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We consider the space of polynomial-growth harmonic forms. We prove
that the dimension of such spaces must be finite and can be estimated if
the metric is uniformly equivalent to one with asymptotically nonnegative
curvature operator. This implies that the space of harmonic forms of poly-
nomial growth order on the connected sum manifolds with nonnegative cur-
vature operator must be finite-dimensional, which generalizes work of Tam.

1. Introduction

Let (Mm, g) be an m-dimensional manifold with complete Riemannian metric g,
where m ≥ 3. We assume that the curvature operator of M is asymptotically non-
negative and we focus on the space of polynomial-growth harmonic p-forms of
degree at most d on the manifold. Classical de Rham–Hodge theory implies that
in the compact case the dimension of the space of harmonic forms is a topological
invariant of the manifold, hence independent of the choice of the Riemannian met-
ric. For complete noncompact manifolds, this topological invariance is no longer
true. Nonetheless, it is an important question to study the space of harmonic forms
and to seek topological and geometrical links. Yau [1975] proved that any positive
harmonic function on a manifold with nonnegative Ricci curvature must be con-
stant; hence the strong Liouville property holds. Saloff and Coste [1992] extended
the result to the case where any Riemannian metric g′ is uniformly equivalent to
g. Thus, the space of positive harmonic functions is stable under a quasi-isometry
for (M, g).

A complete manifold M is said to satisfy a Sobolev inequality S(A, ν) if there
exist a point q ∈ M and constants A > 0, ν > 2, such that for all r > 0 and all
f ∈ C∞

0 (Bq(r)), we have∫
Bq (r)

| f |
2ν/(ν−2)

≤ Ar2V (q, r)−2/ν

∫
Bq (r)

(|∇ f |
2
+ r−2 f 2),
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where V (q, r) is the volume of the geodesic ball Bq(r). Examples include minimal
submanifolds with Euclidean volume growth in Rm and manifolds with a nonneg-
ative Ricci curvature. If a manifold satisfies a Sobolev inequality when endowed
with a certain complete Riemannian metric, it obviously satisfies such an inequality
(possibly with a different A) for any uniformly equivalent metric.

Li and Wang [1999], extending earlier work of Li [1997], proved that the di-
mension of the space H 0

d (M) of polynomial-growth harmonic functions of growth
order at most d has an estimate

dim H 0
d (M) ≤ C(A, ν)dν

provided that the underlying manifold satisfies the Sobolev inequality S(A, ν). So
the finite dimensionality of the space H 0

d (M) is valid on such a manifold with
respect to any uniformly equivalent metric.

Concerning general harmonic p-forms, Li [1997] established a dimension es-
timate of the space of polynomial-growth harmonic forms. Assuming that Kp,
defined as the curvature operator on M if p ≥ 1, is nonnegative, Li proved that

dim H p
d (M) ≤ Cdm−1,

where H p
d (M) denotes the space of polynomial-growth harmonic p-forms on M of

growth order at most d . Recently, Chen and Sung [2006] showed that the stability
of finite dimensionality of the space of H p

d (M) holds true under any uniformly
equivalent metric on such manifold M .

Interestingly, Tam [1998] proved that if M is a complete manifold with non-
negative Ricci curvature outside a compact set, and if each unbounded component
of M\D, where D is a compact smooth domain in M , satisfies a certain kind
of volume comparison property, then the space of polynomial-growth harmonic
functions of degree at most d is finite dimensional. Furthermore, he proves the
finite dimensionality of the space of polynomial-growth harmonic forms with a
fixed growth rate on manifolds with asymptotically nonnegative curvature oper-
ator and the volume comparison property. The curvature operator Kp of M is
asymptotically nonnegative if Kp ≥ −K (r), where K (r) : [0, ∞) → [0, ∞) is a
nonnegative nonincreasing continuous function of distance r to a fixed point q ∈ M
which satisfies the integrability condition∫

∞

0
r K (r) < ∞.

In view of the preceding results on the space H p
d (M), one would naturally to

ask if the dimension of the space H p
d (M) is stable under a uniformly equivalent

metric on M with asymptotically nonnegative curvature operator. An objective of
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this paper is to establish that the dimension of the space H p
d (M) remains finite

under a uniformly equivalent metric on M .
It is proved in [Li and Tam 1992] that if the Ricci curvature of M is asymp-

totically nonnegative then M has finitely many ends. Also, by [Li and Tam 1995,
Proposition 3.8], the volume comparison condition holds on M if M is a complete
noncompact manifold with asymptotically nonnegative sectional curvature. How-
ever, it remains an open question whether an end of M will satisfy the volume
comparison condition, if we only assume that M has nonnegative Ricci curvature
outside a compact set.

Main Theorem 1.1. Let (Mm, g) be a complete Riemannian manifold. Suppose
that the curvature operator Kp is asymptotically nonnegative on (M, g) and the
metric g′ is uniformly equivalent to g on M. Then there exist constants C > 0 and
ν > 2 such that the dimension of the space H p

d (M, g′) is finite and satisfies the
inequality

dim H p
d (M, g′) ≤ C dν

for all d ≥ 1, p > 1.

