
Pacific
Journal of
Mathematics

SYSTEMS OF BANDS IN HYPERBOLIC 3-MANIFOLDS

BRIAN H. BOWDITCH

Volume 232 No. 1 September 2007



PACIFIC JOURNAL OF MATHEMATICS
Vol. 232, No. 1, 2007

SYSTEMS OF BANDS IN HYPERBOLIC 3-MANIFOLDS

BRIAN H. BOWDITCH

Let M be a hyperbolic 3-manifold admitting a homotopy equivalence to a
compact surface 6, where the cusps of M correspond exactly to the bound-
ary components of 6. We construct a nested system of bands in M, where
each band is homeomorphic to a subsurface of 6 times an interval. This
band system is shown to have various geometrical properties, notably that
the boundary of any Margulis tube is mostly contained in the union of the
bands. As a consequence, one can deduce the result (conjectured by Mc-
Mullen and proven by Brock, Canary and Minsky) that the thick part of
the convex core of M has at most polynomial growth. Moreover the degree
is at most minus the Euler characteristic of 6. Other applications of this
construction to the curve complex of 6 will be discussed elsewhere. The
complex is related to the block decomposition of M described by Minsky, in
his work towards Thurston’s Ending Lamination Conjecture.

Introduction

This paper is primarily concerned with the geometry of hyperbolic 3-manifolds that
are topologically products of a surface with the real line. More precisely, let M
be a complete hyperbolic orientable 3-manifold admitting a homotopy equivalence
χ : M → 6 to a compact surface 6. We assume that χ is “type preserving” in
the sense that each boundary curve in 6 corresponds to a parabolic cusp in M .
(We can allow for “accidental parabolics”; that is, parabolics in M need not be
peripheral in 6.) It follows from [Bonahon 1986] that M is homeomorphic to
int 6 × R. Manifolds of this sort have been intensively studied, for example in
relation to Thurston’s Ending Lamination Conjecture. (By lifting to an appropriate
cover one can effectively reduce, at least in the indecomposable case, to manifolds
of this type.)

The purpose of this paper is to describe a “band decomposition” of M , which
captures much of its geometry. It gives a means of cutting the manifolds into
simpler pieces, which can be understood intrinsically according to some inductive
principle, and then fitted back together. One specific application is to give another
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proof of the conjecture of McMullen that the thick part of such a manifold grows at
most polynomially (see [Brock et al. 2004]), and give sharp bounds on the degree.
Our polynomials are, in principle, algorithmically computable. Another applica-
tion is to the geometry of the curve complex. One can show, for example, that
the action of the mapping class group on the curve complex is acylindrical, and
that stable lengths are uniformly rational. This is described in [Bowditch 2003].
Other applications of this work in turn show that the curve complex has finite
asymptotic dimension [Bell and Fujiwara 2005] and has Yu’s “property A” [Kida
2005]. It thus provides an example of hyperbolic 3-manifolds techniques being
used to solve essentially combinatorial problems.

The decompositions described here have close links with Thurston’s Ending
Lamination Conjecture. As observed earlier, the indecomposable case can be
essentially reduced to studying such manifolds: see [Minsky 2002; Brock et al.
2004; Bowditch 2005b]. (For adaptations of these ideas to the decomposable case
see [Brock et al. ≥ 2007] and [Bowditch 2005a].) The key to this is to relate the
geometry of M to the geometry of a “model” manifold constructed combinatorially.
In principle a similar band decomposition could be constructed in the combinatorial
model and then transferred to M . (Some discussion on how this may be achieved
is given in [Bowditch 2005b].) However, such an approach is very indirect, and
does not give a-priori computable constants. (At present, all known approaches
to the Ending Lamination Conjecture involve limiting arguments, or equivalent, at
some point.) Here we work directly from the 3-manifold, by a method that is, in
principle, effective. This work is logically independent of the work on the Ending
Lamination Conjecture cited above. We remark that another decomposition of M ,
which appears to be related, is discussed in [Soma 2003], and used there to study
geometric limits of manifolds of this type.

1. Overview and examples

We start with an informal overview of what we mean by a “band system” and the
properties we expect of it. These will be expressed more formally in Section 2.

We begin with the case of a compact surface, 6, and a hyperbolic 3-manifold,
M , without cusps, which admits a homotopy equivalence to 6. To simplify the
exposition we assume everything to be orientable. Thus, by [Bonahon 1986], M
is homeomorphic to 6 × R. Its convex core, core(M), is homeomorphic to 6 ×

I , where I ⊆ R is connected. In the geometrically finite case, core(M) and I
are compact. We refer to the first and second coordinates as the horizontal and
vertical directions respectively. There is no canonical homeomorphism, and so
most statements in this section should be qualified with the phrase “after choosing
suitable coordinates”. In Section 2, we give a topological, coordinate-free means
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of expressing these ideas. In particular, we will define a “fibre” as an embedded
closed surface whose inclusion in M is a homotopy equivalence. It is shown in
[Brown 1966] that this has the form 6 × {t} in a suitable coordinate system.

A simple case is that of bounded geometry, i.e. where the injectivity radius is
bounded below. If that happens, then the horizontal fibres 6 × {t} (in suitable co-
ordinates), will have bounded diameter for all t ∈ I . In other words, we can foliate
the convex hull with bounded diameter surfaces. In the general case, however, we
get a set of disjoint short closed curves. These are unlinked, i.e. each has the form
α × {t} for a closed curve α in 6 [Otal 1995; 2003]. Any such curve will be the
core of a Margulis tube. This time, the fibres can be taken to intersect the tubes in
annuli, and such that the diameter of each component, after removing the tubes, is
bounded. This controls the geometry in the horizontal direction. However there is
no natural way of choosing vertical coordinates. For example, two fibres 6 × {t}
and 6 ×{u} may be close together on one side of a Margulis tube, but far apart on
the other; and there might be no choice of coordinate system that will remedy this
consistently. This is the kind of phenomenon the band system is designed to come
to grips with.

We can also bring rank-one cusps into the picture. In this case, we allow 6

to be a closed surface with boundary. By hypothesis, each boundary component
corresponds to a cusp of M . On removing these cusps, we get a manifold home-
omorphic to 6 × R, and a similar discussion applies to this space. We may also
get “accidental” cusps — homotopic to nonperipheral simple closed curves of 6.
These accidental cusps play a similar role to Margulis tubes. For the purposes of
exposition, we will ignore accidental cusps in the discussion in this section.

It may happen that the boundary of each Margulis tube has bounded area. (This
is necessarily the case if 6 is a one-holed torus or four-holed sphere; see [Minsky
1999].) In such a case, our band system will be empty. In general, however, one
would expect these areas to be unbounded. Such tubes will form the anchors of
a system of bands. A “band” is a subset of M of the form 8 × J where 8 is
a proper subsurface of 6, and J is a compact subinterval of I . Each vertical
boundary component, ∂8 × J , is assumed to lie in the boundary of a Margulis
tube. The band may intersect other tubes in solid tori. We should think of bands
being long in the vertical direction, and narrow in the horizontal direction — that
is narrow modulo the intersections with tubes (which are deemed not to contribute
to the width). Qualitatively, a band, B, has similar geometry to that of the convex
core of a geometrically finite manifold, N , with base surface 8. Here, the tubes
which meet the vertical boundary components of B should be thought of has having
been “opened out” to rank-one cusps on N . This idea forms the basis of various
inductive procedures, where we carry out induction on the complexity of the base
surface. The induction starts with one-holed tori and four-holed spheres — there
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are no three-holed sphere bands.
Our goal will be to construct a system, A, of disjoint bands with a number of

geometric properties. Notably, we want the boundary of each Margulis tube to lie
mostly inside the bands. More precisely, for each tube, the area lying outside the
union of the bands is uniformly bounded in term of the complexity of 6.

We can go on to construct a similar system inside each individual band, and then
proceed inductively all the way down to one-holed tori and four-holed spheres, so
as to give us a nested system, B, of bands. In practice, it is this system we construct
first. We can recover A, if we want, as the set of outermost bands of B.

The basic idea behind the construction of B is fairly simple. If there exists a
sufficiently long band, 8 × J , with any given base surface, 8, we include in B

such a band which is almost as long as possible. By “long” we mean long in the
vertical direction, in an appropriate sense, and the qualification “almost” means
that we need the band to have collars attached at each end, in order to prevent
neighbouring bands from bumping into each other. Some slight modification may
necessary in some situations to ensure that the bands are nested, but that is mainly
a technical issue. Most of the work of the proof will be in verifying that the bound-
aries of Margulis tubes are mostly taken up by the bands, so that, in some sense,
the combinatorics of the band system does indeed capture most of the large scale
geometry of M .

For most of the paper, we will simplify the exposition by assuming that 6 is
closed, that M has no cusps, and that M is doubly degenerate, i.e. core(M) = M ,
so that I = R. The adaptation to the general case is discussed in Section 8.

We finish this section by giving a couple of simple examples. Suppose that
there is just one Margulis tube, T , homotopic to a curve, γ , in 6. Suppose γ

separates 6. Let 81 and 82 be the components of the complement of a small
open annular neighbourhood of γ . There are four combinatorial possibilities for
A, namely: ∅, {81 × J1}, {82 × J2} and {81 × J1, 82 × J2}, where J1, J2 are
intervals (Figure 1). Each of the bands meets ∂T in a single annulus. If γ is
nonseparating, the possibilities are ∅ or {8 × J }, where 8 is the complement of
an open neighbourhood of γ in 6. In the last case, the band meets ∂T in two
annuli. This last possibility adds some complications to the formal description of
bands, but has no particular geometric significance.

In the above, we will have B = A. More generally it is possible that the bands of
A may themselves contain tubes and smaller bands of B. Moreover, there may be
many bands meeting any given tube. The general picture can get very complicated
combinatorially (Figure 2). (This figure should elongated in the vertical direction
to give a more accurate geometrical impression.)

It follows from the work on the Ending Lamination Conjecture that, in the
generic case, the band system will be nonempty. However, explicit examples are
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not so easy to construct and verify. Examples of product manifolds with no lower
bound on injectivity radius were given in [Bonahon and Otal 1988]. Examples
where the boundaries of Margulis tubes have arbitrarily large area (so that the
band system is nonempty) were constructed in [Brock 2001].

2. Outline of results

In this section, we outline of the construction of the band decomposition, and
summarise its main properties. We begin by recalling some standard facts.

For most of the paper, we will assume for simplicity that 6 is a closed orientable
surface, and that M is orientable and has no cusps. Dealing with the general case
will be mostly a matter of reinterpreting some of the definitions and constructions,
as described in Section 8.
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We know by tameness [Bonahon 1986] that M is homeomorphic to 6 × R. A
fibre of M is an embedded surface homotopic (hence isotopic) to 6×{0}. A curve
or subsurface is unknotted if it can be embedded in a fibre. More generally, a
disjoint locally finite collection of embedded surfaces is unlinked if they can be
simultaneously embedded in a collection of disjoint fibres.

Our discussion depends on certain “Margulis constants”, η0, η1 etc. The Mar-
gulis Lemma tells us that there is some η0 > 0 such that any closed geodesic, γ ,
of length at most η0 in M is embedded, or finitely covers an embedded geodesic.
Indeed, assuming it is primitive, it is the core of a “Margulis tube”. Such a tube, T ,
is a solid torus, whose boundary, ∂T , is intrinsically euclidean. It comes equipped
with a homotopically well defined meridian (bounding a disc in T ). Otal [1995;
2003] shows that (provided η0 is chosen small enough in relation to genus(6)),
then γ is unknotted in M . Thus, ∂T also comes with a longitude (which can
be homotoped to infinity in the complement of T ). Such a longitude can also
be described in terms of the framing of γ obtained by embedding it in a fibre.
We can think of ∂T as foliated by euclidean geodesic longitudes of equal length.
It turns out that this length is bounded above and below in terms of genus(6)

(and the Margulis constant). This gives us a convenient normalisation: we fix a
suitable η > 0 and write T (γ ) = T (γ, η) for the unique Margulis tube about γ

whose longitudes all have length η. Provided η is small enough such tubes will
be embedded and disjoint. We choose some other η1 > 0 and let T be the set of
all Margulis tubes, T (γ, η) for which the core curve γ has length at most η1. If
T ∈ T, we write L(∂T ) for the “vertical length” of ∂T , i.e. the length of the circle
obtained by collapsing each longitude to a point. (In other words, ∂T has area
ηL(∂T ).) It turns out that L(∂T ) is bounded away from 0, but there is no upper
bound in general. The point of the band decomposition is that most of the vertical
length of such a torus lies inside the union of the bands.

We write 2(M) for the closure of M \
⋃

T — the “thick part” of M . We equip
2(M) with the induced path metric, d.

Definition. A horizontal surface in M is an unknotted surface, F , such that F
meets each T ∈ T, if at all, either in a single annulus whose boundary is precisely
F ∩∂T , or else in one or two (euclidean geodesic) longitudes of ∂T , both of which
are boundary curves of F . Moreover, each boundary curve of F is a longitude of
some element of T.

We write TI (F) ⊆ T for the set of tubes meeting F in annuli.
Note that, under χ , F determines a homotopy class of subsurface of 6, which

we denote by φ(F).

Definition. We say that two horizontal surfaces F, G are parallel if they are disjoint
and φ(F) = φ(G).
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Definition. A band, A, in M is a subset of M homeomorphic to 8 × [−1, 1],
where 8 is a proper subsurface of 6, whose horizontal boundary, ∂H A = 8 ×

{−1, 1} consists of two horizontal surfaces (necessarily parallel) and whose vertical
boundary, ∂V A = ∂8 × [−1, 1] is a disjoint union of annuli, each lying in the
boundary of some Margulis tube.

