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VECTOR FIELDS, TORUS ACTIONS AND EQUIVARIANT
COHOMOLOGY

JIM CARRELL, KIUMARS KAVEH AND VOLKER PUPPE

We give an explicit connection between the holomorphic equivariant co-
homology as defined by Carrell and Lieberman and the usual equivariant
cohomology of Borel and Cartan.

Let X be a smooth complex projective variety equipped with a C∗-action
with fixed point set Z. By results of Carrell and Lieberman, there exists a
filtration F0 ⊂ F1 ⊂ · · · of H∗(Z, C) such that GrH∗(Z, C) ∼= H∗(X, C) as
graded algebras. We give here an explicit connection between this filtration
and the C∗-equivariant cohomology of X .

1. Introduction

Let X denote a compact Kähler manifold, and suppose V denotes a holomorphic
vector field on X whose zero set Z is nonempty. Let �

p
X denote the sheaf of

holomorphic p-forms on X . The contraction operator iV defines a complex of
sheaves

0 → �n
X → �n−1

X → · · · → �1
X → �0

X → 0,

where n = dim X , and an old result of the first author and David Lieberman [1973;
1977] states that the spectral sequence associated to this complex degenerates at its
E1 term, namely H∗(X, �∗) (see Section 2 for a review of this result). This fact,
which uses the Deligne Degeneracy Criterion, implies the vanishing statement

H p(X, �q) = 0 if |p − q| < dim Z ,

and yields a description of the Dolbeault cohomology algebra H∗(X, �∗

X ) of X as
the graded C-algebra associated to the filtration of the hypercohomology H∗(K X ),
which is a ring since iV is a derivation. Although this result has enabled descrip-
tions of cohomology in a number of special cases, for example, algebraic homo-
geneous spaces [Akyıldız 1982; Carrell 1992], Schubert varieties [Carrell 1992]
and toric varieties [Kaveh 2005], the proof itself in [Carrell and Lieberman 1977]
doesn’t give any insight into how the filtration can be described. This problem is the
motivation of the present paper. In fact, we will show that equivariant cohomology
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and localization give a more transparent way of approaching the theory, provided
that V is generated by a C∗-action, which also solves the filtration question.

Throughout the paper, V will denote a holomorphic vector field generated by
a C∗-action. The only assumption on the fixed point set Z of this action is that
it be nonempty. It is well known that Z is also a smooth Kähler subvariety. Let
H p,q(X) = Hq(X, �p), and recall the Hodge decomposition of the cohomology
algebra of X :

H∗(X, C) =

⊕
p+q=∗

H p,q(X).

Also, for each s ∈ Z, put

Hs(X) =

⊕
q−p=s

H p,q(X).

Then H∗(X) is a graded C-algebra. Note that H∗(X, C) =
⊕

s Hs(X) (but not as
graded algebras). The following result summarizes what is known in this setting.

Theorem 1.1. Let X be compact Kähler and admit a C∗-action with a nonempty
fixed point set Z. Let V be the holomorphic vector field on X determined by this ac-
tion and K ∗

X the hypercohomology determined by the spectral sequence associated
to V . Then, for all s ∈ Z:

(i) dim H s(K ∗

X ) = dim Hs(X);

(ii) there exists a C-algebra isomorphism

H s(K ∗

X ) ∼= Hs(Z);

(iii) we have ∑
q−p=s

dim H p,q(X) =

∑
q−p=s

dim H p,q(Z);

(iv) there exists a filtration of H∗(Z) that yields an isomorphism of graded rings⊕
s

Hs(X) ∼= Gr H∗(Z).

In the above, (i) follows from the degeneracy of the spectral sequence of V . The
isomorphism (ii) is proven in [Carrell and Sommese 1979], and (iii) follows from
the first two parts. The last is in fact treated in several papers, for example, [Carrell
and Sommese 1979; Fujiki 1979; Ginzburg 1987]. Also see [Feng 2003] for a proof
that doesn’t use C∗-actions but assumes V vanishes transversely along Z .

Spaces admitting a C∗-action often have the property that H p,q(X) = 0 if
p 6= q (for example, algebraic homogeneous spaces, projective toric varieties
and, more generally, spherical varieties). For such X , H 2p(X, C) = H p(X, �p)

and H 2p+1(X, C) = 0 for all p ≥ 0. By (iii), the same is true for Z . Thus,
Hs(X) = H 2s(X, C) and similarly H∗(Z) = H∗(Z , C). Hence the map in (iv)
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reduces to the graded C-algebra isomorphism

H∗(X, C) ∼= Gr H∗(Z , C).