Remark 1.2. For p = 1, the curvature operator becomes Ricci curvature on M , we
must assume that the first Betti number of M is finite so that the volume comparison
condition holds true; compare [Li and Tam 1995]. Under this assumption, the
theorem is valid.

An immediate consequence is that the space of polynomial-growth harmonic
forms on the connected sum manifolds with nonnegative curvature operator must
be finite-dimensional under quasi-isometry. Moreover,

Corollary 1.3. Let (M, g) be a complete Riemannian manifold has nonnegative
curvature operator outside a compact set, with finite first Betti number. If the
metric g′ is uniformly equivalent to g on M. Then there exist constants C > 0
and ν > 2 such that the dimension of the space H p

d (M, g′) is finite and satisfies the
inequality

dim H p
d (M, g′) ≤ C dν

for all d ≥ 1, p ≥ 1.

We say g′ is uniformly equivalent to g if there is some positive constant c such
that c−1g′

≤ g ≤ cg′ in the sense of bilinear forms. In other words, the Riemannian
manifolds (M, g) and (M, g′) are then called quasi-isometric. Clearly, quantities
such as the distance and volume are uniformly equivalent under quasi-isometry; in
particular, a Riemannian manifold quasi-isometric to a complete manifold is also
complete. However, in general, any quantity involving derivatives of the Riemann-
ian metric will not be comparable under a quasi-isometry; in particular, the same
curvature condition is not expected to hold under a uniformly equivalent change
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of the metric. We overcome the difficulty by relating the space of harmonic forms
to the eigenvalues of the Hodge Laplacian on the Busemann balls of the manifold
with respect to the absolute boundary conditions. This idea was first introduced
and successfully pursued in [Li and Wang 1999] for the harmonic functions. Here,
our additional steps are to give the lower bound estimate of the eigenvalue of p
form on Busemann balls of M , also show that such eigenvalues on each end of
manifold are comparable under a uniformly equivalent change of the metric. We
obtain a lower bound estimate of eigenvalue by modifying an argument from [Li
1980] in Section 2. Our main result is then proved in Section 3.

Throughout the paper, we assume that the first Betti number of M is finite for the
case of p = 1.

2. Eigenvalue estimates

Let (Mm, g) be a complete, oriented Riemannian manifold with dimension m.
The Hodge–Laplace–Beltrami operator 1 acting on the space of smooth p-forms
3p(M) is defined as

1 = dδ + δd,

here d denotes the exterior differential operator and δ = ∗ d ∗, where the linear
operator ∗ is defined point-wise by

∗(w1 ∧ · · · ∧wp) = wp+1 ∧ · · · ∧wm

for a positively oriented orthonormal coframe {w1, w2, . . . , wm} at the point. A
p-form w ∈ 3p(M) is called a harmonic p-form on (M, g) if

1gw = 0.

Let q denote a point on (M, g) and let rq(x) represent the geodesic distance func-
tion from x ∈ M to the point q . For each d ≥ 0, we denote the space of polynomial-
growth harmonic p-forms of degree at most d by

H p
d (M, g) ≡ {w ∈ 3p(M) | 1gw = 0, and |w| = O(rd

q )}.

For a bounded smooth domain B ⊂ M , a p-form w is said to satisfy the absolute
condition on B if the tangential component of both w and δw on the boundary ∂ B
are zeros. On the boundary ∂ B, let N∂ B (respectively N ∗

∂ Bq
) represent the inward

unit normal vector (respectively covector) field. Now, denote exterior multiplica-
tion by ext (·) and dual exterior multiplication by int (·). It is not difficult to verify
that 1 is a self-adjoint nonnegative operator on the space 3p(B) of smooth p-forms
on B satisfying the absolute boundary condition. By the standard elliptic theory, we
see that 1 has a countable set of eigenvalues and the multiplicity of each eigenvalue
is finite. If we list all the eigenvalues with multiplicity in nondecreasing order by
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{λk, k = 1, 2, 3, . . . }, then λk → ∞ as k → ∞. Moreover, the i-th eigenvalue can
be characterized as

λi = inf
dim V =i

sup
w∈V \{0}

R(w),

where V is a subspace of 3p(B) and the Rayleigh–Ritz quotient R(w) is defined
by

R(w) =
(dw, dw) + (δw, δw)

(w, w)

for w ∈3p(B) and the L2 inner product for two forms v and w in 3p(B) is defined
by

(v, w) =

∫
B

〈v, w〉 dx

with 〈v, w〉 being the point-wise inner product between v and w.
On the other hand, the Hodge-de Rham theorem provides an orthogonal de-

composition of the space 3p(B) of differential forms of degree p on B. For any
w ∈ 3p(B), w can be uniquely written as

w = h + dv + δ u,

where h ∈ Hp(B), the space of harmonic p-forms satisfying the absolute boundary
condition and v ∈ 3p−1(B), u ∈ 3p+1(B). Clearly, the operator 1 leaves this
decomposition invariant, and the eigenvalues of 1 on the subspace Hp(B) are
zeros.

