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TRANSVERSE POISSON STRUCTURES TO ADJOINT ORBITS
IN SEMISIMPLE LIE ALGEBRAS

PANTELIS A. DAMIANOU, HERVÉ SABOURIN AND POL VANHAECKE

We study the transverse Poisson structure to adjoint orbits in a complex
semisimple Lie algebra. The problem is first reduced to the case of nilpo-
tent orbits. We prove then that in suitably chosen quasihomogeneous co-
ordinates, the quasidegree of the transverse Poisson structure is −2. For
subregular nilpotent orbits, we show that the structure may be computed
using a simple determinantal formula that involves the restriction of the
Chevalley invariants on the slice. In addition, using results of Brieskorn and
Slodowy, the Poisson structure is reduced to a three dimensional Poisson
bracket, which is intimately related to the simple rational singularity that
corresponds to the subregular orbit.

1. Introduction

The transverse Poisson structure was introduced by A. Weinstein [1983], stating
in his famous splitting theorem that every (real smooth or complex holomorphic)
Poisson manifold M is, in the neighborhood of each point m, the product of a
symplectic manifold and a Poisson manifold of rank 0 at m. The two factors of
this product can be geometrically realized as follows. Let S be the symplectic leaf
through m, and let N be any submanifold of M containing m such that

Tm(M) = Tm(S) ⊕ Tm(N ).

There exists a neighborhood V of m in N , endowed with a Poisson structure, and
a neighborhood U of m in S such that, near m, M is isomorphic to the product
Poisson manifold U × V . The submanifold N is called a transverse slice at m to
the symplectic leaf S. The Poisson structure on V ⊂ N is called the transverse
Poisson structure to S; up to Poisson isomorphism, it is independent of the point
m ∈ S and the chosen transverse slice N at m: given two points m, m′

∈ S with

MSC2000: primary 53D17; secondary 17B10, 14J17.
Keywords: transverse Poisson structure, nilpotent orbits, Kleinian singularities.
The authors would like to thank the Cyprus Research Foundation and the Ministère Français des
Affaires étrangères for their support.

111

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2007.232-1
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=53D17,(17B10, 14J17)


112 PANTELIS A. DAMIANOU, HERVÉ SABOURIN AND POL VANHAECKE

transverse slices N , N ′ to S, there exist neighborhoods V of m in N and V ′ of m′

in N ′ such that (V, m) and (V ′, m′) are Poisson diffeomorphic.
When M is the dual g∗ of a complex Lie algebra g and is equipped with its

standard Lie–Poisson structure, we know that the symplectic leaf through µ ∈

g∗ is the coadjoint orbit G · µ of the adjoint Lie group G of g. In this case, a
natural transverse slice to G · µ is obtained in the following way. We choose any
complement n to the centralizer g(µ) of µ in g, and we take N to be the affine
subspace µ + n⊥ of g∗. Since g(µ)⊥ = ad∗

g µ, we have

Tµ(g∗) = Tµ(G · µ) ⊕ Tµ(N ),

so that N is indeed a transverse slice to G · µ at µ. Furthermore, defining on n⊥

any system of linear coordinates (q1, . . . , qk) and using the explicit formula for
Dirac reduction (see formula (4) below), one can write down explicit formulas for
the Poisson matrix 3N :=

({
qi , q j

}
N

)
, 1 ≤ i, j ≤ k of the transverse Poisson struc-

ture, from which it follows easily that the coefficients of 3N are actually rational
functions in (q1, . . . , qk). As a corollary, in the Lie–Poisson case, the transverse
Poisson structure is always rational [Saint-Germain 1999]. One immediately won-
ders, for which cases — more precisely, for which Lie algebras g, coadjoint orbits,
and complements n — is the Poisson structure on N polynomial?

Partial answers have been given in the literature for (co)adjoint orbits in a semi-
simple Lie algebra. P. Damianou [1996] computed explicitly how the transverse
Poisson structure to nilpotent orbits of gln for n ≤ 7 correspond to a particu-
lar complement n; in this case the transverse Poisson structure is polynomial.
Cushman and Roberts [2002] proved that there exists for any nilpotent adjoint
orbit of a semisimple Lie algebra a special choice of a complement n such that
the corresponding transverse Poisson structure is polynomial. For the latter case,
H. Sabourin [2005] gave a more general class of complements having a polynomial
transverse structure, using essentially the machinery of semisimple Lie algebras;
he also showed that the choice of complement n is relevant for the polynomial char-
acter of the transverse Poisson structure by giving an example where the structure
is rational for a generic choice of complement.

