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HARMONIC NETS IN METRIC SPACES

JÜRGEN JOST AND LEONARD TODJIHOUNDE

We investigate harmonic maps from weighted graphs into metric spaces
that locally admit unique centers of gravity, like Alexandrov spaces with
upper curvature bounds. We prove an existence result by constructing an
iterative geometric process that converges to such maps, called harmonic
nets for short.

1. Introduction

This paper deals with harmonic maps from weighted graphs into metric spaces.
Such maps can be considered as a generalization of geodesic lines in Riemannian
manifolds. A geodesic, considered as a map γ : [0, 1] → N from the unit interval
to the Riemannian manifold N and parametrized proportionally to arclength, is
characterized by the property that for all sufficiently close 0≤ a < b≤ 1, the point
γ ((a+ b)/2) is the unique midpoint of γ (a) and γ (b), that is,

(1) γ
(a+b

2

)
= argminq∈N

(
d2(γ (a), q)+ d2(γ (b), q)

)
.

This leads us to represent a geodesic as a string of points in N , each of which is the
midpoint of its two neighbors. At the same time, this allows us flexible refinements:
we can insert additional points as midpoints of consecutive ones already present.
For that, it is useful to also consider the following slight generalization of (1):

γ (ta+ (1−t)b)= argminq∈N
(
td2(γ (a), q)+ (1− t)d2(γ (b), q)

)
,

where 0< t < 1.
A midpoint is a center of gravity of two points. In a Riemannian manifold, such

centers of gravity exist locally uniquely, that is, when the points whose center is
to be constructed are sufficiently close. Globally, uniqueness need not be true.
Therefore, we may need to localize in the image.

It is then clear how to conceptualize a harmonic map from a weighted graph into
N . We simply require that the images of the nodes of the graph by appropriately
weighted centers of gravity of their neighbors. Here, in order to localize in the
image, we might need to refine the graph by subdividing edges.
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Harmonic maps from graphs into compact Riemannian manifolds were studied
in [Kotani and Sunada 2001]. Our approach, however, naturally leads to a general-
ization to any metric space locally admitting unique centers of gravity — and this
includes the important class of Alexandrov spaces with upper curvature bounds
(see [Berestovskij and Nikolaev 1993] as a systematic reference).

Thus, we show the existence of harmonic maps from weighted graphs into such
metric spaces. Such maps are called harmonic nets in short. (In the case of a space
of nonpositive curvature in the sense of Alexandrov or Busemann, this result is
contained in a general existence result for harmonic maps; see [Jost 1994; 1997].)
The proof is not difficult. It is based on the iterative replacement of image points
by the centers of gravity of the images of their neighbors, following the strategy
described in [Jost 1998], together with suitable adaptive refinements to keep the
constructions local. Here it is important that the domain, that is, our graph, can be
treated as a one-dimensional object. While two dimensions represent a borderline
case, in higher dimensions, general constructions of harmonic maps are only pos-
sible when the target space possesses nonpositive curvature. The reason is that the
energy functional we are employing is quadratic, and therefore the scaling behavior
is different in dimensions 1, 2, and greater than 2. The essential features of our
scheme are local uniqueness and the scaling property of our functions.

Our constructions possess certain similarities with some schemes employed in
numerical analysis, like the standard difference scheme for the numerical solu-
tion of the Laplace equation or adaptive refinements in multigrid methods. A
key conceptual feature of our approach is that we systematically exploit the local
uniqueness of solutions and that we need to make explicit only the images of a
discrete set of points, because then all other images are implicitly determined by
that local uniqueness. Therefore, as in good numerical schemes, we never have to
work out or store more information than needed.

2. Geometric concepts

Let (N , d) be a complete metric space. For conciseness, we usually write N in
place of (N , d), the metric d being understood. We say that N admits refinements
if any p, q ∈ N have a midpoint, that is, if there exists m ∈ N such that

d(m, p)= d(m, q)= 1
2 d(p, q).

Definition 2.1. Suppose that N admits refinements. We define the radius r(N )
of unique refinement as the largest r ∈ [0,∞] with the property that for any two
p, q ∈ N with d(p, q)≤ 2r , their refinement (midpoint) m = m(p, q) is unique.

More generally, we say that q ∈ N is a center of gravity of the finitely many
points p1, . . . , pn ∈ N with positive weights w1, . . . , wn if
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q = argmin p

n∑
j=1

w2
j d

2(p, p j ).