Denote by {µe
j (g) | j ≥1} the eigenvalues of 1 acting on the subspace d3p−1(B)

of exact p-forms, and by {µco
l (g) | l ≥ 1} those corresponding to the subspace

δ3p+1(B) of coexact p-forms. Then the eigenvalues {λi (g) | i > dim Hp(B)} is
equal to the reordered union of {µe

j (g) | j ≥ 1} and {µco
l (g) | l ≥ 1}. We have,

{λi (g) | i > dim Hp(B)} = {µe
j (g) | j ≥ 1} ∪ {µco

l (g) | l ≥ 1}.

The next lemma is essentially due to [Dodziuk 1982]; a proof is given in [Chen
and Sung 2006].

Lemma 2.1. Let (M, g) be a complete manifold with Riemannian metric g. Let g′

denote another Riemannian metric on M which is uniformly equivalent to g. Then

dim Hp(B, g) = dim Hp(B, g′),

and there exists a positive constant C such that

C−1λi (g) ≤ λi (g′) ≤ Cλi (g)

for all i ≥ 1.
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We will obtain a lower bound estimate of the eigenvalues of p-forms satisfying
the absolute boundary condition on Busemann balls of a manifold with asymptot-
ically nonnegative curvature operator. The argument closely follows those in [Li
1980] and [Chen and Sung 2006].

An end E of a manifold M is an unbounded component of the complement of
some compact smooth subset D of M . In this case, E is called an end correspond-
ing to D. We say that M has finitely many ends if there exists b < ∞ such that
the number of ends corresponding to D is less than or equal to b for any compact
subset D ⊂ M . Let E1, E2, . . . , EL be the ends of M with respect to D. We say
that E satisfies volume comparison property if there exists a constant ζ > 0 such
that

(1) VE(r) ≤ ζ Vx

(r
2

)
,

for all x ∈ ∂ BE(r) and for r large enough. Here we use BE(r) to denote Bq(r)∩ E ,
∂ BE(r) = ∂ Bq(r) ∩ E , and VE(r) is the volume of BE(r). Also, denote

BE(r1, r) = BE(r)\BE(r1),

and
∂ BE(r1, r) = ∂ BE(r) ∪ ∂ BE (r1) ,

where r1 ≤ r . By [Tam 1998, Lemma 1.1], the volume doubling property holds on
ends {El}

L
l=1

of M , that is for r > 2r0,

(2) VEl ((1 + ε) r) ≤ (1 + ε)µ VEl (r)

where µ > 0 is a constant depending only on m. Moreover, given any η > 0, there
is r1 > 2r0 such that for all x ∈ ∂ BE (R), with R > r1, and for all 3

4 R > r ′ > r > 0,
we have

(3) Vx
(
r ′

)
≤

(r ′

r

)n+η

Vx(r).

Let γ : [0, ∞) → M be a ray with γ (0) = q, a fixed point in M ; namely, γ

is a geodesic of (M, g) and the geodesic distance r(γ (t), γ (s)) between γ (t) and
γ (s) is equal to |t − s| for all t and s in [0, ∞). We define bt(x) = t − r(x, γ (t))
for t ≥ 0. For any fixed x , bt(x) is a nondecreasing function of t and bt(x) =

r(q, γ (t)) − r(x, γ (t)) ≤ r(q, x). Therefore bγ (x) = limt→∞ bt(x) exists for all
x ∈ M . In fact, bt(x) converges uniformly on compact sets to bγ (x). Set

β(x) = sup{bγ (x) | γ is a ray from p}.

Since for each x and for any ray γ , bγ (x)≤ r(x, p), β(x) is well defined and finite.
We call β(x) the Busemann function of (M, g) (based at point p).
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We define B(a) = {x | β(x) ≤ a} as a Busemann ball on M , for some positive con-
stant a. It is well known that β(x) is proper and convex if the curvature operator of
M is nonnegative. Therefore, the boundary of the Busemann ball is convex. Denote
a Busemann ball on end E as BE(a) = B(a)∩ E . The boundary of the Busemann
ball BE(a) is convex if the curvature operator is nonnegative on each end. We
will obtain a lower bound estimate of the eigenvalues of p-forms satisfying the
absolute boundary condition on Busemann balls of a manifold with asymptotically
nonnegative curvature operator. The argument closely follows those in [Li 1980]
and [Chen and Sung 2006].

Lemma 2.2. Let Mm be a complete manifold with asymptotically nonnegative
curvature operator. If E is an end of M with respect to a compact subset Bq(r0) ⊂

M , r0 > 0, for a large enough r > 2r0, such that Bq(r0) is contained in Busemann
ball B(r), then there exist constants C > 0 and ν > 2 such that

dim Hp(B(r)) ≤ C

and, for each k > dim Hp(B(r)), there exists a constant C depending only on ν,
m, p and η such that

λk(B(r)) ≥ Ck2/νr−2.

