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ON THE GEOMETRIC AND THE ALGEBRAIC RANK OF
GRAPH MANIFOLDS

JENNIFER SCHULTENS AND RICHARD WEIDMANN

For any n ∈N we construct graph manifolds of genus 4n whose fundamental
group is 3n-generated.

1. introduction

A Heegaard surface of an orientable closed 3-manifold M is an embedded ori-
entable surface S such that M − S consists of 2 handlebodies V1 and V2. This
decomposition of M is called a Heegaard splitting and denoted by M = V1∪S V2.
We say that the splitting is of genus g if S is of genus g. It is not difficult to see
that any orientable closed 3-manifold admits a Heegaard splitting. If M admits a
Heegaard splitting of genus g but no Heegaard splitting of smaller genus then we
say that M has Heegaard genus g and write g(M)= g.

Clearly any curve in a handlebody can be homotoped to its boundary. It follows
that for any Heegaard splitting M = V1∪S V2 every curve in M can be homotoped
into V1. Thus the map induced by the inclusion of V1 into M maps a generating set
of π1(V1) to a generating set of π1(M). Since π1(V1) is generated by g elements,
π1(M) is also generated by g elements. Thus g(M)≥ r(M), where r(M) denotes
the minimal number of generators of π1(M). Sometimes we will refer to g(M) as
the geometric rank and to r(M) as the algebraic rank of M .

F. Waldhausen [1978] asked whether the converse inequality also holds: is
g(M) = r(M)? A positive answer would have implied the Poincaré conjecture.
First counterexamples however were found by M. Boileau and H. Zieschang [1984].
These examples were Seifert fibered manifolds with g(M)= 3 and r(M)= 2. The
work of Y. Moriah and J. Schultens [1998] further shows that this class extends
to higher-genus examples: Seifert manifolds with g(M) = n + 1 and r(M) = n.
In [Weidmann 2003] a class of graph manifolds was found for which g(M) = 3
and r(M) = 2. The original Boileau–Zieschang examples can be interpreted as a
special case of these graph manifolds.

Schultens was supported in part by NSF Grants #0203680 and #0603736. Both authors were sup-
ported by the Max-Planck-Institut für Mathematik, Bonn, Germany.
MSC2000: primary 54C40, 14E20; secondary 46E25, 20C20.
Keywords: 3-manifolds, rank, Heegaard genus, graph manifold.

481

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2007.231-2


482 JENNIFER SCHULTENS AND RICHARD WEIDMANN

We here show how the phenomenon observed in [Weidmann 2003] generalizes
and how it can occur multiple times within a single graph manifold. This yields
graph manifolds where the difference between the algebraic and the geometric rank
is arbitrarily high.

We wish to thank the referee for an insightful reading of our manuscript and for
numerous helpful comments.

2. Formulation of the main results

Let M be a closed graph manifold. We will always assume that M comes equipped
with its characteristic tori T=TM and a fixed Seifert fibration on every component
of M −T. Recall that the Seifert fibrations are unique up to isotopy except for
components homeomorphic to Q, the Seifert space with base orbifold the disk
with two cone points of order 2. The space Q can also be fibered as the orientable
circle bundle over the Möbius band. We will refer to the components of M −T

as the Seifert pieces of M . The Seifert pieces of M are up to isotopy precisely the
maximal Seifert submanifolds of M . We will mostly work with totally orientable
graph manifolds, that is, orientable graph manifolds whose Seifert pieces have
orientable base orbifold. This makes the Seifert fibrations unique up to isotopy on
all Seifert pieces.

Let N be a Seifert piece of M . Denote the fiber of N by f . Let T1, . . . , Tn be
the boundary components of N and let γi ⊂ Ti be the curve corresponding to the
fiber of that Seifert piece L i which is reached by travelling from N transversely
through Ti . Note that we possibly have N = L i . The maximality of the Seifert
piece N guarantees that for all i the intersection number of f with γi does not
vanish.

We then define N̂ to be the manifold N (γ1, . . . , γn) obtained from N by per-
forming a Dehn filling with slope γi at each boundary component Ti . It is clear
that the Seifert fibration of N can be extended to a Seifert fibration of N̂ as f has
nontrivial intersection number with all γi .

In the following we will denote the base orbifold of a Seifert piece N by O(N ).
We will denote an orbifold by its topological type with a list of the orders of cone
points, where∞ stands for a boundary component. We will denote the disc by D,
the sphere by S2, the annulus by A, the orientable surface of genus g, for g > 0,
by Fg and the projective plane by P2.

Theorem 1. Let M be a closed graph manifold consisting of two Seifert pieces N1

and N2 glued along T , where O(N1)= Fg(r,∞), O(N2)= D(p, q) with (p, q)= 1
and min(p, q) ≤ 2g+ 1 such that the intersection number of the fibers of N1 and
N2 equals 1.
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Then π1(M) is generated by 2g+ 1 elements. Furthermore if M admits a Hee-
gaard splitting of genus 2g+ 1 then one of the following holds:

(1) N2 is the exterior of a s-bridge knot with s ≤ 2g + 1 and the fiber of N1 is
identified with the meridian of N2, that is, N̂2 = S3.

(2) N̂1 admits a horizontal Heegaard splitting of genus 2g.

(Conversely, M has a Heegaard splitting of genus 2g + 1 if (1) or (2) is satis-
fied. This splitting is vertical in N1 and pseudohorizontal in N2 in case (1) and
pseudohorizontal in N1 and vertical in N2 in case (2). This follows from the proof
of Theorem 1.)

1 q 5
q 9

q 4

Figure 1. A graph manifold with 5-generated fundamental group.

We will further see that all manifolds of this type admit a Heegaard splitting
of genus 2g+ 2. Furthermore, most of these manifolds do not admit a Heegaard
splitting of genus 2g+ 1 as for any given pair of such manifolds N1 and N2 there
are at most three gluing maps that yield a graph manifold of genus 2g+1. It is also
possible to show that π1(M) cannot be generated by less than 2g+1 elements, but
the argument is complicated.

A careful analysis of these examples shows that the phenomenon is of a local
nature, it can therefore be reproduced multiple times within a graph manifold with
a more complex underlying graph. Hence:

Theorem 2. For any n ∈ N there exists a graph manifold Mn with 3n-generated
fundamental group that has Heegaard genus at least 4n.

This paper is organized as follows. In Section 3 we review the structure theorem
for Heegaard splittings of totally orientable graph manifolds as proven in [Schul-
tens 2004]. Then we study in more detail how Heegaard surfaces can intersect the
Seifert pieces that are the building blocks of our examples. In Sections 5 and 6 we
give the proofs of Theorems 1 and 2. We conclude by describing a class orientable
Seifert manifolds with 2n-generated fundamental group which we believe to be of
Heegaard genus 3n. However, these manifolds are not totally orientable.



484 JENNIFER SCHULTENS AND RICHARD WEIDMANN

3. Heegaard splittings of totally orientable graph manifolds

A graph manifold M is totally orientable if M is orientable and every Seifert piece
N of M fibers over an orientable base space. In [Schultens 2004] it is shown that
the Heegaard splittings of totally orientable graph manifolds have a structure that
can be completely described. To do so, one considers a decomposition of M into
edge manifolds and vertex manifolds. The edge manifolds are the submanifolds
of the form T × I , where T is one of the characteristic tori, T, of M . The vertex
manifolds are the components of the complement of the edge manifolds. Note that
each vertex manifold is homeomorphic to a component of M −T.

Heegaard splittings themselves are rather unwieldy. Instead we work with the
surfaces arising in what is called a “strongly irreducible untelescoping” of a Hee-
gaard splitting. We use the terms pseudohorizontal, horizontal, pseudovertical and
vertical to describe the possible structure for the restriction of such a surface to
the vertex manifolds. The restriction of such a surface to the edge manifolds takes
three possible forms. It too plays a nontrivial role in the structure of the Heegaard
splitting of a graph manifold.

A two-sided surface F in a 3-manifold M is said to be weakly reducible if there
are disjoint essential curves a, b in F that bound disks Da, Db whose interior is
disjoint from F and such that near their boundary Da, Db lie on opposite sides of
F . A two-sided surface F in a 3-manifold M is said to be strongly irreducible if it
is not weakly reducible.

Heegaard splittings correspond to handle decompositions. Given a 3-manifold
M and a decomposition M = V ∪S W into two handlebodies, one handlebody, say
V , provides the 0-handles and 1-handles and the other, W , provides the 2-handles
and 3-handles. Without loss of generality, there is only one 0-handle and one 3-
handle. Corresponding to M = V ∪S W we then have a handle decomposition in
which all 1-handles are attached before any of the 2-handles. An untelescoping of
a Heegaard splitting is a rearrangement of the order in which the 1-handles and
2-handles are attached. In the handle decomposition obtained we first attach the
0-handle, then some 1-handles, then some 2-handles, then some 1-handles, then
some 2-handles, etc and finally, the 3-handle. We specify an untelescoping by a
collection of surfaces S1, F1, S2, F2, . . . , Fn−1, Sn . These surfaces are obtained as
follows: S1 is the boundary of the submanifold of M obtained by attaching the 0-
handle and the first batch of 1-handles. F1 is the boundary of the submanifold of M
obtained by attaching the 0-handle, the first batch of 1-handles and the first batch of
2-handles. S2 is the boundary of the submanifold of M obtained by attaching the 0-
handle, the first batch of 1-handles, the first batch of 2-handles and the second batch
of 1-handles. F2 is the boundary of the submanifold of M obtained by attaching
the 0-handle, the first batch of 1-handles, the first batch of 2-handles, the second
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batch of 1-handles and the second batch of 2-handles, and so on. An untelescoping
S1, F1, S2, F2, . . . , Sn is said to be strongly irreducible if each Si is a strongly
irreducible surface in M and each Fi is an incompressible surface in M . Note that
a Heegaard splitting can be considered a trivial untelescoping S. If it is strongly
irreducible, then it is its own strongly irreducible untelescoping.

