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UNIQUENESS OF THE CHEEGER SET OF A CONVEX BODY
VICENT CASELLES, ANTONIN CHAMBOLLE AND MATTEO NOVAGA
We prove that if C c RV is of class C? and uniformly convex, the Cheeger

set of C is unique. The Cheeger set of C is the set that minimizes, inside C,
the ratio of perimeter over volume.

1. Introduction

For a nonempty open bounded subset  of RV, the Cheeger constant of Q is the
quantity

(D) hg = min P(K)
°TRea K|

Here | K | denotes the N-dimensional volume of K and P (K') denotes the perimeter
of K. The minimum in (1) is taken over all nonempty sets of finite perimeter
contained in . A Cheeger set of Q is any set G C 2 which minimizes (1). If Q
minimizes (1), we say that it is Cheeger in itself. We observe that the minimum in
(1) is attained at a subset G of 2 such that dG intersects 0€2: otherwise we could
diminish the quotient P(G)/|G| by dilating G.

For any set K of finite perimeter in R", define

P(K)
K|~

K ‘=

Thus Ag = h¢ for any Cheeger set G of Q. Moreover, G is a Cheeger set of Q if
and only if G minimizes

2) min P(K) — Ag|K|.
KCQ

We say that a set Q@ C R is calibrable if  minimizes the problem
3) min P(K) — ro|K]|.
KCcQ
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Any Cheeger set G of 2 is clearly calibrable. Thus, €2 is a Cheeger set of itself if
and only if it is calibrable.

Finding the Cheeger sets of a given 2 is a difficult task. The task is simplified
if © is a convex set and N = 2. In that case, the Cheeger set of 2 is unique and
equals the set QR @ B(0, R), where QF := {x € Q : dist(x, dQ) > R} is such that
QR =7R*and A@B:={a+b:ac A, be B}, for A, B C R? [Alter et al.
2005b; Kawohl and Lachand-Robert 2006]. In particular, in this case the Cheeger
set is convex.

A convex set  C R? is Cheeger in itself if and only if ess sup,cyqka(x) < Ag,
where kg (x) denotes the curvature of 92 at the point x. This has been proved in
[Giusti 1978; Bellettini et al. 2002; Kawohl and Lachand-Robert 2006; Alter et al.
2005b; Kawohl and Novaga 2006], though it was stated in terms of calibrability
in the second and fourth of these references. The proof in [Giusti 1978] had a
complementary result: if 2 is Cheeger in itself then €2 is strictly calibrable, that is,
for any set K C €2, we have

0= P(Q) —ra|Q| < P(K) — ralK]|.

(This implies that the gravity-less capillary problem with vertical contact angle at
the boundary, given by

Du

—div—————=—=21q in £,
V14 |Dul?
4) D
u o _
—— =1 in 0€2,

V1+1Duf?
has a solution. Indeed, the two problems are equivalent [Giusti 1978; Kawohl and
Kutev 1995].)

Our purpose in this paper is to extend the preceding result to R", that is, to
prove the uniqueness and convexity of the Cheeger set contained in a convex set
Q c RN. We have to assume, in addition, that € is uniformly convex and of class
C?. This regularity assumption is probably too strong, and its removal is the subject
of current research [Alter and Caselles 2007]. The characterization of a convex set
Q C RN of class C"! which is Cheeger in itself (also called calibrable) in terms of
the mean curvature of its boundary was proved in [Alter et al. 2005a]. The precise
result states that such a set 2 is Cheeger in itself if and only if xo(x) < Aq for
almost any x € 92, where kq(x) denotes the sum of the principal curvatures of
the boundary of €2, which is to say, N—1 times the mean curvature of 92 at x.
In [Alter et al. 2005a] it was also proved that for any convex set 2 C R" there
exists a maximal Cheeger set contained in €2 which is convex. These results were
extended to convex sets 2 satisfying a regularity condition and anisotropic norms
in R" (including the crystalline case) in [Caselles et al. 2005].
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In particular, we obtain that Q@ C R" is the unique Cheeger set of itself, whenever
Q is a C?, uniformly convex calibrable set. We point out that, by Theorems 1.1
and 4.2 in [Giusti 1978], this uniqueness result is equivalent to the existence of a
solution u € WIL’COO (€2) of the capillary problem (4).

In Section 2 we collect some definitions and recall results about the mean cur-
vature operator in (4) and the subdifferential of the total variation. In Section 3 we
state and prove our uniqueness result.