When the transverse Poisson structure is polynomial, one is tempted to define
its degree as the maximal degree of the coefficients

{
qi , q j

}
N of its Poisson matrix,

as was done in [Damianou 1996] and [Cushman and Roberts 2002], where several
conjectures about this degree are formulated. Unfortunately, as shown in [Sabourin
2005], this degree depends strongly on the choice of the complement n, and hence
it is not intrinsically attached to the transverse Poisson structure. We show in
Section 3 that the right approach is to use the more general notion of quasidegree;
that is, we assign natural quasidegrees $(qi ) to the variables qi (i = 1, . . . , k)
and we show that, in the above mentioned class of complements, the quasidegree
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of the transverse Poisson structure is always −2, irrespective of the simple Lie
algebra, the chosen adjoint orbit, and the chosen transverse slice N ! In fact, the
weights $(qi ) have a Lie-theoretic origin and are also independent of the particular
complement. It follows that

{
qi , q j

}
N for 1 ≤ i, j ≤ k is a quasihomogeneous

polynomial of quasidegree $(qi ) + $(q j ) − 2.
Another result, established in this article, is that the study of the transverse

Poisson structure to any adjoint orbit G·x can be reduced, via the Jordan–Chevalley
decomposition of x ∈g, to the case of an adjoint nilpotent orbit. Thereby we explain
why we are merely interested in the case of nilpotent orbits.

The transverse structure to the regular nilpotent orbit Oreg of g is always trivial.
So, the next step is to consider the case of the subregular nilpotent orbit Osr of g.
Then N ∼= C`+2, where ` is the rank of g. The dimension of Osr is two less than the
dimension of the regular orbit, so that the transverse Poisson structure has rank 2.
It has ` independent polynomial Casimir functions χ1, . . . , χ`, where χi is the
restriction of the i-th Chevalley invariant Gi to the slice N . In this case, the trans-
verse Poisson structure may be obtained by a simple determinantal formula instead
of the usual, rather complicated Dirac constraints. That formula is as follows. In
linear coordinates q1, q2, . . . , q`+2 on N ,

(1) { f, g}det :=
d f ∧ dg ∧ dχ1 ∧ · · · ∧ dχ`

dq1 ∧ dq2 ∧ . . . ∧ dq`+2

defines a Poisson bracket on N that coincides (up to a nonzero constant) with the
transverse Poisson structure on N .

As an application of formula (1), we show in Theorem 5.6 that the Poisson
matrix of the transverse Poisson on N takes, in suitable coordinates, the block
form

3̃N =

(
0 0
0 �

)
, where � =



0
∂ F

∂q`+2
−

∂ F
∂q`+1

−
∂ F

∂q`+2
0

∂ F
∂q`

∂ F
∂q`+1

−
∂ F
∂q`

0


.

The polynomial F = F(u1, . . . , u`−1, q`, q`+1, q`+2) is precisely the one that de-
scribes the universal deformation of the (homogeneous or inhomogeneous) simple
singularity of the singular surface N ∩ N, where N is the nilpotent cone of g.
The u1, . . . , u`−1 are the deformation parameters, which are also Casimirs for the
Poisson structure on N . In particular, the restriction of this Poisson structure to



114 PANTELIS A. DAMIANOU, HERVÉ SABOURIN AND POL VANHAECKE

N ∩ N is given by

{x, y} =
∂ F0

∂z
, {y, z} =

∂ F0

∂x
, {z, x} =

∂ F0

∂y
,

where F0(x, y, z) := F(0, . . . , 0, x, y, z) is the polynomial that defines N ∩ N as
a surface in C3. As we will recall in Section 5, Brieskorn [1971] showed that, in
the ADE case, the so-called adjoint quotient G = (G1, . . . , G`) : g → C` is, when
restricted to the slice N , a semiuniversal deformation of the singular surface N ∩N;
this result was generalized by Slodowy [1980a] to the other simple Lie algebras.
Our Theorem 5.6 adds a Poisson dimension to this result.