For the discussion here it will be useful to note that each of the Si and each of the
Fi is separating, and that each pair Si , Fi cobound a submanifold homeomorphic to
Si×I with 2-handles attached to Si×{1}. In particular, χ(Si )<χ(Fi ). Similarly for
Fi and Si+1. The following theorem summarizes the discussion in [Scharlemann
and Thompson 1994], [Scharlemann 2002] and [Scharlemann and Schultens 1999,
Lemma 2].

Theorem 3. Let M be a 3-manifold and M = V ∪S W a Heegaard splitting.
Then M = V ∪S W has a strongly irreducible untelescoping S1, F1, S2, F2, . . . , Sn .
Furthermore,

−χ(S)=
n∑

i=1

(
χ(Fi−1)−χ(Si )

)
.

A surface in a Seifert fibered space is horizontal if it is everywhere transverse
to the fibration. It is pseudohorizontal if it is horizontal away from a fiber e and
intersects a regular neighborhood N (e) of e in an annulus that is a bicollar of e.
(In [Moriah and Schultens 1998] the Heegaard splittings of a Seifert fibered space
with pseudohorizontal splitting surface are called horizontal Heegaard splittings.)

Let F be a surface in a 3-manifold M and α an arc with interior in M\F and
endpoints on F . Let C(α) be a collar of α in M . The boundary of C(α) consists
of an annulus A together with two disks D1, D2, which we may assume to lie in
F . We call the process of replacing F by (F\(D1∪ D2))∪ A performing ambient
1-surgery on F along α.

A surface S in a Seifert fibered space is vertical if it consists of regular fibers.
It is pseudovertical if there is a vertical surface V and a collection of arcs 0 with
interior disjoint from V that projects to an embedded collection of arcs such that
S is obtained from V by ambient 1-surgery along 0.

The definition of a standard Heegaard splitting for a graph manifold is rather
lengthy. Let M be a graph manifold. A strongly irreducible untelescoping S1, F1,

S2, F2, . . . , Sn of a Heegaard splitting M = V ∪S W is standard if it is as follows:

(1) Each Fi intersects each vertex manifold either in a horizontal or in a vertical
surface (or ∅).

(2) Each Fi is either a torus entirely contained in an edge manifold or intersects
an edge manifold in spanning annuli (or ∅);

(3) Each Si intersects each vertex manifold in either a horizontal, pseudohori-
zontal, vertical or pseudovertical surface (or ∅).
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(4)
⋃

i Si intersects each edge manifold Me = (torus) × [0, 1] in one of three
possible ways:

(⋃
i Si
)
∩ Me consists of incompressible annuli; or Si ∩ Me

can be obtained from a collection of incompressible annuli by ambient 1-
surgery along an arc that is isotopic to an embedded arc in the boundary of
the edge manifold; or there is a pair of simple closed curves c, c′ ⊂ (torus)
such that c ∩ c′ consists of a single point p and Si ∩Me is the portion of the
boundary of a collar of c×{0}∪ p×[0, 1]∪c′×{1} that lies in the interior of
Me. Furthermore, each edge manifold must be met by at least one of the Si .

Recall that for each i , Fi and Si are separating. Thus if Fi or Si intersects an
edge manifold Me in spanning annuli, then it must do so in an even number of
spanning annuli. It is a nontrivial fact that if S1, F1, S2, F2, . . . , Sn meets Me in
spanning annuli, then between any two components of Fi ∩ Me there must be at
least two components of either Si ∩Me or Si+1 ∩Me. (This follows, for instance,
by the argument used in the proof of Lemma 12.)

The Heegaard splitting M = V ∪S W is standard if every strongly irreducible
untelescoping S1, F1, S2, F2, . . . , Sn of M = V ∪S W , the union

⋃
i Fi ∪

⋃
i Si can

be isotoped to be standard.
We recall the main theorem in [Schultens 2004], some of whose many conse-

quences we will need.

Theorem 4. Let M = V ∪S W be an irreducible Heegaard splitting of a totally
orientable graph manifold. Then M = V ∪S W is standard.

We assume that M is a totally orientable graph manifold, M = V ∪S W a Hee-
gaard splitting and S1, F1, . . . , Fn−1, Sn a strongly irreducible untelescoping of
M = V ∪S W that is standard. Then:

Fact 1. For N a vertex or edge manifold of M ,∑
i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥ 0.

Fact 2. Suppose e is an edge that abuts v. And suppose Ne, Nv, respectively,
are the edge and vertex manifolds corresponding to e, v, respectively. Further
suppose that

(⋃
i Fi ∪

⋃
i Si
)
∩Nv is vertical and pseudovertical and a component

S̃ of
(⋃

i Si
)
∩ Ne is as in c). Then any annuli in

(⋃
i Fi ∪

⋃
i Si
)
∩ Ne that

are parallel into ∂Nv can be isotoped to lie entirely in Nv. After this isotopy,(⋃
i Fi ∪

⋃
i Si
)
∩ Nv is still vertical and pseudovertical.

Fact 3. Suppose e is an edge that abuts v. And suppose Ne, Nv, respectively, are
the edge and vertex manifolds corresponding to e, v, respectively. Further suppose
that

(⋃
i Fi ∪

⋃
i Si
)
∩ Nv is horizontal or pseudohorizontal. Then

(⋃
i Fi

)
∩ Ne

does not contain a torus.
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Fact 4. Suppose Nv is a vertex manifold and that a component S̃ of
(⋃

i Si
)
∩ Nv

is pseudohorizontal. Then
(⋃

i Fi ∪
⋃

i Si
)
∩ Nv = S̃.

In the proof of the main theorem in [Schultens 2004] the strongly irreducible
generalized Heegaard splitting S1, F1, S2, F2, . . . , Sn is isotoped to be standard.
The first step in doing so involves isotoping

⋃
i Fi so that it intersects the bound-

aries of the edge manifolds in essential curves. After that,
⋃

i Fi remains fixed. We
may assume without loss of generality that the number of components of this inter-
section is minimal. We will always assume that this is the case. As an immediate
consequence we obtain our final fact:

Fact 5. Suppose Ne is an edge manifold. Then each annulus cut out by the inter-
section

(⋃
i Fi

)
∩∂Ne is essential in the compression body in which it is contained.

Lemma 5. Let M be a graph manifold, N a Seifert piece and S1, F1, S2, F2, . . . , Sn

a strongly irreducible untelescoping of a Heegaard splitting such that for some i
Si ∩N is pseudohorizontal. Let f be the fiber contained in Si ∩N. Then (Si ∩N )−
η( f ), for η( f ) a small regular neighborhood of f , is disconnected.

Proof. Consider (Si ∩ N ) − η( f ) in N − η( f ). Since Si is separating in M ,
(Si ∩ N )− η( f ) is separating in N − η( f ). On the other hand, (Si ∩ N )− η( f )
is horizontal. A connected horizontal surface is not separating. It follows that
(Si ∩ N )− η( f ) must have an even number of components, in this case at least
two. Hence it is disconnected. �

Suppose that M is a closed totally orientable graph manifold and that S1, F1, S2,

F2, . . . , Sn is a strongly irreducible untelescoping of a Heegaard splitting M =
V ∪S W . Suppose further that S1, F1, S2, F2, . . . , Sn has been isotoped to be stan-
dard. This implies in particular that for any vertex manifold N ,

(⋃
i Fi ∪

⋃
i Si
)

meets ∂N in parallel simple closed curves. Thus to any vertex manifold N of M
we associate the manifold NS , which is the manifold obtained from N by per-
forming a Dehn fillings at each components B of ∂N that meets

(⋃
i Fi ∪

⋃
i Si
)

along a slope represented by the curves
(⋃

i Fi ∪
⋃

i Si
)
∩ B. Here NS is not

canonical. It depends on a specific (not necessarily unique) positioning of an (not
necessarily unique) untelescoping. But we merely introduce this notation to dis-
cuss consequences of the existence of certain setups. NS is a Seifert manifold if
N contains a horizontal or pseudohorizontal component of

(⋃
i Fi ∪

⋃
i Si
)
∩ N ,

as
(⋃

i Fi ∪
⋃

i Si
)
∩ ∂N then consist of curves that have nontrivial intersection

number with the fibre of N .

Lemma 6. Suppose that for some i , Si ∩ N is pseudohorizontal. Then the Seifert
manifold NS has a Heegaard surface S′ such that S′ ∩ N = Si ∩ N. The corre-
sponding Heegaard splitting is a horizontal Heegaard splitting of NS . If Si ∩ N is
planar then S′ is homeomorphic to S2.
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Proof. Recall Fact 4 above: it tells us that if Si ∩ N is pseudohorizontal, then(⋃
i Fi ∪

⋃
i Si
)
∩ N consists of a single component which we denote by S̃.

