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ON THE VARIATION OF A SERIES ON TEICHMÜLLER SPACE
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Using the Kerckhoff–Wolpert formula for the variation of the length of a
geodesic along a Fenchel–Nielsen twist, we prove that a certain series defines
a constant function.

1. Introduction: two questions

In [McShane 1998] we showed that∑ 2
1+ exp lγ

= 1,

where lγ is the length of the closed geodesic freely homotopic to γ and the sum
extends over all simple closed curves γ on a hyperbolic once punctured torus.
The proof we gave is based on the geometry of (simple) geodesics on a complete
hyperbolic surface with at least one puncture.

Here we present a proof of an analogous identity that emphasises the rôle of
the different elements of the modular group and the infinitesimal geometry of the
Teichmüller space, which appears via a variational formula due to Steve Kerckhoff
[1983] and Scott Wolpert [1983b]. Since the difficultly is not greatly increased,
we work with surfaces with geodesic boundary as in [Mirzakhani 2003].

We begin with two questions of Troels Jørgensen.

Question 1. Can the identity above be proved using the Markoff cubic

a2
+ b2
+ c2
− abc = 0, a, b, c > 2 ?

Bowditch [1996] answered this by giving a proof that uses a summation argu-
ment over the edges of the tree T of solutions to this equation.

Question 2. Can the same identity be proved using the Kerckhoff–Wolpert formula
for variation of length?
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We recall what the formula says. If µ1, µ2 are closed simple geodesics on a
hyperbolic surface, then

dlµ1 t (µ2)=
∑

z∈µ1∩µ2

cos(θz),(1)

where t (µ2) is the Fenchel–Nielsen vector field associated to µ2 and the sum is
over all the intersections between the geodesics. This formula was generalised by
Goldman [1984; 1986] in terms of the natural Poisson bracket on the representation
space of a surface group into a semisimple Lie group.

It is Jørgensen’s second question that we address here. Our starting point is the
observation that by clever “accounting”, Bowditch avoids considering the divergent
series ∑

{a,b,c}∈T

(
a
bc
+

b
ca
+

c
ab

)
.

The series is divergent since T is infinite and, since a, b, c is a solution of the cubic,
the value of each term is 1.

Here we consider another divergent series obtained by summing over the edges
of T. We show that, after a suitable regularization, this yields another series con-
stant on Teichmüller space. The ingredients are

• a (formal) argument, using an involution of the surface, showing that the series
defines a constant function;

• a geometric recipe, using Dehn twists, for finding an explicit expression for
the terms in the series;

• a method for finding the value of the series.

This allows us to give a proof of:

Theorem 1. For a one-holed torus M ,∑
γ

arctan
cosh(lδ/4)
sinh(lγ /2)

=
3π
2
,

where the sum extends over all simple closed geodesics γ on M and lδ is the length
of the boundary geodesic δ.

Relation with Mirzakhani’s identities. Mirzakhani [2003] has obtained identities
for hyperbolic surfaces with nonempty geodesic boundary by adapting the methods
of [McShane 1998]. For the one-holed torus she obtains

`δ =
∑
γ

2 log
e`δ/2+ e`γ

e−`δ/2+ e`γ
,
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where the sum is over all essential simple curves γ . When one quotients the (holed)
torus by the elliptic involution J one obtains an orbifold M/J with a single geo-
desic boundary component of length `δ/2 and three cone singularities of angle
π . Philosophically M/J surface is a “hyperbolic four-holed sphere with boundary
geodesic of lengths `δ/2, iπ, iπ, iπ”, this assertion being interpreted as follows.
The fundamental group of the four-holed sphere is generated by four simple loops
α1, α2, α3, δ which meet only at the base point and each of which is homotopic to a
different boundary geodesic. The loops α1, α2, α3, δ are said to be peripheral; after
choosing orientations appropriately, we have π1 = 〈α1, α2, α3, δ : δ = α1α2α3〉.

• In the SL(2,R) character variety of π1, there is a representation ρ such that
the quotient is isometric to M/J .

• The monodromy around the loop δ is hyperbolic with translation length `δ/2.

• The monodromies of the remaining three peripheral curves α1, α2, α3 are el-
liptic of order 2.

For a hyperbolic four-holed sphere with three geodesic boundary components
α1, α2, and α3 such that `α1 = `α2 = `α3 = L > 0, Mirzakhani’s identities give

L =
∑
γ∈Ai

2 log
eL/2
+ e(`γ+L)/2

e−L/2+ e(`γ+L)/2 ,(2)

where Ai the set of simple curves which bound a pair of pants with δ and αi . Every
nonperipheral simple curve belongs to one of the Ai so summing gives

3L =
∑
γ

2 log
eL/2
+ e(`γ+L)/2

e−L/2+ e(`γ+L)/2 ,(3)

where now the sum is over all simple essential γ . Both the right and left sides of
(3) are restrictions to the SL(2,R) character variety of complex analytic functions
defined on a neighborhood SL(2,C) character variety. By analytic continuation
one expects this to be true at L = π . After some algebra and noting that the set of
nonperipheral simple curves on the four-holed sphere and those on the one-holed
torus are in one-to-one correspondence we obtain the identity in Theorem 1. We
note that Ser Tan seems to have known of the existence of a version of (3) for some
time and has given a different treatment based on the ideas of [Zhang et al. 2005].

