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Let V n be a compact, oriented Riemannian manifold and Sn the standard
sphere. We study the problem of obtaining upper bounds for the dilatation
invariants of maps V n → Sn of nonzero degree. The dilatation upper bounds
are then used to estimate Gromov’s filling volume from below.

1. Introduction

Let V be a compact, connected, oriented n-manifold. The famous Hopf theorem
says that there is an one-to-one correspondence between the degree and the homo-
topy class of continuous maps from V to Sn . If V is equipped with a Riemannian
metric and Sn is equipped the canonical metric (of sectional curvature+1), we wish
to measure the geometrical complexity of a map V → Sn of degree q . A natural
measure of the geometrical complexity f : X→ Y of a map between metric spaces
is its dilatation, defined by

dil f = sup
x,x ′∈X
x 6=x ′

dY ( f (x), f (x ′))
dX (x, x ′)

,

where dX , dY are the respective metrics. If f is a Lipschitz map, dil f is the
minimal Lipschitz constant C satisfying dY ( f (x), f (x ′))≤ CdX (x, x ′). If Dilq V
denotes the infimum of the dilatation of maps V → Sn with degree ±q, an upper
bound for Dilq V can be regarded as a quantitative version of the Hopf theorem.
For V a flat torus, M. Gromov proved such a bound in terms of the length sys1V
of the systole (shortest noncontractible closed curve) in V .

Theorem 1.1 [Gromov 1999b, 2.12, p. 33]. Let Tn be a flat torus. There exists a
map f : Tn

→ (Sn, can) with nonzero degree and dilatation at most 1 if and only if
sys1 Tn

≥ 2π .

It has been Gromov’s constant concern to study quantitative problems in alge-
braic topology and differential topology [1978; 1999a; 1999b, Chapters 2 and 7]).
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In this direction, A. Nabutovsky and R. Rotman [2003] have studied a quantitative
Hurewicz theorem. For estimates of dilatation invariants of maps between spheres,
see [Peng and Tang 2002] and references therein.

Here is a slight generalization of a problem posed by Gromov after the theorem
just quoted.

Problem [Gromov 1999b, 2.13, p. 35]. Let V be a compact, connected, oriented n-
manifold. What condition on the metric of V guarantees that there exist mappings
f : V → Sn with degree q and dilatation 1? In other words, given a metric on V ,
for which values of q do there exist mappings V→ Sn with degree q and dilatation
less than some constant D?

L. Guth [2005] has obtained important results concerning the dilatation of a
nonzero degree map from a Riemannian surface to the standard 2-sphere. Follow-
ing Guth, we denote by HS(V ) the hypersphericity of a Riemannian n-manifold,
defined as the maximal R such that there is a contracting map (dil≤ 1) of nonzero
degree from V to the n-sphere of radius R. Replacing nonzero degree by degree
q , one defines the degree-q hypersphericity HSq(V ) of a Riemannian manifold. It
is clear that

HS(V )≥ HSq(V )= (Dilq V )−1 for q 6= 0.

In this paper we prove several results concerning dilatation. Our method is to
construct directly some maps V → Sn of nonzero degree, and then estimate their
dilatation using (geo)metric invariants of V .

Recall that the q-th packing radius, packq(X), of a compact metric space X in
the sense of K. Grove and S. Markvorsen [1995] is the largest r ≥ 0 for which X
contains q disjoint open r -balls. It is clear that

1
2 diam X = pack2 X ≥ · · · ≥ packq X ≥ · · · → 0.

Theorem A. (Proved in Section 2.) Let V be a compact, oriented Riemannian
n-manifold and let K be the supremum of the sectional curvature of V .

(1) In the case K > 0, if q is large enough to satisfy

packq V <min{π/
√

K , Inj V },

there exists a map f : V → Sn of degree q such that

dil f ≤
π
√

K

sin
(√

K packq V
) .

Hence
HSq(V )≥ sin

(√
K packq V

)
/(π
√

K ).
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(2) In the case K ≤ 0, if q is large enough to satisfy

packq V ≤ Inj V,

there exists a map f : V → Sn of degree q and

dil f ≤
π

packq V
.

Hence HSq(V )≥ (packq V )/π .

Here Inj V , the injectivity radius of V , is the infimum of the injectivity radius
at any point in V . For a flat torus Tn we have Inj Tn

=
1
2 sys1Tn .

We denote by Injmax V =max{Injx V : x ∈ V } the largest injectivity radius of a
compact Riemannian manifold V . The following corollary may be regarded as a
slight generalization of the “if” part of Theorem 1.1.