We define the convexity radius c(N ) as the largest c ∈ [0,∞] with the property
that whenever p, p1, . . . , pn are points in N with d(p, pi ) ≤ c for i = 1, . . . , n,
the center of gravity of p1, . . . , pn (with any positive weights) is unique.

Since a midpoint is a center of gravity, we obviously have 0≤ c(N )≤ r(N ).

Let 0 be a finite weighted graph with vertex set I and edge set E , where each
e ∈ E has a weight w(e)> 0. We say that two vertices i, j are neighbors if they are
connected by an edge. Thus, for our purposes, a graph is a discrete set I together
with a symmetric neighborhood (adjacency) relation ∼ and (symmetric) weights
w(i, j)= w(e) for neighboring vertices i, j connected by the edge e.

We define the refinement 0r of 0 as the graph with vertex set I∪E and adjacency
relation defined as follows: i ∈ I and e∈ E are neighbors if i ∈ e in 0, and there are
no other pairs of neighbors in 0r . The weights are w(i, e)=

√
2w(e), where w(e)

is the weight of the edge e in 0. Further refinements of 0r are defined iteratively.
A map f from 0 to N assigns to every i ∈ I some point p = f (i) in N . We

define the energy of such a map f : 0→ N as

E( f )=
∑
i∈I

Ei ( f ), where Ei ( f )=
∑

j∈I ; i∼ j

w2(i, j)d2( f (i), f ( j)).

In particular, for i ∼ j ,

(2) d2( f (i), f ( j))≤
1

w2(i, j)
Ei ( f ).

We say that the map f is harmonic if for all i ∈ I , f (i) is a center of gravity of
the points f ( j), j ∼ i , with weights w j = w

2(i, j).

3. Characterization by angles in tangent cones

The above concepts of refinement and center of gravity find their natural place in
the context of Alexandrov’s metric spaces. For a systematic development of this
theory that we shall use in this section, see [Berestovskij and Nikolaev 1993].

These spaces enjoy particular properties when their (Alexandrov) curvature is
bounded from above. It is part of the definition of such a space of curvature
bounded from above that any two sufficiently close points can be joined by a
shortest geodesic which then is in fact unique and depends continuously on these
endpoints. (We may also parametrize it by arclength — and call it an arclength
geodesic — if convenient.) Some of the general notions in the theory, however, do
not need the assumption of an upper curvature bound. That assumption then is
rather employed to derive geometric properties of the objects defined in the theory.
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An important concept here is the tangent cone of a metric space at a point. Let
(N , d) be a metric space and γ1, γ2 : [0, ε]→ (N , d) arclength geodesics emanating
from a point P ∈ N . Consider points Q ∈ γ1, R ∈ γ2 different from P . An (upper)
angle θ(γ1, γ2) between γ1 and γ2 is defined by

cosθ(γ1,γ2) := limQ,R→P
d2(P,Q)+ d2(P, R)− d2(Q, R)

2d(P, R)d(P,Q)
.

In a metric space whose curvature is bounded from above by a constant K ≥ 0, we
have the following characterization of the angle between γ1 and γ2 (see [Bridson
and Haefliger 1999, II.1-II.3]):

cos θ(γ1, γ2)= lim
s→0

d(P, γ2(ε))− d(γ1(s), γ2(ε))

s
,

provided in case K > 0 that ε is less than the diameter of the comparison model
space of constant curvature K .

A geodesic curve γ starting at a point P ∈ N has a direction if θ(γ, γ ) = 0
and two curves have the same direction if the angle between them is equal to zero.
This is an equivalence relation on the space of curves starting from the same point
P ∈ N and the completion of the set of equivalence classes (endowed with the
distance induced by the angle) is called the space of directions �P(N ) of N at the
point P . The tangent cone TP N of (N , d) at a point P ∈ N is the cone over the
space of directions, that is, �P(N )× R+ with points in �P(N )× {0} identified
together.

We will denote a tangent element by [γ, x], where γ ∈ �P(N ), x ≥ 0 and
elements [γ, 0] are identified with the origin Op of TP N .

The distance d in N induces on TP N a distance function d̃P defined by

d̃2
P([γ1, x1], [γ2, x2])=

{
x2

1 + x2
2 − 2x1x2 cos θ(γ1, γ2) if θ(γ1, γ2) < π,

x1+ x2 if θ(γ1, γ2)≥ π.