Sketch of proof of Theorem 1. Let P be the left-hand side of the identity in the
theorem. We show that the variation dP of the series vanishes identically on the
Teichmüller space. To do this we find a series dQ (see Section 2) which converges
absolutely to dP and a rearrangement showing that the former is identically 0;
since Teichmüller space is connected the series P is constant. Our series dQ is,
at least formally, the derivative of a divergent series Q which has a nice geometric
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definition. To define Q, we introduce the following notation which we shall use
throughout the article: Let α, β be a pair of oriented essential simple closed curves
meeting in a single point and let α∨β denote the signed angle between the closed
simple geodesics in the free homotopy classes determined by α and β (see Section
4 for discussion). The series Q is, roughly speaking, the sum over all such α∨β.

In dealing with dQ (dP) we adopt the a point of view similar to that of [Kerck-
hoff 1983]; we work with the Fenchel–Nielsen geometry of the cotangent bundle
(see also [Wolpert 1982; 1983a]). We evaluate the pairing of dQ with the Fenchel–
Nielsen vector field t (µ) associated to a simple closed geodesic µ on 6g,n . By
a result of Wolpert [1979; 1982] there are finitely many simple closed geodesics
µi such that the associated Fenchel–Nielsen vector fields tµi generate the tangent
space at every point in the Teichmüller space of a surface of finite type. A 1-
form vanishes if and only if its pairing with these fields vanishes. One concludes
immediately, since the function x 7→ lδ(x), T1,1→ R+ has connected level sets,
that the value of the series depends only on the length of lδ. It is actually more
convenient to think of the torus T as being an (embedded) convex subsurface of
a closed surface 6g,n . The inclusion i : T → M induces a faithful representation
of the mapping class group of T in the mapping class group of M . The advantage
of this approach is that one can twist along closed geodesics in M that are not
contained in i(T ) and as such vary the length of the boundary curve lδ.

The main technical result, on which our proof hinges, is this:

Theorem 2. Let T ⊂ 6g,n be an embedded convex subsurface and let MCG∗(T )
denote the image of the mapping class group of T in the mapping class group of
6g,n . Let µ⊂6g,n be a simple closed geodesic with t (µ) the associated Fenchel–
Nielsen vector field then the series

dQ.t (µ)=
∑

[g]∈MCG∗(T )

d([g].(α∨β)).t (µ)

converges absolutely and its sum vanishes.

We use the following corollary of his formula, also due to Wolpert [1983a], to
prove absolute convergence (Section 7)

|dlµ1 .t (µ2)| ≤
∑

x∈µ1∩µ2

1= card(µ1 ∩µ2) := i(µ1, µ2).

where i(µ1, µ2) is the geometric intersection number.

Value of the series. The vanishing of dP is one of two parts of the proof of the
Theorem 1 the other being the determination of the value of the series at some
point. This value is shown to be 3π/2 in [McShane 2004] for any point in the
Teichmüller space of the punctured torus, that is when `δ = 0. It is worth note that
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the usual heuristic of setting `γ = 0, the result of which is π/2, gives an incorrect
value.

Remark. The original motivation for this work was to extend the formula to spaces
of representations of surface groups in Lie groups other than SL(2,R) for which
Goldman has established analogues of the above variational formula in [Goldman
1984]. For example it is not hard to show that our method works in the case of
SL(2,C), see [Series 2001] or [Goldman 2004] for a discussion of the formula
in this case. Though our method should in principle give results in this direction
in certain special cases (in Section 9 we explain why it appears to break down
irretrievably in general), we note that identities have subsequently been established
[Labourie and Mcshane 2006] using a different method. Bowditch’s method has
been extended to treat many other cases in [Zhang et al. 2004a; 2004b; 2005].

2. Another divergent series

Let M be a one-holed torus. The fundamental group of M is freely generated by
two loops γ1, γ2 that meet in a single point and such that their commutator is a loop,
δ, around the hole. Denote by T1(lδ) the Teichmüller space of M . The mapping
class group, MCG, is defined to be the group of orientation preserving diffeomor-
phisms fixing the boundary pointwise up to isotopy π0(Diffeo+(M, ∂M)).