Corollary 1.2. Let V be a compact Riemannian n-manifold.

(1) If sup sec(V ) ≤ 1/π2 and Injmax V ≥ 1
2π

2, there is a map f : V → Sn with
degree 1 and dilatation 1.

(2) If sup sec(V )≤ 0 and Injmax V ≥ π , there is a map f : V → Sn with degree 1
and dilatation 1.

By deepening the results of D. Burago and S. Ivanov [1995], Gromov [1999b,
p. 259] proved a sharp inequality relation between Vol(V ) and stsys1V (the stable
1-systole of V — see page 452) under certain topological restrictions on V . In
[Ivanov and Katz 2004; Katz and Lescop 2005], this inequality is stated as follows:

Theorem 1.3 (Burago–Ivanov–Gromov Inequality). Assume that a compact, ori-
ented Riemannian manifold V satisfies dim(V ) = first Betti number b1(V ) = real
cuplength of V = n. Then

Vol(V )≥ (γn)
−n/2(stsys1V )n

where γn denotes the classical Hermite constant.

Theorem 1.3 and [Ivanov and Katz 2004, Lemma 7.3] lead us to:

Theorem B. Assume that a compact, oriented Riemannian manifold V satisfies
dim(V )= b1(V )= real cuplength of V = n. Then there exists a map f : V → Sn

of nonzero degree such that

dil f ≤
2π
√

n
stsys1V

.

Hence HS(V )≥ (stsys1V )/(2π
√

n).
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The proof of Theorem B, which we give in Section 3, makes heavy use of the
construction in [Ivanov and Katz 2004, Section 7], itself based on the techniques
of [Burago and Ivanov 1995].

An immediate application of the quantitative Hopf theorem is that we can esti-
mate volume from below by the formula

Vol(V )≥
|deg f |
(dil f )n

Vol(Sn, can).

However, in general, using estimates for the Jacobian of a Lipschitz map, one
can obtain better lower volume bounds [Ivanov and Katz 2004; Gromov 1999b,
pp. 255, 257].

A second goal of this paper is to use quantitative Hopf theorem to estimate the
filling volume of a Riemannian manifold. We believe the quantitative versions of
the Hopf theorem to be of independent interest. For example, we have used them
to estimate lower bounds for the filling radius of a Riemannian manifold in [Liu
2005].

Let V be a compact n-manifold equipped with a distance d (not necessarily
Riemannian), and let L∞(V ) be the Banach space of bounded Borel functions
f on V with the norm ‖ f ‖ = supx | f (x)|. The map i : V → L∞(V ) defined
by x 7→ fx( · ) = dist(x, · ) is an isometric (distance-preserving) embedding. The
filling volume FillVol(V ) of (V, d) in the Gromov’s sense is, roughly speaking,
the infimum of the volumes of (n+1)-dimensional submanifolds in L∞(V ) whose
boundary is i(V ). For details, see [Gromov 1983] or Section 4 below.

Our main tool to estimate filling volume from below is the following mapping
property:

Theorem C. (Proved in Section 5.) Let V be a compact, oriented n-manifold with
a metric d and let f : V → Sn a map of nonzero degree. Then

FillVol(V ) >
| deg f |
(dil f )n+1

(
arccos n−1

n+1

)n+1
.

In the definition of hypersphericity, it is not necessary that V be Riemannian,
merely that V have a metric d . Hence an equivalent statement of Theorem C is
that for any compact, oriented n-manifold V with a metric d,

FillVol(V, d) >
(

arccos n−1
n+1

)n+1
|q| HS(V, d)n+1.

Define

cn =

( 1
2π

arccos n−1
n+1

)n+1
.

From Theorem C we derive corollaries of Theorems 1.1, A and B, respectively:
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Corollary 1.4. Let Tn be a flat torus. Then

FillVol(Tn) > cn (sys1 Tn)n+1.

Corollary 1.5. Let V be a compact, oriented Riemannian n-manifold.

(1) If K = sup sec(V ) > 0 and packq V <min{π/
√

K , Inj V }, then

FillVol(V ) > q
(sin

(√
K packq V

)
π
√

K
arccos n−1

n+1

)n+1

.

(2) If K = sup sec(V )≤ 0 and packq V ≤ Inj V , then

FillVol(V ) > 2n+1cn q (packq V )n+1.

Corollary 1.6. Let V be a compact Riemannian manifold of equal dimension, first
Betti number and real cuplength. Then

FillVol(V ) > n−(n+1)/2cn (stsys1V )n+1.