We denote the horizontal boundary components of A by ∂− A and ∂+ A. (There is
a canonical choice.) Any two parallel horizontal surfaces determine a band, A, with
{∂− A, ∂+ A} = {F, G}. We write A = 〈F, G〉. Write φ(A) = φ(∂− A) = φ(∂+ A).

Let TI (A) ⊆ T be the set of Margulis tubes completely contained in A. Each
other tube meets A, if at all, in one or two vertical annuli, or else in a subsolid
torus bounded by annuli of the form T ∩∂− A or T ∩∂+ A (either one of which may
be empty).

Definition. The width, W (F), of a horizontal surface, F , is the maximum diameter
of a component of F ∩ 2(M) as measured in the path-metric, d , on 2(M).

The width, W (A), of a band, A, is defined as W (A)= max{W (∂+ A), W (∂− A)}.

In some ways, it would be more natural to define “width” in terms of intrinsic
diameter in the surface (in the induced path-metric) rather than using the ambient
diameter in M . The problem is that our topological constructions will make it
difficult to control intrinsic diameter, whereas the fact the that ambient diameters
remain bounded is elementary.

Let A be a collection of bands in M . We write
⋃

A for their union. Given a
Margulis tube, T , we write L(∂T, A) for the total vertical length of the union of
annuli ∂T \

⋃
A.

In the discussion that follows, properties (A1), (A2), (A3), (A5), (A6) and (A9)
will be proved later in the paper. Properties (A4), (A7) and (A8) are simple con-
sequences, or can be assumed without loss of generality.

We shall show:

Theorem 0. There are constants, W0, L0, depending on the topological type of 6

(and choice of Margulis constants) such that for any hyperbolic 3-manifold with a
homotopy equivalence to 6, we can find a collection, A, of bands satisfying:

(A1) The elements of A are disjoint.

(A2) For each A ∈ A, W (A) ≤ W0.

(A3) For each T ∈ T, L(∂T, A) ≤ L0.

We will see later that the bound on width in (A2) means that every point of
A lies in a fibre of bounded width. As we will discuss below, we can strengthen
(A1) to control the minimum distance between distinct bands, but at the cost of
increasing the constant L0 of (A3).
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Note that if two bands, A and B are parallel (i.e. φ(A) = φ(B)) then they bound
a third parallel band C . Thus A and B can be replaced by A ∪ C ∪ B. We see that
there is no loss in assuming, in addition, that:

(A4) No two distinct elements of A are parallel.

We also note that the bands can all be assumed to lie in the convex core of M .
(See the discussion of the “general case” below.)

There are a number of refinements we can make to Theorem 0.
Suppose A is a band. We write T0(A) = TI (A) ∪ TI (∂− A) ∪ TI (∂+ A). The

exterior length, l(π, A) of a path π in A is the total (rectifiable) length of π \⋃
T0(A).

Definition. The height H(A) of a band A is the infimum (in fact minimum) exterior
length of any path in A connecting ∂− A to ∂+ A.

In other words, H(A) is the shortest distance we need to travel to get across A,
where travelling in the Margulis tubes (other than those that contain the vertical
boundaries of A) costs us nothing.

We want a more quantitative way of saying that bands of A are disjoint, in fact
a bounded distance apart. This can be expressed using the notion of a “collar”.

Definition. If A is a band, a top (respectively bottom) collar of A is a band meeting
A precisely in ∂− A (respectively ∂+ A).

In other words, it has the form 〈F, ∂+ A〉 or 〈F, ∂− A〉, where F is a parallel
horizontal surface.

Note that if A+ and A− are top and bottom collars of A, then Â = A+ ∪ A∪ A−

is another band containing A. We refer to A, or more precisely, the pair (A, Â) as
a collared band. Given h ≥ 0, we say that A is h-collared if it admits a collar so
that H(A+) ≥ h and H(A−) ≥ h.

Addendum to Theorem 0. There is some W0 depending on the topological type of
6 such that given any H0, H1 ≥ 0, we can find L0 (depending on H0, H1 and the
type of 6), so that we can find a system of bands, A, satisfying (A1)–(A4) above,
together with:

(A5) Each band of A is H0-collared.

(A6) If A ∈ A, then H(A) ≥ H1.

We can also assume if we want that W ( Â) ≤ W0 for all A ∈ A. By choosing
H1 > 0, we can assume that for each band, A, A ∩ 2(M) is connected (see the
discussion of “primitive” bands in Section 3).

We shall see (Lemma 4.5) that H(A) is uniformly bounded whenever φ(A) is
a 3-holed sphere. Thus, by choosing H0 or H1 large enough, we can assume in
addition:



SYSTEMS OF BANDS IN HYPERBOLIC 3-MANIFOLDS 9

(A7) If A ∈ A, then φ(A) is not a 3-holed sphere.

Putting together (A3) and (A5), we see that there must be a bound on the number
of components of ∂T \

⋃
A for any T ∈ T. This must in turn be at least the number

of bands that meet ∂T . We deduce:

(A8) There is some N0 such that for all T ∈ T, at most N0 elements of A meet
∂T .

Here N0 depends on the topological type of 6.
Finally, by choosing H0 and/or H1 large enough, we can ensure that our bands

satisfy a topological property (defined in Section 2), namely:

(A9) The elements of A are unlinked in M.

As we have stated it, Theorem 0 says nothing about the intrinsic geometry of
the bands. However, one could apply a similar construction to the interior of each
band (compare the discussion of the general case below). Altogether, this would
give us a larger system of bands, say B, which are nested (see (A1′) below), rather
than disjoint (as was required by (A1)), but which in addition satisfies a relative
version of (A3), namely:

(A3′) For each B ∈ B and T ∈ T0(B) we have L(∂T ∩ B, B(B)) ≤ L0.

Here B(B) ⊆ B is the set of bands strictly contained in B. In practice, we shall
construct such a system B directly, and recover A as the set of outermost bands
of B.

There are some further refinements one can make to the band system B.

Definition. Given k > 0, we say that two bands, A and B, are k-nested if one of
the following three conditions holds: N (A∩2(M), k) ⊆ B, N (B ∩2(M), k) ⊆ A
or d(A ∩ 2(M), B ∩ 2(M)) ≥ k. They are nested if they are k-nested for some
k > 0.

Here d is the path-metric on 2(M), and N (., k) denotes k-neighbourhood in
2(M).

We can replace (A1) by:

(A1′) The elements of B are nested.

There is a final elaboration, alluded to earlier. Given any H2 > 0, we can assume
that the elements of B are H2-nested. However, in this case, the constant L0 of
(A3′) will depend also on H2.

The basic construction of the band system B is fairly simple. The constant W0 is
determined by the geometry of M (see Section 4.2). We choose some H4 ≥ 0 large
enough in relation to H0 and H1. If A is a band with W (A) ≤ W0 and H(A) ≥ H4

then we choose such an A so as to maximise H(A) among such bands with the
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same base surface φ(A). (Here we really mean “minimise” up to a small positive
constant.) We can now find a subband, B ⊆ A, so that by setting B̂ = A, B is
an H0-collared band. By choosing H0 large enough, we can ensure that any two
such bands will be disjoint, at least modulo minor modification if one base surface
should be contained in the other. We let B be the set of bands arising in this way.
Most of the work is in verifying (A3). In fact, we will verify inductively a stronger
version of (A3), starting with bands whose base surfaces have minimal complexity
and working upwards to 6. This procedure is discussed in Section 6.

In this section, we have only dealt explicitly with a special case. In general,
we need to allow for parabolic cusps. One can also, in principle, account for the
nonorientable case. Most of this will be outlined in Section 8. The main differences
will be that in (A3) we should measure only vertical length in the convex core, but
we can also allow for boundaries of accidental Margulis cusps. We may also need
to allow for a finite number of “long bands” where one or more of the horizontal
boundary components is at infinity.

We finally remark on the special case where 6 is a one-holed torus or four-
holed sphere. This case is well analyzed in [Minsky 1999]. We know by (A7) that
B = ∅. Using (A3), we recover the fact that in such a manifold, the boundary of
any Margulis tube has uniformly bounded vertical length, and hence bounded area.

3. The topology of M

First we consider band systems from a purely topological point of view. To simplify
the exposition, we assume that 6 is a closed surface. (For the general case, see
Section 8.)

Let X be the set of simple closed curves in 6, defined up to homotopy. Unless
otherwise stated, a subsurface, 8, of 6 will be assumed to be connected, proper
and essential (i.e. 8 6= ∅, 8 6= 6 and 8 is not homotopic to a point). Indeed we
shall normally assume that 8 is not an annulus, and that each boundary component
of 8 is essential. (We allow for the complement of 8 in 6 to contain annular
components.) We regard 8 as defined up to homotopy (or equivalently isotopy) in
6. We write F for the set of (homotopy classes of) such surfaces. Given 8 ∈ F,
we write X (8) ⊆ X for the set of curves that can be homotoped into 8, and
X (∂8)⊆ X (8) for the set of homotopy classes of boundary curves. (Note that two
curves in ∂8 that bound an annular complementary component will get mapped
to the same element of X (∂8).)

Given 8, 9 ∈ F, we write 8 ⊆ 9 to mean that 8 can be homotoped into
9. Note that this is equivalent to saying that X (8) ⊆ X (9). A convenient way
to imagine this would be fix any hyperbolic structure and identify the interior,
int 8, of 8 with an open subsurface with geodesic boundary. Such a realisation
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is unique. Moreover, 8 ⊆ 9 in the sense above, if and only if their realisations
satisfy int 8 ⊆ int 9.

Definition. Given 8, 9 ∈ F, we say that � ∈ F is a component of 8 ∩ 9 if we
can homotope 8, 9 and � so that � is a connected component of 8 ∩ 9 in the
usual sense.

The following is easily verified:

Lemma 3.1. Suppose 8, 9,� ∈ F. Then � is a component of 8 ∩ 9 if and only
if X (�) ⊆ X (8) ∩ X (9) and X (∂�) ⊆ X (∂8) ∪ X (∂9). �

Given 8 ∈ F, write |∂8| for the number of boundary components. (This will
be bigger than |X (∂8)| whenever there is a complementary annular component.)

Definition. The complexity, κ(8), of 8 is defined by κ(8)=3 genus(6)+|∂8|−3.

Note that if 8 ⊆ 9, then κ(8) ≤ κ(9), with equality only if 8 = 9. Moreover,
κ(8) = 0 if and only if 8 is a 3-holed sphere.

Now let M = 6 × R, and let χ : M → 6 be the projection map. We want
to express various topological notions without making explicit reference to any
coordinate system on M .

Definition. A fibre of M is the image of an injective homotopy equivalence of 6

to M .

It turns out (see [Brown 1966]) that any fibre is ambient isotopic to 6 × {0}.
Continuing inductively, we see that if S1, . . . , Sn are disjoint fibres, then S1∪· · ·∪Sn

has the form 6 × {1, . . . , n} up to isotopy (and permutation).

Definition. By an unknotted surface in M we mean a subsurface F of a fibre S,
whose projection to 6 lies in F t {6}.

This projection is well defined up to homotopy. We denote it by φ(F)∈ Ft{6}.

Definition. A collection of disjoint (unknotted) surfaces, F1, . . . , Fn is unlinked if
there are disjoint fibres, S1, . . . , Sn with Fi ⊆ Si for each i .

One can generalise this to an infinite locally finite collection. In this case, the
ambient fibres are disjoint, locally finite, and indexed by N or Z.

We can extend these definitions to include closed curves in M (necessarily sim-
ple and essential in 6). A collection of disjoint solid tori in M are said to be
unlinked if their cores are unlinked. We define φ(γ ) ∈ X and φ(T ) ∈ X in the
obvious way for an unknotted curve, γ , or solid torus, T .

As discussed in Section 2, if T ⊆ M is an unknotted torus, then ∂T has a well
defined meridian and longitude up to homotopy. (Together these generate H1(∂T ).)
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Pushing surfaces. We describe a procedure for “pushing” one fibre off another to
make them disjoint. We normally want to do this while fixing some subsurface or
curve in the fibre. The main applications of this process (and its variants discussed
later) will come in Section 7.

Suppose that S, Z ⊆ M are fibres and that F ⊆ Z is an essential surface or curve
not meeting Z . We will produce a fibre, S′, containing F , disjoint from Z , and
contained in an arbitrarily small neighbourhood of S ∪ Z .

We can assume that S and Z meet transversely. Let GS be the closure of the
component of S \ Z containing F .

Step 1: We first arrange that each boundary curve of GS is essential. For if not, start
with a homotopically trivial boundary curve, α ⊆ ∂GS ∩Z , which is innermost in Z
among such boundary curves. It bounds a disc, DS , in S and a disc, DZ , in Z . Since
F is essential, we have F ∩ DS = ∅. Now replace DS in S by DZ pushed slightly
off Z , and adjoin DZ to GS to get rid of the boundary curve α. We continue to
perform such disc replacements until we rid ourselves of all such trivial boundary
curves. Our new surface, S, may not be embedded. (It may intersect itself along
certain trivial curves.) However it remains a homotopy equivalence, and GS is
embedded in M and still contains F . Moreover, GS ∩ Z = ∂GS .

Step 2: Since each boundary curve of GS is essential, there is a subsurface G Z ⊆ Z
with ∂G Z = ∂GS ⊆ M and with φ(G Z ) = φ(GS) (allowing for the possibility
that GS and G Z are both annuli). There is thus a natural bijection between the
components of S \ GS (as an immersed surface) and those of Z \ G Z . We can thus
replace each component of S \ GS with the corresponding component of Z \ G Z ,
pushed slightly off Z . (Note that GS is connected, and hence lies to one side of Z .)
Since Z ∩ GS = ∂GS , the resulting surface is embedded. It is clearly a homotopy
equivalence, and hence a fibre containing F , as required.