The article is organized as follows. In Section 2, we recall a few basic facts
concerning transverse Poisson structures, and we show that a general orbit in a
semisimple Lie algebra can be reduced to the case of a nilpotent orbit. In Section
3, we recall the notion of quasihomogeneity, and we show that, for a natural class
of slices, the transverse Poisson structure is quasihomogeneous of quasidegree −2.
In Section 4 and the end of Section 5, we show, in the Lie algebras g2, so8, and
sl4, how the transverse Poisson structure can be computed explicitly, and we use
these examples to illustrate our results. In Section 5, we prove that, in the case of
the subregular orbit, the transverse Poisson structure is given by a determinantal
formula; we also show that this Poisson structure is entirely determined by the
singular variety of nilpotent elements of the slice.

2. Transverse Poisson structures in semisimple Lie algebras

In this section, we recall the main setup for studying the transverse Poisson struc-
ture to a (co)adjoint orbit of a complex semisimple Lie algebra g, and we show
how the general orbit is related to the case of a nilpotent orbit. We use the Killing
form 〈 · | · 〉 of g to identify g with its dual g∗. This leads to a Poisson structure
on g that is given for functions F, G on g at x ∈ g by

(2) {F, G} (x) := 〈x | [d F(x), dG(x)]〉 ,

where we think of d F(x) and dG(x) as elements of g ∼= g∗ ∼= T ∗
x g. Since the

Killing form is Ad-invariant, the isomorphism g ∼= g∗ identifies the adjoint orbits
G · x of G with the coadjoint orbits G · µ, and so the symplectic leaf of { · , · } that
passes through x is the adjoint orbit G·x . Also, as a transverse slice at x to G·x , we
can take an affine subspace N := x +n⊥, where n is any complementary subspace
to the centralizer g(x) := {y ∈ g | [x, y] = 0} of x in g and ⊥ is the orthogonal
complement with respect to the Killing form. To give an explicit formula for the
Poisson structure { · , · }N transverse to G · x , let (Z1, . . . , Zk) be a basis for g(x),
and let (X1, . . . , X2r ) be a basis for n, where 2r = dim(G · x) is the rank of the
Poisson structure (2) at x . These bases lead to linear coordinates q1, . . . , qk+2r
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on g, centered at x , defined by qi (y) := 〈y − x | Zi 〉, for i =1, . . . , k and qk+i (y) :=

〈y − x | X i 〉, for i = 1, . . . , 2r . Since dqi (y) = Zi for i = 1, . . . , k and dqk+i (y) =

X i for i = 1, . . . , 2r , it follows from (2) that the Poisson matrix of { · , · } at y ∈ g

is given by

(3)
({

qi , q j
}
(y)

)
1≤i, j≤k+2r =

(
A(y) B(y)

−B(y)> C(y)

)
,

where

Ai, j (y) =
〈
y | [Zi , Z j ]

〉
,

Bi,m(y) = 〈y | [Zi , Xm]〉 ,

Cl,m(y) = 〈y | [Xl, Xm]〉 ,

for 1 ≤ i, j ≤ k;

for 1 ≤ i ≤ k, 1 ≤ m ≤ 2r;

for 1 ≤ l, m ≤ 2r .

It is easy to see that the skew-symmetric matrix C(x) is invertible, and so C(y) is
invertible for y in a neighborhood of x in g, and hence for y in a neighborhood
V of x in N . By Dirac reduction, the Poisson matrix of { · , · }N at n ∈ V in the
coordinates q1, . . . , qk (restricted to V ), is given by

(4) 3N (n) = A(n) + B(n)C(n)−1 B(n)>.

According to the Jordan–Chevalley decomposition theorem, we can write x = s+e,
where s is semisimple, e is nilpotent, and [s, e] = 0. Moreover, the respective
centralizers of x, s and e are related as follows:

(5) g(x) = g(s) ∩ g(e).

This leads to a natural class of complements n to g(x). Since the restriction of
〈 · | · 〉 to g(s) is nondegenerate [Dixmier 1996, Prop. 1.7.7.], we have a vector
space decomposition of g as

g = g(s) ⊕ ns,

where ns = g(s)⊥. Notice that ns is g(s)-invariant, that is, [g(s), ns] ⊂ ns , since

〈g(s) | [g(s), ns]〉 = 〈[g(s), g(s)] | ns〉 ⊂ 〈g(s) | ns〉 = {0} .

Choosing any complement ne of g(x) in g(s), we get the following decomposition
of g:

g = g(x) ⊕ ne ⊕ ns .