We may extend S̃ to a Heegaard surface of NS by gluing meridional discs of the
glued in solid tori to the boundary components of S̃. The corresponding Heegaard
splitting for NS is horizontal. If S̃ is planar then all boundary components get
capped off which results in S2. The assertion follows. �

4. Some lemmata

The lemmata in this section will enable us to compute the Heegaard genus of
certain graph manifolds in the next section. We start by discussing the possible
pseudohorizontal surfaces in the relevant Seifert manifolds. Some proofs rely on
the theory of 2-dimensional orbifolds and their covering theory as discussed in
[Scott 1983]. These lemmata will be used in our discussion of Heegaard splittings
and their untelescopings. But many of these results are more general. We do not
necessarily require S to be the splitting surface of a Heegaard splitting or to be
a surface in an untelescoping. Lemma 14 concerns vertical and pseudovertical
surfaces.

Lemma 7. Let M be a graph manifold and N be a Seifert piece with O(N ) =
D(p, q) and (p, q)= 1. If S∩N is a planar surface that is pseudohorizontal, then

(1) NS is homeomorphic to S3 and

(2) S ∩ ∂N contains exactly 2p or 2q components.

Note that NS being homeomorphic to S3 is equivalent to N being the exterior
of an r -bridge knot with meridian µ parallel to ∂N ∩ S, where r =min(p, q).

Proof. Possibly after exchanging p and q we can assume that S is horizontal in the
space N̄ obtained from N after removing a regular neighborhood of the exceptional
fiber corresponding to the cone point of order q or by removing a neighborhood of
a regular fiber. Clearly N̄ is a Seifert space with O(N̄ )= A(p) or O(N̄ )= A(p, q).
Let T1 be the boundary component of N̄ that bounds the drilled out solid torus and
T2 be the boundary of N . Let S̄ be a component of S ∩ N̄ . Clearly S̄ is planar as
it is a subsurface of a planar surface.

Since we assume that S is pseudohorizontal in N , it follows that S̄∩T1 consists
of a single loop α. Let γ be one component of S̄ ∩ T2 and let g be an element of
π1(N̄ ) corresponding to γ . Recall that all other components of S̄ ∩ T2 are parallel
to γ . Let n be the intersection number of γ with the fiber.

Since S̄ is horizontal in N̄ , there exists a finite sheeted orbifold covering π :
S̄→ O(N̄ ), in particular π∗(π1(S̄)) is of finite index in π1(O(N̄ )). We distinguish
the cases O(N̄ )= A(p) and O(N̄ )= A(p, q).
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Case 1: O(N̄ ) = A(p). We have π1(A(p)) = 〈x, y|x p
〉, where the generator y

corresponds to the boundary curve corresponding to T2. This implies in particular
that π∗(g) is conjugate to yn .

Since S̄ is planar this implies that π1(S̄) is generated by homotopy classes that
correspond to the components of S̄ ∩ T2; that is, π∗(π1(S̄)) is generated by conju-
gates of the element yn . Let N (yn) be the normal closure of y in π1(A(p)). Clearly
π1(A(p))/N (yn)∼=Zn ∗Zp is infinite unless n= 1. Since π∗(π1(S̄))⊂ N (yn), this
implies that n = 1 as otherwise π∗(π1(S̄)) is contained in a subgroup of infinite
index in π1(A(p)) and is therefore of infinite index itself. Thus we can assume
that n = 1 and that π∗(π1(S̄))⊂ N (y).

The orbifold covering space S̃ corresponding to N (y) is an orbifold without
cone points and is homeomorphic to the (p + 1)-punctured sphere. Denote the
corresponding covering map by π̃ .

p̃ 4-��������
����

����
����q

Figure 2. The 4-sheeted covering of A(4) by a 5-punctured sphere.

Since π∗(π1(S̄))⊂ N (y), it follows that there exists a covering π ′ : S̄→ S̃ such
that π = π̃ ◦π ′.

Claim. π ′ is a homeomorphism.

As for both S̄ and S̃, all but one boundary component map onto a curve corre-
sponding to the element y it follows that π ′ is a homeomorphism when restricted
to any of these boundary components. In particular π ′ extends to a covering
π ′# : S̄#→ S̃#, where S̄# and S̃# are the spaces obtained from S̄ and S̃ by gluing discs
to these boundary components. Since S̄# and S̃# are discs, the map thus obtained
is a homeomorphism. Thus the original π ′ was a homeomorphism, which proves
the claim.

The second assertion is now immediate, because S ∩ N̄ is obtained from two
copies of S̄ by identifying two boundary components. All resulting boundary
components lie in T2. The first assertion follows from Lemma 6.

Case 2: O(N̄ ) = A(p, q). We have π1(A(p, q)) = 〈x, y, z | y p, zq
〉, where the

generator x corresponds to the boundary curve corresponding to T2. We see as
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in the first case that π∗(O(N̄ )) lies in the kernel of the map φ : π1(A(p, q))→
π1(A(p, q))/N (xn). As π1(A(p, q))/N (yn)∼=Zn∗Zp∗Zq is infinite for all n ∈N,
this implies that π∗(O(N̄ )) is of infinite index in π1(A(p, q)), which contradicts
our assumption. �

Lemma 8. Let M be a graph manifold and let N be a Seifert piece with O(N ) =
Fg(p,∞) or O(N ) = Fg(p,∞,∞). Suppose that S ∩ N is pseudohorizontal and
χ(S ∩ N ) >−8g or χ(S ∩ N ) >−8g− 4, respectively.

(1) S ∩ T has two components for every component T of ∂N.

(2) S ∩ N extends to the splitting surface of a horizontal Heegaard surface of
genus 2g of NS .

Proof. We only deal with the case O(N )= Fg(p,∞) the other case is analogous.
Suppose that S ∩ N is pseudohorizontal with respect to the exceptional fiber or

a regular fiber and let N̄ be the space obtained by drilling out the neighborhood
of this fiber. Let S̄ be a component of N̄ ∩ S. Recall that S ∩ N is obtained from
two copies of S̄ by identifying them along a boundary component. In particular
we have that χ(S ∩ N )= 2χ(S̄).

Now S̄ is a finite sheeted covering of O(N̄ ), where O(N̄ )= Fg(∞,∞) or O(N̄ )=
Fg(p,∞,∞) depending on what kind of fiber was drilled out. Suppose that the
covering is n-sheeted. In the case O(N̄ ) = Fg(p,∞,∞), we must have n ≥ p;
otherwise the covering space must be a orbifold with singularities. Thus we have

χ(S ∩ N )= 2χ(S̄)= 2nχ(O(N̄ )).

Since χ(O(N̄ ))=−2g or χ(O(N̄ ))=−2g−1+1/p, it follows immediately from
the hypothesis on the Euler characteristic that n= 1. Thus O(N̄ )= Fg(∞,∞): the
exceptional fiber was drilled out. Assertion (1) is now immediate and (2) follows
from the proof of Lemma 6. �

It will be important that many Seifert manifolds do not admit a pseudohorizontal
surface of small genus indiscriminately of what graph manifold they belong to.

Lemma 9. Let N be a Seifert manifold with O(N ) = Fg(p,∞) such that the
exceptional fiber has invariant (α, β) with 1≤ β < α.

(1) If α = 2, there exist two slopes γ on ∂N such that N (γ ) admits a horizontal
Heegaard splitting of genus 2g.

(2) If α 6= 2 and β ∈ {1, α − 1}, there exists one slope γ on ∂N such that N (γ )
admits a horizontal Heegaard splitting of genus 2g.

(3) In all other cases N (γ ) has no Heegaard splitting of genus 2g if γ 6= f .
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Proof. If γ is the fiber then N (γ ) is not a Seifert manifold. In particular N (γ )
admits no horizontal Heegaard splitting as those are only defined for Seifert mani-
folds. If the intersection number m of γ with the fiber is greater than 1 then M(γ )
is a Seifert space with base orbifold Fg(p,m) which has no Heegaard splitting of
genus 2g by [Boileau and Zieschang 1984, Proposition 1.4(i)]. Suppose now that
m= 1. Let e∈Z be the Euler class of the Seifert space. By [Boileau and Zieschang
1984, Proposition 1.4(iii)] it follows that N (γ ) admits no Heegaard splitting of
genus 2g unless β−eα=±1. It is clear that there exists two values for e such that
the equation holds if β= 1 and α= 2, that there exists one solution if β ∈ {1, α−1}
and none otherwise. The corresponding Heegaard splittings are constructed in
[Boileau and Zieschang 1984, Section 1.10]. This proves the assertion. �

Lemma 10. Let N be a Seifert manifold with O(N ) = D(p, q) and (p, q) = 1.
Then N contains no compact planar horizontal surface.

Proof. Suppose that S is a compact planar horizontal surface in N . Then there
exists a finite sheeted orbifold covering p : S→ D(p, q). Since all components
of ∂S are parallel on ∂N , there exists a number n ∈ N such the restriction of p
to any component of ∂S is a n-sheeted covering. This implies that we can extend
p to a orbifold covering p : S2

→ S2(p, q, n) by gluing a disc to any component
of ∂S and a disc with a cone point of order n to D(p, q). If n = 1 this yields a
contradiction as S2(p, q, 1)= S2(p, q) is a bad orbifold which admits no covering
by a manifold. If n 6=1, then S2(p, q, n)must be a spherical orbifold with universal
cover the sphere. Moreover, NS is a Seifert manifold with O(NS)= S(p, q, n). As
such it is irreducible. This yields a contradiction, as S⊂ N extends to a horizontal,
hence incompressible, sphere in NS . �

Lemma 11. Let M be a graph manifold and let N be a Seifert piece with O(N ) =
Fg(p,∞) or O(N )= Fg(p,∞,∞). If S∩N is horizontal, then χ(S∩N )≤−4g+1
or χ(S ∩ N )≤−4g− p+ 1, respectively.