Proof. Let V be the k-dimensional space spanned by the eigen p-forms corre-
sponding to the first k eigenvalues {λ1, . . . , λk} on B(r). Then there exists w ∈ V,
w 6= 0, such that

(4)
k
V

‖w‖
2
2 ≤ ‖w‖

2
∞

· min{(m
p ), k},

where V = V (B(r)) denotes the volume of B(r). This is a result in [Li 1980].
On the other hand, we claim that there exist constants C > 0, k0 > 0 and ν > 2

such that for w ∈ V,

(5) ‖w‖
2
∞

≤ CV −1r−νλ
ν/2
k ‖w‖

2
2

for all k ≥ k0. It is easy to see that the Lemma follows by combining inequalities
(4) and (5). To prove (5), by the convexity of Busemann function and [Donnelly
and Li 1982, Lemma 6.2], we first observe that for w ∈ 3p(B(r)),

∂|w|
2

∂n
≤ 0

on ∂ B(r), where ∂/∂n is the outward unit normal of ∂ B(r). Since curvature op-
erator Kp is asymptotically nonnegative, it means Kp ≥ −K (r), where K (r) :

[0, ∞) → [0, ∞) is a nonnegative nonincreasing continuous function of distance
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r to a fixed point q ∈ M which satisfies the integrability condition∫
∞

0
r K (r) < ∞.

By the argument in [Saloff-Coste 1992], we obtain a local weak Poincaré inequal-
ity on the Busemann ball B(r). Also, using doubling volume condition and the
local weak Poincaré inequality for the Busemann ball B(r), we have the Sobolev–
Poincaré inequality on B(r) (see [Hajłasz and Koskela 1995])( ∫

B(r)

| f − fB |
2ν/(ν−2)

)(ν−2)/ν

≤ AV −2/νr2
∫

B(r)

|∇ f |
2 ,

where ν > 2, fB = V −1 (B(r))
∫

B(r)
f , A > 1 is a constant depending only on

m and η, and V = V (B(r)) is the volume of B(r). Moreover, by [Li 1980], we
observe that the Neumann Sobolev-type inequality

(6)
( ∫

B(r)

| f |
2ν/(ν−2)

)(ν−2)/ν

≤ AV −2/νr2
( ∫

B(r)

|∇ f |
2
+ r−2

∫
B(r)

| f |
2
)

holds on B(r).
Let {wi }

k
i=1 be the p-eigenforms satisfying the absolute boundary condition with

the corresponding nonzero eigenvalues {λi }
k
i=1 and we also assume {wi }

k
i=1 are or-

thonormal and span V. If w ∈ V, then there exist {ai }
k
i=1 such that w =

∑k
i=1 aiwi ,

that is, 1w =
∑k

i=1 λi aiwi . By the Bochner formula,

1
21 |w|

2
≤ 〈1w, w〉 − |∇w|

2
+ K |w|

2 ,

where K is the lower bound of curvature for all x in B(r). Using the fact in [Li
1980, Lemma 8],

|∇ |w||
2
≤ |∇w|

2 .

Thus,

(7) 1
21 |w|

2
≤ 〈1w, w〉 − |∇ |w||

2
+ K |w|

2 .

Let α ≥ 1, and we multiply both sides of this inequality ((7)) by |w|
2α−2 and

integrate over B(r),

(8)
1
2

∫
B(r)

|w|
2α−2 1 |w|

2

≤

∫
B(r)

|w|
2α−2

〈1w, w〉 +

∫
B(r)

K |w|
2α

−

∫
B(r)

|w|
2α−2

|∇ |w||
2 .
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Using the absolute boundary condition, the left-hand side of this inequality be-
comes

1
2

∫
B(r)

|w|
2α−2 1 |w|

2
≥ (α − 1)

∫
B(r)

|w|
2α−3 〈

∇ |w| , ∇ |w|
2〉

=
2(α − 1)

α2

∫
B(r)

〈
∇ |w|

α , ∇ |w|
α
〉
,

and the third term in the right-hand side of (8) can be rewritten as∫
B(r)

|w|
2α−2

|∇ |w||
2
=

1
α2

∫
B(r)

∣∣∇ |w|
α
∣∣2

.

Hence, (8) becomes

(9)
2(α − 1)

α2

∫
B(r)

∣∣∇ |w|
α
∣∣2

≤

∫
B(r)

|w|
2α−2

〈1w, w〉 +

∫
B(r)

K |w|
2α

−
1
α2

∫
B(r)

∣∣∇ |w|
α
∣∣2

.

With f = |w|, this can be rewritten as

(10)
2α − 1

α2

∫
B(r)

∣∣∇ f α
∣∣2

≤

∫
B(r)

f 2α−2
〈1w, w〉 +

∫
B(r)

K f 2α.

Applying Neumann Sobolev-type inequality (6) to the function f α, one has

(11)
( ∫

B(r)

| f |
2βα

)1/β

≤ AV −2/νr2
( ∫

B(r)

∣∣∇ f α
∣∣2

+ r−2
∫

B(r)

f 2α

)
,

where β =
ν

ν−2 . Thus (10) and (11) suggest

(12) ‖ f ‖
2α
2αβ ≤

α2

2α − 1
AV −2/νr2

∫
B(r)

f 2α−2
〈1w, w〉

+ AV −2/νr2
(

α2

2α − 1

∫
B(r)

K f 2α
+ r−2

‖ f ‖
2α
2α

)
.