Here is a simple consequence of the pushing process:

Lemma 3.2. Suppose the S1, . . . , Sn are a set of fibres of M and for each i , Fi ⊆ Si

is an unknotted surface or curve. If Fi ∩ S j = ∅ for all distinct i and j , then the
surfaces, Fi , are unlinked in M.

Proof. Assume inductively that we have disjoint fibres, S′

1, . . . , S′
m with F j ⊆ S′

j
for all j ≤ m, and Fi ∩ S′

j = ∅ for all i > m. Now inductively push Sm+1 off each
of the fibres S′

j to obtain a fibre S′

m+1 containing Fm+1, disjoint from each of the
other S′

j , and contained in a small neighbourhood of Sm+1 ∪
⋃

j≤m S′

j . We see that
Fk ∩ S′

m+1 = ∅ for all k ≥ m + 2. We eventually get the Fi lying in disjoint fibres
as required. �

Thick surfaces. A “thick surface” will give us a topological formulation of band.



SYSTEMS OF BANDS IN HYPERBOLIC 3-MANIFOLDS 13

Definition. An (unknotted) thick surface, A, in M is the image of an embedding
of 8 × [−1, 1] for some 8 ∈ F, such that 8 × {t} is unknotted for some, hence
every, t ∈ [−1, 1].

We can assume that these surfaces map back to 8 under the projection χ . We
write φ(A) = 8. We refer to φ(A) as the base surface of A.

We can write ∂ A = ∂H A ∪ ∂V A, where ∂H A = 8 × {−1, 1} and ∂V A = ∂8 ×

[−1, 1] are respectively the horizontal and vertical boundaries of A. Indeed we
can write ∂H A = ∂+ At∂− A, where ∂± A lies in a fibre S±, where S+ separates S−

from the positive end of M . One can check this is well-defined. By a fibre of A
we mean the image of an injective homotopy equivalence of 8 into A \∂H A, with
∂8 = 8 ∩ ∂V A. As with M , a fibre of A, is isotopic in A to 8 × {0}.

Lemma 3.3. Suppose A ⊆ M is a thick surface and F ⊆ M is an unknotted surface
with F ∩∂H A = ∅. Let G be a nonannular component of F ∩ A meeting ∂V A only
in essential (core) curves. Then φ(G) is a component of φ(F) ∩ φ(A).

Proof. It is easy to see that X (φ(G)) ⊆ X (φ(F)) ∩ X (φ(G)) and X (∂φ(G)) ⊆

X (∂φ(F)) ∪ X (∂φ(A)), and so the result follows by Lemma 3.1. �

Corollary 3.4. Suppose A ⊆ M is a thick surface and S ⊆ M is a fibre with
S ∩ ∂H A = ∅. Suppose S meets each component of ∂V A if at all in a single core
curve. Then S ∩ A is either empty or a fibre of A.

Proof. If S ∩ A 6= ∅, let G be a component of S ∩ A. This cannot be an annulus.
We apply Lemma 3.3 with F = 6 to see that φ(G) is a component of φ(A), and
hence equal to it. Thus the inclusion of G in A is a homotopy equivalence. Since
∂G ⊆ ∂V A, it follows that G is a fibre. In particular, G meets each component of
∂V A, and so G = S ∩ A. �

Definition. We say that a set of disjoint thick surfaces in unlinked if some (hence
any) set of disjoint fibres thereof is unlinked.

Horizontal surfaces and bands. We now bring our topological Margulis tubes into
play. Suppose that T is a locally finite disjoint collection of unlinked solid tori in
M . There is a map φ : T → X , which we assume to be injective. We also assume
that for each T ∈ T, ∂T comes equipped with a foliation by longitudes (referred
to as horizontal longitudes if we need to clarify). We write 2(M) for the closure
of M \

⋃
T. For surfaces, the use the term “horizontal” to mean that it intersects

the Margulis tubes nicely. More precisely:

Definition. A horizontal surface is an unknotted surface, F ⊆ M , such that there
are two disjoint subsets T∂(F) and TI (F) of T such that:

(1) For all T ∈ T \ (TI (F) ∪ T∂(F)), T ∩ F = ∅.

(2) For all T ∈ TI (F), T ∩ F is an annulus whose boundary is precisely ∂T ∩ F .
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TI(F )

T∂(F )

F

Figure 3

(3) For all T ∈T∂(F), T ∩F =T ∩∂ F consists of one or two horizontal longitudes.

(4) ∂ F ⊆
⋃

T∂(F).

(See Figure 3.)

Definition. A horizontal fibre is a horizontal surface that is also a fibre.

Clearly, if F is a horizontal fibre, then T∂(F) = ∅. Otherwise, F ∈ F.

Definition. Two horizontal surfaces are parallel if φ(F) = φ(G) and F ∩ G = ∅.

This implies that T∂(F) = T∂(G).

Definition. A horizontal surface, F , is primitive if TI (F) = ∅.

Definition. A piece of a horizontal surface, F , is a connected component of F ∩

2(M).

Note that a piece of F is a primitive horizontal surface. (Note also that F∩2(M)

might be connected even if F is not primitive.)
Next we come to the notion of a band. As discussed earlier, this a thick surface

whose vertical boundary lies in the boundary of tubes. All other tubes, meet it, if
at all, in solid tori. We need to allow for the possibility of a tube cutting all the
way through a band, from the top to the bottom surface. If this doesn’t happen, the
band will be called “primitive”. Here is a formal account.

Definition. A band is an unknotted thick surface, B ⊆ M , such that there are
subsets T∂(B), TI (B), T+(B) and T−(B) of T satisfying:

(1) The three sets T∂(B), TI (B) and T+(B) ∪ T−(B) are mutually disjoint.

(2) If T ∈ T \ (T∂(B) ∪ TI (B) ∪ T+(B) ∪ T−(B)) then T ∩ B = ∅.

(3) If T ∈ TI (B), then T ⊆ B and T ∩ ∂±B = ∅.

(4) If T ∈ T∂(B), then T ∩ B = ∂T ∩ B has one or two components, (each of)
which is a component of ∂V B and lies between two horizontal longitudes of
∂T .

(5) ∂V B ⊆
⋃

T∂(B).
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T∂(B)

T+(B)

T∂(B) TI(B)

T
−
(B)

Figure 4

(6) If T ∈ T+(B), then T ∩ ∂+B is an annulus whose boundary is ∂T ∩ ∂+B and
consists of two horizontal longitudes of ∂T .

(7) As with (6) with − instead of +.

(See Figure 4.)

Note that ∂±B is a horizontal surface, with T∂(∂±B) = T∂(B) and TI (∂±B) =

T±(B). If T ∈ T+(B)∪T−(B), then T meets B in a subsolid torus. (Note that its
complement in T will have two components if T ∈ T+(B) ∩ T−(B).)

We write T0(B) = TI (B) ∪ T+(B) ∪ T−(B).
Clearly ∂+B and ∂−B are parallel. Conversely, if F and G are parallel horizontal

surfaces, then F and G determine a unique band, B, with {F, G} = {∂+B, ∂−B}.
We write B = 〈F, G〉.

Definition. A band, B, is primitive if T+(B) ∩ T−(B) = ∅.

Definition. A piece of a band B is the closure of a connected component of B \⋃
(T+(B) ∩ T−(B)) (see Figure 5).

T∂(B) T∂(B)

T
−

(B) ∩ T+(B)

Figure 5
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Note that a piece of a band is a primitive band.

Definition. A horizontal fibre of a band B is a fibre of B that is a horizontal surface.

We note that a fibre, F , of a band, B, divides F into two bands, namely 〈F, ∂−B〉

and 〈F, ∂+B〉. We also note the following consequence of Lemma 3.3 and Corol-
lary 3.4:

Lemma 3.5. Let B be a band.

(1) If F ⊆ M is a horizontal surface with F ∩ ∂±B = ∅ and G is a component of
F ∩ B, then G is a horizontal surface with φ(G) = φ(F) ∩ φ(B).

(2) If S is a horizontal fibre with S ∩ B 6= ∅ and S ∩ ∂±B = ∅, then S ∩ B is a
horizontal fibre of B. �

Pushing horizontal fibres. We need to elaborate on the pushing procedure de-
scribed earlier, in order to take account of the positions of the tubes.

Suppose that S, Z are horizontal fibres, and that F is an essential surface or
curve lying in some piece of F , with F ∩ Z = ∅. As before, we want to “push” S
off Z to obtain a fibre S′ containing F . We need to refine our previous “pushing”
procedure slightly in order to ensure that the resulting fibre is horizontal.

We can assume that S meets Z transversely. We can also assume that if T ∈

TI (S)∩ TI (Z), then ∂T ∩ S ∩ Z = ∅, and that the annuli S ∩ T and Z ∩ T , meet,
if at all, in single core curve. Let GS be the closure of the component of S \ Z
containing F . Thus, each boundary curve of GS is either a core curve of some
solid torus, or else lies in a piece of Z .

Step 1: First get rid of the homotopically trivial components of ∂GS as before,
noting that each of the discs, DZ , lies in some piece of Z .

Step 2: Let G Z ⊆ Z be the subsurface with ∂G Z = ∂GS and φ(GS) = φ(G Z ).
Let S1 be the surface obtained by replacing the components of S \ GS with the
corresponding components of Z \ G Z . As before, S1 is a fibre containing F .

Step 3: We may need to adjust S so that it becomes horizontal. Suppose that T ∈ T.
Now S1 ∩ T is empty or consists of one or two annuli (each of the form S ∩ T or
Z ∩T pushed slightly, or obtained by surgery on S∩T and Z ∩T in the case where
they intersect in a core curve.) Thus, the only thing that can go wrong is that we
may have a torus, T , with S1 ∩ T = P t Q, where P, Q are annuli. These are
homotopic in S1 and hence bound a third annulus, R ⊆ S1. Now if S1 ∩ F = ∅,
then we can just push R into T so that S1 ∩ T becomes a single annulus. After
doing this a finite number of times, we obtain our horizontal fibre.

It remains to worry about the case where F meets, and hence is contained in R.
Now we cannot have GS ⊆ R (otherwise the process of obtaining S1 would not have
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produced any such double annuli). Nor can we have R ⊆ GS (since GS ⊆ S, and
we are assuming S to be horizontal). It follows that the annulus V = GS ∩ R ⊆ F
has one boundary component, α, in T ∩ S, and the other boundary component, β,
in ∂GS ⊆ Z .

At this point, we forget about Step 2, and instead do:

Step 2′: Recall that we have F ⊆ V ⊆ S with V ∩T =α, V ∩Z =β, ∂V =αtβ and
T ∩ Z 6= ∅. Now T ∩ Z and β bound an annulus, W ⊆ Z . Let γ be the boundary
curve of T ∩ Z on the other side of W ∩ T . We connect γ to α by an annulus
Y ⊆ T , and now replace (T ∩ Z)∪ W in Z by Y ∪ V . Pushing this surface slightly
off Z , we get our desired horizontal fibre, S′.

We finally note that this pushing process can be applied to subsurfaces in the
following sense.

Suppose that S is a fibre, and F ⊆ S ∩ 2(M) is an essential surface or curve.
Suppose that J ⊆ S is a horizontal surface containing F , and that K is another
horizontal surface with φ(K ) = φ(J ), and with K ∩ S ⊆ J . We can form a fibre
Z with K ⊆ Z and with Z agreeing with S on all complementary horizontal sur-
faces. Now applying the procedure above, we see that S remains unchanged on
the complement of K (modulo modifications in the solid tori containing boundary
components of K ). We have thus effectively pushed S off K , while retaining F
unchanged.

4. Metric properties

So far, we have only considered the topological structure of M . In this section we
summarise its key metric properties. We shall assume that M is (constant curvature)
hyperbolic, though the essential points can be interpreted for more general metrics,
for example, in pinched negative curvature.

Again, we assume that M has no parabolic cusps, and admits a homotopy equiv-
alence χ : M →6 to a closed surface 6. By [Bonahon 1986], M is homeomorphic
to 6 × R. By [Otal 1995; 2003] the set T of Margulis tubes is unlinked. We write
Y = core(M).

Recall that 2(M) is the thick part of M , with induced path metric d . At least
once the essential properties are derived, only the geometry on 2(M) will be rel-
evant to future discussion.

We note the following four geometric features of M .

4.1. Geometry of tori. We shall assume that the “thick part” of M is defined in
such a way as to simplify the handling of constants. The standard definition of thick
part involves fixing a sufficiently small Margulis constant, ε > 0, and defining it to
be the set of points where the injectivity radius is at least ε. In this way, the thin
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part is a disjoint union of tubes. However, we get a similar qualitative picture if
we allow for different tubes to be defined by different injectivity radii, provided
they range between two fixed positive constants. This allows us to make certain
additional metric assumptions about the tubes that will simplify further discussion.

Suppose T ∈ T. The geodesic core of a Margulis tube lies in the convex core,
Y , of M . The boundary, ∂T , is a euclidean torus, foliated by geodesic longitudes.
It meets ∂Y , if at all, in a collection of geodesic longitudes. In fact, T either lies
in Y or meets Y is a solid torus bounded by one or two annuli.