Let M∗ be a punctured torus. By the work of Nielsen and Mangel,

π0(Diffeo(M∗))∼= Aut(π1)/Inn(π1)∼= GL2(Z).

The mapping class group has index 2 in π0(Diffeo(M∗)) and so is isomorphic to
SL2(Z). Three (conjugacy classes of) elements of SL2(Z) are of interest to us:

J =
(
−1 0

0 −1

)
, T =

(
1 1
0 1

)
, Q =

(
0 −1
1 0

)
.

Under the Nielsen–Mangel isomorphism, the elliptic involution goes to J and
there is a (primitive) Dehn twist that goes to T . Let MCG∗ denote the mapping
class group modulo its center. From work of Ivanov, for instance, we know that
the canonical action of MCG∗ on Teichmüller space is effective and that, for a
punctured torus, the center of the mapping class group is generated by the elliptic
involution. The center of the mapping class group of the holed torus MCG is
generated by a half Dehn twist round the boundary curve δ and the quotient is
isomorphic to MCG∗.

We write [g] ∈ MCG∗ for the mapping class of an orientation preserving dif-
feomorphism g. Let α ∈ π1, α 6= 1 be a closed loop and let [α] denote its free
homotopy class, or equivalently its π1 conjugacy class. If g, g′ ∈ [g], [g] ∈MCG∗

and α, α′ ∈ π1 are freely homotopic then g(α), g′(α) are freely homotopic, that
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is, [g(α)] = [g(α′)] = [g′(α′)]; hence MCG∗ admits an action on the set of free
homotopy classes of closed curves,

([g], [α]) 7→ [g(α)].

If M is negatively curved then for each nonperipheral loop α 6= 1 there is a unique
closed geodesic representing its free homotopy class, which we shall also denote
by [α]. By identifying a closed geodesic with its free homotopy class we may say
that the mapping class group acts on the set of closed geodesics. The set of simple
closed loops is invariant under diffeomorphism and so the set of simple closed
geodesics geodesics, G0, is MCG∗-invariant.

For α 6= 1, let `α denote the length of the closed geodesic [α] with respect to
the metric on M .

Let α, β be a pair of oriented simple closed loops on M meeting in exactly one
point. The associated closed geodesics [α], [β] are simple and meet in a single
point; let α∨β denote the signed angle between them (see Section 4 for a precise
definition). Now α, β freely generate π1(M); the only automorphism that simul-
taneously fixes them is the trivial automorphism. The elliptic involution reverses
orientations for each of α, β and so the automorphism of π1(M) that it induces does
not fix the corresponding pair of elements. Since MCG∗ is a quotient of the group of
automorphisms of π1(M), the stabiliser of ([α], [β]) in MCG∗ is trivial. Moreover,
since each g ∈ MCG∗ is a homeomorphism, the pair of geodesics [g(α)], [g(β)]
again meet in a single point, so

[g].(α∨β) := g(α)∨ g(β)

is well defined and the sign is preserved since g preserves the orientation. After
possibly exchanging α, β we can suppose that [g] .(α∨β) > 0 for all g ∈MCG∗.

Consider the formal series

Q=
∑

[g]∈MCG∗

[g] .(α∨β).

We determine its “sum” using a coset decomposition and hyperbolic geometry:

Step I. Let γ be a simple closed curve in a one-holed torus and let Tγ be the Dehn
twist along γ . Observe that MCG∗ acts transitively on G0 and the stabiliser of
γ ∈ G0 is precisely 〈Tγ 〉, so the map MCG∗/〈Tγ 〉 → G0 defined by

[h] 7→ [h(γ )]

is a bijection. We rewrite Q as a sum running over the set of coset representatives
MCG∗/〈Tγ 〉 for γ satisfying

[β] = [Tγ (α)](4)
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(see Section 4). We obtain

Q=
∑

[h]∈MCG∗/〈Tγ 〉

(∑
n∈Z

[h ◦ T n
γ ].(α∨ Tγ (α))

)

=

∑
[h]∈MCG∗/〈Tγ 〉

(∑
n∈Z

[T n
h(γ )].(h(α)∨ Th(γ )) ◦ h(α)

)

=

∑
γ ′∈G0

(∑
n∈Z

T n
γ ′(α

′)∨ T n+1
γ ′ (α′)

)
,

where the outer sum is over all oriented simple closed geodesics G0 and α′ is any
simple closed geodesic that meets γ ′ exactly once. The passage from the first to
the second line is justified by the equation

h ◦ Tγ ◦ h−1
= Th(γ ).

Step II. We evaluate the inner sum over Z using the following result, the proof of
which is postponed to the end of the next section. (For the notion of Weierstrass
points, see page 470.)

Lemma 2.1. For each γ ′, there exists a (Weierstrass) point w ∈ M , such that for
all i > 0

[T i−1
γ ′ (α

′)] ∩ [T i
γ ′(α

′)] = {w}.