The following statements are alternative forms of Corollaries 1.4 and 1.6, relat-
ing the volumes of Riemannian manifolds with boundary to the boundary metric
invariants. Their proofs appear in Section 4. (We omit a similar Corollary 1.5’.)

Corollary 1.4′. Let W be a (n+ 1)-dimensional solid torus with boundary ∂W =
Tn . Given a flat metric g0 on Tn , g is any Riemannian metric on W which satisfies
dg|∂W ≥ dg0 , then

Vol(W, g) > cn · sys1(T
n, g0)

n+1.

Corollary 1.6′. Assume that the topological restrictions of a closed n-manifold V
are as Corollary 1.6, W is a (n + 1)-manifold with boundary ∂W = V . Given a
Riemannian metric g0 on V , for any Riemannian metric g on W satisfying dg|∂W ≥

dg0 , we have
Vol(W, g)≥ n−(n+1)/2cn · stsys1(V, g0)

n+1.

The constants in these corollaries are not sharp. We do not look for anything like
the optimal constants in all estimate inequalities of this paper; but these inequalities
ensure the upper bounds of dilatation invariants, or the lower bounds of filling
volume, in terms of packing radius, stable 1-systole, etc.

2. Dilatation estimates with upper bounds of sectional curvature

The proof of Theorem A is a direct extension of the arguments used to prove
Theorem 1.1 and [Liu 2005, Propositions 3.2 and 3.3]. For completeness, we will
give a detailed proof of Theorem A in this section.
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Let f : X → Y be a map between metric spaces. The local dilatation at x ∈ X
is the number

dilx f = lim
ε→0

(dil( f |B(x,ε))),

where B(x, ε) is an open ball in X of radius ε centered at x . If (X, d) is a path
metric space (for example, a Riemannian manifold), then dil f = supx∈X dilx f . If
X and Y are Riemannian manifolds, and f is differentiable, then dilx f = ‖d fx‖,
where d fx : Tx X→ T f (x)Y is the differential of f at x .

Proof of Theorem A. (1) Assume K = sup sec(V ) > 0. Let B(x1, r), . . . , B(xq , r)
be disjoint r -balls of V centered at the points x1, . . . , xq , where

r = packq V <min
{
π/
√

K , Inj V
}
.

Denote by BT (xi , r) the ball of radius r in the tangent space Txi V , centered at
the origin. Since r < π/

√
K , the map expxi

|BT (xi , r) is nonsingular for each i ;
see the remark after 1.29 in [Cheeger and Ebin 1975]. Using the geometric Rauch
theorem [Chavel 1993, Theorem 7.3 and subsequent Remark 7.1], we have

|dv(expxi
)(X)|

|X |
≥

SK (|v|)

|v|
=

sin (
√

K |v|)
√

K |v|

for any v ∈ BT (xi , r) and any X ∈ Txi V , where dv(expxi
) : Tv(BT (xi , r))→ Ty V ,

with y = expxi
(v), denotes the differential of expxi

at v and the tangent space
Tv(BT (xi , r)) is naturally identified with Txi V . Since expxi

: BT (xi , r)→ B(xi , r)
is a diffeomorphism, we have dy(exp−1

xi
) = (dv(expxi

))−1 for v ∈ BT (xi , r) and
y = expxi

(v) ∈ B(xi , r). Let dv(expxi
)(X)= Y . We have

|dy(exp−1
xi
)(Y )|

|Y |
≤

√
K |v|

sin (
√

K |v|)
, dily exp−1

xi
≤

√
K |v|

sin (
√

K |v|)
.

Note that
√

K |v|/ sin (
√

K |v|) is an increasing function of |v| ∈ (0, r ]. Thus

dil exp−1
xi
≤ sup
v∈BT (xi ,r)

√
K |v|

sin (
√

K |v|)
=

√
K · r

sin(
√

K · r)
.

Fix a point p ∈ Sn and consider the composite fi : B(xi , r)→ Sn defined by

(1) B(xi , r)
exp−1

xi
−→ BT (xi , r)

ϕ1
−→ BT (xi , π)

ϕ2
−→ BT (p, π)

ϕ3
−→ Sn,

where ϕ1 is the obvious diffeomorphism with dilatation π/r , ϕ2 is the obvious
isometry onto a ball BT (p, π) of radius π centered at the origin in the tangent
space to Sn at p, and ϕ3 has degree 1, dilatation 1, and maps ∂BT,Sn (p, π) to the
antipode p′ of p in Sn . The map fi sends ∂BV (xi , r) to p′.
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It follows that deg fi = 1 and

dil fi ≤ dilϕ3 dilϕ2 dilϕ1 dil exp−1
xi
≤

r
√

K

sin(r
√

K )
.

