⊗A y)

= uEndA(E)(1⊗A x)uEndA(E)(1⊗A y)− uEndA(E)(1⊗A y)uEndA(E)(1⊗A x),

where uEndA(E) is defined in paragraph 2.1. We denote by H the residue algebra
of SymA(G⊗A EndA(E)ˇ) modulo the ideal IZ (v) and let

ρH : SymA(G⊗A EndA(E)ˇ)→ H

be the residue homomorphism. From the SymA(G ⊗A EndA(E)ˇ)-module ho-
momorphism uEndA(E) and the A-algebra homomorphism ρH we obtain an H -
module homomorphism w : H ⊗A G → H ⊗A EndA(E) defined by w(1⊗A x) =
(ρH ⊗A 1EndA(E))uEndA(E)(1⊗A x) for all x ∈ G. It follows from the definition of
IZ (w) and H that the elements of the image of w commute. Consequently w gives
a unique H -algebra homomorphism

µH : H⊗A SymA(G)→ H⊗A EndA(E)

such that µH (1H⊗A x)= w(1H⊗A x) for all x ∈ G.

Lemma 2.6. Let A→ A′ be an A-algebra. We have a bijection between

(1) A′-algebra homomorphisms A′⊗A SymA(G)→ A′⊗A EndA(E), and

(2) A-algebra homomorphisms H → A′.

The bijection maps ϕ : H → A′ to the homomorphism u defined by u(1A′⊗A x) =
(ϕ⊗A idEndA(E))µH (1H⊗A x) for all x ∈ G.

Proof. It follows from Lemma 2.2 that there is a bijection between A′-module
homomorphisms u : A′⊗A G → A′⊗A EndA(E) and A-algebra homomorphisms
ϕ : SymA(G ⊗ EndA(E)ˇ)→ A′. By the definition of IZ (w) and Lemma 2.4 the
homomorphism ϕ factors via a homomorphism χ : H → A′ if and only if the
elements u(1A′⊗A x) commute for all x ∈ X . However, the maps u : A′⊗A G→
A′⊗A EndA(E) whose images consist of commuting elements correspond to A′-
algebra homomorphisms ψ : A′⊗A SymA(G)→ A′⊗A EndA(E) for which

ψ(1A′⊗A x)= u(1A′⊗A x)

for all x ∈ G. �
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Notation 2.7. Let G be an A-module and I an ideal in SymA(G). Denote by ι :
I→SymA(G) the inclusion map, let B=SymA(G)/I, and let ρB :SymA(G)→ B
be the residue homomorphism. We denote by v the composite H -module homo-
morphism

(2-1) H⊗AI
idH ⊗A ι- H⊗A SymA(G)

µH- H⊗A End(E).

Moreover we let HB be the residue algebra of H modulo the ideal IZ (v) and we
denote the residue homomorphism by

ρHB : H → HB .

We tensor the modules of (2-1) by HB over H and obtain a homomorphism of
HB-modules

HB⊗AI
idHB ⊗A ι- HB⊗A SymA(G)

idHB ⊗HµH- HB⊗A EndA(E)

such that the composite homomorphism is zero by the definition of IZ (v). Conse-
quently we obtain a homomorphism of HB-algebras

µHB : HB⊗A B→ HB⊗A EndA(E)

such that µHB (1⊗AρB( f ))= (ρHB⊗A idEndA(E))µH (1⊗A f ) for all f ∈SymA(G).

The algebra HB parametrizes all B-module structures on E , and µHB is the
universal homomorphism.

Proposition 2.8. Let A→ A′ be an A-algebra. We have a bijection between

(1) A′-algebra homomorphisms A′⊗A B→ A′⊗A EndA(E), and

(2) A-algebra homomorphisms HB→ A′.

The bijection maps ϕ : HB→ A′ to the homomorphism u defined by u(1A′⊗A f )=
(ϕ⊗A idEndA(E))µHB (1HB⊗A f ) for all f ∈ B.