We note, however, that the filtration on H∗(Z , C) has nothing to do with the natural
filtration arising from the usual grading of cohomology.

The plan of the paper is as follows. We will use Section 2 to review the spectral
sequence of a holomorphic vector field and Section 3 to recall some basic facts
about equivariant cohomology and the Cartan complex. Our main results, The-
orems 4.2 and 4.4, are proved in Section 4. Theorem 1.1 follows readily from
these two results. In Section 5, we give a simple proof of a result in [Carrell 1995]
on regular actions, namely, actions of the 2 × 2 upper triangular matrices over
C of determinant one such that the unipotent subgroup has a unique fixed point.
The equivariant cohomology of these varieties was described in [Brion and Carrell
2004]. In Section 6 we consider some examples.

A few comments about the proofs in Section 4 are in order. Let T denote the
compact torus in C∗, and suppose H∗

T (X, C) denotes the T -equivariant cohomology
of X over C. One knows H∗

T (X, C) is a free C[t]-module of rank H∗(X, C), so,
as a C[t]-module, H∗

T (X, C) ∼= C[t] ⊗ H∗(X, C). Recently, Teleman [2000] and
Lillywhite [2003] have defined Dolbeault equivariant cohomology groups H p,q

T,∂
(X)

for X and showed that H∗

T (X, C) admits the usual Hodge decomposition provided
X is compact Kähler. This allows us to define the groups Hs

T (X) analogous to the
groups Hs(X) defined above. We will show that evaluating polynomials at t = 1
gives a map (of C-algebras) H∗

T (X, C) → H∗(K ∗

X ). (This idea is suggested by a
paper of the third author [Puppe 1979/80].) The key result Theorem 1.1(ii) follows
from localization in equivariant cohomology. The filtration of H∗(K ∗

X ) essentially
turns out to be the image of a canonical filtration of H∗

T (Z , C)→ H∗(K ∗

Z )=H∗(Z)

via the above “strange” map.

2. Zeros of holomorphic vector fields and cohomology

The purpose of this section is to review the spectral sequence associated to a
holomorphic vector field [Carrell and Lieberman 1973; 1977]. Let X denote a
connected compact Kähler manifold of dimension n with sheaf of holomorphic
functions OX and sheaves �

p
X of holomorphic p-forms for p > 0. The contraction

operator iV : �
p
X → �

p−1
X defines the Koszul complex

0 → �n
X → �n−1

X → · · · → �1
X → OX → 0.

In addition, for all φ, ω ∈ �∗

X ,

iV (φ ∧ ω) = iV φ ∧ ω + (−1)pφ ∧ iV ω
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if φ ∈ �
p
X . Let Ap,q(X) denote the smooth forms on X of type (p, q). The ∂

operator Ap,q
→ Ap,q+1 anticommutes with iV , so (∂ − iV )2

= 0. Put

(1) K s
X =

⊕
q−p=s

Ap,q ,

and define D : K s
X → K s+1

X to be ∂ − iV . Then because D2
= 0, we obtain

cohomology groups H s(K ∗

X ). Moreover, K ∗

X is a differential graded algebra under
the exterior product, so the cohomology groups form a graded C-algebra H∗(K ∗

X ).
Let F• = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn be the filtration of the double complex A∗,∗(X),
with Fi =

⊕
r≤i Ar,∗(X). Since iV is a derivation, we obtain filtrations F•H s(K ∗

X )

for all s such that

Fi H s(K ∗

X )F j H t(K ∗

X ) ⊂ Fi+ j H s+t(K ∗

X ).

Now consider the spectral sequence

(2) E−p,q
1 = Hq(X, �

p
X ) ⇒ Hq−p(K ∗

X ).

The main result is:

Theorem 2.1 [Carrell and Lieberman 1973; 1977]. If V has zeros, then all differ-
entials in (2) are trivial. Consequently E1 = E∞, and there are C-linear isomor-
phisms

(3) H p+s(X, �
p
X

)
∼= Fp H s(K ∗

X )/Fp−1 H s(K ∗

X ),

for every p ≥ 0 and s which give an isomorphism of bigraded C-algebras

(4)
⊕
p,s

H p+s(X, �
p
X ) ∼=

⊕
p,s

Fp H s(K ∗

X )/Fp−1 H s(K ∗

X ).

3. Remarks on equivariant cohomology

In this section, we will briefly recall the two basic definitions of equivariant co-
homology due to Borel and Cartan, and state a recent result of Teleman [2000,
Theorem 7.3] and Lillywhite [2003, §5.1] on equivariant Dolbeault cohomology.
Suppose G is a compact topological group acting on a space M . It is well known
that there exists a contractible space EG with a free G-action. The quotient
BG = EG/G is called the classifying space of G. Put

MG = (M × EG)/G.