It is convenient to assume that all geodesic longitudes of all ∂T they all have
the same length, say η. This can be achieved by noting that every longitude in
∂T ∩ Y lies inside some horizontal fibre. (This follows from work of Otal; see the
discussion in Section 4.2 below.) In general, its length will necessarily be bounded
between two positive constants, and so, using the observation of the preceding
paragraph, it can be assumed to be fixed. The constant, η, can be chosen to depend
only on the complexity, κ(6), of 6 (though could also be taken to be arbitrarily
small). These geodesic longitudes are deemed to be horizontal. We can also assume
that there is a lower bound on the distance between two such Margulis tubes, which
we can also take to be η. We will also want to assume that the boundaries of a
Margulis tube T has extrinsic curvature close enough to 1 (the extrinsic curvature
of a horosphere). This can be achieved by assuming the length of the core geodesic
is small in relation to η, so that it lies deep inside T . (Again, using the principle
of the first paragraph.) Note that, by definition, there is some lower bound on the
lengths of closed geodesics in the thick part, 2(M). This depends on the Margulis
constant, η, we have fixed, and the maximal lengths of core curves of tubes that
we are allowing.

4.2. Horizontal fibres. There is some constant, W0, depending on κ(6) (and η)
such that any point of Y ∩2(M) is contained in a horizontal fibre S ⊆ Y of width
W (S)< W0. (Recall that W (S) is defined as the maximal diameter of any piece of S
measured in the path metric d on 2(M).) In particular, any horizontal longitude of
any torus is contained in such a surface. Note that by taking strict inequality, we can
push such a surface slightly off itself to give a disjoint surface while maintaining
the same bound.

This can be achieved using various standard arguments. The main ideas of the
construction can be found in [Otal 1995; 2003]. We first need to use the fact that
every point of M lies in the image of a uniformly lipschitz homotopy equivalence,
φ : 6 → M , where 6 carries some hyperbolic metric. The usual argument for
this is based on some form of interpolation of pleated surfaces; see [Thurston
1979]. A technically simpler approach is to use singular hyperbolic surfaces of the
type described in [Bonahon 1986]. In particular, the “filling theorem” of [Canary
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1996], gives us what we need. (The latter gives us a singular hyperbolic metric
on 6, but that works just as well.) Now the intrinsic diameter of each component
of 6 ∩ φ−12(M) is bounded in terms of κ(6) (and η). We can homotope φ a
bounded distance so that the preimage of the set of tubes is a set of nonparallel
essential annuli in 6, whose boundary curves are horizontal. We can now perform
a variant of the construction of [Freedman et al. 1983], as described in [Otal 2003],
to give us an embedded surface, F , in an arbitrarily small neighbourhood of φ(6).
(Some care is needed to ensure that the original longitude remains in F .) Now, the
ambient diameter of each component of F ∩2(M) remains bounded. (In principle,
one can achieve a bound on the intrinsic diameters of such components, but this
would require more work.)

4.3. Bounded geometry. Since the injectivity radius of 2(M) is bounded below,
it has “bounded geometry”. One way of exploiting this, following [Gromov 2007],
is this. Let r > 0 be the lower bound on injectivity radius, as in Section 4.1,
and assume that any pair of distinct tubes are distance at least 2r apart. A subset
V ⊆ Y ∩2(M) is said to be r -separated if d(x, y) ≥ r for all distinct x, y ∈ V . We
can form a graph, 1(V ), with vertex set V , and with x, y ∈ V adjacent in 1(V ) if
d(x, y) ≤ 3r . Bounded geometry implies that the degree of any vertex of such a
graph is uniformly bounded. We note that we could choose V so that 2(M) lies in
a (2r)-neighbourhood of V . Such a set is called an r -net. In this case, the “nerve”,
1(V ), approximates distance in 2(M) to within linear bounds.

From our choice of r , the r -ball about any point x ∈ 2(M) a distance at least
r from any tube will be isometric to an r -ball in hyperbolic 3-space. If x is close
to a tube T , then it will have a piece of this tube removed, and slightly distorted
geometry. (Since we are defining balls in terms of the metric d .) In any case, it is
a nice contractible set.

4.4. Three-holed spheres. The following (while not really essential to the con-
struction) will tell us that no band in our system has base surface a 3-holed sphere.
(In retrospect, this explains why boundaries of Margulis tubes have bounded area
in the case of a 1-holed torus or 4-holed sphere.)

Lemma 4.5. There is a constant, H3 > 0 such that if B ⊆ M is a band with base
surface, φ(B), a 3-holed sphere and with W (B) ≤ W0, then we can connect ∂+B
to ∂−B by a path in B of length at most H3.

Proof. Let T∂(B) = T0(B) = {T1, T2, T3}, and let γ ±

i = Ti ∩∂±B. There is a path,
σ±

i in 2(M) connecting γ ±

i to γ ±

i+1 of length at most W0 (taking indices mod 3).
Since we are dealing with a 3-holed sphere, we see that each σ+

i is homotopic to σ−

i
rel ∂Ti ∪∂Ti+1. Lifting this picture to H3, we get six paths, σ̃±

i connecting the three
sets T̃i , each of these sets being a uniform neighbourhood of a bi-infinite geodesic.
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Simple hyperbolic geometry now gives us a bound on the distance between σ̃+

i and
σ̃−

i in the boundary of T̃i . Projecting back to M gives the result. �

We shall assume henceforth that we have fixed the constants η and r (depending
on κ(6)). The constants W0 and H3 are thus determined.

We remark that there are other important properties of the geometry of M , for
example the “Uniform Injectivity Theorem” for pleated surfaces (which seems
central to the Ending Lamination Conjecture). However, we make no use of this
here — which means that all our constants are, in principle, computable functions
of κ(6).

5. The band system

We now describe more carefully the construction of a nested band system, B.

Definition. The exterior length, l(π), of a path π in M is the rectifiable length of
π ∩ 2(M).

Definition. A vertical fibre of a band, A, is a path in A \ ∂V A connecting ∂+ A to
∂− A.

Definition. The height, H(A), of a band, A, is the infimum of the exterior lengths
of vertical fibres.

Note that A is primitive if and only if H(A) > 0. In fact, when this is positive
it is more convenient to take H(A) to be this infimum plus an arbitrarily small
positive constant. Thus we can assume we have a vertical fibre of length at most
H(A).

Definition. Given x ∈ A, the depth of x in A, denoted D(x, A) is the infimum of
l(π) as π varies over all paths in A connecting x to ∂H A in A \ ∂V A.

If Q ⊆ A, we write D(Q, A) = inf{D(x, A) | x ∈ Q} for the depth of Q in A.
Again it is convenient to add a small positive constant, or to pretend that the

infimum is attained.
Let ν = ν(6) be minus the Euler characteristic. This is the number of 3-holed

spheres in any pants decomposition of 6. It thus bounds the number of pieces in
any horizontal surface in M .

Lemma 5.1. Suppose A is a band, F ⊆ M is a horizontal surface, and x ∈ F ∩ A
with D(x, A) > νW (F). Let G be the component of F ∩ A containing x. Then G
is a horizontal surface with φ(G) a component of φ(F) ∩ φ(A). In particular, if
F is a horizontal fibre of M , then F ∩ A is a horizontal fibre of A.

Proof. By Lemma 3.5, it’s enough to show that F ∩ ∂H A = ∅.
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If not, we could find a path π in F connecting x to ∂H A never entering twice the
same piece of F . We can straighten this to a path, π ′ in A, with l(π ′) ≤ νW (F),
giving the contradiction that D(x, A) ≤ νW (F). �

Indeed continuing the same argument, we see easily that D(G, A) ≥ D(x, A)−

νW (F).

Definition. A horizontal surface, F , is said to be narrow if W (F) < W0.

Thus the analysis in Section 4.2 tells us that every point of 2(M) is contained
in a narrow fibre.

Let D0 = νW0.
A particular case of Lemma 3.1 and the subsequent remark is:

Corollary 5.2. If A a band and S is a narrow horizontal fibre and x ∈ S ∩ A with
D(x, A) ≥ D0, then S ∩ A is a horizontal fibre of A. Moreover, D(S ∩ A, A) >

D(x, A) − D0. �

In particular every point of depth at least D0 in A is contained in a narrow
horizontal fibre of A.

Definition. A band B is narrow if W (B) < W0.

Recall, from Section 1, the definition of a “collared band”, B ⊆ B̂, where B̂ =

B− ∪ B ∪ B+ and B− and B+ are the top and bottom collars of B. Note that
D(B, B̂) = min{H(B−), H(B+)}. We say that B is narrow as a collared band if
both B and B̂ are narrow. We say that B is h-collared if D(B, B̂) ≥ h.

We will observe that sufficiently long bands will always contain parallel collared
bands of bounded width. This will ultimately reduce us to considering only collared
bands. One advantage of this is that they satisfy a certain nesting property, stated
in Lemma 5.3 below. This nesting property, a priori, only applies to base surfaces.
The bands themselves need not be nested. This is a complicating factor, that will
need to be addressed later (after the proof of Lemma 5.4.)

Lemma 5.3. Suppose h ≥ 0 and A is a band with H(A) ≥ 2h + 4D0. Then
A contains a narrow band B with h ≤ D(B, A) ≤ h + D0 and with H(B) ≥

H(A) − 2h − 4D0.

Proof. Let π be a vertical fibre of A with l(π, A) = H(A). Let x± be points
of π \

⋃
T0(A) at external distance h + D0 away from ∂± A. By Corollary 5.2

there are narrow horizontal fibres, F±, of A containing x±. As in the proof of
Lemma 5.1, we see that H(〈F±, ∂± A〉) ≥ h + D0 − D0 = h and H(〈F−, F+〉) ≥

H(A) − 2(h + D0) − 2D0 = h − 4D0. We set B = 〈F−, F+〉. �

In particular, if we set B̂ = A, we get an h-collared band, (B, B̂).

Lemma 5.4. Suppose that B1, B2 are narrow primitive (2D0)-collared bands. If
B1 ∩ B2 6= ∅, then either φ(B1) ⊆ φ(B2) or φ(B2) ⊆ φ(B1).
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Proof. Let x ∈ B1 ∩ B2 ∩2(M). By Section 4.2, x lies in a narrow horizontal fibre,
S, of M . Now D(x, B̂i ) ≥ D0 and so by Corollary 5.2, Fi = S ∩ B̂i is a horizontal
fibre of B̂i containing x . Moreover, D(Fi , B̂i ) ≥ 2D0 − D0 = D0. Let G be the
component of F1 ∩ F2 containing x . Thus, φ(G) is a component of φ(B1)∩φ(B2).

Suppose that φ(B1) is not a subset of φ(B2), or equivalently that F1 6⊆ F2.
There must be a boundary curve, say α, of G contained in the interior of F1.
Thus, α ⊆ ∂ F2. Now α is a longitude of some T ∈ T. Since F2 is a fibre of B̂2,
T ∈ T∂(B̂2) = T∂(B2). Since α lies in the interior of F1, T /∈ T∂(B1). Moreover,
from the last paragraph, we see that D(∂T, B̂1) ≥ D0.

Now T ∈ T∂(∂±B2). Let γ± ⊆ T ∩ ∂±B2 be longitudes of ∂T on the same
side of T as α, i.e. so that γ+, γ− and α all lie in the same component of ∂V B̂2.
Since D(γ±, B̂1) ≥ D0, by Lemma 5.1, it follows that there are horizontal subsur-
faces, G±, of ∂± containing γ±, so that φ(G+) and φ(G−) are both components
of φ(B1) ∩ φ(∂±B2) = φ(B1) ∩ φ(B2). Since γ+ and γ− are on the same side of
T , with respect to B2, they must map to the same boundary curve of φ(B2). In
particular, φ(G+) ∩ φ(G−) 6= ∅, and so φ(G+) = φ(G−) = J , say.

Now if φ(B2) 6⊆ φ(B1), there must be some boundary curve, β, of J lying in
the interior of φ(B2). We have β = φ(T ) for some T ∈ T. Since β ⊆ ∂φ(G±)

there must be curves δ± ⊆ ∂G± which are longitudes in T . Since δ± are not
boundary curves of ∂±B2, It follows that T ∈ TI (∂±B2) = T±(B2). In particular,
T+(B2) ∩ T−(B2) 6= ∅, contradicting the assumption that B2 is primitive. �

We remark that by the same argument, we can arrive at the same conclusion
assuming, for any k > 0, that B1 and B2 are (2D0 + k)-collared, and that d(B1 ∩

2(M), B2 ∩ 2(M)) ≤ k.
It would be nice if we could go on to conclude that collared bands were nested.

However, it is still possible that a horizontal boundary component of the larger
band (the one with larger base surface) may cut through the smaller band. This is
a phenomenon that will need to be described and dealt with. This is the purpose
of the following discussion.

Let B be a band. Note that the horizontal boundary, ∂H B = ∂+B ∪ ∂−B meets
2(M) precisely in the relative boundary of B∩2(M) in 2(M). If A is a primitive
band, then A ∩ 2(M) is connected. We see easily that one of A ⊆ B, A ∩ B = ∅
or A ∩ ∂H B 6= 0 must hold.

Recall that A, B are nested if A ⊆ B, B ⊆ A or A ∩ B = ∅. Suppose that
A, B are nonnested primitive narrow (2D0)-collared bands. Since A ∩ B 6= ∅,
applying Lemma 5.4, we have either φ(A) ⊆ φ(B) or φ(B) ⊆ φ(A). Suppose
that φ(A) ⊆ φ(B). Since A 6⊆ B, we have A ∩ ∂H B 6= ∅, so without loss of
generality, A ∩ ∂+B 6= ∅. Applying Corollary 5.2, we see that F = Â ∩ ∂+B is a
horizontal subsurface of B that is a fibre of Â. In particular, T∂(F) = T∂(A) ⊆

T∂(∂+B) ∪ TI (∂+B) = T∂(B) ∪ T+(B).
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Before continuing, we remark that the same argument would apply if we assume
that A and B are not k-nested and that A and B are (2D0 + k)-collared. Note that
N (A ∩ 2(M), k) is connected, so in this case d(A ∩ 2(M), ∂H B ∩ 2(M)) ≤ k,
which is sufficient to make the argument work.