Finally, define f : V → Sn by

f (x)=
{

fi (x) for x ∈ B(xi , r),

p′ elsewhere.

It is clear that deg f = q and dil f ≤ r
√

K/sin(r
√

K ).

(2) Now suppose K = sup sec(V ) ≤ 0. Take q disjoint open balls B(xi , r) with
r = packq V . In this case, since V has no conjugate points, we require only
r = packq V ≤ Inj V . In analogy with the above argument, we also have exp−1

xi
:

B(xi , r)→ BT (xi , r), the composite map fi : B(xi , r)→ Sn , and f : V → Sn .
Since V is nonpositively curved, exp−1

xi
is distance-decreasing. Then dil exp−1

xi
≤ 1

and dil fi ≤ π/r , hence dil f ≤ π/r . This completes the proof of Theorem A. �

In proving Theorem A we have shown Corollary 1.2. Indeed, take a point x0 ∈V
such that Injx0

V = Injmax V =: r , we have a map BV (x0, r)→ Sn , whose extension
ϕx0 : V→ Sn is of degree one. We then estimate dilϕx0 . For details see [Liu 2005].

3. Abel–Jacobi map, stable 1-systoles and the proof of Theorem B

Let V be a compact, oriented n-manifold with first Betti number b1(V )= n and let
i∗ : H1(V,Z)→ H1(V,R) be the map induced by chain inclusion. We denote by
H1(V,Z)R the image =(i∗(H1(V,Z))), which is a lattice in H1(V,R) ' Rn . Let
J1(V ) = H1(V,R)/H1(V,Z)R ' Tn be the Jacobi torus of V . Up to homotopy,
we have the Abel–Jacobi map

AV : V → J1(V )

induced by the harmonic one-forms on V , originally introduced by A. Lichnerow-
icz [1969] (see also [Gromov 1999b, p. 249; Bangert and Katz 2004; Katz and
Lescop 2005). The covering Ṽ → V is the pull-back along AV of the universal
covering Rn

→ J1(V ), with the group of deck transformations H1(V,Z)R ' Zn ,
as depicted in the commutative diagram

Ṽ
ÃV
−−−→ H1(V,R)' Rny y

V −−−→
AV

J1(V )' Tn

The key point in the following topological lemma is that H 1(AV ) :H 1(Tn,R)→

H 1(V,R) is an isomorphism and H∗(AV ) preserves cup products.
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Lemma 3.1 [Gromov 1983, Section 7.5]. Let V be a compact, oriented n-manifold
with first Betti number b1(V ) = n. If the real cuplength is also n, then AV has
nonzero degree. �

If V is equipped with a Riemannian metric g, there is a corresponding stable
norm ‖ · ‖st on H1(V,R) (see [Gromov 1999b, pp. 245–247; Bangert and Katz
2004], for example). We define the stable 1-systole of (V, g) as

stsys1(V )=min{‖h‖st : h ∈ H1(V,Z)R \ {0}}.

The construction of f in Theorem B is a combination h◦ψ where ψ :V→Tn (a
flat torus) comes from [Ivanov and Katz 2004, Section 7], based on the techniques
of [Burago and Ivanov 1995].

From the stable norm ‖·‖st on H1(V,R) one derives a Euclidean norm | · |e such
that | · |e ≥ ‖ · ‖st and

| · |
2
e =

N∑
i=1

ai L2
i with N ≤

n(n+ 1)
2

, ai > 0 for i = 1, . . . , N ,
N∑

i=1

ai = n,

where the L i : H1(V,R)→ R (i = 1, . . . , N ) are linear functions with ‖L i‖st =

|L i |e = 1 (see [Burago and Ivanov 1995, Theorem 1.3]). The linear map L :
H1(V,R)→ RN defined by

L(x)=
(√

a1L1(x), . . . ,
√

aN L N (x)
)

is an isometry from (H1(V,R), | · |e) onto a linear subspace L(H1(V,R)) of RN ,
equipped with the restriction of the standard coordinate metric | · |E of RN .