Proof. Suppose that S is a horizontal incompressible surface in N that covers
regular points of Fg(p,∞) k times. Here k ≥ p ≥ 2. By the Riemann–Hurwitz
formula, χ(S) = k

(
− 2g + 1

p

)
≤ p

(
− 2g + 1

p

)
= −2pg + 1 ≤ −4g + 1 or

χ(S) = k
(
−2g − 1+ 1

p

)
≤ p

(
−2g − 1+ 1

p

)
= −2pg − p + 1 ≤ −4g − p + 1,

respectively. �

Lemma 12. Let M be a graph manifold and let N be a Seifert piece with O(N ) =
Fg(p,∞) or O(N )= Fg(p,∞,∞). Let M = V ∪S W be a Heegaard splitting and
S1, F1, . . . , Fn−1, Sn an untelescoping. If S1, F1, . . . , Fn−1, Sn meets N in such a
way that Fi ∩ N and Si ∩ N are horizontal for each i , then∑

i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥

{
8g− 2 if O(N )= Fg(p,∞),

8g+ 2p− 2 if O(N )= Fg(p,∞,∞).
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Proof. The surfaces S1∩N , F1∩N , . . . , Fn−1∩N , Sn∩N are disjoint and horizon-
tal, hence they must be parallel. Let B be one of the components of ∂N . Consider
the collection of torus knots S1∩B, F1∩B, . . . , Fn−1∩B, Sn∩B. Let γ be a torus
knot on B that intersects each of the components in this collection of torus knots
exactly once.

Now note that the untelescoping of the Heegaard splitting induces a Morse func-
tion of M and hence on B. If we assume that γ has as few critical points as possible,
then near a maximum, γ meets two adjacent components of Fi or Si for some i .
If it meets two adjacent components of Fi , then the annulus cut out of B by these
two components of Fi is inessential. But this contradicts Fact 5. Hence it meets
two adjacent components of Si . The same is true near a minimum of γ . Finally, if⋃

i Fi meets N , then there are distinct adjacent components, as one such pair must
lie above

(⋃
i Fi

)
∩B and another below

(⋃
i Fi

)
∩B. Hence there are at least two

more components of
(⋃

i Si
)
∩ N than of

(⋃
i Fi

)
∩ N . The lemma then follows

from Lemma 11. �

Lemma 13. Let N be a Seifert manifold with O(N )= D(p, q) with (p, q)= 1 and
S be a properly embedded surface.

(1) If S∩N is horizontal, then there is an l ≥ 1 such that |S∩N | = l, χ(S∩N )=
lpq (−1+ 1

p +
1
q ) and genus(S ∩ N )≥ 1.

(2) If S∩N is pseudohorizontal, then χ(S∩N )≤−2 min(p, q)+2. Furthermore,
either S ∩ N is as in Lemma 7, or genus(S ∩ N )≥ 2.

Proof. (1) Clearly S ∩ N is a finite sheeted cover of D(p, q). The degree of this
covering must be a positive multiple of pq , say lpq . It is clear that S ∩ N has
l components. The second assertion follows from the Riemann–Hurwitz formula
as χ(D(p, q)) = −1 + 1

q +
1
q . The last assertion holds as by Lemma 10, S is

nonplanar, so genus(S ∩ N )≥ 1.

(2) Suppose first that S ∩ N is pseudohorizontal with respect to the fiber e. Let
N ′ = N − η(e) and S′ be a component of S ∩ N ′. Recall that S′ is horizontal by
the definition of a pseudohorizonal surface.

If e is a regular fiber then S′ must cover A(p, q) at least pq times, that is, we
have χ(S′) ≤ pq(−2+ 1

p +
1
q ) = −2pq + p+ q and therefore χ(S) = 2χ(S′) ≤

−4pq + 2p+ 2q ≤ −2 min(p, q)+ 2. The remaining assertion follows from the
proof of Lemma 7 which implies that S′ cannot be planar.

Thus we can assume that e is an exceptional fiber. Suppose that e is the ex-
ceptional fiber of index q and let N ′ = N − η(e). Suppose that H ′ is a horizontal
incompressible surface in N ′ that covers regular points k times. Clearly k≥ p. Then
χ(H ′) = k

(
−1+ 1

p

)
≤ p

(
−1+ 1

p

)
= −p+ 1. Thus if S ∩ N is pseudohorizontal
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with respect to e, then

χ(S ∩ N )≤ 2χ(H ′)≤−2p+ 2≤−2 min(p, q)+ 2.

An analogous argument establishes this inequality in the case that e is the excep-
tional fiber of index p; the last comment follows immediately from Lemma 7. �

Lemma 14. Let M be a graph manifold and let N be a vertex manifold. Let
M = V ∪S W be a Heegaard splitting and S1, F1, . . . , Fn−1, Sn an untelescoping.
Suppose that Fi ∩ N is vertical for each i and Si ∩ N is vertical or pseudovertical
for each i . Then∑

i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥−2χ(H)+ 2s+

∑
i

(
|Fi−1 ∩ ∂N | − |Si ∩ ∂N |

)
,

where H is the underlying surface of O(N ) and s the number of exceptional fiberes.
Moreover, if If O(N )= Fg(p,∞) and

(⋃
i Si
)
∩ ∂N 6=∅, then∑

i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥ 4g+ 2+

∑
i

(
|Fi−1 ∩ ∂N | − |Si ∩ ∂N |

)
.

If O(N ) = Fg(p,∞,∞), denote the components of ∂N by ∂N1 and ∂N2. If(⋃
i Si
)
∩ ∂N j 6=∅ for j = 1, 2, then∑

i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥ 4g+ 4+

∑
i

(
|Fi−1 ∩ ∂N | − |Si ∩ ∂N |

)
.

Proof. We denote O(N ) by F so long as we need not distinguish between the cases.
Since Fi∩N is vertical, Fi∩N consists of saturated annuli and tori. Since Si∩N is
vertical or pseudovertical, Si∩N is obtained from saturated annuli Ai

1, . . . , Ai
ni

and
tori T i

1 , . . . , T i
ki

(some of them parallel to components of Fi−1∩N ) by performing
ambient 1-surgery along arcs β i

1, . . . , β
i
mi

that project to disjoint imbedded arcs
bi

1, . . . , bi
mi

disjoint from the projection of Ai
1, . . . , Ai

ni
and T i

1 , . . . , T i
ki

except at
their endpoints.

For the purposes of the computation in this lemma, we may amalgamate(⋃
i Fi ∪

⋃
i Si
)
∩ N .

Though it may not be possible to amalgamate
⋃

i Fi ∪
⋃

i Si without destroying
its simultaneous structure on all vertex and edge manifolds, it is possible to per-
form an amalgamation without destroying the structure in a given vertex manifold.
Said differently, a partial amalgamation in a given vertex manifold extends to a
partial amalgamation in the graph manifold (though nothing can be said, for in-
stance, about the structure of the resulting non strongly irreducible untelescoping
of M = V ∪S W in edge manifolds adjacent to the given vertex manifold). Here the
result of such an amalagamation with respect to N is a surface S̃ such that S̃ ∩ N
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is pseudovertical. (For details on amalgamation involving vertical and pseudover-
tical surfaces see [Schultens 1993, Proposition 2.10], though note the difference in
terminology.)

Since S̃ ∩ N is pseudovertical, it is obtained from saturated annuli A1, . . . , Añ

and tori T1, . . . , Tk̃ by performing ambient 1-surgery along arcs β1, . . . , βm̃ that
project to disjoint imbedded arcs b1, . . . , bm̃ . These arcs are disjoint from the
projections a1, . . . , añ of A1, . . . , Añ and t1, . . . , tk̃ of T1, . . . , Tk̃ except at their
endpoints. Here each b j corresponds either to bi

l or to an arc dual to bi
l for some

l, i , and conversely. Furthermore,

−χ(S̃ ∩ N )= 2m̃ = 2
∑

i
mi =

∑
i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
and

|S̃ ∩ ∂N | = 2ñ =
∑

i

(
|Si ∩ ∂N | − |Fi−1 ∩ ∂N |

)
.

Recall that S̃ cuts a submanifold of M that contains N into two compression
bodies. Thus the (not necessarily connected) submanifolds into which S̃ ∩ N cuts
N can be analyzed from two perspectives: On the one hand, they result from cut-
ting compression bodies along incompressible annuli. Recall that incompressible
annuli are either essential or boundary parallel. Cutting a compression body along
a boundary parallel annulus merely cuts off a solid torus. Cutting a compression
body along an essential annulus yields either one or two compression bodies.

On the other hand, the submanifolds into which S̃ ∩ N cuts N contain Seifert
fibered submanifolds of N ; specifically, the Seifert fibered submanifolds of N
that project to the appropriate components of the complement of the graph 0 =(⋃

j a j
)
∪
(⋃

i ti
)
∪
(⋃

l bl
)
∪ ∂F in F . This is impossible unless the Seifert

fibered spaces in question are fibered over a disk with at most one cone point
(i.e., solid tori) or fibered over an annulus with no cone point. Each such solid
torus or (annulus)× S1 must meet S̃. Furthermore, exactly one of the boundary
components of any such (annulus)× S1 must lie in ∂N .