The equivariant cohomology of M over C is defined to be

H∗

G(M) = H∗(MG, C).
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If G is a compact torus, say T , then H∗

T (point) = H∗(BT ) is identified with the
polynomial ring S = C[Lie(T )], which is graded by assigning degree two to linear
forms on Lie(T ). Thus, H∗

T (M) is an S-module (via the natural map π : MT →

BT ), and one has the following fundamental fact:

Theorem 3.1 (Localization Theorem). Suppose the compact torus T acts on a
space M which admits an equivariant imbedding into a representation of T . Then
the kernel as well as the cokernel of the canonical map

i∗
: H∗

T (M) → H∗

T (MT )

induced by the inclusion i : MT ↪→ M are torsion modules over S. Thus if H∗

T (M)

is a free module over S, then i∗ is injective. Moreover, i∗ becomes an isomor-
phism after inverting elements of a finitely generated multiplicative subset of the
polynomial algebra S.

If H∗

T (M) is a free S-module, then the action of T on M is said to be equivariantly
formal. Equivalently, M is equivariantly formal if the spectral sequence of the
fibration MT → BT collapses.

Remark 3.2. By a result of Frankel [1959], a C∗-action with fixed points on a com-
pact Kähler manifold is equivariantly formal for the compact torus T = S1

⊂ C∗.
More generally, by a theorem of Kirwan, every Hamiltonian T -action on a compact
symplectic manifold is equivariantly formal [1984, Proposition 5.8]. Moreover, the
hypotheses of Theorem 3.1 hold in the compact symplectic (in particular, compact
Kähler) case. For further examples of equivariantly formal spaces, see [Goresky
et al. 1998, §14.1].

To recall Cartan’s construction of equivariant cohomology [1951], we will assume
the space M is a smooth manifold on which T acts smoothly. Let �∗(M) be the De
Rham complex of C-valued forms on M . Define �∗

T (M) to be the complex con-
sisting of all the polynomial maps f : Lie(T ) → (�∗(M))T . Here the superscript
denotes the T -invariants. This is equivalent to defining �∗

T (M) = (�∗(M)⊗C S)T .
In particular

�∗

T := �∗

T (point) = ST
= S.

The grading on �∗

T (M) is defined by deg( f ) = n + 2p, if x 7→ f (x) is of degree
p in x and f (x) ∈ �n(M). The differential

dT : �∗

T (M) → �∗

T (M)

of this complex is defined by

(dT f )(x) = d( f (x)) − iVx f (x),

where iVx is the contraction with the vector field Vx on M generated by x ∈ Lie(T ).
Then dT ◦ dT = 0 and dT increases the degree in �∗(M) by 1.
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Theorem 3.3 [Cartan 1951]. H∗

T (M) and H∗(�∗

T (M), dT ) are isomorphic graded
C-algebras.

If M is a complex manifold and T acts via holomorphic transformations, a Dol-
beault version of T -equivariant cohomology is constructed in a similar way. For
x ∈Lie(T ), let Vx = Wx +Wx be the splitting of the generating vector field of x into
holomorphic and antiholomorphic components. Imitating the Cartan construction,
let Ap,∗

T (M) be the complex of all polynomial maps f from Lie(T ) to (Ap,∗(M))T .
(Note again that this is the same as defining AT

p,∗(M) = (Ap,∗(M) ⊗C S)T ).
Giving bidegree (1, 1) to the generators of S defines a bigrading on the algebra
A∗,∗

T (M) =
⊕

p,q Ap,q
T (M). Define the differential ∂T on Ap,∗

T (M) by

(∂T f )(x) = ∂( f (x)) − iWx f (x).

The q-th cohomology of the complex (Ap,∗

T (M), ∂T ) is called the (p, q)-th equi-
variant Dolbeault cohomology of M . It is denoted by H p,q

T (M). Finally, put

H m
T,∂

(M) =

⊕
p+q=m

H p,q
T (M).

We now state a recent result of Lillywhite [2003] and Teleman [2000].

Theorem 3.4 (Equivariant Hodge Decomposition). If X is a compact Kähler man-
ifold with an equivariantly formal T -action by holomorphic transformations, then
H∗

T,∂
(X) is a free S-module, and there exists an isomorphism

H∗

T (X) ∼= H∗

T,∂
(X)

of graded C-algebras.