Since the stable norm ‖ · ‖st satisfies

‖γ ‖st ≤ dg(x, x + γ )

for all γ ∈ H1(V,Z)R and all x ∈ Ṽ , where +γ denotes the action on Ṽ of an
element γ of the deck transformation group H1(V,Z)R, we have:

Lemma 3.2 [Ivanov and Katz 2004, Lemma 7.3]. For each linear function L i :

H1(V,R)→ R with ‖L i‖st = 1 there is a Lipschitz map ϕi : Ṽ → R such that
dilϕi ≤ 1 and

ϕi (x + γ )= ϕi (x)+ L i (γ ) for x ∈ Ṽ , γ ∈ H1(V,Z)R. �

Proposition 3.3 [Ivanov and Katz 2004, Section 7]. Let (V, g) be a compact,
oriented Riemannian manifold with dim(V ) = b1(V ) = real cuplength(V ) = n.
There exists a Lipschitz map ψ : (V, dg)→ (J1(V ), | · |e) of nonzero degree such
that dilψ ≤

√
n, where | · |e on J1(V ) is the flat Riemannian metric induced from

H1(V,R), | · |e).



THE QUANTITATIVE HOPF THEOREM AND FILLING VOLUME ESTIMATES 453

Proof. From Lemma 3.2, define F : Ṽ → RN by

F(x)=
(√

a1ϕ1(x),
√

a2ϕ2(x), . . . ,
√

aNϕN (x)
)
.

It is easy to check that L and F are H1(V,Z)R-equivariant with respect to the
following action of H1(V,Z)R on RN

RN
× H1(V,Z)R→ RN (u, γ )→ u+ L(γ )

where L is as the beginning of this section.
Let P : RN

→ L(H1(V,R)) be the orthogonal projection. Since the composite
map

L−1
◦ P ◦ F : Ṽ → RN

→ L(H1(V,R))→ H1(V,R)

is H1(V,Z)R-equivariant, we can lower it to a map between base spaces:

ψ : V → H1(V,R)/H1(V,Z)R = J1(V ).

From dilϕi ≤ 1 we have

dil F ≤
( N∑

i=1

dil(
√

aiϕi )
2
)1/2

≤

( N∑
i=1

ai

)1/2

=
√

n,

dil(L−1
◦ P ◦ F)≤ dil L−1 dil P dil F ≤

√
n,

with respect to dg on Ṽ and | · |e on H1(V,R). This implies that dilψ ≤
√

n.
Finally, there is a linear homotopy {G t } between L−1

◦ P ◦ F and ÃV , i.e.,
G t(x) = t (L−1

◦ P ◦ F(x))+ (1− t)(ÃV (x)). It is easy to see that each G t is
H1(V,ZR)-equivariant; hence it may lower to a homotopy between ψ and AV .
Therefore degψ = deg AV . By Lemma 3.1, this completes the proof of the propo-
sition. �

Remark 3.4. By estimating the Jacobian of ψ , Ivanov and Katz [2004] proved that
ψ is volume-decreasing.

Proof of Theorem B. Let (J1(V ), | · |e) be as above. For x ∈ J1(V ), let B(x, r)
be the ball in J1(V ) of radius r = Inj(J1(V ), | · |e) centered at x , and BT (x, r)
the ball of radius r centered at the origin of the tangent space Tx J1(V ). As in the
proof of Theorem A, we fix p ∈ Sn and define a map h : B(x, r)→ Sn through the
composition

B(x, r)
exp−1

x
−→ BT (x, r)

ϕ1
−→ BT (x, π)

ϕ2
−→ BT (p, π)

ϕ3
−→ Sn,

where the notation is just as in diagram (1) (page 450). This map h sends ∂B(x, r)
to p′. Since (J1(V ), | · |e) is flat, we have dil exp−1

x ≤ 1. Extend h to J1(V )→ Sn
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by setting h(J1(V )\B(x, r)) = p′. As in the proof of Theorem A, h has degree 1
and its dilatation satisfies dil h≤ dilϕ3 dilϕ2 dilϕ1 dil exp−1

x ≤π/r =π/ Inj J1(V ).
Next, a closed geodesic C in the flat torus (J1(V ), | · |e) is the projection of a

segment [x, x+γ ] joining x and x + γ in the Euclidean space (H1(V,R), | · |e),
for γ ∈ H1(V,Z)R. Moreover, C is not homologous to zero (hence not homotopic
to zero since π1(J1(V )) is abelian) if and only if γ 6= 0. The length of C equals
the displacement d|·|e(x, x + γ ), which does not depend on x ; see [Gromov 1996,
1.A]. Hence

sys1(J1(V ), | · |e)= inf{|γ |e : γ ∈ H1(V,Z) \ 0}

≥ inf{‖γ ‖st : γ ∈ H1(V,Z) \ 0} = stsys1V .