Now suppose that φ(A) 6= φ(B), so that F is a proper subsurface of ∂+B. We
see that T∂(A) \ T∂(B) 6= ∅. Note that T∂(A) \ T∂(B) ⊆ T+(B). (We also
remark that it follows that A ∩∂−B = ∅, otherwise a similar argument would give
T∂(A)\T∂(B)⊆ T−(B), showing that T∂(B)∩T−(B) 6= ∅, and contradicting the
assumption that B is primitive.) One can also see easily that A ⊆ B̂ (see Lemma
5.5 below).

Now let B ′ be the band with ∂−B ′
= ∂−B and with ∂+B ′ the horizontal surface

obtained from ∂+B by replacing F ⊆ ∂+B with the parallel surface ∂− A, pushed
downwards slightly so that if becomes disjoint from ∂− A. The remainder of ∂+B
remains unchanged apart from suitable adjustments of the annuli in the tubes of
T∂(A) \ T∂(B). We can assume that B ′ remains narrow. Clearly φ(B ′) = φ(B).
In fact:

Lemma 5.5. We have A ∩ B ′
= ∅ and B ′

⊆ B̂. Moreover, H(B) ≤ H(B ′) and
D(B, B̂) ≤ D(B ′, B̂).

Proof. That A ∩ B ′
= ∅ follows easily from the construction. Let h = D(B, B̂).

Choose some T ∈ T∂(A) ∩ TI (B). Now D(T, B̂) ≥ h. Moreover T ∈ T∂(∂± Â)

and Â is a assumed to be narrow. Thus

D( Â, B̂) = D(∂H Â, B̂) ≥ h − D0 ≥ D0.

In particular, Â ⊆ B̂ and so B ′
⊆ B.

Let π be a path in B̂ \ ∂V B̂ with (close to) minimal external length l(π) that
connects ∂−B = ∂−B ′ to ∂+B ′. Let x be its endpoint in ∂+B ′. Now if x lies
the subsurface we pushed off ∂− A, then π has to cross A− = 〈∂− A, ∂− Â〉. This
contributes at least (almost) 2D0 to l(π), so it would have been quicker simply
to follow ∂+ Â to T (straightening in 2(M)) and then go through T to reach the
unaltered part of ∂+B ′. In other words, we arrive at a point of ∂+B, and so H(B ′)≥

L(π) ≥ H(B).
The fact that D(B ′, B̂) ≥ D(B, B̂) is similar, but even simpler. Note that it

would be stupid for a vertical fibre of B ′
+

to go all the way through A+ and A
in order to reach ∂− A, when it could just go directly to T . Moreover, the bottom
collar, B− remains unchanged. �

These results show us how to arrange any pair of (2D0)-collared bands to be
nested, except possibly if φ(A) = φ(B). The construction of the band system will
involve choosing at most one band (of almost maximal height) with a given base
surface, so that the last situation will not arise.
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Recall that we have fixed constants W0, D0 and H3 depending on κ(6) (as
described in Section 4). We fix further constants, H0 ≥ 2D0 and H1 ≥ 0, and let
H4 = H1 + 2H0 + 4D0. We assume that H4 ≥ H3.

The aim is to construct a set, B, of bands satisfying:

(B1) The elements of B are nested.

(B2) No two elements of B have the same base surface.

(B3) Each element of B is a narrow H0-collared band.

(B4) Each B ∈ B has H(B) ≥ H1.

(B5) If F is a narrow horizontal surface parallel to B ∈ B, then either

H(〈F, ∂+B〉) ≤ H0 + 2D0 or H(〈F, ∂−B〉) ≤ H0 + 2D0.

(B6) If A is any narrow band with H(A)≥ H4, then there is some band in B with
the same base surface.

To construct B, let F0 be the set of 8 ∈ F for which there is a narrow band, A,
with φ(A) = 8 and H(A) ≥ H4. For convenience, we assume that the maximal
height is attained, say by A. Lemma 5.3 then gives us a subband B ⊆ A, so that
setting B̂ = A, we get a H0 collared band, with H(B) ≥ H(A)−2D0 −4D0 ≥ H1.
Properties (B2)–(B6) are more or less immediate. To obtain nestedness, (B1),
we need to carry out the modification procedure described above. We start with
bands with base surfaces of minimal complexity, and proceed inductively over
complexity. A given band B might meet other bands A with φ(A) strictly contained
in φ(B). Inductively, the set of all such bands A meeting B is nested. We can thus
perform the construction described before Lemma 5.5 to the set of outermost such
bands simultaneously (or in any order) to give us a band, B ′. We now replace B by
B ′. After a finite number of such modifications, we arrange that B is nested with
all other bands. We do this for all bands with the same complexity, and then move
on to bands with the next higher complexity. By the time we reach κ(6) − 1, we
obtain our nested band system B.

Note that the existence of collars (B3) also implies that d(∂+B ∩2(M), ∂−B ∩

2(M)) ≤ H0; thus a band does not approach itself on the outside.
It is possible to refine the procedure above slightly. As we have stated it, if

A and B are bands with φ(A) ⊆ φ(B), then it is possible for ∂− A to be very
close to ∂+B. There is a slight modification of the process that will ensure that
d(A ∩ 2(M), B ∩ 2(M)) ≥ H2 for an arbitrarily chosen constant, H2 > 0. To
achieve this, we construct our initial bands to be doubly collared. In other words,
for each B ∈ B is initially contained in two larger bands, B ⊆ B̄ ⊆ B̂, with H2 ≤

D(B, B̄)≤ H2+D0 and H1 ≤ D(B̄, B̂)≤ H2+D0. If A ∈B with Ā∩∂+B 6=0, then
we can assume there is a horizontal subsurface, F , of ∂+B, with φ(F) = φ(A).
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We modify ∂+B replacing F by ∂− Ā. Similarly, if C ∈ B with C̄ ∩ ∂+ B̄ 6= 0, then
there is a subsurface, G, of ∂+ B̄ with φ(G) = φ(C). We modify ∂+ B̄ by replacing
G with ∂−C̄ . We do this for all such A and C , and proceed inductively for over the
complexity of φ(B). We can do the same thing for the bottom surfaces (swapping
+ and −). Finally we forget about the intermediate bands, B̄, and get a system of
collared bands as before.

Putting this together with the earlier remarks, and by taking our bands to be at
least (2D0 + H2)-collared, we can assume that the set B is H2-nested.

We want to explore properties of B. Most of the work, carried out in Section
6, is to verify property (A3) of Section 1. We begin here with some preliminary
discussion of pushing surfaces off bands. As one consequence of this, we will
deduce that our bands are unlinked in M . For the remaining discussion of this
section, we will not need (B6). We note that properties (B1)–(B5) pass to any
subset of B, in particular to the set of outermost bands of B.

We recall the process of pushing fibres. Suppose that S, Z are horizontal fibres,
and F ⊆ S \ Z an essential subsurface or curve contained in a piece of S. Let S′

be the horizontal surface obtained pushing S off Z as described in Section 3.
Now each piece of S′ is obtained by gluing together subsets of pieces of S and Z .

Some of the subsets of Z may be discs, but there is a combinatorial bound in terms
of κ(6) on the number of nondisc components glued together in this way. Thus,
W (S′) is bounded above by some (linear) function of W (S) and W (Z). The same
discussion applies to pushing S off a horizontal surface K parallel to a horizontal
subsurface of S. In this case, we get a (linear) bound in terms of W (S) and W (K ).

Now, let B be a collection of bands satisfying (B1)–(B5) above. Let A ⊆ B be
the subset of outermost bands. Clearly

⋃
A =

⋃
B.

Suppose that S is a narrow horizontal surface, and F ⊆ S ∩ 2(M) \
⋃

B is an
essential subsurface or curve. Suppose that B ∈ A and S ∩ B 6= ∅. By Corollary
5.2, G = S ∩ B̂ is a horizontal fibre of B̂. If F ∩ G = ∅, then we can replace G
is S by ∂+B, pushed slightly off B. The fibre S remains narrow. After doing this
for each such B, we can assume that F ∩ G 6= ∅, and so F ⊆ G. In this case we
can apply the pushing construction so as to push S first off K = ∂+B and then off
K = ∂−B. The resulting fibre still contains F , does not meet B, and has width
bounded above in terms (depending on κ(6)) of W (S) ≤ W0 and W (B) ≤ W0.
We now apply this successively to all such B. Since they are each parallel to a
horizontal subsurface of our original fibre, there is a combinatorial bound on the
number of such B in terms of κ(6). We thus finally obtain a fibre, S′

⊇ F with
S′

∩
⋃

B = ∅, and with W (S′) bounded above by some constant W1 depending
only on κ(6).

Putting this together with the property in Section 4.2, we obtain, in particular:
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Lemma 5.6. If T ∈ T and α is a horizontal longitude of ∂T disjoint from
⋃

B,
then α is contained in a horizontal fibre, S, with W (S) < W1 and S ∩

⋃
B = ∅.

�

We can apply this to show that the set, A, of outermost bands of B are unlinked
in M . Given any A ∈ A, let S(A) be any narrow horizontal fibre in M meeting A in
a fibre, F(A), of A. Now the collection of bands A \ {A} also satisfies (B1)–(B5)
above, so applying the construction above, we can push S(A) off each element of
A \ {A} while keeping F(A) unchanged. We thus obtain fibres (S′(A))A∈A with
F(A) ⊆ A and F(A)∩ S′(B) = ∅ for all distinct A, B ∈ A. Now Lemma 3.2 tells
us that the surfaces, F(A), and hence, by definition, the bands A are unlinked. In
other words, we have shown:

Lemma 5.7. A set of outermost bands satisfying (B1)–(B5) is unlinked in M.

6. Bounding vertical lengths

The main purpose of this section is show that a set of bands satisfying (B1)–(B6)
of Section 5 will also satisfy (A3) of Section 2. Having constructed such a set of
bands in Section 5, this will prove the main result, namely Theorem 0.

Given T ∈ T, recall that L(∂T, B) is defined as the total vertical length of
∂T \

⋃
B. We aim to show:

Proposition 6.1. There is some L0 such that for all T ∈ T, L(∂T, B) ≤ L0.

Here, L0 depends on κ(6) and the choice of H0 and H1.

Convention. Throughout this section, we will use the term “band” only to refer to
elements of B. Other bands (as we have defined them) will be termed “strips”. Un-
less otherwise stated, each “horizontal surface” will be assumed disjoint from

⋃
B,

and any strip will be assumed nested with the elements of B, and not contained in
any element of B.

A horizontal surface, F , will be said to be “narrow” if its width, W (F), is less
than W1.

We have thus strengthened the notion of “horizontal surface”, but weakened the
definition of “narrow” (as given in Sections 2 and 5 respectively). By Lemma 5.6,
it remains the case that every point of M lies in a narrow horizontal surface.

To exploit bounded geometry, we will use the following variation of the nerve of
a covering. The construction will also be used in Section 7. Recall, from Section
4, the definition of an “r -net”, V ⊆ 2(M). It will be convenient to construct V as
follows. Given T ∈ T, let V (∂T ) be an r -net in ∂T . The condition on r ensures
that

⋃
T ∈T V (∂T ) is r -separated in 2(M). We now extend

⋃
T ∈T V (∂T ) to an

r -net, V , for 2(M).
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Let 1 be the graph with vertex set V (1) = V and x, y ∈ V adjacent if d(x, y) ≤

3r in 2(M). The vertices of 1 have bounded degree. Note that if R ⊆ 2(M), then
R ⊆ N (P, r), where P = V ∩ N (R, r).

Given T ∈ T, let ϒ(∂T ) be the complete graph on V (∂T ) = V ∩ ∂T . Let
ϒ = 1∪

⋃
T ∈T ϒ(∂T ). In other words, ϒ has the same vertex set, V , but we have

added more edges across the Margulis tubes.
The idea behind this construction is that ϒ approximates the geometry of M

after each Margulis tube has been shrunk to bounded diameter. Lengths in ϒ thus
correspond to exterior lengths in M to within linear bounds. Here is a more precise
formulation.

If p is a path in ϒ , then we obtain a path π = π(p) in M as follows. Suppose
x, y are adjacent vertices of p. If the edge between them lies in 1, then we connect
x to y by a path of length at most 3r in 2(M). If it lies in ϒ(∂T ) for some T ∈ T,
then we connect x to y by any path in the interior of T . (Its homotopy class in T
will not be important.)

Conversely, given any path in M , recall that l(π) is its exterior length, i.e. the
length of π ∩ 2(M). We can find a path p = p(π) in ϒ , whose combinatorial
length is at most l(π)/r and for which π(p(π)) remains within a distance 3r of π

in 2(M).
We also recall the straightening process used in Section 5, for example in the

proof of Lemma 5.1. If π is a path in M , then we can replace any segment of
π ∩ 2(M) by a shortest path with the same endpoints, give us another path π ′

(not assumed to be homotopic to π ). Thus, l(π ′) will be at most the sum of the
diameters of the components of π∩2(M). This straightening is necessary because
the bounds on width refer only to the ambient diameters in 2(M) rather than
intrinsic diameters. However, it is a technical point that can be ignored for the
purposes of following the overall logic.

Here is a key step in the proof of Proposition 6.1:

Lemma 6.2. Given L , W ≥ 0, there is some E = E(L , W ) with the following
property. Suppose that A is a strip in M with φ(A) 6= 6 and W (A) ≤ W . Suppose
that L(∂T ∩ A, B) ≤ L for all T ∈ T0(A). If T ′

∈ T∂(A), then L(∂T ′
∩ A, B) ≤ E.