Using the existence of such a w, by induction one obtains, for all m < n,∑
m<i≤n

T i−1
γ ′ (α

′)∨ T i
γ ′(α

′)= T m
γ ′ (α

′)∨ T n
γ ′(α

′).

Moreover, there exist complete simple geodesics γ−∞, γ+∞ passing through w
and spiraling to γ ′ such that T n

γ ′(α
′)→ γ±∞ as n→±∞, where the convergence

is uniform on compact sets of M . In particular,

γ−∞ ∨ γ+∞ := lim
m,n→∞

T n
γ ′(α

′)∨ T n
γ ′(α

′).

is well defined. The inner sum telescopes over n and one obtains∑
n∈Z

T n
γ ′(α

′)∨ T n+1
γ ′ (α′)= γ−∞ ∨ γ+∞.

A calculation, which we carry out in Section 8, shows that

(5) γ−∞ ∨ γ+∞ = π − 2 arctan
cosh(lδ/4)
sinh(lγ ′/2)

.
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Step III. We show that Q is constant using a different coset decomposition. There
is an element q ∈ MCG∗ of order 2, corresponding to the image of the matrix
Q ∈ SL2(Z) in PSL2(Z), such that

q(α)= β, q(β)= α−1.

For any [g] ∈ MCG∗, the images [g(α)] and [g(α)−1
] determine the same undi-

rected geodesic, so

g(α)∨ g(β)+ g(β)∨ g(α−1)= π.

Rewriting Q as a sum over cosets of MCG∗/〈q〉, one obtains

(6) Q=
∑

g∈MCG∗/〈q〉

[g].(α∨β)+ [g].(β ∨α−1)=
∑

MCG∗/〈q〉

π

Although this last identity clearly implies that our series is divergent, it also
suggests that the variation of Q vanishes when viewed as a 1-form on Teichmüller
space. Under the hypothesis of absolute convergence, one expects that a suitable
regularization defines a constant function. Here the regularization that works is

P : x 7→
∑
γ

2 arctan
cosh(lδ(x)/4)
sinh(lγ (x)/2)

, T1(lδ)→ R.

From their expansions as infinite series, we have

dP= dQ=
∑
[g]

d([g].(α∨β)).

Absolute convergence (Theorem 2) allows one to pair off terms as in (6) above:

d
(
[g].(α∨β)+ [g].(β ∨α−1)

)
.t (µ)= 0,

so the sum for dQ.t (µ) vanishes identically. Since Teichmüller space is connected,
P is constant.

3. Markoff triples

For completeness we present a brief review of the theory of the representation
variety of a free group on two generators, define a topological Markoff triple and
describe the relationship with the elliptic involution. See [Goldman 2003] for back-
ground.

To each x ∈T1(lδ) one associates ρx ∈Hom(π1,SL2(R)), a discrete irreducible
representation of π1 such that the surface M with its metric is isometric to H2/ρx .
Strictly speaking, a point x determines a representation into PSL2(R), but since the
surface is uniformized by a discrete torsion-free fuchsian group, we may lift into
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SL2(R). The advantage of working in the latter is that the trace provides a natural
map.

For any ρx ∈ [ρx ] the length of the geodesic [γ ] on the surface determined by x
satisfies

2 cosh
lγ (x)

2
= |tr ρx(γ )|,

for any γ ∈ [γ ]; thus traces of matrices and length functions of geodesics are
“interchangeable”.

Fix a topological Markoff triple, that is, a triple of simple loops γ1, γ2, γ3 such
that

(1) the pairwise intersections {[γi ] ∩ [γ j ], i 6= j} form a triple of distinct points,

(2) the loops γ1, γ2 freely generate π1(M, γ1 ∩ γ2).

(3) γ3 = γ
−1
1 γ2, and

(4) the commutator δ = γ1γ2γ
−1
1 γ−1

2 represents a loop freely homotopic to the
boundary curve of M , which we also denote by δ.

The trace map is defined to be

ρ 7→ (tr ρ(γ1), tr ρ(γ2), tr ρ(γ3)), Hom(π1,SL2(R))→ R3.

It is not difficult, by finding explicit matrices for ρ(γ1), ρ(γ2), to show this map is
surjective. Observe that SL2(R) acts by conjugation on

Hom(π1,SL2(R))

and the trace map is clearly constant on the orbit [ρ] of the representation ρ; we
write Hom(π1,SL2(R))/SL2(R) for the space of orbits. Clearly the trace map in-
duces a map, which we will still call the trace map, on Hom(π1,SL2(R))/SL2(R).