Proof. It follows from Lemma 2.4 that an A-algebra homomorphism H → A′

factors via ρHB : H → HB if and only if the composite homomorphism

A′⊗AI
idA′ ⊗A ι- A′⊗A SymA(G)

idA′ ⊗HµH- A′⊗A EndA(E)

is zero. This last condition holds if and only if idA′ ⊗HµH factors via an A′-algebra
homomorphism A′⊗A B→ A′⊗A EndA(E). �
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3. The local quot scheme

It follows from Lemma 2.2 that the A-algebra SymA(F⊗A Eˇ) parametrizes ho-
momorphisms F→ E . We use this, together with the properties of the A-algebra
HB , to construct a residue algebra Qs of SymA(F⊗A Eˇ)⊗A HB that parametrizes
the local quot functor of Section 1.1.

Notation 3.1. We defined in 2.1 an A-module homomorphism

uE : SymA(F⊗A Eˇ)⊗A F→ SymA(F⊗A Eˇ)⊗A E

such that uE(1⊗A y)= y⊗A tr(1) for all y ∈ F .
Let A→ B be an A-algebra and fix a presentation 0→I→SymA(G)→ B→ 0

of B as in 2.7. Moreover, fix an A-module homomorphism

s : E→ B⊗A F

and let

v : SymA(F⊗A Eˇ)⊗A HB⊗A E→ SymA(F⊗A Eˇ)⊗A HB⊗A E

be the composition of the SymA(F⊗A Eˇ)⊗A HB-module homomorphisms

SymA(F⊗A Eˇ)⊗A HB⊗A E 1⊗A 1⊗A s- SymA(F⊗A Eˇ)⊗A HB⊗A B⊗A F
∼- SymA(F⊗A Eˇ)⊗A F⊗A HB⊗A B

uE ⊗AµHB- SymA(F⊗A Eˇ)⊗A E⊗A HB⊗A EndA(E)
∼- SymA(F⊗A Eˇ)⊗A HB⊗A EndA(E)⊗A E

id ⊗A id ⊗A ev- SymA(F⊗A Eˇ)⊗A HB⊗A E,

where the isomorphisms without names are the appropriate permutations of the fac-
tors in the tensor products. Let Qs be the residue algebra of SymA(F⊗A Eˇ)⊗A HB

modulo the ideal IZ (v− id) and let

ρQs : SymA(F⊗A Eˇ)⊗A HB→ Qs

be the residue homomorphism.
Denote by ρ1 : SymA(F⊗A Eˇ)→ Qs and ρ2 : HB→ Qs the A-algebra homo-

morphisms that determine ρQs , that is, ρ1( f )=ρQs ( f ⊗A1) and ρ2(g)=ρQs (1⊗g)
for all f ∈ SymA(F⊗A Eˇ) and g ∈ HB . We obtain a universal Qs-algebra homo-
morphism

µQs : Qs
⊗A B→ Qs

⊗A EndA(E)

defined by µQs (1Qs⊗A f )= (ρ2⊗A idEndA(E))µHB (1⊗A f ) for all f ∈ B and a Qs-
module homomorphism u′Qs : Qs

⊗A F → Qs
⊗A E defined by u′Qs (1Qs ⊗A y) =
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(ρ1⊗A idE)uE(1⊗A y) for all y ∈ F . When we give Qs
⊗A E the Qs

⊗A B-module
structure given by µQs we denote by

uQs : Qs
⊗A B⊗A F→ Qs

⊗A E

the Qs
⊗A B-module homomorphism obtained from u′Qs by extension of scalars.

Identifying Qs
⊗AB⊗AF with (Qs

⊗AB)⊗Qs(Qs
⊗AF) and Qs

⊗A EndA(E)⊗AE
with (Qs

⊗A EndA(E))⊗Qs (Qs
⊗A E) we obtain a composite homomorphism

Qs
⊗A E

idQs ⊗A s- Qs
⊗A B⊗A F

µQs ⊗A u′Qs
-

Qs
⊗A EndA(E)⊗A E

idQs ⊗A ev- Qs
⊗A E

that is the identity by the definition of IZ (v− id) and Qs .