Finally, we recall the definition of the equivariant Chern classes of a vector bundle.
Let E be a complex vector bundle over the a space M on which T acts, and suppose
E has a linear action of T lifting the action of T . The projection map p : E → M
defines a map from ET = E ×T ET to MT = X ×T ET . This makes ET a vector
bundle over MT . The r -th equivariant Chern class of E , denoted by cT

r (E), is
defined to be the r -th Chern class of ET . It is clear that cT

r (E) ∈ H 2r
T (M).

Remark 3.5. We will need the following fact in Section 5: suppose M is connected
and the action of T on M is trivial. Let E be a line bundle with a T -action as above.
Let the weight of action of T on each fibre of E be ω. Then

(5) cT
1 (E) = −ω + c1(E)

in H 2
T (X) = (S ⊗ H∗(X))2.
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4. The main results

Now let X denote a connected compact Kähler manifold of dimension n having a
C∗ action with nonempty fixed point set Z , and let T be the compact torus in C∗.
Let V be the generating vector field of 1 ∈ C = Lie(C∗), and, as before, let K ∗

X
denote the total complex of the Koszul complex of the vector field V . It is well
known that X T

= Z . From now on, S = C[t].
The purpose of this section is to derive the results about the spectral sequence of

V (in particular, to prove Theorem 1.1) using Dolbeault T -equivariant cohomology
and to obtain a new picture of the filtration F• = F0 ⊂ F1 ⊂ · · · ⊂ Fn of H∗(K ∗

X ).
We first define a chain map 8̃X : A∗,∗

T (X) → K ∗

X . Recall that an element of
A∗,∗

T (X) is a polynomial map f : t → (A∗,∗(X))T . By Definition (1), if f ∈

Ap,q
T (X), then f (1) ∈ K q−p

X . Therefore, put

8̃( f ) = f (1).

Proposition 4.1. 8̃ is a cochain map. That is, for f ∈ A∗,∗
T (X), we have

8̃(∂T f ) = D(8̃( f )).

Proof. 8̃(∂T f ) = 8̃(∂ f (x)− iVx f (x)) = ∂ f (1)− iV f (1) = D( f (1)) = D(8̃( f )).

Here Vx and V are the generating vector fields of x ∈ Lie(T ) and 1 ∈ Lie(T ). �

It is now convenient to put Hs
T (X) =

⊕
i H i,i+s

T (X). Note that by Theorem
3.4, H∗

T (X) =
⊕

s Hs
T (X). This gives a new grading on H∗

T (X) by S-submodules.
We will denote H∗

T (X) with this grading by H∗

T (X). By the above proposition, 8̃

induces a map

(6) 8X,s : Hs
T (X) → H s(K ∗

X ).

It is not hard to check that the 8X,s give a C-algebra homomorphism.
Let π denote the natural map π : H p,p+s

T (X) → H p,p+s(X) induced by the
inclusion X ↪→ XT . By equivariant formality, the ordinary cohomology sequence

(7) 0 → S+H∗

T (X) → H∗

T (X) → H∗(X) → 0

is exact (compare [Brion 1998, Section 1]), so by the equivariant Hodge decom-
position, π is surjective for all p, s.

Let H∗(X) denote H∗(X, C) and grade it with the decomposition H∗(X) =⊕
s Hs(X), as defined in Section 2. For any C-vector space V and a ∈ C, let V [a]

denote the S-module structure on V where t acts via multiplication by a. Note
that dim V [a] is the same for all a. By (7), we have another exact sequence of
S-modules

0 → S+Hs
T (X) → Hs

T (X) → Hs(X)[0] → 0,
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where S+ denotes the ideal generated by t . Hence

Hs(X)[0] ∼= Hs
T (X)/S+Hs

T (X) ∼= Hs
T (X) ⊗S C[0],

and therefore

dim(Hs
T (X) ⊗S C[0]) = dim Hs(X) =

∑
i

dim H i,i+s(X),

We now prove the first three assertions of Theorem 1.1. First, notice that the
chain map 8X,s in (6) induces a map 8̂X,s : Hs

T (X) ⊗S C[1] → H s(K ∗

X )[1] =

H s(K ∗

X ).

Theorem 4.2. The following statements hold for each integer s.

(i) 8̂X,s : Hs
T (X) ⊗S C[1] → H s(K ∗

X ) is a C-linear isomorphism.

(ii) The inclusion mapping iZ : Z → X induces a C-algebra isomorphism

i∗

Z : H s(K ∗

X ) ∼= H s(K ∗

Z ) = Hs(Z).

(iii) In particular,
∑

i dim H i,i+s(X) =
∑

i dim H i,i+s(Z).

Proof. The Localization Theorem 3.1 implies the map i∗

Z induces an isomorphism

Hs
T (X) ⊗S C[1] ∼= Hs

T (Z) ⊗S C[1].