By the Hölder inequality, we have∫
K f 2α

≤ BV 1/q
( ∫ (

f 2α
)q/(q−1)

)(q−1)/q

≤ BV 1/q
( ∫

f 2α

)β(q−1)−q
q(β−1)

( ∫
f 2αβ

) 1
q(β−1)

,
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where q >
β

β − 1
=

ν

2
and B =

(
V −1

∫
B(r)

|K |
q)1/q . However, applying the in-

equality

hε
≤ δ

(ε−1)/ε

1 h + δ1ε
1/(1−ε)

(1
ε

− 1
)

by setting ε =
β (q−1)−q

q (β−1)
and

h =

(
α2

2α − 1
ABV (ν−2q)/qνr2

) q(β−1)

β(q−1)−q
( ∫

f 2α

) (∫
f 2αβ

)−1
β

.

Then

α2

2α − 1
ABV (ν−2q)/qνr2

( ∫
f 2α

)β(q−1)−q
q(β−1)

( ∫
f 2αβ

)q−β(q−1)

qβ(β−1)

≤ δ
(ε−1)/ε

1

(
α2

2α − 1
ABV (ν−2q)/qνr2

) 2q
2q−ν

( ∫
f 2α

) (∫
f 2αβ

)−1
β

+ δ1ε
1/(1−ε)

(1
ε

− 1
)

.

If we select δ1 small enough, and since α2

2α−1
≥ 1, Equation (12) can be rewritten

as

‖ f ‖
2α
2αβ ≤

1
1 − δ1c (ε)

(
α2

2α−1

) 2q
2q−ν

AV −2/νr2

×

( ∫
B(r)

f 2α−2
〈1w, w〉 +

(
δ
ν/(ν−2q)

1 B2q/(2q−ν)(Ar2)ν/(2q−ν)
+

1
r2

)
‖ f ‖

2α
2α

)
.

Let α = β i , i = 0, 1, 2, . . . . Then

(13) ‖ f ‖
2β i

2β i+1 ≤ C̃
( ∫

B(r)

f 2β i
−2

〈1w, w〉 +
(
K̄ + r−2)

‖ f ‖
2β i

2β i

)
.

where

C̃ =
1

1−δ1c(ε)

(
α2

2α − 1

) 2q
2q−ν

AV −2/νr2 and K̄ = B2q/(2q−ν)
(
δ−1

1 Ar2)ν/(2q−ν)
.

When i = 0, (13) gives

‖ f ‖
2
2β ≤

1
1 − δ1c (ε)

AV −2/νr2
( ∫

B(r)

〈1w, w〉 +
(
K̄ + r−2)

‖ f ‖
2
2

)
.

Since∫
B(r)

〈1w, w〉 =

∫
B(r)

〈λi aiwi , a jw j 〉 = λi a2
i ≤ λka2

i = λk

∫
B(r)

〈w, w〉 ,
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this implies

‖ f ‖
2
2β ≤

1
1 − δ1c (ε)

AV −2/νr2(λk + K̄ + r−2) ‖ f ‖
2
2 .

By the Hölder inequality,

‖ f ‖
2
2 ≤ V (β−1)/β

‖ f ‖
2
2β .

We conclude that

V −(β−1)/β
‖ f ‖

2
2 ≤

1
1 − δ1c (ε)

AV −2/νr2 (
λk + K̄ + r−2)

‖ f ‖
2
2 .

Now we claim that for 1 ≤ i < ∞,

(14) V −(β−1)/αβ
‖ f ‖

2
2α

≤

i∏
j=0

(
β2 j

2β j − 1

) 2q
2q−ν

β− j(
1

1 − δ1c (ε)
AV −2/νr2λ∗

k

)∑i
j=0 β− j

‖ f ‖
2
2 ,

where λ∗

k = λk + K̄ + r−2. Assuming this inequality (14) is true for α = β j ,
j = 0, . . . , i − 1, by induction, we need to show that (14) is still valid for j = i .
Suppose g = |w̄|, where w̄ ∈ V with the property that

(15)
‖g‖2α

‖g‖2
≥

‖w‖2α

‖w‖2
for all w ∈ V.

Without loss of the generality, we may use the scaling and assume ‖g‖2 = 1. By
the Hölder inequality, Equation (13) implies

‖g‖
2α
2αβ ≤ C̃

( ∫
B(r)

g2α−2
〈1w̄, w̄〉 +

(
K̄ + r−2)

‖g‖
2α
2α

)
(16)

≤ C̃
(
‖g‖

2α−1
2α ‖1w̄‖2α +

(
K̄ + r−2)

‖g‖
2α
2α

)
.

We also note that if s ≥ 2, then there exists a subset {σ } ⊂ {1, 2, . . . , k} such that∥∥∥∥ k∑
i=1

λiwi

∥∥∥∥
s
≤

∥∥∥∥∑
σ

λkwσ

∥∥∥∥
s
.

This is proved in [Li 1980, Lemma 17]. Hence, let w̄ =
∑

biwi , then 1w̄ =∑
λi biwi and we have

‖1w̄‖2α =

∥∥∥∥∑
i

λi biwi

∥∥∥∥
2α

≤

∥∥∥∥∑
σ

λkbσwσ

∥∥∥∥
2α

= λk

∥∥∥∥∑
σ

bσwσ

∥∥∥∥
2α

≤ λk‖g‖2α

∥∥∥∥∑
σ

bσwσ

∥∥∥∥
2

by (15)

≤ λk ‖g‖2α .
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It is obvious that (16) gives

‖g‖
2α
2αβ ≤ C̃λ∗

k ‖g‖
2α
2α ,

where λ∗

k = λk + K̄ + r−2. By the method of iteration, we obtain

‖g‖
2
2αβ ≤ C̃i (λ∗

k)
∑i

j=0 β− j
‖g‖

2
2 ,

where α = β i and

C̃i =

i∏
j=0

(
β2 j

2β j − 1

)2q/(2q−ν)β− j (
1

1 − δ1c (ε)
AV −2/νr2

)∑i
j=0 β− j

.