Theorem 3.2. The A-algebra Qs represents the local quot functor defined in Sec-
tion 1.1. The universal homomorphisms are µQs : Qs

⊗A B→ Qs
⊗A EndA(E) and

uQs : Qs
⊗A B⊗A F→ Qs

⊗A E.
More precisely, let A→ A′ be an A-algebra. We have bijections between the

following three sets:

(1) A′⊗A B-module structures on A′⊗A E and A′⊗A B-linear homomorphisms
u : A′⊗A B⊗A F→ A′⊗A E for the A′⊗A B-module structure such that

A′⊗A E 1⊗A s- A′⊗A B⊗A F u- A′⊗A E

is the identity.

(2) A′-module homomorphisms v : A′⊗A F→ A′⊗A E and A′-algebra homomor-
phisms ϕ : A′⊗A B→ A′⊗A End(E) such that the composite homomorphism

(3-1) A′⊗A E
idA′⊗s- A′⊗A B⊗A F

ϕ⊗Av- A′⊗A EndA(E)⊗A E
idA′ ⊗A ev- A′⊗A E

is the identity.

(3) A-algebra homomorphisms Qs
→ A′.

The bijection from the set (2) to the set (1) is described in Proposition 1.3 and the
bijection from the set (3) to the set (2) is defined as follows:

Let ϕ : Qs
→ A′ be an A-algebra homomorphism. The homomorphism ϕρQs :

SymA(F ⊗A Eˇ)⊗A HB → A′ is determined by A-algebra homomorphisms ρ1 :

SymA(F ⊗A Eˇ) → A′ and ρ2 : HB → A′. The homomorphism ρ2 defines an
A′-algebra homomorphism ψ : A′⊗A B → A′⊗A EndA(E) by Proposition 2.8,
and ρ1 defines, by Lemma 2.2 with E = K and G = F , an A′-module homomor-
phism v : A′⊗A F→ A′⊗A E. We extend v to an A′⊗A B-module homomorphism
A′⊗A B⊗A F → A′⊗A E , when A′⊗A E has the A′⊗A B-module structure given
by ψ .
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Proof. The bijection between (1) and (2) is given in Corollary 1.4 when we use the
canonical isomorphism of A′-module A′⊗A EndA(E)→ EndA′(A′⊗A E).

From the description of the map from the set in (3) to the set in (2) given in
the Theorem it follows that the map is a bijection, since an A-algebra homomor-
phism SymA(F⊗A Eˇ)⊗A HB → A′ factors via ρQs if and only if the composite
homomorphism (3-1) is the identity.

That the map from the set (3) to the set (1) is functorial follows from the explicit
description of the maps in the Theorem. �

4. The quot functor

Definition 4.1. Let f : X → S be a morphism of schemes. For every morphism
g : S′→ S we write

X ′ = X ×S S′
g′ - X

S′

f ′
? g - S.

f
?

Let M be a quasicoherent OX -module that is flat over S and such that Supp M is a
scheme that is finite over S. Here Supp M is the subscheme of X defined by the
annihilator of M. We say that M is of relative rank n over S if f∗M is a locally
free OS-module of rank n. The latter condition is equivalent to the condition that
dimκ(s)( f∗M⊗OX

κ(s))= n for all points s ∈ S (see [Laksov et al. 2000]).
Let F be a quasicoherent OX -module. We denote by Quotn

F/X/S the functor from
S-schemes to sets that to a morphism g : S′→ S associates the set Quotn

F/X/S(S
′)

of classes of surjections g′∗F→ M of OX ′-modules, where M is a coherent OX ′-
module which is flat over S′ with support that is a finite scheme over S′ with relative
rank n (see [Grothendieck 1966] or [Deligne 1973]).