Since Hs
T (Z)⊗S C[0] ∼= Hs(Z) = H s(K ∗

Z ), and since dim(Hs
T (X)⊗S C[a]) is the

rank of Hs
T (X) as a free S-module for any a, we get an isomorphism Hs

T (X) ⊗S

C[1] ∼= H s(K ∗

Z ), which is nothing more than i∗

Z 8̂X,s . It follows that 8̂X,s is injec-
tive.

To prove part (i), it remains to show 8̂X,s is surjective. It suffices to show that
8X,s is. By standard reasoning about the spectral sequence of a double complex,
we have an edge map ep,s : Fp H s(K ∗

X ) → H p,p+s(X) whose kernel contains
Fp−1 H s(K ∗

X ). Let f (t) =
∑

i wi t i , where each wi ∈ Ap−i,p+s−i (X) represents
a class in H p,p+s

T (X). By definition, 8X,s( f ) =
∑

i wi . Moreover,

π( f ) = w0 = ep,s
(∑

i

wi
)
.

In other words, we get the following commutative diagram.

H p,p+s
T (X)

π

��

8X,s // Fp H s(K ∗

X )

ep,sxxppppppppppp

H p,p+s(X)

Since π is surjective, it follows from this that 8X,s is surjective. This concludes
the proof of (i). The statements (ii) and (iii) follow immediately. �
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Remark 4.3. Theorem 4.2(i) is analogous to the corollary in [Puppe 1974, p. 13].
The proof of Theorem 4.2 implies that the subcomplex of the Koszul complex
consisting of T -invariant forms is quasi-isomorphic to the Koszul complex itself.
By first proving this result directly (which is similar to the well-known result that
invariant forms in the deRham complex determine the deRham cohomology) and
then using that the equivariant Dolbeault evaluated at t = 1 is just the invariant
Koszul complex, one gets an alternative proof of Theorem 4.2. In this context,
the evaluation at t = 1 is exact, and hence commutes with homology, whereas the
evaluation at t = 0 is not.

Theorem 4.2 realizes two of the goals of the paper: a simple proof that i∗

Z is a quasi-
isomorphism, and a proof of the isomorphism (3) of Theorem 2.1 that doesn’t use
the Deligne Degeneracy Criterion. We note that the isomorphism (4) is a formal
consequence of the fact that iV is a derivation.

Let us now comment further on the filtrations. Let 8̂X : H∗

T (X) ⊗S C[1] →

H∗(K ∗

X ) be the morphism obtained by combining the 8̂X,s . Note that 8̂X is a
C-algebra isomorphism, but not an isomorphism of graded algebras. However,
H∗

T (X) ⊗S C[1] and H∗(K ∗

X ) are both canonically filtered, the former being the
filtration induced from the grading on H∗

T (X) and the latter being the filtration in-
troduced in Section 2. More explicitly, if p ≥ 0, put FpHs

T (X) =
⊕

i≤p H i,i+s
T (X).

If 8X,s is the map defined in (6), then, by definition,

(8) 8X,s
(
FpHs

T (X)
)
⊂ Fp H s(K ∗

X ).

Note that 8X,s can be described as the map obtained by composing 8̂X,s and the
natural map from H∗

T (X) to H∗

T (X) ⊗S C[1] sending α to α ⊗S 1.
We can now give a geometric description of the filtration of H∗(K ∗

X ). Let RX

denote the algebra H∗

T (X)/S+H∗

T (X). Since the ideal S+H∗

T (X) is homogeneous
with respect to the grading of H∗

T (X), RX inherits a grading from H∗

T (X).

Theorem 4.4. The mapping 8X is a surjection of filtered rings. That is, for all s,

8X,s
(
FpHs

T (X)
)
= Fp H∗(K ∗

X ),

and RX is isomorphic to both H∗(X) and Gr H∗(K ∗

X ) as graded algebras.

Proof. This follows from (8) and Theorem 4.2(i). �

Since the inclusion map iZ : Z → X induces a quasi-isomorphism, we immedi-
ately obtain a description of the filtration of H∗(K ∗

Z ) whose associated graded is
H∗(X).

Corollary 4.5. For each p ≥ 0,

8Z ◦ i∗

Z

( ⊕
0≤i≤p

H i,i+s
T (X)

)
= Fp H s(K ∗

Z ).



70 JIM CARRELL, KIUMARS KAVEH AND VOLKER PUPPE

We will give an example of how to use this result in the next section. Note also
that the natural map

1p : H p,p+s
T (X) → Fp H s(K ∗

X ) → H p(X, �
p+s
X )

can be described as the p-th derivative map

1p( f ) =
1
p!

f (p)(1).