On the other hand, by Hölder inequality, we have

‖g‖
2
2α ≤ V (β−1)/αβ

‖g‖
2
2αβ .

Therefore,

(17) V −(β−1)/αβ
‖g‖

2
2α ≤ C̃i ·

(
λ∗

k
)∑i

j=0 β− j

‖g‖
2
2 .

Applying (15) to (17), it is easy to check that

V −(β−1)/αβ
‖ f ‖

2
2β i ≤ C̃i · (λ∗

k)
∑i

j=0 β− j
‖ f ‖

2
2 .

Letting i → ∞, due to
∑

∞

j=0 β− j
= ν/2 and

∞∏
j=0

(
β2 j

2β j − 1

)β− j

≤ exp
1

β1/2 − 1
= c1(ν),

we conclude that

‖ f ‖
2
∞

≤ C(ν, q)
(

AV −2/νr2λ∗

k
)ν/2

‖ f ‖
2
2 ,

where A is a positive constant depending only on m and η. This means, for all
w ∈ V, w satisfies

‖w‖
2
∞

≤ C(ν, η, m)V −1rν
(
λ∗

k
)ν/2

‖w‖
2
2 ,

for all q > ν/2, where

λ∗

k = λk + K̄ + r−2 and K̄ = δ
ν/(ν−2q)

1 B2q/(2q−ν)
(

Ar2)ν/(2q−ν)
.

In fact, by the assumption of curvature, we have B ≤ 1; hence

(18) ‖w‖
2
∞

≤ C(ν, η, m)V −1rν
(
λk + c(δ1, ν)r2ν/(2q−ν)

+ r−2)ν/2
‖w‖

2
2 .

We note that the Hodge Laplace Beltrami operator 1 = dδ + δd is nonnegative
and self-adjoint on B(r) under the absolute boundary condition. Hence, using the
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standard elliptic theory, if we assume λ1 be the first nonzero eigenvalue, then we
have

0 < λ1 ≤ λ2 ≤ · · · → ∞.

This means, there exists k0 large enough such that the k-th nonzero eigenvalue

(19) λk ≥ max{c(δ1, ν)r2ν/(2q−ν), r−2
}.

Thus, by (18) and (19), we have

‖w‖
2
∞

≤ C(ν, η, m)V −1rνλ
ν/2
k ‖w‖

2
2 ,

for all w belong to the space V spanned by the p-eigenforms corresponding to the
first k nonzero eigenvalues. Therefore, the dimension estimate (4) gives

k
V

‖w‖
2
2 ≤ (m

p ) ‖w‖
2
∞

≤ C(ν, η, m, p)V −1rνλ
ν/2
k ‖w‖

2
2 ,

and we conclude that
λk(B(r)) ≥ Ck2/νr−2

for all k ≥ k0, where C = C (ν, η, m, p) is a positive constant. �

3. Main Result

Let (Mm, g), m ≥ 3, be a complete noncompact manifold with Riemannian metric
g. We consider the manifold M with its curvature operator Kp(x) is asymptotically
nonnegative. By [Li and Tam 1992], we know that M has finitely many ends if the
curvature operator Kp(x) of M is asymptotically nonnegative. Assume E1, . . . , EL

be the ends of M with respect to a compact smooth domain Bq(r0) in M . Let
B be a n-dimensional vector bundle over M with a metric. For r > 4r0 > 0,
with Bq (r0) ⊂ B(r), where B(r) is a Busemann ball in M . We define a positive
semidefinite symmetric bilinear form Sr on the space of section 0 (B) of B by

(20) Sr (u, v) = V −1(r)

∫
B(r)

〈u, v〉

for u, v ∈ 0 (B). In particular, Sr is always positive definite, and (B,Sr ) is an
inner product space in B(r).

Suppose each end satisfies volume comparison property, the volume doubling
property holds on ends {El}

L
l=1

of M , that is for r > 2r0 and ε > 0,

VEl ((1 + ε) r) ≤ (1 + ε)µ VEl (r),

where µ > 0 is a constant depending only on m. Moreover, given any η > 0, there
is r1 > 2r0 such that for all x ∈ ∂ BE (R), with R > r1, and for all 3

4 R > r ′ > r > 0,
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we have
Vx

(
r ′

)
≤

(r ′

r

)n+η

Vx(r).

The curvature operator Kp on M is defined by

Kp ≥ −K =

{
lower bound of curvature operator if p > 1,

lower bound of Ricci curvature if p = 1.

Concerning the asymptotically nonnegative curvature operator, the volume com-
parison property holds on each end for p > 1 [Li and Tam 1995, Proposition 3.8].
For the case of p = 1, the curvature operator is the Ricci curvature, the volume
comparison property holds on ends of M if we assume that the first Betti number
of M is finite.