We denote the set of vertices of 0 by V0 and the set of edges by E0. We may
assume that each vertex of 0 is either of valence two or of valence three. Each
vertex on a circular component (corresponding either to a boundary component
without attached bi or to some ti without attached bi ) is of valence two and each
endpoint of an arc a j and each endpoint of an arc bl is a vertex of valence three.
Then #V0 = 2ñ + 2m̃ + k and #E0 = 3ñ + 3m̃ + k, where k is the number of
circular components of 0.

Denote the underlying surface of F by H . Now 0 induces a decomposition
of H into 0-cells, 1-cells, 2-cells and annuli. Denote the union of the 2-cells and
annuli by D0. Each such annulus must be cobounded by a component of ∂H . Let
l be the number of annuli.
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This implies that

χ(H)= #V0− (#E0)+ (#D0− l).

Combining these insights we obtain∑
i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
+
∑

i

(
|Si ∩ ∂N | − |Fi−1 ∩ ∂N |

)
= 2m̃+ 2ñ

=−4ñ− 4m̃+ 6ñ+ 6m̃− 2(#D0− l)+ 2(#D0− l)

=−2χ(H)+ 2(#D0− l).

Thus
∑

i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
is at least

−2χ(H)+ 2(#D0− l)+
∑

i

(
|Fi−1 ∩ ∂N | − |Si ∩ ∂N |

)
,

that is,∑
i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥−2χ(H)+ 2s+

∑
i

(
|Fi−1 ∩ ∂N | − |Si ∩ ∂N |

)
,

because every cone point must lie in a disk component. Now note that S̃ induces a
bicoloring on the components of the complement of 0 in F according to which side
of S̃ the Seifert fibered space that projects to that component lies. Thus #D0 ≥ 2.

In the cases F = Fg(p,∞) or F = Fg(p,∞,∞), #D0− l ≥ 1 because there
must be a disk containing the cone point. Furthermore, if l > 0, then the result of
cutting H along 0 yields annuli cobounded by boundary components of ∂H . This
is impossible if F = Fg(p,∞) and

(⋃
i Si
)
∩∂N 6=∅ or if F = Fg(p,∞,∞) and(⋃

i Si
)
∩ ∂N j 6=∅, for j = 1, 2, where N1 and N2 are the boundary components

of N . Thus the additional formulas hold. �

Lemma 15. Let M be a graph manifold and N a Seifert fibered submanifold with
O(N )=D(p, q). Let M=V∪S W be a Heegaard splitting and S1, F1, . . . , Fn−1, Sn

an untelescoping. If Fi ∩ N is vertical for each i and Si ∩ N is vertical or pseu-
dovertical for each i , then∑

i

(
χ(Fi−1 ∩ N )−χ(Si ∩ N )

)
≥ 2+

∑
i

(
|Fi−1 ∩ ∂N | − |Si ∩ ∂N |

)
.

Proof. This follows immediately from Lemma 14. �

5. The proof of Theorem 1

In order to give the proof of Theorem 1 we will first show that the fundamental
groups can in fact be generated by 2g+1 elements and then that only the manifolds
listed admit a Heegaard splitting of genus 2g+ 1.
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Lemma 16. The manifolds described in Theorem 1 have 2g+ 1-generated funda-
mental groups.

Proof. We first recall the presentations of the fundamental groups of N1 and N2:
π1(N1)= 〈a1, b1, . . . , ag, bg, s, t, f1 | R 〉, with

R = {[a1, f1], . . . , [ag, f1], [b1, f1], . . . , [bg, f1], [s, f1], [t, f1],

sr
= f β1 , [a1, b1] . . . [ag, bg]s t = f e

1 }

and π1(N2)= 〈x, y, f2 | [x, f2], [y, f2], x p
= f β1

2 , yq
= f β2

2 〉.

The manifold M is obtained from N1 and N2 by identifying their boundaries,
so it follows from van Kampen’s theorem that

π1(M)= π1(N1) ∗C π1(N2) with C ∼= Z2.

Note that f1 = xy f l
2 for some l ∈ Z as we assume that the intersection number

between f1 and f2 is 1. We will first establish a claim that is implicit in [Rost and
Zieschang 1987].

Claim. There exist n = min(p, q) conjugates of f1in π1(N2) that generate a sub-
group that maps surjectively onto the orbifold group π1(D(p, q)).

Proof. It suffices to show that n conjugates of xy generated the quotient group
π1(D(p, q))=〈x, y|x p, yq

〉. We can assume that n=q< p. The assertion then fol-
lows as we can choose the conjugates to be xy, yx= x−1(xy)x, . . . , x−n+2 yxn−1

=

x−(n−1)(xy)xn−1 which implies that their product (in the same order) is xynxn−1
=

xxn−1
= xn . As n and p are coprime it follows that 〈xn

〉 = 〈x〉 which implies that
x lies in the subgroup generated by the n conjugates, it follows that also y= x−1xy
lies in the subgroup, which proves the claim. �

In fact we need something stronger:

Claim. We can choose elements h1, . . . , hn−1 ∈ π1(N2) such that

U = 〈 f1, h1 f1h−1
1 , . . . , hn−1 f1h−1

n−1〉

maps surjectively onto the base group and that additionally hi ∈U for 1≤ i ≤n−1.

Proof. Choose ki such that 〈 f1, k1 f1k−1
1 , . . . , kn−1 f1k−1

n−1〉 maps surjectively. For
any ki choose hi ∈U and zi ∈Z such that ki = hi f zi

2 . Clearly such hi and zi exist as
we assume that U maps surjectively one π1(D(p, q)) and as the kernel is generated
by f2. Since f1 and f2 commute, we have ki f1k−1

i = hi f zi
2 f1 f −zi

2 h−1
i = hi f1h−1

i .
This implies that U = 〈 f1, h1 f1h−1

1 , . . . , hn−1 f1h−1
n−1〉, and the claim follows. �

Note that U is a subgroup of finite index in π1(N2) and that we can choose the
elements hi such that π1(N2)=U if and only if N2 is the exterior of a torus knot
with meridian f1. It is however always true that π1(N2)= 〈U,C〉 as f2 ∈ C .
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Note further that the subgroup 〈s, f1〉 of π1(N1) is generated by a single element
g0 which corresponds to the core of the solid torus corresponding to the exceptional
fiber of N1. It follows that gk

0 = f1 for some k ∈ Z. In order to prove the lemma
we describe elements g1, . . . , g2g ∈ π1(M) such that π1(M)= 〈g0, . . . , g2g〉.

Recall that by assumption n ≤ 2g+ 1. Put hi = 1 for n ≤ i ≤ 2g, and define

gi :=

{
hi ai for 1≤ i ≤ g,

hi bi−g for g+ 1≤ i ≤ 2g.

Claim. U ⊂ 〈g0, . . . , g2g〉.

Proof. It suffices to show that f1 and the elements hi f1h−1
i lie in 〈g0, . . . , g2g〉

for 1 ≤ i ≤ 2g. Clearly f1 ∈ 〈g0, . . . , g2g〉 as f1 = gk
0 . Furthermore hi f1h−1

i ∈

〈g0, . . . , g2g〉 for 1 ≤ i ≤ g as gi gk
0 g−1

i = hi ai f1a−1
i h−1

i = hi f1h−1
i . The same

argument shows that gi gk
0 g−1

i = hi f1h−1
i for g+1≤ i ≤ 2g, proving the claim. �

Since hi ∈ U for 1 ≤ i ≤ 2g, this implies that hi ∈ 〈g0, . . . , g2g〉 for 1 ≤ i ≤
2g and therefore h−1

i gi ∈ 〈g0, . . . , g2g〉 for 1 ≤ i ≤ 2g. Since h−1
i gi = ai for

1 ≤ i ≤ g and h−1
i gi = bi−g for g+ 1 ≤ i ≤ 2g, it follows that all ai and bi lie in

〈g0, . . . , g2g〉. Furthermore both f1 and s are powers of g0 and lie in 〈g0, . . . , g2g〉.
The last generator t can be written as a product in the remaining generators by the
last relation. Thus all generators of π1(N1) lie in 〈g0, . . . , g2g〉 which shows that
π1(N1)⊂ 〈g0, . . . , g2g〉. Thus C ⊂ 〈g0, . . . , g2g〉 and therefore π1(N2)= 〈U,C〉 ⊂
〈g0, . . . , g2g〉. This shows that π1(M)= 〈g0, . . . , g2g〉, proving Lemma 16. �

Lemma 17. Let M be a manifold as described in Theorem 1 and let M = V ∪S W
be a Heegaard splitting. Then one of the following holds:

(1) S ∩ N1 is vertical, S ∩ N2 is planar and pseudohorizontal with respect to the
exceptional fiber e of index p and q ≤ 2g+ 1.

(2) S ∩ N1 is as in Lemma 8, S ∩ N2 consists of a single annulus and genus S =
2g+ 1.

(3) genus S ≥ 2g+ 2.

Proof. Let M be a manifold as described in Theorem 1 and let M = V ∪S W be a
Heegaard splitting. Furthermore, let S1, F1, . . . , Fn−1, Sn be a strongly irreducible
untelescoping of M = V ∪S W that is standard.

Case 1:
(⋃

i Fi ∪
⋃

i Si
)
∩ N1 and

(⋃
i Fi ∪

⋃
i Si
)
∩ N2 are vertical or pseu-

dovertical. If
(⋃

i Fi ∪
⋃

i Si
)

meets the edge manifold Ne between N1 and N2 in
annuli including spanning annuli, then M must be a Seifert fibered space. But this
contradicts our assumption that the fibers of N1 and N2 have intersection number 1.