For those [γ, x] admitting a unique geodesic from P with direction γ that can be
extended up to distance x , we define the endpoint of that geodesic segment as the
exponential image of [γ, x]. The inverse of this exponential map, the projection
map from the subset of N where it is defined to the tangent cone TP N , is denoted
by πP . For simply connected, complete, nonpositively curved metric spaces, πP is
defined everywhere, distance nonincreasing and distance preserving in the radial
direction; see [Wang 2000].

The following important result was proved in [Nikolaev 1995]:

Lemma 3.1. Let (N , d) a metric space of curvature at most K , where K ≥ 0. The
tangent cone at a point of N is a space of nonpositive curvature in the sense of
Alexandrov.
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Let P , Q, R be points in N and define Qs ≡ (1− s)P + s Q as the point on
a distance-realizing geodesic joining P and Q at distance s.d(P, Q) from P . We
have the Taylor expansions

d2(Qs, R)= d2(P, R)− 2sd(P, R) cos θP(Q, R)+ a(s),

d̃2
P(πP(Qs), πP(R))= d2(P, R)− 2sd(P, R) cos θP(Q, R)+ b(s),

in which lims→0 a(s)/s = 0 and lims→0 b(s)/s = 0. Here θP(Q, R) denotes the
angle subtended between Q and R at P .

Proposition 3.2 [Izeki and Nayatani 2005; Wang 2000]. Let f : 0→ (N , d) be a
harmonic map.

(i) For any i ∈ I , the point πf (i)( f (i)) minimizes∑
j∼i
w2(i, j) d̃2

f (i)( · , πf (i) f ( j)) in T f (i)N.

(ii) For any i ∈ I and any V ∈ T f (i)N we have∑
j∼i
w2(i, j)

〈
V, πf (i) f ( j)

〉
≤ 0,

where 〈 , 〉 denotes the inner product defined on T f (i)N by〈
[γ1, x1], [γ2, x2]

〉
= x1x2 cos θ(γ1, γ2).

(iii) For any i ∈ I , the center of gravity in T f (i) of the points (πf (i) f ( j)) j∼i with
weights (

w2(i, j)
w(i)

)
j∼i

coincides with the origin Oi :=πf (i) f (i) of T f (i)N , wherew(i)=
∑
j∼i
w2(i, j).

Inequality (ii) will be interpreted as the critical condition for harmonic nets.

4. Refining maps

If N admits refinements, we can construct a refinement fr : 0r → N of a map
f : 0→ N by assigning to every edge e connecting i and j in 0 some midpoint
of f (i) and f ( j). We observe that for each i ∈ 0, we have

(3) Ei ( fr )=
1
2 Ei ( f )

where on the left hand side i is considered as an element of 0r . Also, by symmetry,

(4)
∑
i∈I

Ei ( fr )=
∑
e∈E

Ee( fr )=
1
2 E( fr ),

where we consider the i’s and e’s as vertices of 0r . From (3) and (4) we obtain:
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Lemma 4.1. If fr : 0r → N is a refinement of f : 0→ N , then E( fr )= E( f ). If
f is harmonic, so is its refinement.

The converse holds when distances between images are sufficiently small, that is,
when midpoints between images of neighbors are unique.

From (2) and Lemma 4.1, we conclude that by performing sufficiently many
successive refinements, we may assume that all distances between the images of
any two neighboring vertices are smaller than some prescribed ε > 0, for example
smaller than r(N ) or c(N ) when that quantity is positive.

5. Homotopy classes

For the present purposes, we write r( f ) and r(0) instead of fr and 0r because we
wish to consider the refinement as an operation that can be iterated. For example,
r2(0)= (0r )r is obtained as the refinement of 0r . A refinable map f : 0→ N is
then considered as a collection of iteratively refined maps rn( f ) : rn(0)→ N for
n ∈ N.

Now assume that the refinement radius r(N ) is positive. We say that two maps
f1, f2 :0→ N are geodesically close if for every i ∈0 the distance d( f1(i), f2(i))
is at most 2r(N ); that is, if the images of i under f1 and f2 have a unique midpoint.
A refinement of the pair f1, f2 is then defined to be the triple f1, f1,2, f2, where

f1,2(i) is the midpoint of f1(i) and f2(i) for every i ∈ 0.