We now use Theorem 4.2 to prove a vanishing theorem which extends the van-
ishing result H p,q(X) = 0 if |p − q| > dim Z .

Theorem 4.6. If |p − q| > dim Z , then H p,q
T (X) = 0.

Proof. Since H∗

T (Z) = S ⊗C H∗(Z), it follows that

H p,q
T (Z) =

⊕
i≤min(p,q)

Si
⊗C H p−i,q−i (Z).

But |p − q| = |(p − i) − (q − i)| > dim Z , so H p,q
T (Z) = 0 as well. By Theorem

3.4, H p,q
T (X) ⊂ H p+q

T (X), so the result follows from the Localization Theorem
3.1 since i∗

(
H p,q

T (X)
)
⊂ H p,q

T (Z) ⊂ H p+q
T (Z). �

5. An application

The purpose of this section is to apply our main result to give a simple proof of
a fact about the cohomology ring of a regular variety originally proved in [Carrell
1995]. A smooth projective variety X over C that admits an action of the upper
triangular subgroup B of SL2(C) whose unipotent radical U has a unique fixed
point o is said to be regular. Let T denote the diagonal torus in B, and let T be the
maximal compact torus in T. One knows [Carrell 1995] that XT

= X T is finite,
and, moreover, o ∈ X T . In fact, let λ : C∗

→ T be the isomorphism

t →

(
t 0
0 t−1

)
.

Then the Bialynicki–Birula cell Xo = {x ∈ X | limt→∞ λ(t) ·x = o} is a T-invariant
open set in X isomorphic with Cn for n = dim X , and there exist affine coordinates
u1, . . . , un on Xo that are quasihomogeneous of positive degree with respect to the
Gm-action on X induced by λ. This grading on C[Xo] = C[u1, . . . , un] is called
the principal grading. The principal filtration P• of C[Xo] is given by

Pi C[Xo] =

∑
j≤i

C[Xo]
j ,
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where C[Xo]
j denotes the subspace generated by the homogeneous elements of

degree j . Finally, let

µ(a) =

(
1 a
0 1

)
,

and let Ta (a ∈ C∗) be the torus µ(a)T µ(a)−1. We will now prove the following
result.

Theorem 5.1. Suppose X is regular. Then X Ta ⊂ Xo, so H 0(X Ta ) is a quotient
of C[Xo] for any a ∈ C∗. Hence it inherits a natural filtration from the principal
filtration of C[Xo], so let GrP H 0(X Ta ) denote the associated graded ring. Then

H∗(X) ∼= GrP H 0(X Ta ).

Proof. We will only prove the theorem for a = 1. The proof for other values of a
is similar, after the map 8X has been modified. Put X T

= {x1, . . . , xr }. Now the
diagonal action of B on X × P1 is also regular, with fixed point (o, 0), where 0
represents [1, 0] in P1. Let

Z =

r⋃
i=1

{(µ(u) · xi , u−1) | u 6= 0}.

Let Z be the reduced intersection Z ∩ (Xo × C). Clearly, Z is T-stable, hence its
coordinate ring C[Z] has a natural (principal) grading. In addition, the projection
p2 induces a C[v]-module structure on the coordinate ring C[Z], where v denotes
a coordinate function on C.

By a result of Brion and the first author [2004, Theorem 1], the coordinate ring
C[Z] is isomorphic as a graded C-algebra to the equivariant cohomology algebra
H∗

T (X). In fact, an isomorphism

ρ : H∗

T (X) → C[Z]

is defined as follows. Since the odd cohomology of X is trivial (because X T is
finite), the action T : X is equivariantly formal, so the restriction map i : H∗

T (X) →

H∗

T (X T ) is injective. Note that

H∗

T (X T ) =

r⊕
i=1

C[v]i ,

where v is an indeterminate and C[v]i = H∗

T ({xi }). Thus each α ∈ H∗

T (X) is
determined by an r -tuple of polynomials (A1, . . . , Ar ) in C[v]. Now if (x, a) ∈

Z−(o, 0), then x =µ(a−1)·x j for a unique index j , where a 6=0. The restriction of
α at x j is a polynomial function A j (v). The isomorphism ρ is defined by making
ρ(α) the unique function on Z defined by ρ(α)(x, v) = A j (v), if x = µ(a−1) · x j .
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Now note that H∗

T (X) = H0
T (X). Furthermore, µ(1) : X → X defines an iso-

morphism H∗

T (X) ∼= H∗

T1
(X). Thus, we obtain a sequence of maps

C[Z]
ρ−1

−→ H∗

T (X)
µ(1)∗
−→ H∗

T1
(X)

8X
−→ H 0(K ∗

X ) =

⊕
X T1

C,

where K ∗

X denotes the complex associated to the holomorphic vector field gener-
ated by the torus T1. The composition 9X of these maps sends F ∈ C[Z] to the
r -tuple ρ−1(F)(1) = 8Xρ−1(F), which, by Theorem 4.4, gives us the result. �

6. Examples

The first example deals with a Gm-action on Pn having two components of different
dimensions.