If
⋃

i Fi meets the edge manifold Ne in a torus, then we may assume that
⋃

i Si

is disjoint from Ne. (Annuli that are boundary parallel in Ne can be isotoped into
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the vertex manifolds.) Then Lemma 14 tells us that∑
i

(
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)

)
≥ 4g+ 2+

∑
i

(
|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|

)
≥ 4g

and Lemma 15 tells us that∑
i

(
χ(Fi−1 ∩ N2)−χ(Si ∩ N2)

)
≥ 2+

∑
i

(
|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|

)
= 2;

hence by Theorem 3, 2 genus S− 2=−χ(S)≥ 4g+ 2; thus genus S ≥ 2g+ 2.
Otherwise

(⋃
i Fi

)
∪
(⋃

i Si
)

meets the edge manifold between N1 and N2 in
boundary parallel annuli and one component of Euler characteristic −2 contained
in
(⋃

i Si
)
∩ Ne. Any boundary parallel annuli in

(⋃
i Fi ∪

⋃
i Si
)
∩ Ne can be

isotoped into N1 or N2. It then follows from Lemmas 14 and 15 that∑
i

(
χ(Fi−1)−χ(Si )

)
=
∑

i

((
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)

)
+
∑

i

(
χ(Fi−1 ∩ N2)−χ(Si ∩ N2)

)
+
∑

i

(
χ(Fi−1 ∩ Ne)−χ(Si ∩ Ne)

)
≥ (4g+ 2− 2)+ (2− 2)+ 2= 4g+ 2.

Hence, by Theorem 3, 2 genus S−2=−χ(S)≥ 4g+2, whence genus S ≥ 2g+2.

Case 2:
(⋃

i Fi ∪
⋃

i Si
)
∩N1 is horizontal. Recall Fact 1 following Theorem 4. It

tells us that
∑

i

(
χ(Fi−1∩N )−χ(Si ∩N )

)
≥ 0 for any vertex or edge manifold N .

It follows that∑
i

(
χ(Fi−1)−χ(Si )

)
≥
∑

i

(
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)

)
.

By Lemma 12,
∑

i

(
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)

)
≥ 8g− 2, so∑

i

(
χ(Fi−1)−χ(Si )

)
≥ 8g− 2.

Hence, by Theorem 3, we have 2 genus S− 2=−χ(S)≥ 8g− 2, that is,

genus S ≥ 4g ≥ 2g+ 2.

Case 3: A component of
(⋃

i Si
)
∩ N1 is pseudohorizontal. Denote the pseudo-

horizontal component of
(⋃

i Si
)
∩ N1 by S̃. By Lemma 8, either S̃ is as in that

lemma and
(⋃

i Si
)
∩ N2 consists of a single annulus, or genus S ≥ 2g+ 2. This

puts us in situation (2) or (3), respectively.

Case 4:
(⋃

i Fi ∪
⋃

i Si
)
∩ N2 is horizontal. If

(⋃
i Fi ∪

⋃
i Si
)
∩ N1 is hor-

izontal, then the result follows by Case 2. If a component of
(⋃

i Si
)
∩ N1 is
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pseudohorizontal, then the result follows by Case 3. Thus we may assume that(⋃
i Fi ∪

⋃
i Si
)
∩ N1 is vertical or pseudovertical.

We may assume that any boundary parallel annuli in the edge manifold Ne that
are parallel into N1 have been isotoped into N1. (This does not change the Euler
characteristics of the surfaces nor the fact that

(⋃
i Fi ∪

⋃
i Si
)
∩ N1 is vertical or

pseudovertical.)
Fact 3 tells us that

(⋃
i Fi

)
∩Ne does not contain a torus. Hence

⋃
i Si∩∂N1 6=∅.

It also follows from Fact 5 that∣∣(⋃
i Fi

)
∩ ∂N1

∣∣= ∣∣(⋃i Fi
)
∩ ∂N2

∣∣.
Since there are no annuli in

(⋃
i Fi ∪

⋃
i Si
)
∩ Ne that are parallel into N1, we

obtain
∑

i
|Si ∩ ∂N1| ≤

∑
i
|Si ∩ ∂N2|, and hence

∑
i

(
|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|

)
≥
∑

i

(
|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|

)
.

The components of
(⋃

i Fi ∪
⋃

i Si
)
∩ N2 are all parallel. If H is such a com-

ponent, then

χ(H)= 2− 2 genus H − |H ∩ ∂N2|.

Recall that by Lemma 10, genus H ≥ 1. Thus∑
i

(
χ(Fi−1∩N2)−χ(Si∩N2)

)
= (2 genus H − 2)

∑
i

(
|Si∩N2| − |Fi−1∩N2|

)
−
∑

i

(
|Fi−1∩∂N2| − |Si∩∂N2|

)
≥−

∑
i

(
|Fi−1∩∂N2| − |Si∩∂N2|

)
.

Now∑
i

(
χ(Fi−1)−χ(Si )

)
=
∑

i

(
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)

)
+
∑

i

(
χ(Fi−1 ∩ Ne)−χ(Si ∩ Ne)

)
+
∑

i

(
χ(Fi−1 ∩ N2)−χ(Si ∩ N2)

)
.

Then Fact 1 tells us that
∑

i

(
χ(Fi−1 ∩ Ne)−χ(Si ∩ Ne)

)
≥ 0, so∑

i

(
χ(Fi−1)−χ(Si )

)
≥
∑

i

(
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)+χ(Fi−1 ∩ N2)−χ(Si ∩ N2)

)
.
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Thus, by Lemma 14,∑
i

(
χ(Fi−1)−χ(Si )

)
≥ 4g+ 2+

∑
i

(
|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|

)
−
∑

i

(
|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|

)
≥ 4g+ 2.

By Theorem 3, therefore, we conclude that 2 genus S − 2 = −χ(S) ≥ 4g + 2,
whence genus S ≥ 2g+ 2.

Case 5: A component of
(⋃

i Si
)
∩ N2 is pseudohorizontal. Here, too, if(⋃
i Fi ∪

⋃
i Si
)
∩ N1

is horizontal, the result follows by Case 2. If a component of
(⋃

i Si
)
∩ N1 is

pseudohorizontal, it follows by Case 3. Thus we assume that
(⋃

i Fi ∪
⋃

i Si
)
∩N1

is vertical or pseudovertical.
By the same reasoning as in Case 4, we can assume that∑

i

(
|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|

)
≥
∑

i

(
|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|

)
.

Denote the pseudohorizontal component of
(⋃

i Si
)
∩N2 by S̃ and note that here((⋃

i Fi ∪
⋃

i Si
)
− S̃

)
∩ N2 =∅. Thus

χ(S̃)= 2− 2 genus S̃− |S̃ ∩ ∂N2|.

By Lemma 13, either S̃ is as in Lemma 7 or genus S̃ ≥ 2. In the former case,
we have |∂ S̃| = 2q and χ(S̃) = 2 − 2q . If, moreover, genus S ≤ 2g + 1, then
−4g ≤ χ(S)=

∑
i

(
χ(Si )−χ(Fi−1)

)
≤ χ(S̃)= 2− 2q . Thus q ≤ 2g+ 1.

In the second case (genus S̃ ≥ 2), we have∑
i

(
χ(Fi−1∩N2)−χ(Si∩N2)

)
= −χ(S̃) = 2 genus S̃−2+|S̃∩∂N2| ≥ |S̃∩∂N2|.

Arguing as in Case 4, we obtain∑
i

(
χ(Fi−1)−χ(Si )

)
≥
∑

i

(
χ(Fi−1 ∩ N1)−χ(Si ∩ N1)+χ(Fi−1 ∩ N2)−χ(Si ∩ N2)

)
≥ 4g+ 2+

∑
i

(
|Fi−1 ∩ ∂N1| − |Si ∩ ∂N1|

)
−
∑

i

(
|Fi−1 ∩ ∂N2| − |Si ∩ ∂N2|

)
≥ 4g+ 2.

Again, by Theorem 3, we have 2 genus S−2=−χ(S)≥ 4g+2, whence genus S≥
2g+ 2. �
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Proof of Theorem 1. Consider the options allowed by Lemma 17. If option (1)
occurs, then Lemma 7 implies that N2 is a q-bridge knot complement and the fiber
of N1 is identified with the meridian of N2. This puts us in case (1) of Theorem 1.
If option (2) occurs in Lemma 17, then N̂1 admits a horizontal Heegaard splitting
of genus 2g by Lemma 8 and we are in case (2) of Theorem 1. If option (3) occurs
there is nothing to show. �

6. The proof of Theorem 2

In this section we construct for any n ∈N such that n≥3 a graph manifold Mn such
that π1(Mn) is 3n-generated but that the Heegaard genus of Mn is 4n. We denote the
graph underlying Mn by 0n . 0n is a tree on 2n+1 vertices z, c1, . . . , cn, d1, . . . , dn

and 2n edges e1, . . . , en, f1, . . . , fn such that ci and di are the endpoints of ei and
that di and z are the endpoints of fi .

p z p d1 p c1

p d2
p c2

p d3p c3

Figure 3. The tree 03.

The closed graph manifold Mn is then constructed as follows, where we denote
the Seifert piece corresponding to a vertex v by Nv.

(1) The intersection number between the fibers of the adjacent Seifert spaces is 1
at any torus of the JSJ decomposition.

(2) O(Nz) is a n-punctured sphere with one cone point of order 20n and N̂z = S3.