A diffeomorphism h of M acts on π1(M) on the left by the automorphism h∗, so
h acts on the left on the representation variety by (h, ρ) 7→ ρ ◦h−1

∗
. If h is isotopic

to the identity then h−1
∗
= iγ for some γ ∈ π1, i.e., h−1

∗
is an inner automorphism,

and so [ρ◦h−1
∗
]= [ρ] for all ρ. From this we see that [ρ◦h−1

∗
] depends only on the

coset it determines modulo the group of isotopies, that is, only on its mapping class
[h]. Thus one obtains a representation of MCG∗ as a group acting on R3. A more
explicit description of the action of MCG∗ on R3 can be given by noting that MCG∗

is isomorphic to PSL2(Z) and that PSL2(Z) splits as the free product Z/2Z∗Z/3Z.
The generator of Z/3Z acts by cyclic permutation on the coordinates xi whilst,
using the trace relations in SL2(R), the generator of Z/2Z acts by a quadratic
reflection

(x1, x2, x3) 7→ (x2, x1, x1x2− x3).
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A calculation using the generators shows that the so-called Markoff cubic

κ(x1, x2, x3)= x2
1 + x2

2 + x2
3 − x1x2x3

is an invariant function for this action. Geometrically this is a consequence of
the fact that every automorphism of the free group preserves the conjugacy class
[δ] = [γ1γ2γ

−1
1 γ−1

2 ] and, by the trace relations, we have

κ(tr ρ(γ1), tr ρ(γ2), tr ρ(γ3))= tr ρ(δ)+ 2=−2 cosh(lδ/2)+ 2.

One identifies the component of the level set κ = −2 cosh(lδ/2)+ 2 contained in
X ={x1, x2, x3> 2} with the Teichmüller space T1(lδ) [Wolpert 1983a]. It follows
that every function on T1(lδ) can be expressed as a function of the lengths of the
γi ; we shall give an explicit expression for α∨β in the next section.

Using the generators above, it is easy to check that the set X = {x1, x2, x3 > 2}
is invariant under the PSL2(Z)-action and, moreover, the action is effective and
properly discontinuous on X . The Bass–Serre tree of PSL2(Z) is isomorphic to the
infinite (regular) trivalent tree and so any orbit of the PSL2(Z)-action can be given
the structure of a tree in the obvious way; this is the generalized (real) Markoff
tree. The classical Markoff tree has vertices the integer solutions of

κ(x1, x2, x3)= 0, x1, x2, x3 > 2.

(The integer solutions to the Markoff equation above form a single PSL2(Z) orbit).

Observations about Markoff triples. Given a configuration of loops γ ′i ∈ [γ
′

i ] sat-
isfying the four conditions above, there is an obvious automorphism of π1 that
takes γi to γ ′i , and this automorphism is f∗ for some diffeomorphism f . So the
Markoff tree enumerates the configurations that appear in the formal series Q.

Also note that for simple loops γ1, γ2, γ3, we have γ3 = γ
−1
1 γ2 if and only if

Tγ3(γ1)= γ2, and this is none other than the condition (4).

Markoff triples and Weierstrass points. It is well known that M always admits an
isometry J corresponding to the central element of MCG∗ and that the quotient
M/J is an orbifold: a disk with three cone points, one for each of the fixed points
of J . Unoriented simple geodesics are invariant for this involution and it is easy
to see that the three intersection points of a Markoff triple of geodesics [γi ]∩ [γ j ],
i 6= j , coincide with the fixed points of J . The fixed points of J are Weierstrass
points.

Proof of Lemma 2.1. Let w be the Weierstrass point not on γ3. For each i ,
T i
γ3
(γ1), T i+1

γ3
(γ1) both intersect Tγ3(γ3) = γ3 exactly once. So these three curves

form a Markoff triple and T i
γ3
(γ1)∩ T i+1

γ3
(γ1) is exactly the Weierstrass point not

on γ3. �
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4. Signed angles

We now define the signed angle between two geodesics at an intersection (compare
[Kerckhoff 1983; Series 2001; Jorgensen 2000] for a discussion of signed complex
lengths in general.) Subsequently we find an explicit expression in terms of lengths
of geodesics and study its behaviour on Teichmüller space.

Definition. Let α 6= β be a pair of oriented geodesics in H2 meeting in at a point
x . There is a well defined signed angle between α, β at x ; this is a function from
ordered pairs of oriented geodesics to ]−π, π[:

(α, β) 7→ α∨x β.

One way to define α∨β is to work in the disc model for H2. After conjugating we
may assume

α = (−1, 1), β = (−eiθ , eiθ )

for some θ ∈ ]−π, π[, so α∩β = {0}. Now z 7→ eiθ z is the unique rotation fixing
0 and taking 1 to eiθ and hence α (oriented in the direction from −1 to 1) to β
(oriented in the direction from −eiθ to eiθ .) Set α∨x β = θ .