Example 6.1. Let X = Pn , and let C∗ act on X via

t · [a0, a1, . . . , an] = [a0, a1, . . . , tan].

Then X T
= X1 ∪ X2, where X1 = {[0, 0, . . . , 0, 1]}, and X2 = V (an) ∼= Pn−1.

Because H p,q
T (X) = 0 for p 6= q , we have H p,p

T (X) = H 2p
T (X), Hs

T (X) = 0
for s 6= 0, and H0

T (X) = H∗

T (X). Similarly, H∗

T (X T ) = H0
T (X T ). The image of

H∗

T (X) in H∗

T (X T ) consists of all triples (α, β, γ ) satisfying α ∈ H∗

T (X1) ∼= C[t];
β ∈ H∗

T (X2) ∼= C[t] ⊗ H∗(X2) with α(0) = β0(0), where β0 is the component of
β in C[t] ⊗ H 0(X2); and γ =

∑
cT

1 (Ei ), where the Ei are vector bundles on X T
2 .

Recall from (5) that cT
1 (E) = mt +c1(Ei ), where tm is the weight of the Gm-action

on the bundle on X that restricts to Ei . The cochain map 8X sends t → 1.

Example 6.2 (Toric varieties [Kaveh 2005]). Let M = (C∗)n , and let X be a
smooth projective M-toric variety. Let t = Lie(M) and tR ⊂ t be the real vector
space generated by the lattice of characters of M . Let γ be a 1-parameter subgroup
of M in general position in the sense that the fixed point set Z of the C∗-action
defined by γ coincides with X M . Hence H p,q(X) = 0 if p 6= q , so it follows that
H0(X) = H∗(X, C). Now let

F0 ⊂ F1 ⊂ · · · ⊂ Fn = H 0(Z , C)

be the associated filtration. Finally, let 6 be the fan of X in tR. Each z ∈ Z
corresponds to a cone of maximal dimension σz in 6.

The equivariant cohomology H∗

T (X, C), where T = (S1)n
⊂ (C∗)n , can be

described as the algebra A of all continuous functions on tR whose restriction
to each cone of 6 is given by a polynomial (conewise polynomial). Under this
identification, H 2i

T (X, C) corresponds to the subspace Ai of A consisting of those
functions whose restriction to each cone of maximal dimension is homogeneous
of degree i .
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Let Q denote the compact torus γ (S1). Then one can verify that the map 8Z ◦i∗

Z :

H∗

Q(X) → H 0(Z , C) in Corollary 4.5 sends the restriction to Q of a continuous
conewise polynomial function g to an element g̃ : Z → C defined by

g̃(z) = g|σz (γ ).

It follows from Corollary 4.5 that g ∈ Ai if and only if g̃ ∈ Fi . The fact that
Fi/Fi−1 ∼= H 2i (X, C) was verified in [Kaveh 2005] using [Carrell and Lieberman
1977].

Example 6.3 (The flag variety G/B). Let G be a connected semisimple group
over C, B a Borel subgroup and X = G/B the flag variety of G. Let H be a
maximal (algebraic) torus in B and h = Lie(H). Recall that the fixed point set X H

under left multiplication by H is in one-to-one correspondence with the Weyl group
W = NG(H)/H under the map w = nH → nB. Since H p,q(X) = 0 for p 6= q,
it follows that H s(K ∗

X ) = 0 if s 6= 0 for the holomorphic vector field induced by
any one parameter subgroup of H . Now, H∗

H (X, C) is isomorphic as a C-algebra
to S ⊗SW S where SW denotes the subalgebra of W -invariants (see [Brion 1998, §2
Examples]).

We will first consider the regular case, which is well known but will be used in
treating the general case.