(3) O(Ndi ) = T 2(∞,∞, 20n) and Ndi admits no pseudohorizontal surface that
has genus 2.

(4) O(Nci ) is of type D(3, q) with q ≥ 20n and (3, q)= 1 but Nci is not homeo-
morphic to the exterior of a 2-bridge knot in S3.

Remark 18. Note that (2) is equivalent to stating that Nz is the exterior of a Seifert
fibered n component n-bridge link in S3, in particular π1(Nz) is generated by the
fibers of the Ndi . The existence of the spaces Ndi satisfying (3) is an immediate
consequence of Lemma 9.
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11

1

1

1

1
q3
q61

q60
q60

q60

q60q61

q3

q3q61

Figure 4. A graph manifold M with g(M)= 12 and r(M)≤ 9.

The first part of the proof of Theorem 2 is again a simple calculation:

Lemma 19. π1(Mn) can be generated by 3n elements.

Proof. The proof is almost identical to the proof of Lemma 16 and we frequently
omit explicit calculations if they are identical. Recall that

π1(Ndi )= 〈ai , bi , si , ti1, ti2, fi | Ri 〉 with

Ri = {[ai , fi ], [bi , fi ], [si , fi ], [ti1, fi ], [ti2, fi ], s5n
i = f βi

i , [ai bi ]ti1ti2si = f ei
i }

where ti1 corresponds the the boundary component between Ndi and Nz and ti2
corresponds to the boundary component between Ndi and Nci .

Recall from the proof of Lemma 16 that there exist elements hi1, hi2 ∈ π1(Nci )

such that Ui = 〈 fi , hi1 fi h−1
i1 , hi2 fi h−1

i2 〉 is a subgroup of finite index in π1(Nci )

that maps surjectively onto the fundamental group of O(Nci ) and that hi1, hi2 ∈Ui .
We will show that π1(Mn) is generated by the generators g1, . . . , g3n defined as

follows:

(1) gi is the generator of the cyclic group 〈 fi , si 〉 for 1≤ i ≤ n.

(2) gn+i = hi1ai for 1≤ i ≤ n.

(3) g2n+i = hi2bi for 1≤ i ≤ n.

Let H = 〈g1, . . . , g3n〉. We show that H = π1(Mn).
Note first that π1(Nz)⊂ H as gi ∈ H implies fi ∈ H for 1≤ i ≤ n and π1(Nz)

is generated by the fi . This implies that ti1 ∈ H for 1≤ i ≤ n.
The same calculation as in the proof of Lemma 16 further shows that Ui ⊂ H

for 1≤ i ≤ n. It follows that ai , bi ∈ H for 1≤ i ≤ n. Thus π1(Ndi )⊂ H as π1(Ndi )

is generated by ai , bi , si , fi , ti1 and si and fi are powers of gi .
It follows further that π1(Nci )⊂ H as π1(Nci ) is generated by Ui and Ci , where

Ci = π1(Nci )∩π1(Ndi ). �
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To conclude the proof of Theorem 2 it clearly suffices to establish the following:

Proposition 20. The Heegaard genus of Mn is at least 4n.

In proving this we will tacitly use that small genus Heegaard splittings have very
special untelescopings — a fact that deserves its own result since it has independent
interest:

Lemma 21. Let Mn = V ∪S W be a Heegaard splitting of Mn . Then either g(S)≥
4n or there is a strongly irreducible untelescoping S1, F1, . . . , Fk−1, Sk of Mn =

V ∪S W such that for any vertex manifold N no component of Si ∩ N or Fi ∩ N is
horizontal. In particular all Fi are vertical incompressible tori.

Proof. Suppose that some component F of Si ∩N or Fi ∩N is horizontal for some
i and some vertex manifold N . Note first that no component of ∂F bounds a disk
as any component is an essential curve in an incompressible torus. It follows that
χ(F)≥ χ(Fi ) (or χ(F)≥ χ(Si )), where Fi (or Si ) is the surface containing F .

Note first that F ∩ N is a covering of the base space O of N of degree at least
20n. It is furthermore easy to see that we have χ(O)≤− 1

2 for any choice of N . If
follows that χ(F ∩ N ) ≤ −10n and therefore χ(Fi ) ≤ −10n (or χ(Si ) ≤ −10n).
This however implies that the genus of Fi (or Si ) is greater than 5n which implies
that the Heegaard surface S is of genus at least 5n. This proves the assertion. �

Proof of Proposition 20. To see that Mn admits no Heegaard splitting of genus
less than 4n, proceed along the same lines as in the proof of Lemma 17. Let
Mn = V ∪S W be a Heegaard splitting and let S1, F1, . . . , Fk−1, Sk be a strongly
irreducible untelescoping of Mn = V ∪S W . We consider the various possible cases
for

(⋃
i Fi ∪

⋃
i Si
)
∩ Nc j and

(⋃
i Fi ∪

⋃
i Si
)
∩ Nd j .

Case 1: Fix j and suppose that
(⋃

i Fi ∪
⋃

i Si
)
∩Nc j and

((⋃
i Fi ∪

⋃
i Si
)
∩Nd j

are vertical or pseudovertical. In this case it is impossible for
((⋃

i Fi ∪
⋃

i Si
))

to
meet the edge manifold Ne j between Nc j and Nd j in spanning annuli. Moreover,
any boundary parallel annuli in Ne j can be isotoped into Nc j and Nd j and any
boundary parallel annuli in Ng j that are parallel into Nd j can be isotoped into Nd j .
(This does not change the fact that

(⋃
i Fi ∪

⋃
i Si
)
∩Nc j and

(⋃
i Fi ∪

⋃
i Si
)
∩Nd j

are vertical or pseudovertical and serves to facilitate our counting argument.) In
conjunction with Fact 5, this tells us that∑

i

(
−|Si ∩ ∂Nd j | + |Fi−1 ∩ ∂Nd j |

)
≥
∑

i

(
−|Si ∩ ∂Nc j | + |Fi−1 ∩ ∂Nc j | − |Si ∩ ∂N j

z | + |Fi−1 ∩ ∂N j
z |
)
,

where ∂N j
z is the component of ∂Nz that meets the edge manifold Ng j between

Nz and Nd j .
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Now either
⋃

i Fi meets Ne j in an essential torus, or
⋃

i Si meets Ne j in the only
other possible configuration. In the first case, we obtain∑

i

(
−|Si ∩ ∂Nc j | + |Fi−1 ∩ ∂Nc j |

)
= 0

and ∑
i

(
−|Si ∩ ∂Nd j | + |Fi−1 ∩ ∂Nd j |

)
≥
∑

i

(
−|Si ∩ ∂N j

z | + |Fi−1 ∩ ∂N j
z |
)
.

In the second case we obtain
∑

i

(
−|Si ∩ ∂Nc j | + |Fi−1 ∩ ∂Nc j |

)
=−2 and∑

i

(
−|Si ∩ ∂Nd j | + |Fi−1 ∩ ∂Nd j |

)
≥−2+

∑
i

(
−|Si ∩ ∂N j

z | + |Fi−1 ∩ ∂N j
z |
)
.

We further distinguish the cases in which
⋃

i Fi meets or does not meet the edge
manifold N f j in an essential torus.

Case 1.1:
⋃

i Fi meets Ne j in an essential torus. By Lemmas 14 and 15, we have∑
i

(
χ(Fi−1∩Nd j )−χ(Si ∩Nd j )+χ(Fi−1∩Nc j )−χ(Si ∩Nc j )

)
≥ 4+2+

∑
i

(
|Fi−1∩∂Nd j |−|Si∩∂Nd j |

)
+2+

∑
i

(
|Fi−1∩∂Nc j |−|Si∩∂Nc j |

)
≥ 4+2+

∑
i

(
|Fi−1∩∂N j

z |−|Si ∩∂N j
z |
)
+2

≥ 8+
∑

i

(
|Fi−1∩∂N j

z |−|Si ∩∂N j
z |
)
.

Case 1.2:
⋃

i Fi meets neither N f j nor Ne j in an essential torus. By Lemmas 14
and 15, we have∑

i

(
χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )+χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )
)

≥ 4+4+
∑

i

(
|Fi−1∩∂Nd j |−|Si∩∂Nd j |

)
+2+

∑
i

(
|Fi−1∩∂Nc j |−|Si∩∂Nc j |

)
+2

≥ 4+ 4− 2+
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
+ 2− 2+ 2

≥ 8+
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
.

Case 1.3:
⋃

i Fi meets N f j in an essential torus but does not meet Ne j in an essen-
tial torus. Here Lemmas 14 and 15 yield only∑

i

(
χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )+χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )
)

≥ 4+2+
∑

i

(
|Fi−1∩∂Nd j |−|Si∩∂Nd j |

)
+2+

∑
i

(
|Fi−1∩∂Nc j |−|Si∩∂Nc j |

)
+2

≥ 4+ 2− 2+ 2− 2+ 2≥ 6.
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In this case
(⋃

i Fi ∪
⋃

i Si
)
∩ Nz must be vertical or pseudovertical. (See Fact 3

above.)
Note that in all cases we have∑

i

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )

)
≥ 2.