For a pair of geodesics [α] 6= [β]meeting at a point x in a surface M one defines
the signed angle at x by lifting to H2. When [α] 6= [β] meet at a single point x in
the surface we shall omit x and use simply α∨β to denote this angle.

Computation of the signed angle. Let [α], [β] be a pair of simple closed geodesics
meeting in a single point x ∈ M . For completeness, we show how to calculate the
angle α∨β in terms of lα, lβ and the length of the boundary lδ (compare [Wolpert
1983a; 1983b]). Let γ =αβ−1

∈π1(M, x); from the preceding section [α], [β], [γ ]
is a Markoff triple of geodesic and the pairwise intersections are the Weierstrass
points. The quotient of [α] ∪ [β] ∪ [γ ] is an embedded geodesic triangle on M/J
with vertices at the three cone points. Its side lengths are lα/2, lβ/2, lγ /2, and the
(hyperbolic) cosine rule yields

cosh(lγ /2)= cosh(lα/2) cosh(lβ/2)− sinh(lα/2) sinh(lβ/2) cos(α∨β),(7)

so that

(8) α∨β = arccos
cosh(lα/2) cosh(lβ/2)− cosh(lγ /2)

sinh(lα/2) sinh(lβ/2)
.

One sees immediately that α∨β is continuous on Teichmüller space.
Finally we derive another expression for α∨β, which will be useful in the proof

of Theorem 2. Replacing in the Markoff cubic using (7) one obtains

(9) sinh2(lα/2) sinh2(lβ/2) sin2(α∨β)= cosh2(lδ/4),
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where δ is the boundary geodesic. If, α∨β ∈ ]0, π/2[, then

(10) α∨β = arcsin
cosh(lδ/4)

sinh(lα/2) sinh(lβ/2)
.

Remark. Another way of thinking of the relation (9) is as a hyperbolic version of
the usual formula for the area of a euclidean torus:

2lαlβ sin(α∨β)= area of torus,

where α, β are closed Euclidean geodesics meeting in a single point with angle
α∨β.

The reader is left to check that, unfortunately, the analogous series for the vari-
ation of the Euclidean angles does not converge absolutely, so we obtain no new
identity on the moduli space of Euclidean structures.

5. Differentiability

We now study the regularity of α∨β as we vary the surface over Teichmüller space.
It is well known [Abikoff 1980] that for any closed geodesic γ the function

x 7→ lγ (x),T1(lδ)→ R+

is differentiable and even real analytic. It is not difficult to see from (8) that α∨β
is also real analytic.

From the expression (10) for the angle obtained above, we have

d(α∨β)= cosh(lδ/4)
coth(lα/2) dlα + coth(lβ/2) dlβ

4
(
sinh2(lα/2) sinh2(lβ/2)− cosh2(lδ/4)

)1/2 ,

provided |α∨β| 6= π/2 (by equation (9)) — in other words, this equality holds on
the complement of the subset where |α∨β| attains its maximum. On this critical set
the numerator coth(lα/2) dlα + coth(lβ/2) dlβ vanishes and (it is left to the reader
to check that) the right-hand side defines a form which extends by continuity to
the whole of Teichmüller space.

6. The length spectrum of simple geodesics

We prove two lemmata used in the proof of Theorem 2 in the next section. For a
discussion of length spectra in general see [Schmutz Schaller 1998].

Notation. Sections 4 and 6 deal with lengths of geodesics, and the mapping class
group will not figure explicitly. To make this clear we set

B+ :=MCG∗.(α, β).
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Let Mg,n be a hyperbolic surface of genus g with n punctures and x the corre-
sponding point in the moduli space. Let G0 be the set of all simple closed geodesics.
Define the simple length spectrum, denoted by σ0(x)⊂R+, to be the set {lγ , γ ∈G0}

counted with multiplicities. It is more useful to think in terms of the associated
counting function

N (G0, t) := card{[γ ] ∈ G0, lγ (x) < t}.

There are two important features of the simple length spectrum:

(1) The infimum over all lengths lγ (x) of all closed geodesics is strictly positive
and attained for a simple closed geodesic, the systole sys x . We shall also
denote by sys x the length of this geodesic.

(2) σ0(M) is discrete, that is N (G0, t) is finite for all t ≥ 0, and moreover has
polynomial growth, specifically

N (G0, t)≤ At6g−6+2n

for some A = A(x) > 0 [Rivin 2001; Rees 1981].

Lemma 6.1. Let x ∈M1(lδ). For all t > 0 there exists N = N (t, x) > 0 such that
the inequality

sinh(lα(x)/2) sinh(lβ(x)/2)≥ t,

holds for all but N pairs (α, β) ∈ B+.

Proof. The quantity sinh(lα/2) sinh(lβ/2) is at least

1
2

(
sinh

(1
2 lα
)

sinh
( 1

2 sys x
)
+ sinh

( 1
2 sys x

)
sinh

( 1
2 lβ
))
≥

1
2

(
lα + lβ

)
sinh

(1
2 sys x

)
.