2. Preliminaries

2.1. BV functions. Let Q be an open subset of RV, A function u € L' (Q) whose
gradient Du in the sense of distributions is a (vector valued) Radon measure with
finite total variation in €2 is called a function of bounded variation. The class of
such functions will be denoted by BV (2). The total variation of Du on 2 turns
out to be

(5) sup {/ udivzdx:z e Cyo (2 RM)Y, 2]l Lo () := ess sup,cqlz(x)| < 1} ,
Q

(where for a vector v = (vy, ..., vy) € RY we set |v]? := ZINZI viz) and will be

denoted by | Du|(£2) or by fQ |Du|. The map u — |Du|(2) is LIIOC(Q)—Iower semi-
continuous. BV (L2) is a Banach space when endowed with the norm fQ lu| dx +
|Du|(S2). We recall that BV (RV) € LN/ WV=D(RN).

A measurable set £ € R" is said to be of finite perimeter in R" if (5) is fi-
nite when we substitute for u the characteristic function Xz of E and Q = RV,
The perimeter of E is defined as P(E) := |Dxg|(R"). For more information on
functions of bounded variation we refer to [Ambrosio et al. 2000].

Finally, we denote by %" ~! the (N—1)-dimensional Hausdorff measure. We
recall that when E is a finite-perimeter set with regular boundary (for instance,
Lipschitz), its perimeter P(E) also coincides with the more standard definition

#HVN1DE).

2.2. A generalized Green’s formula. Let Q be an open subset of R". Following
[Anzellotti 1983a], let

X2(Q) :={z € L®(2; RY) : div z € L*(Q)}.
If z € X>(R) and w € L?(2) N BV () we define the functional
(z-Dw): CF () — R

by the formula

((z- Dw), p) := —/

wgodivzdx—f wz-Vodx.
Q

Q
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Then (z - Dw) is a Radon measure in £2,
/(Z-Dw) =f z-Vwdx forwe L2 (Q)NW'(Q).
Q Q

Recall that the outer unit normal to a point x € 3 is denoted by v (x). We
recall the following result proved in [Anzellotti 1983a].

Theorem 1. Let Q C RY be a bounded open set with Lipschitz boundary. Let 7 €
X2(82). Then there exists a function [z-v%] € L®(0RQ) satisfying || [z-v%] lLopo) <
|zl oo (@:mN)> and such that for any u € BV (£2) N L%(Q2) we have

/udivzdx+/(z-Du)=/ [z v u deN 1,
Q Q Q2

Moreover, if ¢ € C1H(Q) then [(pz) - v¥] = @[z - v¥].
This result is complemented with the following.

Theorem 2 [Anzellotti 1983b]. Let Q@ C RN be a bounded open set with a boundary
of class C'. Let z € C(Q; RN) with div z € L%(2). Then

[z- V() = z(x) - vE(x) #N—1_ae. on 8%.

2.3. Some auxiliary results. Let Q be an open bounded subset of R with Lips-
chitz boundary, and let ¢ € LY(Q). For all € > 0, we let \IJ; 1 L2(Q) = (—00, +00]
be the functional defined by

2 2 _ : 2
) lp;(u) — /Q €-+ |Du| —l—/mlu ¢| if ue L7 (2)NBV(Q),
+00 if uelLl?(Q)\BV(RQ).

As it is proved in [Giusti 1976], if f € W1°(Q), then the minimum u € BV ()
of the functional

) Wi+ [ u) - oo dx
Q
belongs to u € C>t%(Q), for every o < 1. The minimum u of (7) is a solution of
Lgiv 2" f(r) i
u——div————==f(x) inQ,
(®) A /&2 +|Dul?
u=gq on €2,

where the boundary condition is taken in a generalized sense [Lichnewsky and
Temam 1978], i.e.,

D
|:—u vQ:| € sign(p — u) #N—1_a.e. on 9K

JeX+ Dul
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Observe that (8) can be written as

9) u+%8\11;(u) > f.

We are particularly interested in the case where ¢ = 0. As we shall show below
(see also [Alter et al. 2005a]) in the case of interest to us we have u > 0 on 92 and
thus,

[L : vQ:| =—1 %V lae ondQ.
V&er+|Du|?
It follows that u is a solution of the first equation in (8) with vertical contact angle
at the boundary.