Lemma 3.1. Let V be a k-dimensional subspace of a vector space W . Assume
that W is endowed with an inner production L and a bilinear form 8. Then for
any given linearly independent set of vectors {w1, . . . , wk−1} ⊂ W , there exists an
orthonormal basis {v1, . . . , vk} of V with respect to L such that 8(vi , w j ) = 0 for
all 1 ≤ j < i ≤ k.

Lemma 3.2. Let M be a complete Riemannian manifold with asymptotically non-
negative curvature operator. Let V be a k-dimensional subspace of H p

d (M, g), and
let E1, E2, . . ., EL be the ends of M with respect to Bq (r0), r0 > 0. For any fixed
0 < ε < 1

4 , r > 4r0 and any subspace Y of V, if {vs+1, . . . , vk} is an orthonormal
basis of inner production S(1+ε)r on Y . Then

k∑
i=s+1

Sr (vi , vi ) ≤
8 (1 + ε)µ

ε2r2

k∑
i=s+1

λ−1
i (B((1 + ε)r)),

where µ > 0 is a constant depending only on m.

Proof. Let λi (B((1 + ε)r)) denote the i-th nonzero eigenvalue of p-forms on Buse-
mann ball B((1+ε)r) satisfying the absolute boundary condition on ∂ B ((1 + ε) r).
Let φ be a nonnegative function defined on B((1+ε)r) satisfying these conditions:

φ = 1 on B(r),

0 ≤ φ ≤ 1 on B((1 + ε)r),

φ = 0 on ∂ B((1 + ε)r),

and
|∇φ| ≤

2
εr

.

Observing that by the property of unique continuation, V is a k-dimensional sub-
space because

V ⊂ L2 (B((1 + ε)r), φdv) ∩ L2 (B(r), dv) .



DIMENSION ESTIMATE OF HARMONIC FORMS ON COMPLETE MANIFOLDS 105

Applying Lemma 3.1 with {w1, . . . , wk} as the eigen p-forms of Busemann ball
B((1 + ε)r) corresponding to the nonzero eigenvalues{

λ1 (B((1 + ε)r)) , . . . , λk (B((1 + ε)r))
}
,

we get an orthonormal basis {v1, . . . , vk} of V with respect to the inner product
S(1+ε)r satisfying

S(1+ε)r
(
vi , v j

)
= V −1 ((1 + ε) r)

∫
B((1+ε)r)

〈
vi , v j

〉
.

Hence
8(vi , w j ) =

∫
B((1+ε)r)

〈
vi , w j

〉
φ dv = 0

for 1 ≤ j < i ≤ k. Thus, for any 1 ≤ i ≤ k, let |vi |
2
= 〈vi , vi 〉, ‖vi‖

2
= (vi , vi ) =∫

〈vi , vi 〉 and sgn = (−1)m(p+1)+1. We have

(21) λi (B((1 + ε)r))

∫
B((1+ε)r)

|φvi |
2 dv ≤ ‖d(φvi )‖

2
+ ‖δ(φvi )‖

2 .

The right-hand side of this inequality can be rewritten as

(22) (d(φvi ), d(φvi )) + (δ(φvi ), δ(φvi ))

= (dφ ∧ vi + φdvi , dφ ∧ vi + φdvi )

+
(
φδvi + sgn (dφ ∧ ∗vi ) , φδvi + sgn ∗(dφ ∧ ∗vi )

)
= ‖dφ ∧ vi‖

2
+ 2(φdvi , dφ ∧ vi ) + ‖φdvi‖

2
+ ‖φδvi‖

2

+ 2 (φδvi , sgn ∗(dφ ∧ ∗vi )) + ‖dφ ∧ ∗vi‖
2 .

On the other hand,

0 =

∫
B((1+ε)r)

φ2
〈vi , 1vi 〉 dv =

(
φ2vi , 1vi

)
=

(
δ(φ2vi ), δvi

)
+

(
d(φ2vi ), dvi

)
= (φδvi , φδvi ) + 2(φδvi , sgn ∗(dφ ∧ ∗vi )) + (φdvi , φdvi ) + 2 (φdvi , dφ ∧ vi ) .

Then (22) gives

(23)
(
d(φvi ), d(φvi )

)
+

(
δ(φvi ), δ(φvi )

)
= ‖dφ ∧ vi‖

2
+ ‖dφ ∧ ∗vi‖

2

≤ 2 supB((1+ε)r) |∇φ|
2
· ‖vi‖

2

≤
8

ε2r2 V ((1 + ε) r) ,

since vi is orthonormal on B((1 + ε)r). Therefore, (21) and (23) imply
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(24)
∫

B(r)

|vi |
2 dv ≤

∫
B((1+ε)r)

|φvi |
2 dv

≤ λ−1
i (B((1 + ε)r))

{
‖d(φvi )‖

2
+ ‖δ(φvi )‖

2}
≤

8
ε2r2λi (B((1 + ε)r))

V ((1 + ε) r) .

Hence, if we let Y represent the space spanned by {vs+1, . . . , vk}, we get

dim Y = k − s

and
k∑

i=s+1

∫
B(r)

|vi |
2 dv ≤

k∑
i=s+1

8
ε2r2λi (B((1 + ε)r))

V ((1 + ε) r) .