The lemma follows by the discreteness of the length spectrum. �

The Collar Lemma. Useful information about the length spectrum can be obtained
from the Collar Lemma [Buser 1992, Chapter 4]. Given a closed simple geodesic
µ there is an embedded collar (regular tubular neighbourhood of µ) such that

(width of collar round µ)≥ w(lµ),

for w(s) := 2 arcsinh(1/ sinh(s/2)). One bounds from below the length of any
closed geodesic γ such that γ ∩µ 6=∅ by the intersection number times the width
the collar round µ, that is,

(11) i(γ, µ)≤
lγ

w(lµ)
,

where i(γ, µ) := card(γ ∩µ) is the geometric intersection number.
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7. Bounding the variation of Q: proof of Theorem 2

Fix a metric on M , let x ∈M1(lδ) be the corresponding point in the moduli space,
and fix a closed simple geodesic µ.

Claim. There exists K = K (sys x, lµ, lδ) such that

∑
B+
|d(α∨β).t (µ)| ≤ K

( ∑
γ∈G0

lγ e−lγ /2
)2

.

Convergence follows since the simple length spectrum grows polynomially.

Proof of Claim. We start with the formula obtained for α∨β in Section 3:

d(α∨β)= cosh r
coth a da+ coth b db

(sinh2 a sinh2 b− cosh r)1/2
,

where we have set, to simplify notation,

a = lα/2, b = lβ/2, r = lδ/4.

For the geodesic µ Wolpert’s corollary gives

∣∣d(α∨β).t (µ)∣∣ ≤ ∣∣∣∣∣ cosh r
(
i(α, µ) coth a+ i(β, µ) coth b

)
sinh a sinh b (sinh2 a sinh2 b− cosh2 r)1/2

∣∣∣∣∣ .
Firstly, note that coth a, coth b≤coth( 1

2 sys x) since a, b≥ sys x/2. Secondly, re-
placing for i(α, µ), i(β, µ) using (11) above we obtain the following upper bound
for the variation:

cosh(r) coth(sys x/2)
w(lµ)

×
lα + lβ

(sinh2(a) sinh2(b)− cosh2(r))1/2
.

Note that the leading factor does not depend on lα, lβ .
Thirdly, by Lemma 6.1 for all but finitely many pairs (α, β) in B+ one has

sinh2 a sinh2 b− cosh2 r ≥ 1
2 sinh2 a sinh2 b ≥ 1

8 exp(a+ b).

Finally, the sum over all the configurations satisfies∑
B+
(lα + lβ)e−

1
2 (lα+lβ ) ≤

2
sys x

(∑
α

lαe−lα/2
)

2,

since
2

sys x
lαlβ ≥ lα + lβ .

The claim follows immediately, and with it Theorem 2. �
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8. Calculation of the term in Theorem 1

As promised in Section 2 we now derive the formula (5). We pick up at the end of
step two Section 2 and adopt the same notation. In particular, we have a geodesic
γ ′, a Weierstrass point w not on γ ′ and a pair of simple geodesics γ± spiralling to
γ ′. We lift to H2 and use hyperbolic trigonometry to do the calculation (Figure 1).

γ−∞ γ+∞
ŵ

θw

ŵ′
c+c−

γ̂′

Figure 1. The triangle in H2 used to calculate γ−∞ ∨ γ+∞.

Let γ̂ ′ be a lift of γ ′ to H2 with endpoints c−, c+ in ∂H2. For a point ŵ ∈ H2,
let ŵ′ ∈ γ̂ denote the nearest point to ŵ on γ̂ ′; we write |ŵ′ŵ| for the hyperbolic
distance from ŵ to ŵ′. The triangle ŵ′ŵc+ is a hyperbolic triangle with a right
angle at ŵ′ and an angle θŵ at ŵ. Trigonometry yields (see [Buser 1992, Theorem
2.2.2(iv)])

cot(θŵ)= sinh(|ŵ′ŵ|).(12)

Note that the side opposite ŵ has infinite length but the passage to the limit in the
formula (iv) is valid.

We now choose ŵ to be a lift of the Weierstrass point w such that ŵ′ŵ projects
to a simple arc on the surface. The geodesic ŵc+ projects to a simple geodesic on
the surface that spirals to γ ′ and, without loss of generality, we may assume that
this is γ+∞. Likewise the projection of ŵc− is simple and spirals to γ ′ so this
must be γ−∞. It follows from this that

|γ−∞ ∨ γ+∞| = 2θŵ.