As € — 0T, the solution of (8) converges to the solution of

1 .
(10) u—l—xa\ll(p(u):f(x) in 2,
u=gq on 0€2.

where W : L2(Q2) — (—o00, +00] is given by

/|Du|—|—/ lu—¢| if ueL>(Q)NBV(Q),
RN a2

(11) W, (u) =
+00 if uelL?*(Q)\BV(RQ).

In this case 0W,, represents the operator —div lDu with the boundary condition

u = ¢ in €2, as shown by: Dul
Lemma 2.1 [Andreu et al. 2001]. The following assertions are equivalent:
(@) vedW,(u).

(b) u € L3(2) N BV(R), v € L%(Q), and there exists z € X»(Q2) with ||z|le < 1,
such that v = —div z in 9'(Q), z - Du = |Du|, and

[z-v9] € sign(p — u) #N-1_a.e. on dQ.

Notice that the solution u € L*(2) of (10) minimizes the problem

(12) min f|Du|+/ () — o ()] IV (o) + /Iu(x)—f(x)l dx,

ueBV (2)

and the two problems are equivalent.

3. The uniqueness theorem

‘We now state our main result.

Theorem 3. Let C be a convex body in RYN. Assume that C is uniformly convex,
with boundary of class C?. Then the Cheeger set of C is convex and unique.
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We do not believe that the regularity and the uniform convexity of C is essential
for this result (see [Alter and Caselles 2007]).

Theorem 4 [Alter et al. 2005a, Theorems 6 and 8, Proposition 4]. Let C be a
convex body in RN with boundary of class C"'. For any A, & > 0, there is a unique
solution u. of the equation

1 . Du, .
Uy — —div——-——=1 1inC,
(13) A €2+ |Dugl?
u, =0 on 0C

such that 0 < u, < 1. Moreover, there exist Ay and &y, depending only on 0C, such
that if . > Ao and € < gy, then u, is a concave function such that u, > o > 0 on
aC for some a > 0. Hence, u. satisfies

Du* C . €
(14) ———— v | =sign(0—u)=—1 onaC.

Ve + | Duc|?

As ¢ — 0, the functions u, converge to the concave function u minimizing the
problem

: f / N-1 k/ 2 .
(15) min |Du| + lu(x)|[dH" " (x) + = | |Jux)—1|"dx;
)Je aC 2 Jc

ueBV (C

equivalently, if u is extended with zero out of C, the extension minimizes

A
/|Du|+—/ lu — xc|*dx.
RN 2 RN

The function u satisfies 0 < u < 1. The superlevel set {u > t}, for t € (0, 1], is
contained in C and minimizes the problem

(16) min P(F) —A(1 —1)|F|.
FcC

It was proved in [Alter et al. 2005a] (see also [Caselles et al. 2005]) that the set
C* = {u = maxc u} is the maximal Cheeger set contained in C, that is, the maximal
set that solves (1). Moreover, one has u =1 —h¢/A > 01in C* and h¢ = Ac+.

If we want to consider what happens inside C*, and in particular whether there
are other Cheeger sets, we have to analyze the level sets of u, before passing to
the limit as € — 0. To do this, we introduce the following rescaling of u,:

Ug — Mg

vé‘: S 07

&
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where m, = maxcu, — 1 — hc /) as ¢ — 0. The function v, is a generalized
solution of the equation:

svg—liszl—mg in C,
(17) A \/1+|DU5|2
vgz—% on dC.

‘We define the vector field

ze = Dug /v e? + | Duc|* = Dvg /' 1+ | Dvg|?;

it lies in L°°(C), has uniformly bounded divergence, and satisfies |z,| < 1 a.e. in
C and, by (14), [z¢ - v¢] = —1 on dC.

We now study the limit of v, and z, as ¢ — 0. By the concavity of v,, for each
& > 0 small enough and each s € (0, |C|), there exists a (convex) superlevel set
C? of v, such that |C{| = s. Moreover, {v, = 0} is a null set: otherwise, since
v 1s concave, it would be a convex set of positive measure, hence with nonempty
interior. We would then have v, = divz, = 0, hence 1 — m, = 0 in the interior of
{ve = 0}. This is a contradiction with Theorem 4 for ¢ > 0 small enough.

Hence we may take Cjj := {v, = 0} and C\ECI := C. The boundaries 9C; N C
define a foliation in C, in the sense that for all x € C, there exists a unique value
of s € [0, |C|] such that x € 9C?}.