We take then n := ne ⊕ns , and we denote Nx := x +n⊥. It follows that, if n ∈ Nx

such that n ∈ g(s), then 〈n | [g(s), ns]〉 ⊂ 〈g(s) | ns〉 = {0}. In particular,

(6) 〈n | [g(x), ns]〉 = {0} and 〈n | [ne, ns]〉 = {0} .

Let us assume that the basis vectors X1, . . . , X2r of n have been chosen such that
X1, . . . , X2p ∈ ne and X2p+1, . . . , X2r ∈ ns . Then the formulas (6) imply that the
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Poisson matrix (3) takes at n ∈ Nx the form

3(n) =

 A(n) Be(n) 0
−Be(n)> Ce(n) 0

0 0 Cs(n)

 ,

where

Ai, j (n) =
〈
n | [Zi , Z j ]

〉
,

Be;i,m(n) = 〈n | [Zi , Xm]〉 ,

Ce;l,m(n) = 〈n | [Xl, Xm]〉 ,

Cs;l,m(n) = 〈n | [Xl, Xm]〉 ,

for 1 ≤ i, j ≤ k;

for 1 ≤ i ≤ k, 1 ≤ m ≤ 2p;

for 1 ≤ l, m ≤ 2p;

for 2p + 1 < l, m ≤ 2r .

It follows from (4) that the Poisson matrix of the transverse Poisson structure on
Nx is given by

(7) 3Nx (n) = A(n) + Be(n)Ce(n)−1 Be(n)>.

Let us now restrict our attention to the Lie algebra g(s), which, being reductive,
decomposes as

g(s) = z(s) ⊕ gss(s),

where z(s) is the center of g(s) and gss(s) = [g(s), g(s)] is the semisimple part
of g(s). At the group level we have a similar decomposition of G(s), the centralizer
of s in G whose Lie algebra is g(s), namely,

G(s) = Z(s)Gss(s),

where Z(s) is a central subgroup of G(s) and Gss(s) is the semisimple part of
G(s) with Lie algebra gss(s). Since e ∈ g(s), we can consider G(s) ·e as an adjoint
orbit of the reductive Lie algebra g(s). We may think of it as an adjoint orbit of
a semisimple Lie algebra, since G(s) · e = Gss(s) · e; similarly we may think of
a transverse slice to the adjoint orbit G(s) · e as a transverse slice to Gss(s) · e
up to a summand with trivial Lie bracket. Denoting by ⊥s the 〈 · | · 〉 orthogonal
complement restricted to g(s), we have that N := e + n

⊥s
e is a transverse slice to

G(s) · e, since
g(s) = g(x) ⊕ ne = z(s) ⊕ gss(s)(e) ⊕ ne.

We have used that g(x) = g(s)(e) is the centralizer of e in g(s), which follows
from (5). In the chosen bases (Z1, . . . , Zk) of g(x) and (X1, . . . , X2p) of ne, the
Poisson matrix at n ∈ N takes the form(

A(n) Be(n)

−Be(n)> Ce(n)

)
,
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which leads by Dirac reduction to the transverse Poisson structure 3N on N :

3N (n) = A(n) + Be(n)Ce(n)−1 Be(n)>,

where n ∈ N . This yields formally the same formula as (7), except that it is
evaluated at points n of N rather than at points of Nx . However, since n

⊥s
e =

g(s)∩n⊥
e = n⊥

s ∩n⊥
e = (ns +ne)

⊥
= n⊥, the affine subspaces Nx and N only differ

by a translation, Nx = s + e + n⊥
= s + N . Thus they, and their Poisson matrices

with respect to the coordinates q1, . . . , qk , can be identified, leading to:

Proposition 2.1. Let x ∈ g be any element, G · x its adjoint orbit, and x = s + e its
Jordan–Chevalley decomposition. Given any complement ne of g(x) in g(s) and
putting n := ns ⊕ne, where ns = g(s)⊥, the parallel affine spaces Nx := x +n⊥ and
N := e + n⊥ are respectively transverse slices to the adjoint orbit G · x in g and to
the nilpotent orbit G(s) · e in g(s). The Poisson structure on both transverse slices
has the same Poisson matrix, namely that of (7), in the same affine coordinates
restricted to the corresponding transverse slice.