(Recall that T0(A) = TI (A) ∪ T+(A) ∪ T−(A).)
Recall that our eventual aim is to prove (A3), namely that the vertical length of

the boundary of each Margulis tube in the exterior of the bands is bounded. This
lemma will deal with the inductive step in the argument. It says that if we know
this for the intersections of tubes in T0(A), then we know it also for the tubes in
T∂(A).

Lemma 6.2 would follow fairly easily if we could bound the total volume of
A\

⋃
B, in other words, the number of components of A\

⋃
B, and the volume of
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each such component. For the latter, by general principles of bounded geometry,
it would be enough to bound the diameter of each component. We can deal with
these two issues simultaneously by making a combinatorial approximation to the
geometry. This uses the graph, ϒ , defined above. We can reinterpret the volume in
terms of the number of vertices. To bound this, in turn, it is sufficient to bound the
diameter of ϒ and the degree of its vertices. In the case where the height, H(A),
is bounded, the diameter bound follows from the fact that every fibre of M must
meet A− ∪ π ∪ A+, where π is any vertical fibre of A. For the degree bound, we
use the bounded geometry of 2(M), together with the hypothesis on the Margulis
tubes in T0(A). If H(A) is very large, on the other hand, by construction of the
band system, there will be a band, B ∈ B, with the same base surface as A. We
can then apply the above to the components of A \ B.

We now give a formal proof.

Proof of Lemma 6.2. First suppose that H(A) is less than some constant H , and
give a bound in terms of L , W and H . (Note that we allow the possibility for A
be nonprimitive, i.e. H(A) = 0.)

Let π be a vertical fibre of A \ ∂V A with l(π) ≤ H . Let a± be its endpoint in
∂± A. We can assume that π meets the boundary of each Margulis tube in at most
two points.

If x ∈ ∂± A, then we can connect x to a± by a path, π , in ∂± A which only enters
Margulis tubes in T0(A), and then at most once. We can thus straighten to π to a
path π ′ in 2(M), with l(π ′) ≤ νW (A) ≤ νW , and which only meets boundaries
of Margulis tubes in points of A \

⋃
B.

Suppose y ∈ A ∩ 2(M) \
⋃

B. By Lemma 5.6, y is contained in a narrow
horizontal fibre of M (in the sense above). This fibre must intersect π ∪ ∂H A at
some point x . As above, y can be connected by a path of exterior length at most
νW1, and entering and leaving Margulis tubes only in points of A \

⋃
B.

We see that any two points, v, w ∈ A \
⋃

B can be connected by a path τ in
M with l(τ ) ≤ H + 2νW + 2νW1, and if τ meets T ∈ T, then T ∈ T0(A) and
τ ∩ ∂T ⊆ R(∂T ), where R(∂T ) = (∂T ∩ π) ∪ (∂T ∩ A \

⋃
B). If v, w ∈ V ,

then we can connect v and w by a path p = p(π) in ϒ of combinatorial length at
most l(τ )/r . Moreover, if x, y are adjacent vertices of p connected by an edge in
ϒ(∂T ) for some T ∈ T, then T ∈ T0(A) and x and y lie in N (R(∂T ), 2r). But
now π ∩ ∂T consists of at most two points, and by assumption, the vertical length
of A∩∂T \

⋃
B is at most L . It follows that there is a universal bound, in terms of

L , for the number of possible x and y, and hence on the number of possible edges
along which p can cross ϒ(∂T ).

Given the bound on the degrees of vertices in 1 and on the length of p, we see
that there is a bound on the number of possibilities for such a path p, in terms of
L , W and H . This bounds the cardinality of V in terms of L , W, H . Indeed (given
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the bound on the degrees of vertices in 1), we get a bound on the cardinality of
P = V ∩ N (A \

⋃
B, 2r).

But now, since V is an r -net in 2(M), we have A ∩ 2(M) ⊆ N (P, r). In
particular, if T ∈ T∂(A), then ∂T ∩ A \

⋃
B ⊆ N (P, r). But the intersection of

∂T with N (P, r) has bounded area for all x ∈ 2(M). This places a bound on the
area, and hence vertical length of ∂T ∩ A \ B in terms of L , W and H as claimed.

We finally need to remove the dependence on the height of A.
First, suppose there is no band of B with base surface φ(A). By property (B6),

this means that any strip, B, with φ(B) = φ(A) and with W (B) ≤ W0 must have
H(B) ≤ H4 = H1 + 2H0 + 4D0. Applying Lemma 5.3 (with h = 0) we see that
H(A) ≤ H4 + 4D0. Thus, we can apply the preceding result with H = H4 + 4D0.

Secondly, suppose there is some B ∈ B with φ(A) = φ(B). There are two
subcases. Either B ⊆ A or A ∩ B = ∅.

Suppose first that B ⊆ A. Now, B has two collars in A, namely A+ =〈∂+B, ∂+ A〉

and A− = 〈∂+B, ∂− A〉. Consider A+. By hypothesis, W (∂+ A+) = W (∂+ A) ≤ W ,
and W (∂− A+) = W (∂+B) ≤ W0. We can assume that W ≥ W0, so W (A+) ≤

W . We also have H(A+) ≤ H0 + 4D0, otherwise, as in Lemma 5.3, we could
find a horizontal fibre, F , in A+ with D(F, ∂+B) ≥ H0 + 3D0 and W (F) ≤ W0.
In particular, 〈F, A+〉 would be narrow and of height greater than H0 + 2D0, in
contradiction to (B5). (Note that we cannot apply (B5) directly to F = ∂+ A,
since the bound on its width might not be sufficient — W may be bigger than W0.)
We can now see that the hypotheses of the lemma are satisfied by the band A+,
since if T ∈ T0(A+) ⊆ T0(A), then L(∂T ∩ A+, B) ≤ L(∂T ∩ A, B) ≤ L . The
bounded height case of the lemma now shows that if T ′

∈ T∂(A) = T∂(A+), then
L(∂T ′

∩ A+, B) is bounded. Similarly we see that L(∂T ′
∩ A−, B) is bounded.

But L(∂T ′
∩ A, B) = L(∂T ′

∩ A+, B) + L(∂T ′
∩ A−, B), and the result follows

in this case.
The remaining case is when A ∩ B = ∅. But now a similar argument, using

Lemma 5.3 and (B5) shows that H(A) is bounded, and we are reduced to the
earlier case. �

We return to the pushing process. We say that a strip, C , is full if φ(C) = 6.
Suppose that C is a full strip, that S ⊆ M is a fibre, and that F ⊆ S ∩ 2(M) is
an essential curve or surface. Pushing S successively off ∂+C and ∂−C , we obtain
another fibre, S′

⊇ F , with W (S′) bounded above in terms of W (S) and W (C).
(As usual, S, ∂H C and S′ are all assumed disjoint from

⋃
B.)

Applying Lemma 5.6, we obtain:

Lemma 6.3. There is a nondecreasing function, f : [0, ∞)→[0, ∞) such that if C
is a horizontal strip, T ∈ T and α is a horizontal fibre of ∂T contained in A\

⋃
B,

then α is contained in a horizontal fibre, S of C with W (S) ≤ f (W (C)). �
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Note that S divides C to two full substrips, each of width at most f (W (C)).
Given n ≥ 1, define Wn inductively by Wn+1 = f (Wn), starting with W1, the

constant of Lemma 5.6.
The following lemma represents the core of the argument. We deal inductively

with tubes lying in bigger and bigger strips. To give the idea, suppose, for example,
we have some T ∈ TI (A), lying in the interior of a strip, A, with L(∂T, B) very
large. We can find two fibres, S and S′ cutting through T , so that on one side, they
bound an annulus, � ⊆ ∂T , with L(�, B) also very large. Now � is the vertical
boundary component of a piece, A′, the full strip, 〈S, S′

〉, so that A′
⊆ A has smaller

complexity. Using induction and Lemma 6.2, we then bound L(�, B), which
would give a contradiction. This argument therefore bounds L(∂T, B). Of course,
there are also other cases to be considered. To make the induction hypothesis work
smoothly, we shall phrase everything in terms of pieces of full strips. Here is a
precise statement:

Lemma 6.4. Suppose κ ∈ {1, . . . , κ(6)}. Suppose that C is a full strip with
W (C) ≤ W2κ(6)−2κ , and suppose that A is a piece of C with κ(φ(A)) ≤ κ . Then
there is some Lκ such that for all T ∈ T0(A) we have L(∂T ∩ A, B) ≤ Lκ .

Here Lκ depends only on κ and κ(6). In the case where κ = κ(6), we interpret
the statement by setting A = C = M , and the conclusion means that L(∂T, B) ≤

Lκ(6) for all T ∈T. This will therefore imply Proposition 6.1 on setting L0 = Lκ(6).

Proof of Lemma 6.4. The proof will be by induction on κ . First note that the case
κ = 0 is vacuously true, since φ(A) is then a 3-holed sphere and so T0(A) = ∅.

Now suppose that we have verified the statement for some κ < κ(6). If κ <

κ(6)−1, let A, C be as in the hypotheses, with κ(φ(A)) = κ +1, so that W (C) ≤

W2κ(6)−2κ−2. (The case where κ = κ(6)−1 will be commented upon at the end.)
Let T ∈ T0(A). We want to bound l = L(∂T ∩ A, B).

Suppose first that T ∈ TI (A). Choose any horizontal longitude, α, of ∂T .
By Lemma 6.3, there is a horizontal fibre S ⊆ C , containing α with W (S) ≤

f (W (C)) ≤ f (W2κ(6)−2κ−2) = W2κ(6)−2κ−1. Let β be the other intersection of
S with ∂T . This is another horizontal longitude of ∂T . Thus, α and β together
bound an annulus, � ⊆ ∂T , with L(�, B) ≥ l/2.

Let α′
⊆ ∂T \

⋃
B be the horizontal longitude that cuts � into two annuli, each

having equal vertical length in the complement of
⋃

B (Figure 6). This vertical
length must be at least l/4. As before, α′ lies in some fibre, S′

⊆ C , disjoint from
S, with W (S′) ≤ f (W (S)) ≤ W2κ(6)−2κ . Let β ′ be the other intersection of S′ with
∂T . Since S∩S′

= ∅, we see that β ′
⊆ �. Swapping α with β if necessary, we can

assume that β ′ does not lie in the annulus, �′
⊆ �, bounded by α and α′. Now S

and S′ bound a strip, C ′
⊆C , with W (C ′)≤ W2κ(6)−2κ . Also T ∈ T+(C ′)∩T−(C ′)

and 6 ⊆ ∂T ∩ C ′. Thus, �′ is a vertical boundary component of some piece, A′,
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of C ′. Thus, W (A′) ≤ W (C ′) ≤ W2κ(6)−2κ . Since ∂H A′
∩ ∂H C = ∅, we see that

A′
⊆ A, and so φ(A′) ⊆ φ(A). Moreover, since T /∈ TI (A′), φ(A′) 6= φ(A) and

so κ(φ(A′)) < κ(φ(A)). Thus κ(φ(A′)) ≤ κ . Now the induction hypothesis tells
us that L(∂T ′

∩ A′, B) ≤ Lκ for all T ′
∈ T0(A′). Thus, Lemma 6.2 tells us that

L(�′, B) ≤ E(Lκ , W2κ(6)−2κ), and so l ≤ 4L(�′, B) is bounded as required.
We next consider the case where T ∈ T±(A). Without loss of generality, T ∈

T+(A). The discussion only differs from the above in the choice of α and β.
Let l = L(∂T ∩ A, B) as before. Let α′ divide ∂T ∩ A into two annuli, each of

vertical length l/2 in the exterior of
⋃

B. Let S ⊆C be a horizontal fibre containing
α with W (S) ≤ W2κ(6)−2κ−1, and let β be the other intersection of S with ∂T . Let
�⊆ ∂T ∩A be the annulus bounded by α and ∂T ∩∂+ A not containing β. Let C ′ be
the strip bounded by S and ∂+ A, and let A′ be the piece of C ′ containing �. Thus
� is a vertical boundary component of A′ (Figure 7). As before, κ(φ(A′)) ≤ κ and
we get a bound on L(�, B) and hence on l as required.

This proves the induction step when κ < κ(6)−1. We can define Lκ+1 in terms
of the bounds we have obtained for l.

Finally, we should comment briefly on the final step of the induction, namely
when κ = κ(6)−1. In this case, we deal with an arbitrary T ∈ T in the same way
as we did with T ∈ TI (A) above. We obtain two disjoint fibres, S and S′, with
W (S) ≤ W1 (by Lemma 5.6) and with W (S′) ≤ f (W1) ≤ W2. Thus, W (C) ≤ W2 =

W2κ(6)−2κ , and we proceed as before. �

Proof of Proposition 6.1. This is just Lemma 6.4, interpreted for κ = κ(6) and
setting L0 = Lκ(6). �

Proof of Theorem 0. Let B be the band system constructed in Section 5, and
let A ⊆ B be the set of outermost bands. Properties (A1), (A2), (A4), (A5) and
(A6) are immediate from the construction, and property (A8) follows directly from
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these. Property (A7) follows by Lemma 4.5, and (A9) by Lemma 5.7. Finally (A3)
is Proposition 6.1. �

We note that we also have the following relative version, (A3′), for the intrinsic
geometry of the band. Again, we suppose that B satisfies (B1)–(B6). Given B ∈ B,
let B(B) be the set of bands of B strictly contained in B. Given T ∈ T0(B), write
L(∂T ∩ B, B(B)) for the total vertical length of ∂T ∩ B \

⋃
B(B).