A sequence of uniformly bounded convex sets is compact both for the L' and
Hausdorff topologies. Hence, up to a subsequence, we may assume that the C;
converge to convex sets Cy, each of volume s, first for any s € QN (0, [C]) and
then by continuity for any s. Possibly extracting a further subsequence, we may
assume that there exists s, € [0, |C|] such that v, goes to a concave function v in
C; for any s < s, and to —oo outside C, := Cs,. We may also assume that 7, — z
weakly* in L>°(C), for some vector field z satisfying |z|] < 1 a.e. in C. From (13)
we have in the limit

(18) —divz=A(1—u) in 9'(C).

Moreover, —div z € dWo(u) by the results recalled in Section 2. We then see from
(18) that

(19) —divz =h¢ in C*,

while —divz > h¢ a.e. on C \ C*.
Set s* :=|C*|, so C* = Cy+. By Theorem 4, for s > s*, the set C, is a minimizer
of the variational problem

(20) min P(E) — us|E|,
ECC
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for some s > he (s is equal to the constant value of —divz=A(1—u) on dC;NC;
see (16)). Notice that u, is bounded from above by P(C)/(|C| — s): indeed,

. N—1 e [Du.|
— divze(x)dx =% (0C\aCy) — P(C)
c\Ct 9

S A
acenc /14 |Dug|?>

for & > 0, since the inner normal to C{ at x € 0C; N C is Du,(x)/|Duc(x)|. On
the other hand,

[ dvaear= [ a-uedrz el
C\C§ C\C:

where £ is the constant value of A(1 —u,) on the level set 9C; N C, and goes to
Ws as € = 0. A more careful analysis would show, in fact, that

_PO-PE)
= ICl-s

For s > s*, we have ug; > h¢ and the set C; is the unique minimizer of the
variational problem (20). As a consequence (see [Alter et al. 2005a; Caselles et al.
2005]) for any s > s* the set C; is also the unique minimizer of P (E) among all
E C C of volume s.

Lemma 3.1. We have s, > 0 and the sets Cs are Cheeger sets in C for any s €
[sx, 5*].

Proof. Let s, <s < |C|. If x € dC¢ \ 0C, then
0—v:(x) < Dvg(x)-(Xxe —x)

where v, (X;) = maxc ve. Hence, lim,_, infyce\gc | Dve| = +00. Since [z - V€] =
—1ondC and P(C?) — P(C,), we deduce

— [ [ze(x) - vE (x0)1d%V T (x)
ace

D
_ / wd%i\’*l(x) + #N1OCENIC) — P(Cy)
aCE\IC

V1+|Dv(x)|?

as ¢ — 01. Hence,

/ [z-vE] a%e! :/ divz=lim | divz
aCy Cs

e—0 Jce
s

= lim [ze - vee | dHN ™ = — P(Cy).
£—0 aCE §
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Since |z| < 1 a.e. in C, we deduce that [z - v©] = —1 on 3C, for any s > s, (in
particular, |z| =1 a.e. in C \ C,). Using this and (19), we have for all s, < s < s*
P(Cy)
(21) =hc.
|Cs]

This has two consequences. First, from the isoperimetric inequality, we obtain

I P(Cy) P(B1)
c= > )
G5l = (1BiIN-1s)UN

if s € (54, s¥], so that s, > 0. Moreover, C; is a Cheeger set for any s € (s4, s*],
and by continuity C, is also a Cheeger set. O

Since the sets C; are convex minimizers of P(E) — us|E| among all E C C, for
s > s,, their boundary is of class C1! [Brézis and Kinderlehrer 1974; Stredulinsky
and Ziemer 1997], with curvature at most u,, and equal to u, in the interior of C
(note that uy = h¢ for s € [sy, s*]).

Remark 3.2. Either s, =s*, and so C, = C*, or s, < s*, and so C* = Use(s*’s*) Cs.
In the latter case, the supremum of the sum « ¢+ of the principal curvatures on dC*
is equal to h¢. Indeed, if this were not the case, by considering C’ C int(C*) with
curvature strictly below /¢, together with the smallest set Cy with s > s, containing
C’, we would get k¢ (x) > k¢, (x) = he at all x € 3C’ N ICy, a contradiction. In
particular, C = C, if the supremum of x¢ on dC is strictly less than P(C)/|C|;

this condition also implies C = C* by [Alter et al. 2005a].