Let E be a locally free OS-module of rank n and fix an OS-module homomor-
phism s : E→ f∗F. We denote by Quots

F/X/S the subfunctor of Quotn
F/X/S that

to an S-scheme S′ associates the set Quots
F/X/S(S

′) of all equivalence classes of
surjections g′∗F→M such that the composite homomorphism

g∗E
g∗s- g∗ f∗F→ f ′∗g

′∗F→ f ′∗M

is surjective, that is, an isomorphism.
When convenient we write Quotn

F and Quots
F for the functors Quotn

F/X/S , re-
spectively Quots

F/X/S , and indicate in the text that the functors are taken relative
to the homomorphism f : X→ S.

Lemma 4.2. Let A→ B be an A-algebra and let M be a B-module that is free of
rank n as an A-module. Then B/AnnB(M) is integral over A.
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Proof. Since M is finitely generated as an A-module it is finitely generated as a B-
module, say by x1, . . . , xn . We obtain a B-module homomorphism B→

∏n
i=1 M

that maps b to (bx1, . . . , bxn). This gives an injection B/AnnB(M)→
∏n

i=1 M of
B-modules. In particular,

∏n
i=1 M is a faithful B/AnnB(M)-module. Moreover,

the composite homomorphism A→ B/AnnB(M)→
∏n

i=1 M is injective since M
is free as an A-module. For every element f ∈ B/AnnB(M), the module A[ f ] is
contained in the finitely generated A-module

∏n
i=1 M that is faithful over A[ f ].

Hence f is integral over A; see [Lang 1993, Chapter VII, §1 INT3]. �

Proposition 4.3. Let f : X→ S be a morphism of affine schemes. Assume that E is
a free OS-module and that F= f ∗F0 where F0 is an OS-module. Then the functor
Quots

F/X/S is representable by Qs for S = Spec(A), X = Spec(B), E = 0(S,E),
F = 0(S,F0) and s : E→ B⊗A F corresponds to the homomorphism s.

Proof. In the correspondence between affine schemes over S and A-algebras we
see that, in order to represent Quots

F/X/S , we must represent the functor that to A′

associates the A′⊗A B-module homomorphisms u : A′⊗A B⊗A F→ M where M
is a free A′-module of rank n such that

A′⊗A E
idA′ ⊗A s- A′⊗A B⊗A F u- M

is surjective. This functor is representable by Theorem 3.2, taken into account that
the condition Supp M = A′⊗A B/AnnA′⊗A B(M) is finite over A′ is automatically
fulfilled by Lemma 4.2. �

Like several of the reductions of this section, the next result is well known.

Lemma 4.4. Let f : X→ S be a homomorphism of affine schemes. Assume that E

is a free OS-module. Then Quots
F/X/S is representable.

More precisely, there is a free OS-module F0, a surjection u : f ∗F0 → F of
OX -modules, and a homomorphism of OS-modules s0 : E → f∗ f ∗F0 such that
s = ( f∗u)s0. These homomorphisms make Quots

F/X/S into a closed subfunctor of
Quot

s0
f ∗F0/X/S .

Proof. Let F = 0(X,F) and E = 0(S,E). Choose a surjection of A-modules
F0→ F with F0 free. We then obtain, by extension of scalars, a surjection of B-
modules B⊗A F0→ F , and consequently a surjection u : f ∗F0→F of OX -modules
with F0 = F̃0. We lift s : E → F to an A-module homomorphism E → B⊗A F0

via the surjection B⊗A F0→ F . The corresponding lifting s0 : E→ f∗ f ∗F0 has
the property that s = ( f∗u)s0.

Clearly, given an arbitrary A-algebra A→ A′, we have a map Quotn
F/X/S(A

′)→

Quotn
f ∗F0/X/S(A

′) that takes F
v- M to the composite homomorphism

f ∗F0
u- F

v- M,
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and this map defines a closed immersion of functors Quotn
F/X/S→Quotn

f ∗F0/X/S .
Moreover the closed immersion maps Quots

F/X/S into Quot
s0
f ∗F0/X/S because

E
s- f∗F

v- M

is surjective if and only if E
s0- f∗ f ∗F0

f∗u- f∗F
v- M is surjective.