Therefore,

k∑
i=s+1

V −1(r)

∫
B(r)

|vi |
2 dv ≤

k∑
i=s+1

8
ε2r2λi (B((1 + ε)r))

V ((1 + ε) r)

V (r)
.

Moreover, volume doubling property holds on each end of M which implies

V ((1 + ε) r) ≤ (1 + ε)µ V (r)

for r > 2r0, where µ > 0 is a constant depending only on m. We conclude

k∑
i=s+1

Sr (vi , vi ) ≤
8 (1 + ε)µ

ε2r2

k∑
i=s+1

λ−1
i (B((1 + ε)r)). �

Lemma 3.3. Let E1, . . . , EL be the ends of M with respect to B (r0), r0 > 0, and
let V be a k-dimensional vector space with polynomial growth of degree at most d.
Then for all 0 < ε < 1

4 and r1 > 4r0, there is r > r1 such that if {u1, . . . , uk} is an
orthonormal basis for V with respect to S(1+ε)r , then

k∑
i=1

Sr (ui , ui ) ≥ k (1 + ε)−(2d+1) .

Proof. Denote the trace of Sr with respect to S(1+ε)r by tr(1+ε)r Sr . and the deter-
minant of Sr with respect to S(1+ε)r by det(1+ε)r Sr . Suppose the lemma is false.
Then, for some 0 < ε < 1

4 and r1 > 4r0 such that for all r > r1,

tr(1+ε)r Sr = tr(1+ε)r Sr < k (1 + ε)−(2d+1) .

On the other hand, the arithmetic geometric mean asserts that

(det(1+ε)r Sr )
1/k

≤ k−1tr(1+ε)r Sr .
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This implies that
det(1+ε)r Sr ≤ (1 + ε)−k(2d+1) .

Setting r = r1 + 1 and iterating this inequality j time, we obtain

(25) det(1+ε) j r Sr ≤ (1 + ε)− jk(2d+1) .

However, for a fixed Sr orthonormal basis {ui }
k
i=1 of V, and the polynomial growth

assumption imply that there exists a constant C > 0, depending on V, such that

S(1+ε) j r (ui , ui ) = V −1 (
(1 + ε) j r

) ∫
B((1+ε) j r)

〈ui , ui 〉 ≤ C
(
(1 + ε) j r

)2d

for all 1 ≤ i ≤ k. Hence

detr S(1+ε) j r ≤ k!Ck (
(1 + ε) j r

)2dk
.

This contradicts (25) since j → ∞. �

We are now ready to prove the Main Theorem, which we restate here.

Main Theorem. Let (Mm, g), m ≥ 3, be a complete noncompact manifold with
metric g, and q ∈ M be a fixed point. Suppose curvature operator Kp is asymptot-
ically nonnegative. Let E1, E2, . . . , EL be the ends of M with respect to Bq (r0),
r0 > 0. Then for any uniformly equivalent metric g′ on M and for all d ≥ 1, the
space H p

d (M, g′), is finite-dimensional and its dimension satisfies the inequality

dim H p
d (M, g′) ≤ C dν

for some constants ν > 2, µ > 0, η > 0 and C = C(m, p, ν, µ, η) > 0.

Proof. For any k-dimensional subspace V of H p
d (M). By Lemma 3.3, if we set

ε = 1/5d , there exists r > 4r0 such that

tr(1+ε)r Sr ≥ k (1 + ε)−(2d+1) .

Let λk be the k-th eigenvalue of the Hodge Laplacian acting on p-forms on Buse-
mann ball B((1 + ε) r) ⊃ B(r0) satisfying the absolute boundary condition on
∂ B((1 + ε)r) under the metric g′. Then by Lemma 2.1, Lemma 2.2 and the
assumption of Kp, we have

λk ≥ C k2/ν (1 + ε)−2 r−2,

for k > s =
∑L

l=1dimHp (B((1 + ε) r)), where C is a positive constant depending
only on m, p, ν and η. Combining with Lemma 3.2, we find there exists a subspace
Y in V with

dim Y = dim V −

L∑
l=1

dim Hp(B((1 + ε) r)),
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and a positive constant µ such that

k∑
i=s+k0+1

Sr (vi , vi ) ≤
8 (1 + ε)µ

ε2r2

k∑
i=s+1

λ−1
i (B((1 + ε) r)) ≤

8 (1 + ε)µ+2

ε2 k1−2/ν,

where ε = 1/5d . Hence

k (1 + ε)−(2d+1)
≤ tr(1+ε)r Sr (V ) ≤ tr(1+ε)r Sr (Y ) + dim Hp (B((1 + ε) r))

≤ C d2 k1−2/ν .

where we have used Lemmas 2.1 and 2.2. Therefore k ≤ C dν . Since V is arbitrary,
we conclude that

dim H p
d (M, g′) ≤ C dν

for all d ≥ 1. �

Suppose M has nonnegative curvature operator outside a compact set, with finite
first Betti number, In this case, even thought it is not exactly true that each end of
M satisfies volume comparison property for p = 1, however, it is almost true so
that by modifying some arguments of main theorem still holds for such a manifold;
see [Li and Tam 1995, Corollary 6.2] in particular. Hence we have Corollary 1.3.
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