In short, the transverse Poisson structure to any adjoint orbit G·x of a semisimple
(or reductive) Lie algebra g is essentially determined by the transverse Poisson
structure of the underlying nilpotent orbit G(s) ·e defined by the Jordan–Chevalley
decomposition x = s+e. A refinement of this proposition will be given in Corollary
3.5.

3. The polynomial and the quasihomogeneous character of the tranverse
Poisson structure

In this section we show that, for a natural class of transverse slices to a nilpotent
orbit O which we equip with an adapted set of linear coordinates centered at a
nilpotent element e ∈ O, the transverse Poisson structure is quasihomogeneous (of
quasidegree −2) in the following sense.

Definition 3.1. Let ν = (ν1, . . . , νd) be nonnegative integers. A polynomial P in
C[x1, . . . , xd ] is said to be quasihomogeneous (relative to ν) if, for some integer κ ,

P(tν1 x1, . . . , tνd xd) = tκ P(x1, . . . , xd) for all t ∈ C,

and κ is then called the quasidegree (relative to ν) of P , denoted $(P). Similarly,
a polynomial Poisson structure { · , · } on C[x1, . . . , xd ] is said to be quasihomo-
geneous (relative to ν) if there exists κ ∈ Z such that, for any quasihomogeneous
polynomials F and G, their Poisson bracket {F, G} is quasihomogeneous of degree

$({F, G}) = $(F) + $(G) + κ;

equivalently, for any i, j the polynomial
{

xi , x j
}

is quasihomogeneous of quaside-
gree νi + ν j + κ . Then κ is called the quasidegree of { · , · }.
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We first show that, given O, we can choose a system of linear coordinates on g,
centered at some nilpotent element e ∈ O, such that the Lie–Poisson structure on g

is quasihomogeneous relative to some vector ν that has a natural Lie-theoretic
interpretation. To describe how this happens, we need to recall some facts from
the theory of semisimple Lie algebras, which will be used throughout this paper.
First, one chooses a Cartan subalgebra h of g, with corresponding root system
1(h), from which a basis 5(h) of simple roots is selected. The rank of g, which is
the dimension of h, is denoted by `. According to the Jacobson–Morosov–Kostant
correspondence (see [Tauvel and Yu 2005, paragraphs 32.1 and 32.4]), there is a
canonical triple (h, e, f ) ∈ g associated with O and completely determined, up to
conjugation by G(h), by the following properties:

• (h, e, f ) is a sl2-triple, that is, [h, e] = 2e, [h, f ] = −2 f , and [e, f ] = h;

• h is the characteristic of O, that is, h ∈ h and α(h) ∈ {0, 1, 2} for any simple
root α ∈ 5(h).

• O = G · e.

The triple (h, e, f ) leads to two decompositions of g.
First, g decomposes into eigenspaces relative to adh . Since each eigenvalue is

an integer, we have
g =

⊕
i∈Z

g(i),

where g(i) is the eigenspace of adh with eigenvalue i . For example, e ∈ g(2) and
f ∈ g(−2).

Second, let s be the Lie subalgebra of g isomorphic to sl2 that is generated by
h, e and f . The Lie algebra g is an s-module, hence it decomposes as

g =

k⊕
j=1

Vn j ,

where each Vn j is a simple s-module, with n j + 1 = dim Vn j and adh-weights
n j , n j − 2, n j − 4, . . . ,−n j . Moreover, k = dim g(e), since the centralizer g(e) is
generated by the highest weight vectors of each Vn j . It follows that

(8)
k∑

j=1

n j = dim g− k = dim(G · e) = 2r.

We center at e a system of linear coordinates on g by using the action of Slodowy
[1980b]: First, he considers the one-parameter subgroup of G,

λ : C∗
→ G

t 7→ exp(λt h),
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where λt is a complex number such that e−λt = t . The restriction of Ad to this
subgroup leaves every eigenspace g(i) invariant and acts for each t as a homothecy
with ratio t−i on g(i):

(9) Adλ(t) x = t−i x for all x ∈ g(i).