For the representability of Quot
s0
f ∗F0/X/S , use Theorem 3.2 and Proposition 4.3.

�

Proposition 4.5. Let f : X → S be a homomorphism of affine schemes. Then
Quotn

F/X/S is representable.
More precisely, the functor Quotn

F/X/S is covered by open affine subfunctors
Quots

F/X/S for all OS-module homomorphisms s : E → f∗F, where E is a free
OS-module of rank n.

Proof. It is clear that the subfunctors Quots
F/X/S of Quotn

F/X/S are open. We
have to show that Quotn

F/X/S is covered by these functors. Let S = Spec(A),
X = Spec(B), F = 0(Spec(B),F) and E = 0(Spec(A),E). For every A-algebra
A→ A′ we let the A′-module homomorphism u : A′⊗A F→ M correspond to an
element g′∗F→M in Quotn

F/X/S(Spec(A′)). For every maximal ideal p in A′ we
can, since M is a finitely generated A′-module, find an element a′ ∈ A′ \ p and an
A-module homomorphism sM : E→ F such that the composite A′a′-module homo-
morphism A′a′⊗A E sM- A′a′⊗A F→Ma′ is surjective. This shows that the image
g′∗F| f ′−1 Spec(A′a′)→M| f ′−1 Spec(A′a′) of the element g′∗F→M by the map
Quotn

F/X/S(Spec(A′))→ Quotn
F/X/S(Spec(A′a′)) lies in Quots

F/X/S(Spec(A′a′)) so

the set Quots
F/X/S(Spec(A′a′)) covers g′∗F| f ′−1 Spec(A′a′)→ M| f ′−1 Spec(A′a′)

considered as an element in Quotn
F/X/S(Spec(A′a′)).

The representability of Quots
F/X/S follows from Lemma 4.4 and it follows that

the Zariski sheaf Quotn
F/X/S is representable. �

Lemma 4.6. Let R be a graded A-algebra. For every prime ideal p of A write
κ(p)= Ap/pAp.

Let Z be a closed subscheme of Proj(κ(p)⊗A R) that is finite over Spec(κ(p)).
Then there is an element a ∈ A not in p and an element f ∈ Ra such that Z is
contained in the open subscheme Spec(κ(p)⊗Aa (Ra)( f )) = Spec(κ(p))×Spec(Aa)

Spec((Ra)( f )) of Proj(κ(p)⊗Aa Ra)= Spec(κ(p))×Spec(Aa) Proj(Ra).

Proof. Since Z is finite over Spec(κ(p)) the fiber of the induced morphism Z →
Spec(κ(p)) consists of a finite number of points, corresponding to homogeneous
prime ideals q1, . . . , qk in κ(p)⊗A R that do not contain the irrelevant ideal. Their
union consequently does not contain the irrelevant ideal. Hence we can find a
homogeneous element g ∈ κ(p)⊗A R of positive degree that is not contained in
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any of the ideals q1, . . . , qk . Thus Z is contained in the open subscheme

Spec((κ(p)⊗A R)(g))

of Proj(κ(p)⊗A R).
Clearly we can find an element a ∈ A not in p and an element f ∈ Ra such that

1κ(p)⊗Aa f is the image of g by the natural isomorphism κ(p)⊗A R→ κ(p)⊗Aa Ra .
However, then Spec((κ(p)⊗A R)(g))=Spec(κ(p)⊗Aa (Ra)( f )), and we have proved
the Lemma. �

Theorem 4.7. Let R be a quasicoherent sheaf that is a graded OS-algebra, let
X = Proj(R), and let F be a quasicoherent OX -module. Then Quotn

F/X/S is repre-
sentable.