(a) Suppose h ∈ h induces a regular one parameter subgroup. That is, Z = X H .
Equivalently, the isotropy group Wh of h is trivial. Thus H 0(K ∗

X ) = H 0(Z , C) =

CW under the identification Z = W . The map H∗

H (G/B, C) → H 0(Z , C) obtained
by localizing and setting t = 1 is described as follows. Let S = C[h]. Now,
H∗

H (X, C) is isomorphic as a C-algebra to S ⊗SW S where SW denotes the sub-
algebra of W -invariants (see [Brion 1998, §2 Examples]). Since H∗(G/B, C) is
generated by the Chern classes of line bundles, and such line bundles are always
H -equivariant, we need only consider the image of an equivariant Chern class
cH

1 (Lλ), where Lλ denotes the line bundle corresponding to a weight λ ∈ h∗. But
it can be shown that cH

1 (Lλ) = −
∑

w∈W 1 ⊗ (w · λ), and so cH
1 (Lλ) is sent to the

element fλ ∈ H 0(Z , C) defined by the condition

(9) fλ(w) = −〈w · λ, h〉.

This coincides with the representative of c1(Lλ) on H 0(Z , C) calculated, for ex-
ample, in [Carrell 1992]. The upshot is that F1 is the image of h∗ under the quotient
map S → C[W · h]. This reproves the result that H∗(X, C) = Gr C[W · h], where
the grading is taken with respect to the filtration obtained as the image of the
filtration of S associated to its natural grading. Note that C[W ·h] is the algebra of
polynomials on the Weyl group orbit W · h.
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(b) Suppose the element h is nonregular. Let 8 be the root system of (G, H) and
8h = {α ∈ 8 | α(h) = 0}. Put

h0 =

⋂
α∈8h

ker α,

and let H0 ⊂ H be the corresponding torus. Finally, let L denote the Levi subgroup
L = ZG(H0). For example, if G = GL(n, C), and H is the diagonal torus, put h =

diag(a1 In1, a2 In2, . . . , anr Inr ), where Il is the l×l identity matrix, n1+· · ·+nr = n
and ai 6= a j when i 6= j . Then L = GL(n1, C)×· · ·× GL(nr , C). Then the Weyl
group WL of L is the isotropy subgroup of h in W . Now Z = X H0 is a union of the
flag varieties of L . More precisely, for w ∈ W , let Zw be the connected component
of Z containing wB ∈ X H . One sees that each Zw is isomorphic to L/L ∩ B and
Zw = Zw′ for w, w′ in the same right coset of WL . Thus

Z =

⋃
w∈WL\W

Zw.

Hence H∗(Z , C) =
⊕

w∈WL\W H∗(L/L ∩ B). To obtain the filtration of H∗(Z , C),
take an element t ∈ h that determines a regular 1-parameter subgroup of H . Let
Z ⊂ h ⊕ h be the W -orbit of (h, t), where W acts diagonally on h ⊕ h. One can
write

Z =

⋃
w∈WL\W

Zw,

where Zw = {(w−1
· s, w−1u−1

· t) | u ∈ WL}. The elements of Z are in one-to-one
correspondence with X H , and each Zw corresponds to the H -fixed points in Zw.
Let C[Z] and C[Zw] denote the coordinate rings of Z and Zw, respectively. From
part (a), H∗(Zw) ∼= Gr C[Zw] for any w ∈ WL\W , where the filtration on C[Zw]

is induced by the degree. Hence

H∗(Z , C) ∼=

⊕
w∈WL\W

Gr C[Zw].

Put A =
⊕

w∈WL\W Gr C[Zw]. The following shows that the filtration on A is
induced by the natural filtration on C[Z] given by the degree.

Proposition 6.4. An element ( fw) ∈ A lies in Fi if and only if there exists an
element f ∈ C[Z] with degree ≤ i and whose restriction to Zw is a representative
for fw in Gr C[Zw].

Proof. Note that the result of part (a) implies that H∗(X, C) is generated by
H 2(X, C). Hence the filtration is generated by F1, that is, Fi consists of all poly-
nomials in the elements of F1 of degree ≤ i . Hence it is enough to verify the claim
for F1. Consider the line bundle Lλ on X corresponding to a dominant weight λ,
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and let Lλ,w be the restriction of Lλ to the small flag variety Zw. Then, for each
w ∈ WL\W , the weight of the action of s on Lλ,w is 〈λ, w−1

· s〉. From (5),

(10) cs
1(Lλ,w) = −〈λ, w−1

· s〉 + c1(Lλ,w),

where cs
1 denotes the equivariant Chern class for the C∗-action induced by s. Then,

from Theorem 4.4, (9) and (10) it follows that c1(Lλ,w) corresponds to the element
( fλ,w) represented by the function

(11) (w−1
· s, w−1u−1

· t) 7→ −〈λ, w−1
· s〉 − 〈λ, w−1u−1

· t〉.

Now let fλ be the linear function on h⊕h given by f (x, y) = −λ(x)−λ(y). From
(11), the restriction of fλ to Zw gives a representative for fw ∈ Gr C[Zw]. The
Proposition now follows because the c1(Lλ) span H 2(X, C). �
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