From the strong convergence of Dv, to Dv (in L3(C,) for any s < §4), we
deduce that z = Dv//1+ |Dv|? in C,. It follows that v satisfies the equation

Dv _
V' 1+ |Dvl|?

Integrating both sides of (22) in C,, we deduce that

D
|:—v vC*i|=—1 on 0C,.

\/1+|Dv|2.

Lemma 3.3. The set C, is the minimal Cheeger set of C; that is, any Cheeger set
of C must contain C.,.

Proof. Let K € C* be a Cheeger set in C. We have

(22) —div hc in C.

helK| = —/ divz = —/ [z-vE1d#N ! = P(K),
K K

so [z-vK]=—1ae. on K. Let v¢ and v be the vector fields of unit normals to

the sets C and Cs, s € [0, |C|], respectively. By the Hausdorff convergence of C;
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to Cy as € — 0T for any s € [0, |C|], we have v¢ — v a.e. in C. On the other hand,
|ze +v¢| = 0 locally uniformly in C \ C,: indeed, in C,

D'Ug Dvg |Dv8| 1
V1+|Dv, 2  |Dvel V14 |Dv,|?

Since | Dv.| — oo uniformly in any subset of C at positive distance from C (see
the first lines of the proof of Lemma 3.1), this shows the uniform convergence of
|ze + V€] to O in such subsets.

These two facts imply that z = —v a.e. on C\ C,.. By modifying z in a set of null
measure, we may assume that z = —v on C \ C,. We recall that the sets Cy, s > s,
are minimizers of variational problems of the form mingc¢c P(K)—u|K|, for some
values of p (with 4 =h¢ aslong as s <s* and = g > he continuously increasing
with s > s*). Since these sets are convex, with boundary (locally) uniformly of class
C!!, and the map s — Cj is continuous in the Hausdorff topology, we conclude
that the normal v(x) is a continuous function in C \ int(Cy).

Since |z| < 1 inside C, and [z - vK] = —1 a.e. on 3K, by [Anzellotti 1983a,
Theorem 1]) we have that the boundary of K must be outside the interior of Ci,
hence either K D C, or K N C, = & (modulo a null set). Let us prove that the last
situation is impossible. Indeed, assume that K N C, = & (modulo a null set). Since
9K is of class C! out of a closed set of zero %" ~!-measure (see [Gonzalez et al.
1983]) and z is continuous in C \ int(C,), by Theorem 2 we have

lze + v =

(23) z(x) vE) =—=1 #N-1_ae. ondK.

Now, since K N C, = & (modulo a null set), then there is some s > s, and some
x € 3C;NJK such that v& (x) +v(x) =0. Fix 0 < € < 2. By a slight perturbation,
if necessary, we may assume that x € 9C; N 0K with s > s,, (23) holds at x and

(24) W) +vx)] <e.
Since by (23) we have v(x) = —z(x) = vX (x) we obtain a contradiction with (24).
We deduce that K D C,. O

Therefore, in order to prove the uniqueness of the Cheeger set of C, it is enough
to show that

(25) C.=C"

Recall that the boundary of both C, and C* is of class C L1 and the sum of its
principal curvatures is less than or equal i¢, and constantly equal to A¢ in the
interior of C. We now show that if C,, # C* and under additional assumptions, the
sum of the principal curvatures of the boundary of C* (or of any C; for s € (s,, s*])
must be ¢ out of C,.
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Lemma 3.4. Assume that C has C* boundary. Let s € (54, s*] and x € 9C; \ 0C,.
If the sum of the principal curvatures of 0Cy at x is strictly below hc¢, then the
Gaussian curvature of 9C at x is 0.

Proof. Let x € 0C; \ 9C, and assume the sum of the principal curvatures of dC; at
x is strictly below h¢ (assuming x is a Lebesgue point for the curvature on 9Cj).
Necessarily, this implies that x € dC. Assume then that the Gauss curvature of dC
at x is positive: by continuity, in a neighborhood of x, C is uniformly convex and
the sum of the principal curvatures is less than 4. We may assume that near x,
dC is the graph of a nonnegative, C? and convex function f : B — R where B is
an (N — 1)-dimensional ball centered at x. We may as well assume that 0Cy is the
graph of f; : B — R, which is C""! [Brézis and Kinderlehrer 1974; Stredulinsky
and Ziemer 1997], and also nonnegative and convex. In B, we have f; > f >0,

and

D*f > ol and dv—2"
V1+I|Df|?
with i € C°(B), h < he, a > 0, while
DfS

Tl)flz =hxir=fy +hcxif>r
)