Thus Inj(J1(V ), | · |e)= 1
2 sys1(J1(V ), | · |e)≥ 1

2 stsys1V , and dil h≤2π/(stsys1V ).
Composing h with the map ψ of Proposition 3.3 yields a Lipschitz map f =

h ◦ψ : (V, dg)→ (Sn, can) satisfying deg f = deg h degψ = deg AV 6= 0 and

dil f ≤ dil h dilψ ≤
2π
√

n
stsys1V )

.

This completes the proof of the theorem. �

4. Filling volume and its mapping property

We recall from [Gromov 1983] the definition of filling volume. Let (X, d) be a
metric space and σ : 4n+1

→ X a singular simplex. Define

Vol(σ )= infg{Volg(4
n+1
},

where the infimum is taken over all Riemannian metrics g on 4n+1 such that
dX (σ (x), σ (y)) ≤ dg(x, y) for all x, y ∈ 4n+1. For a singular chain c =

∑
i riσi ,

we can define
Vol(c)=

∑
i

|ri |Vol(σi ),

where the coefficients ri may be real numbers, integers, or integers mod 2. When
(X, g) is a Riemannian manifold, Vol(c), with respect to dg, is just the usual Rie-
mannian volume of a singular chain.

Let z be an n-dimensional singular G-cycle in X , and G=R, Z or Z2. We define

FillVol(z ↪→ X;G)= inf{Vol(c) : c are (n+1)-chains in X, ∂c = z},

where the coefficients of the chains c lie in G.
Let V be a compact submanifold in X and [V ] the fundamental class of V (if V is

not oriented, [V ] denotes the fundamental Z2-class in the group Hdim(V )(V,Z2)'

Z2). We define the filling volume relative to the imbedding i : V ↪→ X by
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FillVol(V ↪→ X;G)= inf
{
FillVol(z) : z represents i∗[V ]

}
.

Let V be a compact manifold equipped with a metric d and the isometric imbed-
ding V ↪→ L∞(V ) is as Section 1. We define the absolute filling volume of V as

FillVol(V ;G)=: FillVol(V ↪→ L∞(V );G).

To simplify the notation, we will generally write FillVol(V ) as FillVol(V,G),
understanding the coefficient group G to be Z or Z2, depending on whether or not
V is oriented.

The following proposition shows a mapping property of filling volume

Proposition 4.1. Let f : V → W be a map between compact, connected, n-
dimensional manifolds V,W with metrics dV , dW respectively.

(i) If V,W are oriented and | deg f | = 1, then

FillVol(V ;Z)≥
1

(dil f )n+1 FillVol(W ;Z).

(ii) If V,W are oriented and f is of nonzero degree, then

FillVol(V ;R)≥
| deg f |
(dil f )n+1 FillVol(W ;R).

(iii) If V,W are not oriented and deg f 6= 0 mod2, then

FillVol(V ;Z2)≥
1

(dil f )n+1 FillVol(W ;Z2).

Lipschitz Extension Lemma 4.2 [Gromov 1983, p. 8]. Let V be a compact sub-
manifold of a metric space X , and let W be a metric space. Every Lipschitz map
ϕ : V → L∞(W ) has a Lipschitz extension ϕ̃ : X→ L∞(W ) with dil ϕ̃ = dilϕ.

For a detailed proof, see [Liu 2005].

Proof of Proposition 4.1. We may suppose that f is a Lipschitz map (if not, the
desired inequalities are obvious). By the Lipschitz Extension Lemma 4.2, f :
V → W has a Lipschitz extension f̃ : L∞(V ) → L∞(W ) with dil f̃ = dil f .
Let the isometric imbedding iV : V ↪→ L∞(V ) and iW : W ↪→ L∞(W ) be as
above. Let c =

∑
riσi be any (n+1)-chain in L∞(V ) with [∂c] = i∗[V ], where

the σi : 4
n+1
→ L∞(V ) are singular simplexes. Then f̃ (c) =

∑
ri f̃ (σi ) is an

(n+1)-chain in L∞(W ). Let g be any Riemannian metric on4n+1 with dg(x, y)≥
dL∞(V )(σi (x), σi (y)) for any x, y ∈ 4n+1. Set α := dil f and consider the new
Riemannian metric α2 g on 4n+1. For any x, y ∈ 4n+1 we have

dL∞(W )( f̃ σi (x), f̃ σi (y))≤ αdL∞(V )(σi (x), σi (y))≤ αdg(x, y)= dα2g(x, y).
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By the definition of the volume of a singular simplex,

Vol( f̃ σi )≤ Vol(4n+1, α2g)= αn+1 Vol(4n+1, g).