It only remains to express the quantity |ŵ′ŵ| in terms of the lengths `δ, `γ .
Note first that this quantity is the distance from w to γ ′. Now cut along γ ′ to
obtain a pair of pants P . The Weierstrass pointw is now the midpoint of the unique
simple common perpendicular, labelledw′w′′ in Figure 2, running between the two
boundary components of the pants corresponding to γ ′. By further cutting along
common perpendiculars (see Figure 2) one obtains four congruent right angled
pentagons; we shall work with the pentagon whose vertices are labelled abcw′w.
There are three sides of this pentagon that concern us. The side labelled ww′

has length |ŵ′ŵ|, the side adjacent, labelled w′c, has length `γ ′/2 and the side
“opposite” this pair, labelled ab, has length `δ/4. The lengths of these three sides
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w
w′w′′

a

bc

δ

γ′ γ′

Figure 2. A torus cut along a geodesic γ ′ to obtain a pair of pants.
The pants has been subdivided into four congruent pentagons.

are related by (see [Buser 1992])

sinh(|ŵŵ′|) sinh(`γ ′/2)= cosh(`δ/4)(13)

so that, replacing in (12), one has

cot( 1
2 |γ
−∞
∨ γ+∞|)= cot(θŵ)=

cosh(`δ/4)
sinh(`γ ′/2)

.

This is equivalent to (5).
It is amusing, as an afterthought, to note that the relation (13) can be deduced

from (9) in Section 4. One reglues the pants P to obtain a holed torus such that
the endpoints of the common perpendicular w′, w′′ are identified. In this way one
obtains a holed torus with a simple closed geodesic α′ which meets γ ′ perpendic-
ularly in a single point. The formula (9) applies with α = α′, β = γ ′ and, noting
that γ ′ ∨α′ = π/2, yields (13).

9. When the method breaks down

The curious reader might wonder why we do not give a proof of the original identity
using this method. We explain here how our method breaks down in general.

One can consider an analogous series which is roughly speaking the sum of all
of Penner’s h-lengths. Recall that the h-lengths are the lengths of the connected
components (horocyclic arcs) obtained when one removes the intersection with
the edges of an ideal triangulation from the horocycles; see [Penner 1987] for a
details. In the case of the punctured torus there are three h-lengths satisfying a
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α̂n β̂α̂∞
Ĥ

γ̂ θa

θb

Figure 3. A choice of lifts of α∞, β, γ to H2, and the angles θa, θb.

single relation and these can be identified with the quantities a/bc, b/ac, c/ab
arising in the discussion of Bowditch’s method in the introduction.

Every punctured torus contains a cusp region X of area 2, the boundary is an
embedded topological circle H . We choose once and for all an orientation for
this circle. Let α be a simple directed bicuspidal geodesic; it meets H in exactly
two points a−, a+ joining a− to a+. If α, β are a pair of disjoint simple directed
bicuspidal geodesics then define the directed h-coordinate α∨hβ to be the distance
along the oriented curve H from a− to b−. Using the elliptic involution one sees
that replacing a− by a+ and b− by b+ one gets the same number.

For any pair of disjoint simple directed bicuspidal geodesics one also has the
identity

β ∨h α+α∨h β = 2

since the length of H is 2. The mapping class group acts on pairs of disjoint
simple directed bicuspidal geodesics and there are exactly two orbits. For any pair
of disjoint simple directed bicuspidal geodesics α, β there is exactly one closed
simple geodesic that meets each of α, β exactly once. After choosing orientations
appropriately we may assume β is the image of α under the Dehn twist Tγ . One
checks that the sum ∑

n∈Z

T n
γ (α)∨ T n+1

γ (α)

converges to 1− 1/(1+ e`γ ).
What goes wrong is the following.
Let β ′ denote the unique closed simple geodesic disjoint from β and Tβ ′ the cor-

responding Dehn twist. The geodesics β ′ and α meet (exactly once) and consider
the associated sequence of directed geodesics T n

β ′(α), n > 0. Let a−n ∈ H denote
the corresponding sequence of points realising the value of T n

β ′(α)∨h β. There is
a geodesic α∞ asymptotic to β with a single endpoint up the cusp such that a−n
tends to the intersection a∞ = α∞ ∩ H as n→∞. Note that a∞ 6= β−.
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Now choose another simple closed geodesic γ 6=β; note that these two geodesics
must meet at least once. For large n value of d(T n

β ′(α)∨h β).τγ is bounded below
by | cos(θa)− cos(θb) | where θa is the angle between a lift of α∞ to H2 and the
first lift of γ that it meets and θb the angle between a lift of β and the first lift of
γ that it meets (see figure) . One sees in this way that the corresponding series for
the variation does not converge since terms do not tend to 0.

Note that this reasoning fails in the case considered in the text. This is because if
α′, β ′ are simple closed geodesics which meet in a single point then T n

β ′(α
′)∨β ′→0

as n→∞; see [McShane 2004] for details.
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