(where x{ 7=y, has positive density at x).
We let g = f; — f > 0. Introducing the Lagrangian ¥ : R¥~! — [0, 4+-00) given
by W(p) = +/1+ |p|?, we obtain, for a.e. y € B,
(hc —h(¥) xg>01(y)
=div (DW(Df,(y)) — D¥(Df (y)))

1
=div ((/ D*W(Df (y) +1(Dfs(y) — Df(y)))dt) Dg(y)> ;

0

div

so that, letting A(y) := fol D>W(Df(y)+tDg(y)) dt (which is a positive definite
matrix and Lipschitz continuous inside B), we see that g is the minimizer of the
functional

w > /B (AWDw(y) - Dw(y) + (he — h(y)w(y)) dy

under the constraint w > 0 and with boundary condition w = f; — f on 0B.
Adapting the results in [Caffarelli and Riviere 1976] we get that { f = f;} ={g =0}
is the closure of a nonempty open set with boundary of zero %" ~!-measure.

We therefore have found an open subset D C dC N dCs, disjoint from dC, on
which C is uniformly convex, with curvature less than A¢c. Let ¢ be a smooth,
nonnegative function with compact support in D. One easily shows that if € > 0 is
small enough, 3C; — v is the boundary of a set C. which is still convex, with
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P(C))/|C.| > P(Cs)/|Cs| = hc (just differentiate the map € — P(C.)/|C_|), and
the sum of its principal curvatures is less than /. This implies that for € > 0 small
enough, the set C' := C. is calibrable [Alter et al. 2005a], which in turn implies
that ming v P(K)/|K|= P(C’)/|C’|. But this contradicts C, C C’, which is true
for ¢ small enough. 0

Proof of Theorem 3. Assume that C is C? and uniformly convex. Let us prove that
its Cheeger set is unique. Assume by contradiction that C* # C,. From Lemma
3.4 we have that the sum of the principal curvatures of 9C* is h¢ outside of C,.

Let now x € dC* N 9C, be such that 0C* N B,(x) # dC, N B,(x) for all p >
0 (0C* N aC, # @ since otherwise both C* and C, would be balls, which is
impossible). Letting T be the tangent hyperplane to dC* at x, we can write 0C*
and dC, as the graph of two positive convex functions v* and v,, respectively, over
T N B,(x) for p > 0 small enough. Identifying 7 N B,(x) with B, C RN-!, we
have that v, v* : B, — R both solve the equation

. Dv
(26) —div—— = f

J1+Dv]?

for some function f € L*°(B,). Moreover, it holds v, > v*, v,(0) = v*(0) and
v4(y) > v*(y) for some y € B,,. Notice that f = A¢ in the (open) set where v, > v*,
in particular both functions are smooth in this set. Let D be an open ball such that
DcC B,, v, > v* on D and v.(y) = v*(y) for some y € dD. Notice that, since
both v* and v, belong to C*°(D)NC!(D), the fact that v,(y) = v*(y) also implies
that Dv,(y) = Dv*(y). In D, both functions solve (26) with f = A¢c. Letting
w = v, — v*, we obtain w(y) =0 and Dw(y) =0, while w > 0 inside D. Recalling

the function W(p) = /1 + |p|2, we have, for any x € D,
0 = div (DW(Dv,(x)) — DV (Dv*(x)))

1
=div ((/ D*W(Dv*(x) 4 1 (Dvy(x) — Dv*(x))) dt> Dw(x)) ,
0

so that w solves a linear, uniformly elliptic equation with smooth coefficients.
Then Hopf’s lemma [Gilbarg and Trudinger 1983] implies that Dw(y)-vp(y) <O,
a contradiction. Hence C,, = C*. O

Remark 3.5. As a consequence of Theorem 3 and the results of [Giusti 1978], if
C is of class C? and uniformly convex, Equation (22) has a solution on the whole
of C, if and only if C is a Cheeger set of itself, i.e., if and only if the sum of the
principal curvatures of dC is less than or equal to P(C)/|C].

Remark 3.6. The results of this paper can be easily extended to the anisotropic
setting (see [Caselles et al. 2005]) provided the anisotropy is smooth and uniformly
elliptic.
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