Two refinable maps f, g : 0 → N are geometrically homotopic if there exist
refinable maps f0 = f, f1, f2, . . . , f A = g (where A ∈ N) such that rn( f j−1) and
rn( f j ) are geodesically close for any n ∈N and any 1≤ j ≤ A. This finite sequence
can again be refined by putting in midpoint maps between consecutive sequence
elements. Geometric homotopy is obviously an equivalence relation.

6. Construction of harmonic nets

We assume that N admits centers of gravity. By subdividing suitable edges of 0
as above, we may assume that 0 is bipartite, that is, its vertex set is a disjoint
union I = I1 ∪ I2 such that all the neighbors of any point in one of those subsets
are contained in the other one. On the space C = C(0, N ) of maps f : 0→ N ,
we define maps ρα : C → C , α = 1, 2 with ρα( f ) being the map obtained from
f : 0→ N by replacing the image of every f (i) for i ∈ Iα by a center of gravity
of the f ( j) for j ∼ i . As long as the centers of gravity are not unique, we need
to make choices here, but in the situation where c(N ) > 0, we can assume that 0
has been sufficiently refined (depending on an upper bound E for the energy of f )
so that the images f ( j) of the neighbors of any i ∈ 0 possess a unique center of
gravity. (This follows from (2) and the fact that the edge weights get multiplied
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by a factor of
√

2, that is, become larger, under each refinement.) In that case, the
maps ρα( f ) are unambiguously defined for all f with E( f )≤ E .

The function ρα decreases (or rather, does not increase) the energy density Ei ( f )
for points i ∈ Iα, but not necessarily for those in the complement of Iα. Neverthe-
less, since by symmetry

∑
i∈I1

Ei ( f )=
∑

i∈I2
Ei ( f )= 1

2 E( f ) (see (4)), we have:

Lemma 6.1. We have E(ρα( f ))≤ E( f ) for all f .

Lemma 6.2. We have E(ρ2(ρ1( f )))= E( f ) if and only if f is harmonic.

Theorem 6.3. Let (N , d) be a compact metric space that admits centers of gravity.
Let 0 be a finite weighted graph. Then, for any map f : 0 → N , the iterations
fn := (ρ2ρ1)

n f contain a subsequence converging to a harmonic map.

Proof. Since N is compact, we can find some sequence ν(n) of positive integers
going to infinity for which fν(n)(i) converges to some point f0(i) ∈ N for every
vertex i of the finite graph 0. We have

fν(n+1) = (ρ2ρ1)
µ(n) fν(n) for someµ(n) ∈ N.

Since the metric d behaves continuously under convergence (since it defines the
topology of N ), we have E( f0)= limn→∞ E( fν(n)). At the same time,

lim E( fν(n+1))= lim E((ρ2ρ1)
µ(n) fν(n))≤ lim E( fν(n))= E( f0),

the inequality coming from Lemma 6.1 because µ(n) ≥ 1. Thus, equality has to
hold throughout. Moreover, ρ2ρ1 fν(n) converges to ρ2ρ1 f0, and so

E(ρ2ρ1 f0)= lim E((ρ2ρ1)
µ(n)+1 fν(n)) (as before)

= E( f0) (from the preceding observation.)

Lemma 6.2 then implies that f0 is harmonic. �

The assumption of the theorem that the space N admits centers of gravity is
satisfied when N has an upper curvature bound. For k ∈ R, we denote by Dk

the diameter of the n-dimensional, complete, simply connected model space with
constant sectional curvature k. We then have, from Alexandrov theory:

Lemma 6.4 [Berestovskij and Nikolaev 1993]. Let X be an Alexandrov space with
curvature bounded above by k. For every x ∈ X , there exists a positive number
Rx ∈ (0, 1

2 Dk] such that the closed metric ball of radius Rx centered at x is a
convex subset in X.

Remark. When N has nonpositive curvature in the sense of Alexandrov or Buse-
mann, our theorem is contained in a general theorem from [Jost 1994], and when
N is a compact Riemannian manifold, it follows from the fact that any homotopy
class contains at least one harmonic map [Kotani and Sunada 2001].
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Since distances of neighboring image points are controlled by the energy of a
map — see (2) — we see that if the refinement radius r(N ) is positive, we may con-
trol the geometric homotopy class by assuming an energy bound and sufficiently
refining the graph 0.
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