Case 2: Fix j and suppose a component of
⋃

i Si ∩ Nd j is pseudohorizontal. As
we have seen, in this case

S′ =
(⋃

i Si ∪
⋃

i Fi
)
∩ Nd j

is connected. In particular,
⋃

i Fi ∩ Nd j = ∅. By construction, the genus of
a pseudohorizontal surface is even. Recall our assumption that Nd j admits no
pseudohorizontal surface of genus 2. Thus the genus of S′ is at least 4. Hence∑

i

(
χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

)
= 0−χ(S′ ∩ Nd j )

≥ 6+ b = 6−
∑

i

(
|Fi−1∩∂Nd j | − |Si∩∂Nd j |

)
,

where b is the number of boundary components of S′. Since S′ is a separating
surface, it meets each boundary component of Nd j at least twice. Consequently,
b ≥ 4. It thus follows from Fact 1 that∑

i

(
χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )+χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )+χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )
)

≥ 6+ 4= 10.

Case 3: Fix j and suppose a component of
(⋃

i Si
)
∩ Nc j is pseudohorizontal.

It will suffice to consider the case in which
(⋃

i Fi ∪
⋃

i Si
)
∩Nd j is vertical or

pseudovertical. Denote the pseudohorizontal component of
(⋃

i Si
)
∩ Nc j by S̃

and note that here
((⋃

i Fi ∪
⋃

i Si
)
− S̃

)
∩Nc j =∅. By assumption, Nc j is not the

exterior of a 2-bridge knot in S3, thus by Lemmas 7 and 13, genus S̃ ≥ 2. Hence,

χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j ))=−χ(S̃ ∩ Nc j )≥−χ(S̃)≥ 2+ c,

where c is the number of boundary components of S̃.
Recall that when

(⋃
i Fi ∪

⋃
i Si
)
∩ Nd j is vertical or pseudovertical, we may

isotope any annuli in
(⋃

i Si
)
∩ N fi or

(⋃
i Si
)
∩ Nei that are parallel into Nd j into

Nd j without altering the fact that
(⋃

i Fi ∪
⋃

i Si
)
∩Nd j is vertical or pseudovertical.

Therefore we may assume that there are no annuli in
(⋃

i Fi ∪
⋃

i Si
)
∩ N f j or(⋃

i Fi ∪
⋃

i Si
)
∩ Ne j that are parallel into Nd j . Thus
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i

(
|Fi−1 ∩ ∂Nd j | − |Si ∩ ∂Nd j |

)
≥
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
+
∑

i

(
|Fi−1 ∩ ∂Nc j | − |Si ∩ ∂Nc j |

)
=
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
− c.

Hence, by Lemma 14,∑
i

(
χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )+χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )

)
≥ 4+ 4+

∑
i

(
|Fi−1 ∩ ∂Nd j | − |Si ∩ ∂Nd j |

)
+ 2+ c

≥ 10+
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
.

Putting these computations together we must consider the various options for(⋃
i Fi ∪

⋃
i Si
)
∩ Nz:

Case A:
(⋃

i Fi ∪
⋃

i Si
)
∩ Nz is vertical and pseudovertical. In this case the

options for
(⋃

i Fi ∪
⋃

i Si
)
∩N f j are severely limited. If

(⋃
i Fi ∪

⋃
i Si
)
∩Nd j is

vertical and pseudovertical, then
(⋃

i Fi ∪
⋃

i Si
)
∩N f j cannot consist of spanning

annuli. So either
⋃

i Fi meets N f j in an essential torus, or
⋃

i Si meets N f j in the
only other possible configuration. If

(⋃
i Fi ∪

⋃
i Si
)
∩ Nd j is pseudohorizontal,

then N f j cannot meet a toral component of
⋃

i Fi . So it must consist either of
spanning annuli or the only other possible configuration.

Define
J0 =

{
j :
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
= 0

}
.

Then
∑

i

(
χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )

)
= 0 for j ∈ J0.

Denote by J1 the set of j not in J0 such that
(⋃

i Fi
)
∪
(⋃

i Si
)
∩Nd j are vertical

or pseudovertical. Then∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)
=−2

and ∑
i

(
χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )

)
= 2 for j ∈ J1.

Denote by J2 the set of j such that
(⋃

i Fi ∪
⋃

i Si
)
∩ Nd j is pseudohorizontal;

it is easy to see that J0, J1, J2 are disjoint and their union equals J . We have∑
i

(
|Fi−1 ∩ ∂Nd j | − |Si ∩ ∂Nd j |

)
≥
∑

i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)

for j ∈ J2.

Further, by Lemma 14,∑
i

(
χ(Fi−1∩Nz)−χ(Si ∩Nz)

)
≥−2(2−n)+2+

∑
i

(
|Fi−1∩∂Nz|−|Si ∩∂Nz|

)
.
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Thus −χ(S) equals∑
i

(
χ(Fi−1)−χ(Si )

)
≥
∑

i

(
χ(Fi−1 ∩ Nz)−χ(Si ∩ Nz)

+
∑

j

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )+χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )
))

=
∑

i

(
χ(Fi−1 ∩ Nz)−χ(Si ∩ Nz)

)
+
∑

j

∑
i

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )+χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )
)

≥−2(2− n− 1)+
∑

i

(
|Fi−1 ∩ ∂Nz| − |Si ∩ ∂Nz|

)
+
∑
j∈J0

∑
i

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )+χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )
)

+
∑
j∈J1

∑
i

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )+χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )
)

+
∑
j∈J2

∑
i

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )−χ(Si ∩ Nd j )

+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )+χ(Fi−1 ∩ N f j )−χ(Si ∩ N f j )
)

≥−2(1− n)+
∑

i

∑
j

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)

+
∑
j∈J0

6+
∑
j∈J1

(8− 2+ 2)+
∑
j∈J2

(
6−

∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
))

=−2(1− n)+
∑
j∈J0

∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)

+
∑
j∈J1

∑
i

(
|Fi−1∩∂N j

z | − |Si∩∂N j
z |
)
+
∑
j∈J2

∑
i

(
|Fi−1∩∂N j

z | − |Si∩∂N j
z |
)

+
∑
j∈J0

6+
∑
j∈J1

(8− 2+ 2)+
∑
j∈J2

(
6−

∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
))

=−2+ 2n+ 0+
∑
j∈J1

(−2)+
∑
j∈J2

∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)

+
∑
j∈J0

6+
∑
j∈J1

(8− 2+ 2)+
∑
j∈J2

6−
∑
j∈J2

∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
)

=−2+ 2n+
∑
j∈J0

6+
∑
j∈J1

8+
∑
j∈J2

6≥−2+ 2n+ 6n = 8n− 2.

This shows that genus S ≥ 4n.
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Case B: A component of
(⋃

i Si
)
∩Nz is pseudohorizontal. Denote this component

by S̃ and note that
((⋃

i Fi ∪
⋃

i Si
)
−S̃

)
∩Nz=∅. Now χ(S̃)=2−2 genus S̃−|∂ S̃|

and ∑
i

(
|Fi−1 ∩ ∂Nz| − |Si ∩ ∂Nz|

)
=−|∂ S̃|.

Define J0, J1, J2 as above and note that here J0 =∅. Then −χ(S) is given by∑
i

(
χ(Fi−1)−χ(Si )

)
≥
∑

i

(
χ(Fi−1 ∩ Nz)−χ(Si ∩ Nz)

)
+
∑

i

∑
j

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )

−χ(Si ∩ Nd j )+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )
)

=
∑

i

(
χ(Fi−1 ∩ Nz)−χ(Si ∩ Nz)

)
+
∑

i

∑
j∈J1

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )

−χ(Si ∩ Nd j )+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )
)

+
∑

i

∑
j∈J2

(
χ(Fi−1 ∩ Nc j )−χ(Si ∩ Nc j )+χ(Fi−1 ∩ Nd j )

−χ(Si ∩ Nd j )+χ(Fi−1 ∩ Ne j )−χ(Si ∩ Ne j )
)

=−2+ 2 genus S̃+ |∂ S̃| +
∑
j∈J1

(
8+

∑
i

(
|Fi−1 ∩ ∂N j

z | − |Si ∩ ∂N j
z |
))
+
∑
j∈J2

10

=−2+ 2 genus S̃+
∑

j
8≥−2+ 8n.

Hence genus S ≥ 4n. �

7. Some comments on nontotally orientable graph manifolds

In the proofs of Theorem 1 and Theorem 2 we make extensive use of the structure
theorem for Heegaard splittings of totally orientable graph manifolds [Schultens
2004]. We believe however that similar statements are true for graph manifolds
in general. This suggests a more straightforward generalization of the examples
provided in [Weidmann 2003] which are not totally orientable.

Note that the verification that the manifolds constructed in [Weidmann 2003] are
not of Heegaard genus 2 relies on the classification of 3-manifolds with nonempty
characteristic submanifold that have a genus 2 Heegaard splitting as given by
T. Kobayashi [1984].

Thus we conjecture that the manifolds Mn constructed below are of Heegaard
genus 3n, the same argument as above shows that they can be generated by 2n
elements.
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The graph underlying the manifold Mn is again 0n and the Seifert piece corre-
sponding to the vertex v is again denoted by Nv. Moreover:

(1) The intersection number between the fibers of the adjacent Seifert spaces is 1
at any torus of the JSJ decomposition.

(2) O(Nz) is a n-punctured sphere with at most one cone point and N̂z = S3.

(3) O(Ndi )= P2(∞,∞, 5n) and Ndi admits no pseudohorizontal surface that has
genus 2.

(4) O(Nci ) is of type D(2, q) with odd q but Nci is not homeomorphic to the
exterior of a 2-bridge knot in S3.

11
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Figure 5. A graph manifold M with g(M)= 9 and r(M)≤ 6?
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