In view of the freedom of g, we have proved that Vol( f̃ σi )≤ α
n+1 Vol(σi ); hence

Vol( f̃ (c))≤ αn+1 Vol(c).
In cases (i) and (iii), ∂ f̃ (c) represents ±(iW )∗[W ]. Indeed,

[∂ f̃ (c)] = f̃∗[∂c] = f̃∗ ◦ (iV )∗[V ] = (iW )∗ ◦ f∗[V ] = deg f (iW )∗[W ].

In case (ii), the real singular chain | deg f |−1 f̃ (c) represents ±(iW )∗[W ] and

Vol
( 1
| deg f |

f̃ (c)
)
=

1
| deg f |

Vol( f̃ (c))≤
1

| deg f |
αn+1 Vol(c).

This completes the proof of the proposition. �

Proposition 4.3. Let V n be a compact manifold with a metric d and let X be a
metric space. For any isometric imbedding j : V ↪→ X , we have

FillVol(V ↪→ X)≥ FillVol(V ↪→ L∞(V ))= FillVol(V ).

Proof. Again using Lipschitz Extension Lemma 4.2, i : V ↪→ L∞(V ) has a Lip-
schitz extension ϕ : X → L∞(V ) with dilϕ ≤ 1. Let z be any n-cycle in X
which represent j∗[V ] and c be any (n + 1) − chain in X with ∂c = z. Then
[∂ϕ(c)] = ϕ∗[∂c] = ϕ∗[z] = ϕ∗ ◦ j∗[V ] = i∗[V ], namely ∂ϕ(c) represent i∗[V ].
From the argument of Proposition 4.1, we know that Vol(ϕ(c)) ≤ Vol(c). The
arbitrariness of z and c implies that FillVol(V ↪→ L∞(V ))≤ FillVol(V ↪→ X). �

Let W be a compact manifold with boundary ∂W , with a Riemannian metric g.
The chordal metric on ∂W is the (non-Riemannian) metric dg|∂W on ∂W defined
by g-shortest paths in W . (See [Croke and Katz 2003] for details.)

Corollary 4.4 [Gromov 1983, p. 12]. FillVol(∂W, dg|∂W )≤ Vol(W, g).

Proof. For the isometric imbedding (∂W, dg|∂W ) ↪→ (W, dg), applying Proposition
4.3 we have

Vol(W, g)= FillVol(∂W ↪→W )≥ FillVol(∂W, dg|∂W ). �

Thanks to Proposition 4.1 and Corollary 4.4, we obtain Corollaries 1.4′ and 1.6′

from Corollaries 1.4 and 1.6.

5. Filling volume estimates by cube Besicovitch inequality

In this section we adopt the notation I = [−1, 1]. Then I n is a topological cube in
Rn , with boundary ∂ I n

=
⋃ n

i=1(F
−1
i ∪ F1

i ), where F−1
i is the set of points in I n

whose i-th coordinate equals −1, and likewise for F1
i . The sets F−1

i and F1
i are

called (n−1)-faces of the cube; the notion of opposite faces is obvious.
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Theorem 5.1 [Gromov 1983, pp. 85–86]. Let V be a compact, oriented n-manifold
with a metric d and let f : V → ∂ I n+1(' Sn) be a continuous map with nonzero
degree. Then

FillVol(V ) > |deg f |
n+1∏
i=1

d
(

f −1(F−1
i ), f −1(F1

i )
)
.

We regard this inequality still as a Besicovitch inequality, and we will use it in
deducing Theorem C.

Proof of Theorem C. We establish a homeomorphism ϕ : Sn
→ ∂ I n+1 by central

projection:

ϕ(u)=
u
‖u‖∞

for u ∈ Sn, ϕ−1(x)=
x
|x |E

for x ∈ ∂ I n+1,

where ‖·‖∞ is the l∞-norm (whose unit sphere is ∂ I n+1) and | · |E is the Euclidean
norm. Next we determine dS

(
ϕ−1(F−1

1 ), ϕ−1(F1
1 )
)
, where dS is the spherical dis-

tance on Sn . Take x = (1, x2, . . . , xn+1) ∈ F1
1 , y = (−1, y2, . . . , yn+1) ∈ F−1

1 , and
assume without loss of generality that |x |E ≥ |y|E . Then∣∣∣∣ x
|x |E
−

y
|y|E

∣∣∣∣
E
=

1
|x |E

∣∣∣∣x − |x |E|y|E y
∣∣∣∣

E
≥

2
|x |E
≥

2
maxx∈∂ I n+1 |x |E

=
2

√
n+ 1

.