Proposition 6.5. There is some L0 such that if B ∈ B and T ∈ T0(B), then
L(∂T ∩ B, B(B)) ≤ L0.

Proof. The proof is essentially the same as that of Proposition 6.1. In this case a
“horizontal surface” is assumed to be disjoint from ∂H B and

⋃
B(B). Only tori

in T0(B) and bands in B(B) are relevant to the discussion. �

As mentioned in Section 5, we can also assume (A1′), namely that the bands in
B are H2-nested.

7. Volume growth

The aim of this section is to prove:

Theorem 7.1. There is a sequence, ( fν)ν∈N of polynomials, with fν of degree ν,
with the following property. Suppose that M is a complete hyperbolic 3-manifold
admitting a type-preserving homotopy equivalence to a compact orientable surface
6, with ν(6)=ν. Let 2(M) be the thick part of M and core(M) the convex core of
M. Suppose that x ∈ core(M)∩2(M) and that N (x, t) is the ball of radius t about
x in 2(M) for any t ≥ 0. Then the volume of core(M) ∩ N (x, t) is at most fν(t).

Recall that ν(6) is minus the Euler characteristic of 6. The sequence ( fν)ν
depends only on the choice of Margulis constant. The “type-preserving” condition
means that each boundary curve of 6 corresponds to a parabolic cusp of M . The
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“thick part”, 2(M), of M consists of M with the interior of the Margulis tubes and
Margulis cusps removed. The t-ball, N (x, t), is taken with respect to the induced
path metric.

The existence of such a polynomial bound was conjectured by McMullen and
proven in [Brock et al. 2004].

The idea of the argument is as follows. Given B ∈ B, we write ν(B)= ν(φ(B)).
If ν(B) = 1, the boundaries of the Margulis tubes it contains all have bounded
vertical length by (A7) (see [Minsky 1999]) and we see that B has linear growth.
We then proceed inductively. For a general band, B, (or M itself) only linearly
many outermost subbands C ⊆ B with ν(C) < ν(B) are reached in a given time,
and by induction, each of these has growth at most polynomial of degree less than
ν(B). Thus the growth rate of B is at most polynomial of degree ν(B).

There is a subtle issue involved in obtaining the degree, ν(6). If one proceeded
simply by induction on complexity as previously defined, we would end up with a
polynomial of degree κ(6). The refinement arises from the observation that a band,
A, may contain a subband, B, whose base surface, φ(B) is obtained from φ(A) by
removing some set of annuli, so that ν(B) = ν(A) (whereas κ(B) < κ(A)). In such
a case, B ∩2(M) disconnects A∩2(M) — a fact that allows us to discount bands
of this sort from the discussion. This will be the purpose of Lemma 7.7 below.

To make the argument more precise, it will be convenient to reformulate it in
combinatorial terms. We will construct a graph, 5, and a uniform quasi-isometry,
θ : 5 → 2(M), where 5 has growth bounded by a uniform polynomial of de-
gree at most ν(6). Here, and in what follows, “uniform” is interpreted to mean
dependence only on ν(6) and on the Margulis constant defining 2(M).

First, we make some general remarks.
Let 5 be a graph (not necessarily connected) and let P ⊆ 5 be a full subgraph

(that is, a maximal subgraph with given vertex set). We write 5/P for the quotient
graph obtained by collapsing each component of P to a single vertex. (Thus, 5\ P
injects into 5/P .) If Q ⊆ P is full, then

5/P = (5/Q)/(P/Q).

Also, if 5′
⊆ 5 is any subgraph, then 5′

∩ P is full in 5′, and we write 5′/P for
5′/(5′

∩ P) viewed as a subgraph of 5/P .

Definition. If 5 is a graph and f is a nondecreasing function, we say that 5 is
O( f ) if for all x ∈ V (5) and all n ≥ 0, the number of edges in the combinatorial
n-ball about x is at most f (n)/2. (Note that the degree of 5 is bounded above by
f (1)/2.)

For us, this a convenient way of bounding volume growth in view of the follow-
ing easily verified lemma.
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Lemma 7.2. Suppose 5 is a graph and P ⊆ 5 is a full subgraph. If P is O( f )

and 5/P is O(g), then 5 is O( f g). �

Thus if ∅=50 ⊆51 ⊆· · ·⊆5n =5 is an increasing sequence of full subgraphs
and 5i/5i−1 is O( fi ), then 5 is O( f1 f2 · · · fn).

A subset, Q, of a graph 5 is said to be k-quasidense in 5 if 5 is the k-
neighbourhood of Q. The degree of a graph 5 the maximal degree of its vertices.
The following is a simple observation.

Lemma 7.3. Given k1, k2 ∈ N there is a linear function f such that if 5 is a graph
of degree at most k1 containing k2-quasidense geodesic, then 5 is O( f ). �

Now let M be a manifold as in the hypotheses of Theorem 7.1. It will be
convenient to assume that 6 is closed and that M is doubly degenerate so that
core(M) = M . The general case will follow by simple reinterpretation of the
arguments.

We will use various graphs that approximate the geometry of M . As before, 1

approximates the thick part, 2(M), and ϒ approximates the thick part (or M itself)
after each Margulis tube has been collapsed to bounded diameter. (These graphs
have already been described in Section 6.) These constructions make no reference
to our band system B (other than assuming their vertex sets to be in general position
with respect to B). For purely technical reasons, we will introduce another graph,
5, obtained by adding some extra edges to 1, depending on B. The graphs, 5,
and 5∪ϒ , can also be viewed as approximating 2(M), and 2(M) with collapsed
tubes, respectively. To each band, B ∈ B, we will associate full subgraphs, 1(B)

and 5(B) of 1 and 5. The purpose of introducing 5 is that 5(B) will be nicely
embedded in 5, whereas it is difficult to ensure that 1(B) is nicely embedded
in 1 (since our control over the local geometry of ∂H B is rather weak). For the
purposes of understanding the overall logic, one could simply imagine each band
of B to be nicely embedded locally, and just pretend that 1 and 5 are identical.
We now proceed to a more formal argument.

Let B be a nested system of bands satisfying (A2)–(A9) and (A1′) and (A3′) of
Section 2.

As in Section 4 we fix some uniform r > 0 suitably small in relation to the
Margulis constant, as well as the constants featuring in the properties of B. We
construct an r -net, V , for 2(M) as in Section 6, as follows. First we choose an
r -net for ∂T for each T ∈ T, and then extend

⋃
T ∈T V (∂T ) to an r -net, V , for

2(M). We can assume that V ∩ ∂H B = ∅ for all B ∈ B.
Let 1 be the graph with vertex set V (1) = V and with x, y ∈ V adjacent

if d(x, y) ≤ 3r . We construct a map θ : 1 → 2(M) as the identity on V and
mapping each edge to a (in fact, the) shortest path between its endpoints in 2(M).
Thus θ is a uniform quasi-isometry.
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Given Q ⊆ M , write 1(Q) for the full subgraph of 1 with vertex set V ∩ Q.
Note that

⋃
T ∈T 1(∂T ) is a full subgraph of 1, and that θ(1(∂T )) ⊆ ∂T .

Given B ∈ B, let EH (B) be the set of edges of 1 with exactly one endpoint in
B. Write VH (B) for those vertices of

⋃
EH (B) which lie in B. If e ∈ EH (B),

then θ(e) crosses ∂H B (an odd number of times). We can thus partition EH (B)

as E+(B)t E−(B) depending on whether θ(e) crosses ∂+B or ∂−B. We similarly
partition VH (B) as V+(B) ∪ V−(B).

Given A ∈ B, let B(A) = {B ∈ B | B ⊆ A, B 6= A}, and write U =
⋃

B(A) ⊆ B.
Thus 1(U ) =

⊔
B∈B(A) 1(B).

Suppose T ∈ T0(A). By (A8) at most N0 elements of B(A) meet ∂T , and by
(A3′), ∂T \ U has vertical length at most L0. It follows easily that:

Lemma 7.4. The quotient graph, 1(∂T ∩ A)/1(∂T ∩ U ) had uniformly bounded
diameter. �

Now VH (A)∩U = ∅ and so we can regard VH (A) as a subset of 1(A)/1(U ).
Moreover, we can connect V+(A) to V−(A) by a path q in 1(A) (obtained by
approximating any vertical fibre of A by a path in the image of θ ). This gives a
path q/1(U ) from V+(A) to V−(A) in 1(A)/1(U ). Indeed any such path p ⊆

1(A)/1(U ) has this form: if p passes through the vertex obtained by collapsing
some 1(B) ⊆ 1(A) we can lift this vertex to a path in 1(B) ⊆ 1(A) connecting
the two incident edges of q.

Recall, from Section 6, that ϒ(∂T ) is the complete graph on V ∩ ∂T , and ϒ =

1∪
⋃

T ∈T ϒ(∂T ). Given Q ⊆ M , write ϒ(Q) for the full subgraph of ϒ on V ∩Q.
Now let q be a path in 1(A) connecting V+(A) to V−(A). The endpoints of

θ(q) ⊆ 2(M) lie within distance 3r of ∂± A ∩ 2(M). It is possible that θ(q) may
cross ∂H A, but by taking a subpath and/or adding short paths to the endpoints, we
get a path π ⊆ B ∩ 2(M) connecting ∂+B to ∂−B.

Any point x ∈ V ∩ B lies in a horizontal fibre, S, of M with W (S)≤ W0. Clearly
S ∩ (π ∪ ∂H A) 6= ∅, and so we get a path, s, of bounded length connecting x to
q ∪ VH (A) in ϒ(A). This path may cross certain graphs ϒ(∂T ). However, we can
apply Lemma 7.4 to get around these in 1(A ∩ ∂T )/1(U ∩ ∂T ) ⊆ 1(A)/1(U ),
adding a bounded amount to the length of s/1(U ). Thus x lies a bounded distance
from (q/1(U )) ∪ VH (A) in 1(A)/1(U ). As observed above, any path p from
V+(A) to V−(A) in 1(A)/1(U ) has the form q/5(U ). We conclude:

Lemma 7.5. If p is any path from V+(A) to V−(A) in 1(A)/1(U ), then p∪VH (A)

is uniformly quasidense in 1(A)/1(U ). �

We would like to say that p is itself quasidense. However there is the technical
irritation that the boundary of A may be rather wriggly. We can get around this by
adding some extra edges to 1 so as to reduce the diameter of V±(A). This will
give us our graph, 5, referred to earlier.
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Suppose B ⊆ B, and that F is a piece of ∂±B. Let E(F) ⊆ E±(B) be the set
of e ∈ E±(B) such that θ(e) crosses F . Since W (∂±B) = W (B) is bounded, so
is the diameter of F in 2(M), and it follows that E(F) is of bounded diameter in
1. We extend E(F) to a complete bipartite graph by connecting each vertex of
V ∩ B ∩

⋃
E(F) to each vertex of V ∩ E(F) \ B. Note that EH (B) is a disjoint

union of such sets E(F). We perform this construction for all such F and all B ∈B.
This gives us a graph 5 ⊇ 1 with the same vertex set V . Moreover (since W (B) is
bounded), we can extend θ to a uniform quasi-isometry θ : 5 → 2(M). Bounded
geometry tells us that 5 has uniformly bounded degree. The earlier discussion
of 1 applies equally well to 5. In particular, given Q ⊆ M , we write 5(Q) for
the full subgraph of 5 on V ∩ Q. Also we have a graph 5 ∪ ϒ on the vertex
set V . This time, we see that if A ∈ B, then V±(A) has bounded diameter in
5∪ϒ , and so applying Lemma 7.4 as before, we see that it has bounded diameter
in 5(A)/5(U ). Now 1(A)/1(U ) is a subgraph of 5(A)/5(U ) with the same
vertex set, so putting this together with Lemma 7.5, we deduce:

Lemma 7.6. Any path connecting V+(A) to V−(A) in 5(A)/5(U ) is uniformly
quasidense in 5(A)/5(U ). �

This observation is sufficient to tell us that 5(A)/5(U ) has linear growth (com-
pare Lemma 7.8 below). This, in turn, is enough to give us polynomial growth of
5 and hence of 2(M) (compare Lemma 7.9). However, to obtain a polynomial of
degree ν(6), we need to refine this as follows.

Suppose B ∈B(A) with ν(B)= ν(A). Now ∂±B can be extended to a horizontal
fibre of A by adding a number of annuli in Margulis tubes (in T∂(B) \ T∂(A)).
This follows from the condition that ν(B) = ν(A). (Indeed we can extend B to
a nonprimitive band C ⊆ A with φ(C) = φ(A) by adding some subsolid tori in
Margulis tubes.) It follows that ∂+B ∩ 2(M) and ∂−B ∩ 2(M) both separate
∂+ A ∩ 2(M) from ∂− A ∩ 2(M) in A ∩ 2(M). In other words, any path from
∂+ A to ∂− A in A ∩ 2(M) must pass through B. Interpreting this in terms of the
graph 5, we see that any path from V+(A) to V−(A) in 5(A) contains a subpath
connecting V+(B) to V−(B) in 5(B). It is possible that B may itself contain other
subbands of this type, so we will need to give an inductive argument.

Now let B0(A) = {B ∈ B(A) | ν(B) < ν(A)} and write U0 =
⋃

B0. We refine
Lemma 7.6 as follows: (If one does not care about the degree of the polynomial,
one can go straight to Lemma 7.8, replacing B0 by B, U0 by U and ν by κ .)

Lemma 7.7. Any path connecting V+(A) to V−(A) in 5(A)/5(U0) is uniformly
quasidense in 5(A)/5(U0).