More precisely, for every open affine subscheme Spec(A) of S we write R =
0(Spec(A),R). Then Quotn

F/X/S is covered by open subfunctors naturally isomor-
phic to Quotn

F|Spec(R(r)) relative to Spec(R(r)) → Spec(A) for all Spec(A) in an
open covering of S and all homogeneous elements r of positive degree in R.

Proof. For every affine open subset U of S we consider Quotn
F| f −1(U ) relative to

f −1(U )→U as a subfunctor of QuotF/Proj(R)/S by letting

Quotn
F| f −1(U )(S

′)=∅

when g : S′→ S does not factor via U . It is clear that the subfunctors Quotn
F| f −1(U )

are open and that they cover Quotn
F/Proj(R)/S . Consequently we can assume that

S = Spec(A) is affine.
For every a ∈ A and every r ∈ Ra we can consider the functor Quota,r =

Quotn
F|Spec((Ra)(r))

relative to Spec(Ra)(r)→ Spec(Aa) as a subfunctor of the func-
tor Quota = Quotn

F|Proj(Ra)
relative to Proj(Ra)→ Spec(Aa). This is because, if

g : S′ → Spec(Aa) is a morphism and g′∗F| f −1(Spec(Ra)(r)) → M represents
an element in Quota,r (S′), then Supp M ⊆ f −1(Spec((Ra)(r))) and Supp M is
finite over Spec(Aa), and Spec((Ra)(r)) → Spec(Aa) is separated so Supp M is
closed in Proj(Ra) ×Spec(Aa) S′. Thus we can extend M uniquely by zero to an
OProj(Ra)×Spec(Aa )S′-module N and the surjection g′∗F| f ′−1

(Spec((Ra)(r)))→M can
be extended to a surjection g′∗F→N representing an element in Quota(Spec(Aa)).
It is clear that the subfunctors Quota,r are open. It remains to show that they
cover QuotF/Proj(R)/Spec(A). For this it suffices to show that for every prime ideal
p ⊂ A and every surjection g′∗F→M, with g′ : Spec(κ(p))×S Proj(Ra)→ S′ =
Spec(κ(p)), where M has finite support over Spec(κ(p)) of relative rank n, there
is an a ∈ A \ p and a homogeneous element r in Ra such that the support of M

is contained in the open subscheme Spec(κ(p)⊗A (Ra)(r))= Spec(κ(p))×Spec(Aa)

Spec((Ra)(r)) of Proj(κ(p)⊗Aa Ra)= Spec(κ(p))×Spec(Aa)Proj(Ra). However this
is the assertion of Lemma 4.6. �
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5. Applications

5.1. Special cases. The two best known special cases of Theorem 4.7 are the
Hilbert schemes and the Grassmann schemes. As in the Theorem we let X =
Proj(R) with R quasicoherent on the S-scheme X , and F is a quasicoherent OX -
module.

When F = OX we obtain the existence and construction of the Hilbert scheme
Hilbn

X/S of n points in X, as in [Gustavsen et al. 2007].

When X = S the Theorem gives the existence and the standard description of the
Grassmann scheme Grassn

F/S of n-quotients of the quasicoherent OX -module F.

5.2. Example: Quot schemes over the affine line. Let A[T ] be the polynomial
ring over A in the variable T . Moreover, let F be a free module of rank r , and
let S = Spec(A), X = Spec(A[T ]) and F = A[T ]⊗A F . We shall show how
our construction gives an open covering of Quotn

F/X/S by affine spaces of relative
dimension rn over Spec(A), with an intersection that contains an affine space of
relative dimension n. In particular, since Quotn

F/X/S can be covered by mutually
intersecting open sets that are affine spaces over Spec(A) of relative dimension rn,
it is irreducible of relative dimension rn if and only if Spec(A) is irreducible.