For any

u =
x
|x |E
∈ ϕ−1(F1

1 )⊂ Sn and v =
y
|y|E
∈ ϕ−1(F−1

1 )⊂ Sn,

the cosine theorem implies

|u− v|2E = 2− 2 cos dS(u, v).

Therefore

dS(u, v)= arccos(1− 1
2 |u− v|

2
E)

= arccos
(

1− 1
2

∣∣∣ x
|x |E
−

y
|y|E

∣∣∣2
E

)
≥ arccos

(
1− 2

n+1

)
= arccos n−1

n+1
.

Taking

x0 = (1, 1, . . . , 1) ∈ F1
1 , y0 = (−1, 1, . . . , 1) ∈ F−1

1 ,

u0 =
x0

|x0|E
=

x0
√

n+ 1
∈ f −1(F1

1 ), v0 =
y0

|y0|E
=

y0
√

n+ 1
∈ f −1(F−1

1 ),

we have

dS(u0, v0)= arccos
(

1− 1
2

∣∣∣ x0
|x0|E

−
y0
|y0|E

∣∣∣2
E

)
= arccos n−1

n+1
.
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Hence dS
(
ϕ−1(F1

1 ), ϕ
−1(F−1

1 )
)
= arccos n−1

n+1
, and more generally

dS
(
ϕ−1(F1

i ), ϕ
−1(F−1

i )
)
= arccos

n− 1
n+ 1

for i = 1, . . . , n+1.

Next, we estimate dS
(
(ϕ ◦ f )−1(F1

i ), (ϕ ◦ f )−1(F−1
i )

)
for the composite map

ϕ ◦ f : V → ∂ I n+1. For any x ∈ (ϕ ◦ f )−1(F1
i ) and y ∈ (ϕ ◦ f )−1(F−1

i ), we have
f (x) ∈ ϕ−1(F1

i ), f (y) ∈ ϕ−1(F−1
i ). Therefore

dV (x, y)≥
1

dil f
dS( f (x), f (y))

≥
1

dil f
dS(ϕ

−1(F1
i ), ϕ

−1(F−1
i ))=

1
dil f

arccos
n− 1
n+ 1

.

Since deg(ϕ ◦ f ) = deg f , applying the Besicovitch inequality (Theorem 5.1) to
ϕ ◦ f , we get

FillVol(V )≥
| deg f |
(dil f )n+1 ·

(
arccos

n− 1
n+ 1

)n+1
. �

Remark 5.2. As is well-known, it is difficult to compute Gromov invariants. There
is still not a single Riemannian manifold whose filling volume is known. Gromov’s
filling volume conjecture [1983, p. 13], which is still open in all dimensions, says
that FillVol(Sn, can) = 1

2 Vol(Sn+1, can). The case n = 1 can be broken into sep-
arate problems depending on the genus of the filling [Gromov 1983, pp. 59–60;
Bangert et al. 2005; Croke and Katz 2003; Katz and Lescop 2005]. Taking W =the
canonical positive hemisphere (Sn+1

+ , g), obviously, ∂Sn+1
+ = Sn and dg|Sn =the

canonical distance of Sn. From Corollary 4.4, we have

FillVol(Sn)≤ Vol(Sn+1
+

)= 1
2 Vol(Sn+1).

On the other hand, as an intermediate result of the argument of Theorem C, we
have

FillVol(Sn) >
(

arccos
n− 1
n+ 1

)n+1
.

Unfortunately, this rough lower bound is far from the exact value conjectured by
Gromov. It is also inferior to the easy estimate obtained as follows. Since the
Euclidean unit ball Bn+1 is flat and simply connected, we know from [Gromov
1983, 2.1] that

FillVol(Sn,Euclid)= FillVol(∂Bn+1,Euclid)= Vol(Bn+1)=
π (n+1)/2

0
( n+1

2 + 1
) .

The canonical Riemannian metric on Sn (of diameter π ) dominates the Euclidean
metric of diameter 2, so FillVol(Sn, can)≥ FillVol(Sn,Euclid) (Proposition 4.1 is
a generalization of this fact).
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