Proof. There is a uniform combinatorial bound on the length of a strictly increasing
sequence of bands, B1 ⊂ B2 ⊂ · · · ⊂ Bn = A with Bi ∈ B and ν(B1) = ν(A). We
prove Lemma 7.7 by induction in the maximal such length, n = n(A).
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If n = 1, then B0(A) = B(A), so Lemma 7.7 reduces to Lemma 7.6.
Suppose n(A) = n, and we have verified the lemma for n − 1. Let p be any

path in 5(A)/5(U0) from V+(A) to V−(A). This has the form q/5(U0), where
q connects V+(A) to V−(A) in 5(A). Let B1(A) be the set of bands C ∈ B(A)

that are outermost in B(A) and satisfy ν(C) = ν(A). Thus

U =

⋃
B(A) =

⋃
(B0(A) ∪ B1(A)) = U0 ∪ U1,

where U1 =
⋃

B1(A).
Suppose C ∈ B1(A). Then n(C) = n − 1 and B0(C) = B0(A) ∩ B(C). Thus

5(C)/5(U0) = 5(C)/5(
⋃

B0(C)). Now q contains a subpath, qC , connecting
V+(C) to V−(C) in 5(C). By the induction hypothesis, qC is uniformly quasidense
in 5(C)/5(U0).

By Lemma 7.6, q/5(U ) is uniformly quasidense in 5(A)/5(U ). Thus, if
x ∈ V ∩ A, then x can be connected to q by a path s in 5(A) with s/5(U )

of bounded length. If q ∩ 5(U1) = ∅. then s/5(U ) = s/5(U0) and we are
happy. If not, then s enters some C ∈ B1(A) for the first time at some y ∈ 5(C).
From the previous paragraph, we see that there is a path, t , from y to q in 5(C)

with t/5(U0) of bounded length. By joining together s/5(U0) and t/5(U0) we
see that x is a bounded distance from q/5(U0) in 5(A)/5(U0), and the lemma
follows by induction. �

Another point to note is that since W (B) is bounded for all B ∈ B, there is a
bound on the number of edges e of 5 such that θ(e) crosses ∂H B. Thus there is a
bound on the number of edges of 5 with exactly one endpoint in 5(B), and hence
on the degree of 5/5(

⋃
B′) for any subset B′ of B. In particular, the degree of

5(A)/5(U0) is uniformly bounded.
Putting this observation together with Lemma 7.3 and Lemma 7.7, taking any

shortest path from V+(A) to V−(A) in 5(A)/5(U ), we conclude:

Lemma 7.8. There is a uniform linear function, f , such that for all A ∈ B, the
quotient 5(A)/5(U0) is O( f ), where U0 =

⋃
B0(A). �

(Here f , may depend on ν(6).)
Now exactly the same argument applies to M itself, taking a bi-infinite geodesic

in 5/5(U0), where U0 =
⋃

B0, and B0 ={B ∈B |ν(B)<ν(6)}. Thus, 5/5(U0)

is also O( f ).
Now, given n ∈{1, 2, . . . , ν(6)−1}, let Bn ={B ∈B |ν(B)=n}. Let Cn ⊆Bn be

the set of bands of Bn that are outermost, and let C=
⋃ν(6)−1

n=1 Cn . Thus if A, B ∈C

with B strictly included in A, then ν(B) < ν(A). If A ∈ C then B0(A) = B(A)∩C.
Given n, let Un =

⋃
Cn =

⋃
Bn , and let 5n = 5(Un). Each component of 5n

has the form 5(A) for some A ∈ Cn . Each component of 5n−1 inside 5n has the
form 5(B) for some B ∈ B(A)∩C = B0(A). Thus 5n−1∩5(A)=5(

⋃
(B0(A)),
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and so 5(A)/5n−1 ∼= 5(A)/5(
⋃

B0(A)) is O( f ) by Lemma 7.8. Since this
applies to each component of 5n , we see that 5n/5n−1 is O( f ).

Now setting 5ν = 5 and using the remark following Lemma 7.8, we see that
5ν/5ν−1 is O( f ). Also, 50 = ∅, and so we have an increasing sequence of full
subgraphs, ∅ = 50 ⊆ 51 ⊆ · · · ⊆ 5ν = 5, where 5n/5n−1 is O( f ) for all n.
Applying Lemma 7.2, we see that 5 is O( f ν). But gν = f ν is a polynomial of
degree ν. We have shown:

Lemma 7.9. There is a sequence, (gν)ν of polynomials, gν of degree ν, such that
any graph 5 constructed in this way is O(gν). �

Since θ : 5 → 2(M) is a uniform quasi-isometry, and since 5 has uniformly
bounded degree, it follows easily that the volume growth of 2(M) about any point
is bounded by some uniform polynomial, fν , of degree ν = ν(6).

We have assumed that M is doubly degenerate, and pretended that 6 is a closed
surface, but the general case proceeds in essentially the same way (see Section 8).

This proves Theorem 7.1.

8. The general case

In most of this paper, we have only dealt explicitly with the special case where 6

is a closed orientable surface, and M is orientable and without cusps. Moreover,
we have mostly supposed that M is doubly degenerate. This has been mainly to
simplify the exposition. The general case of a manifold admitting a type-preserving
homotopy equivalence to a compact surface can be dealt with by fairly routine
reinterpretations of various definitions and constructions as outlined below. In
particular, Theorem 7.1 remains valid as stated in the general case.

Let M be a complete orientable hyperbolic 3-manifold admitting a homotopy
equivalence to a compact surface 6. We assume that this is type-preserving, that
is, each boundary curve of 6 corresponds to a cusp of M . We write X (6) for the
set of homotopy classes of nonperipheral closed curves in 6. We shall assume for
the moment that 6 and M are orientable.

After fixing some Margulis constant, we have, as before, a set, T, of Margulis
tubes. In addition, we have a set, P, of Margulis cusps. If P ∈ P, then ∂ P is
a euclidean cylinder foliated by euclidean geodesic “longitudes” of fixed length.
We write N (M) = M \

⋃
P∈P int P for the noncuspidal part of M , and 2(M) =

N (M) \
⋃

T ∈T int T for the thick part of M .
Let P∂(M) be the set of Margulis cusps that correspond to boundary components

of 6, and let Q(M) = M \
⋃

P∈P∂ (M) int P . (Thus 2(M) ⊆ N (M) ⊆ Q(M).) By
tameness [Bonahon 1986], Q(M) is homeomorphic to 6×R. We refer to the ends
6×[0, ∞) and 6×(−∞, 0] as the positive and negative ends of Q(M). Note that
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∂ Q(M) =
⋃

P∈P∂ (M) ∂ P ≡ ∂6 × R. A fibre of Q(M) is the image of a homotopy
equivalence from 6 to Q(M) where the preimage of ∂ Q(M) in 6 is precisely ∂6.

Let PA(M) = P \ P∂(M). These are the accidental parabolic cusps of M . We
can write PA(M) = P+(M) t P−(M) depending on whether the cusp lies in the
positive or negative end of Q(M). Each P ∈ PA(M) is homotopic to a curve
α(P) ∈ X (6). The set {α(P) | P ∈ P±(M)} a multicurve in 6, i.e. the elements
are mutually disjoint. In particular, P±(M) and hence P are finite.

A surface 8 ∈ F is assumed to have the property that each boundary curve in 8

that is peripheral in 6 is equal to this boundary curve, and that all other boundary
curves of 8 lie in int 6. As before, we can define an unknotted surface, F ⊆ M ,
where we assume that F ∩∂ Q(M) are precisely the boundary curves of F that are
peripheral in Q(M). Again, we have φ(F) ∈ F \ {6}. We can similarly define a
thick surface.

We need to modify the definitions of “horizontal surface” and “band”.
A horizontal surface is now an unknotted surface, F ⊆ Q(M), such that there

are two disjoint subsets, T∂(F) and TI (F) of T, satisfying (1)–(3) as before, and
in addition, two disjoint subsets, P∂(F) and PI (F) of P which satisfy (1′)–(3′),
where T, T∂(F) and TI (F) are replaced by P, P∂(F) and PI (F). Condition (4)
gets replaced by

(4′) ∂ F ⊆
⋃

T∂(F) ∪
⋃

P∂(F).

Necessarily, PI (F) ⊆ PA(M).
We similarly modify the definition of a band. It is now a thick surface, B, in

Q(M), with subsets T∂(B), TI (B), T+(B), T−(B)⊆T satisfying (1)–(4), (6) and
(7), as before, together with subsets P∂(B), P+(B), PI (B)∈P satisfying (1′), (2′),
(4′), (6′) and (7′) where T gets replaced by P etc., and PI (B) = ∅. Condition (5)
gets replaced by

(5′) ∂V B ⊆
⋃

T∂(B) ∪
⋃

P∂(B).

As before, we assume that φ(B) 6= 6.
We necessarily have P±(B) ⊆ PA(B) and P−(B) ∩ P+(M) ⊆ P+(B) and

P+(B) ∩ P−(M) ⊆ P−(B). We say that B is primitive if T+(B) ∩ T−(B) =

P+(B) ∩ P−(B) = ∅. In this case, P+(B) ∩ P−(M) = P−(B) ∩ P+(M) = ∅.
Let Y = core(M) be the convex core of M , and let ∂Y denote the boundary of

Y in M . The inclusion of ∂Y ∩ 2(M) into ∂Y is a homotopy equivalence. Each
component, F , of ∂Y ∩ N (M) is a horizontal surface with PI (F) = T∂(F) = ∅.
Moreover, F cuts N (M) into two components, one of which, C(F), homeomorphic
to F ×[0, ∞). We can refer to F , and hence the corresponding component of ∂Y ,
as positive or negative depending on whether C(F) lies in the positive or negative
end of Q(M). We write ∂−Y (respectively ∂+Y ) for the union of positive (negative)
components, so that ∂Y = ∂+Y t ∂−Y .
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Now each Margulis tube, T ∈ T, meets Y . Indeed, we can write

T = TI (Y ) ∪ T−(Y ) ∪ T+(Y )

with TI (Y )∩ (TI (Y )∪T+(Y )) = ∅, so that for all T ∈ TI (Y ), T ⊆ Y , and for all
T ∈ T±(T ), ∂±Y meets T in an annulus.

Let’s first consider the case where M is geometrically finite. This means that
Y ∩ 2(M) is compact, so that T is finite, and Y ∩ N (M) is compact. Indeed we
can find disjoint horizontal fibres S+ and S− of Q(M) such that

S± ∩ N (M) = ∂±Y ∩ N (M).

Now S+ and S− bound a compact region, K , in Q(M). In fact, K , is like a band
in Q(M), with TI (K ) = TI (Y ), T±(K ) = T±(Y ), T∂(K ) = ∅, P±(K ) = P±(Y )

and P∂(K ) = P∂(M), except that φ(K ) = 6, which we have disallowed.
The statement of Theorem 0 is similar to that given in Section 2. We construct

a nested set, B, of bands satisfying (B1)–(B6) of Section 5. This time, we assume
that each band lies in the interior of Y . We let A ⊆ B be the set of outermost bands.
These bands satisfy (A1), (A2) and (A4)–(A9) of Section 2. Property (A3) should
now say that L(∂T ∩ Y, A) ≤ L0 for all T ∈ T, and L(∂ P ∩ Y, A) ≤ L0 for all
P ∈ PA(M). To the statement of (A3′), we should add that L(∂ P ∩ B, B(B)) ≤ L0

for all P ∈ PA(M).
The case where there are no accidental parabolics — PA(M) = ∅ — is similar.

In this case, each of ∂+Y and ∂−Y is either empty or a horizontal fibre, and so we
have a division into geometrically finite, singly degenerate and doubly degenerate
cases. The statement of Theorem 0 is as for the geometrically finite case above.

For a manifold with accidental parabolics that is not geometrically finite, the
situation a bit more complicated. One way of dealing with it is to allow for “long
bands” where one of the horizontal boundary components may be at infinity.

More precisely, a semi-infinite thick surface, B, is the image of a proper em-
bedding of 8×[0, ∞) into Q(M), where 8 ∈ F. We write ∂H B for the image of
8×{0} and ∂V B for the image of ∂8×[0, ∞). A long band is now a semi-infinite
thick surface B, with ∂V B ⊆

⋃
P and with ∂H B a horizontal surface.

We now allow B to contain (a necessarily finite number of) long bands. We can
assume that B satisfies (B1)–(B6). For a long band, B, (B4) is redundant and (B5)
means that if F is parallel to B, then H(〈F, ∂H B〉) ≤ H0 + 2D0. If A is the set
of outermost bands, then conditions (A1)–(A9) are satisfied, with (A3) and (A3′)
modified as above. Indeed, if P ∈ PA(M), then ∂ P ∩ Y \

⋃
A is compact.

Let C ⊆ B be the set of innermost long bands. These are disjoint. If C ∈ C, and
P ∈ P, then P ∩ C ⊆ ∂ P , otherwise we could find smaller long bands contained
in C. Thus C ⊆ N (M). Let F+ be the union of ∂H C as C varies over positive
bands in C. We can find a horizontal fibre, S+, of Q(M) such that S+ ∩ N (M) =
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(F+ ∪ ∂+Y ) ∩ N (M). We can similarly find a disjoint fibre, S−. Let K be the
compact region of S+ and S−.

We see that K behaves like the compact region K constructed in the geometri-
cally finite case. (Note K ∩ N (M) need not be connected.) Similarly, each band of
C behaves like the convex core of a singly degenerate manifold with smaller base
surface. Thus, in some sense, the general case is a union of geometrically finite
and singly degenerate cases.

Finally, we remark that the nonorientable case can also be similarly accounted
for. In this case, Margulis tubes may be solid tori, and boundaries of Margulis
cusps may be Möbius bands. Also, there may be no canonical choice of “positive”
or “negative” boundaries of bands.
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