Let E be a vector space with basis e1, . . . , en , and let f1, . . . , fr be a basis for
F . From Proposition 4.5 we have that Quotn

F/X/S can be covered by open affine
subsets Quots

F/X/S , where the maps s : E→ A[T ]⊗A F are linear.
Let X i j for i, j = 1, . . . , n and Yi j for i = 1, . . . , n, j = 1, . . . , r be independent

variables over A, and let (X i j ), be the n × n-matrix with coordinates X i j , and
(Yi j ) the n-vector with coordinates Yi j for fixed j . We denote by C the ring of
polynomials over A in all these variables, and define maps

ϕ : C⊗A A[T ] → C⊗A EndA(E) and v : C⊗A F→ C⊗A E

of C-algebras, respectively of C-modules, by ϕ(T )= (X i j )with respect to the basis
e1, . . . , en , respectively by v(1⊗ f j ) = (Yi j ), with respect to the bases e1, . . . , en

and f1, . . . , fr .
In Sections 2 and 3 we proved that Quots

F/X/S is given as the residue algebra of C
modulo the ideal generated by the relations we obtain requiring that the composite
homomorphism
(5-1)

C⊗A E idC ⊗A s- C⊗A A[T ]⊗A F
ϕ⊗Av- C⊗A EndA(E)⊗A E idC ⊗A ev- C⊗A E

be the identity. It follows from the Cayley–Hamilton Theorem used on ϕ(T ) =
(X i j ) that ψ := (idC ⊗A ev)(ϕ⊗Av) is surjective if and only if its restriction to
the C-submodule of C⊗A A[T ]⊗A F generated by the elements 1⊗ T i

⊗ f j , for
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i = 0, . . . , n − 1 and j = 1, . . . , r , is surjective. We will describe a collection of
maps s : E→ A[T ]⊗A F so that Quots

F/X/S cover Quotn
F/X/S . To do this we may

clearly assume that s maps the elements of e1, . . . , en to the elements of the form
T i
⊗ f j for i = 0, . . . , n− 1 and j = 1, . . . , r .
Let s be given, and let p j be the number of elements of the form T i

⊗ f j ,
for fixed j that are in the image by s of the elements e1, . . . , en . In particular
p1 + · · · + pr = n. Since ψ is a C[T ]-module homomorphism for the C[T ]-
module structure on C⊗A E given by ϕ we conclude that, if the restriction of ψ
to the C-module generated by s(e1), . . . , s(en) is surjective, then ψ restricted to
the C-module generated by 1⊗ f j , . . . , T p j−1

⊗ f j for j = 1, . . . , r is surjective.
Consequently, we can cover Quotn

F/X/S by the sets Quots
F/X/S where s is given by

(5-2) s(eq j−1+i+1)= T i
⊗ f j for j = 1, . . . , r and i = 0, . . . , p j − 1

with q j = p1+ · · ·+ p j and q0 = 0.
The image of 1⊗ eq j−1+i+1 by (5-1) is ϕ(T )iv(1⊗ f j ). For i = 0 we obtain, in

particular, that the condition that (5-1) is the identity is (Yi j ) = eq j−1+1 for those
j = 1, . . . , r that satisfy p j ≥ 1. Hence the image of 1⊗ eq j−1+i+1 by (5-1) is
ϕ(T )i eq j−1+1 for these j . By induction on i we easily verify that the condition
that (5-1) is the identity is that column number i in (X i j ) is equal to eq j−1+i+1 for
i = 1, . . . , p j − 1.

Consequently, the condition for Equation (5-1) to be the identity is that

v(1⊗ f j )= 1⊗ eq j−1+1

for those j =1, . . . , r that satisfy p j ≥1, and that ϕ(T ) has column number i equal
to ei+1 when i is different from q1, . . . , qr , and with no conditions on columns
number q1, . . . , qr . Consequently Quots

F/X/S is affine space of relative dimension
nr when s is determined by Equation (5-2). Note that, independently of the choice
of s satisfying the conditions (5-2), Quots

F/X/S contains the affine space of relative
dimension n consisting of the homomorphisms ϕ such that ϕ(T ) is the companion
matrix of the polynomial T n

− Xn nT n−1
− Xn−1 nT n−2

− · · ·− X1 n .
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