Since e ∈ g(2), the action ρ of C∗ on g — defined for t ∈ C∗ and for y ∈ g by
ρt · y := t2 Adλ(t) y — fixes e. We refer to ρ as Slodowy’s action. To see how
it leads to quasihomogeneous coordinates, let us define for x ∈ g the function
Fx(y) := 〈y − e | x〉 for y ∈ g. Then (9) and the Ad-invariance of the Killing form
imply that if x ∈ g(i) then(

ρ∗

t Fx
)
(y) =

〈
ρt−1 · y − e | x

〉
= t−2 〈

Adλ(t−1)(y − e) | x
〉

= t−2 〈
y − e | Adλ(t) x

〉
= t−2 〈

y − e | t−i x
〉
= t−i−2Fx(y).

It follows that the quasidegree $(Fx) of Fx is i +2 for x ∈ g(i). According to (2),
one has, for any x, y, z ∈ g,

(10)
{
Fx , Fy

}
(z) = 〈z | [x, y]〉 = F[x,y](z) + 〈e | [x, y]〉 .

If x ∈ g(i) and y ∈ g( j) with i + j 6= −2, then 〈e | [x, y]〉 = 0 and so

$(
{
Fx , Fy

}
) − $(Fx) − $(Fy) = $(F[x,y]) − $(Fx) − $(Fy)

= i + j + 2 − (i + 2) − ( j + 2) = −2.

This result extends to the case i + j = −2, since then $(F[x,y]) = i + j + 2 = 0,
which is the quasidegree of the constant function 〈e | [x, y]〉. This proves:

Proposition 3.2. Let g be a semisimple Lie algebra identified with its dual using its
Killing form. Let O be a nilpotent adjoint orbit of g with canonical triple (h, e, f ).
Let x1, . . . , xd be any basis in g, where each xk belongs to some eigenspace g(ik) of
adh , and let Fk be the dual coordinates on g centered at e as Fk(y) := 〈y − e | xk〉 .

Then the Lie–Poisson structure { · , · } on g is quasihomogeneous of degree −2 with
respect to ($(F1), . . . ,$(Fd)) = (i1 + 2, . . . , id + 2). �

We now wish to show that, upon picking a suitable transverse slice N to O at e,
the transverse Poisson structure on N is also quasihomogeneous (of degree −2).
Following [Sabourin 2005], we consider the set Nh of all subspaces n of g that are
complementary to g(e) in g and are adh-invariant. For n ∈ Nh we let N := e +n⊥,
which is a transverse slice to G·e. The adh-invariance of n implies on the one hand
that ρ leaves N invariant: if y ∈ e + n⊥ then

0 =
〈
y − e | Adλ(t−1) n

〉
=

〈
Adλ(t)(y − e) | n

〉
= t−2

〈ρt · y − e | n〉 ,

so that indeed ρt · y ∈ e + n⊥. On the other hand, it implies that n admits a basis
consisting of eigenvectors of h. Thus we can adapt the above basis x1, . . . , xd to n.
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We can choose a basis (Z1, . . . , Zk) for g(e) and a basis (X1, . . . , X2r ) for n so
that:

• each Zi for 1 ≤ i ≤ k is a highest weight vector of weight ni ;

• each X i for 1 ≤ i ≤ 2r is a weight vector of weight νi .

The linear coordinates (centered at e) FZ1, . . . , FZk , when restricted to N , will be
denoted q1, . . . , qk . By the above, their quasidegrees are defined as $(qi ) :=ni +2.
That the transverse Poisson structure is polynomial in these coordinates was first
shown in [Sabourin 2005, Thm 2.3]. We now refine this statement.

Proposition 3.3. In the notation of Proposition 3.2, the transverse Poisson struc-
ture on N := e + n⊥, where n ∈ N, is a polynomial Poisson structure that is quasi-
homogeneous of degree −2 with respect to the quasidegrees n1 + 2, . . . , nk + 2,
where n1, . . . , nk denote the highest weights of g as an s-module.

Proof. According to (4), we need to show that for any 1 ≤ i, j ≤ k the functions Ai j

and (BC−1 B>)i j are quasihomogeneous of degree $(qi )+$(q j )−2=ni +n j +2.
For Ai j this is clear, since A is part of the Poisson matrix of the Lie–Poisson
structure on g, which we know is quasihomogeneous of degree −2. Similarly, we
have $(Bi p) = ni + νp + 2. Since

$(Bi pC−1
ps B js) = ni + n j + νp + νs + 4 + $(C−1

ps ),

we must show that

(11) $(C−1
ps ) = −νp − νs − 2.

This follows from
∑2r

i=1(νi +1) = 0, which is itself a consequence of (8). Indeed,
consider a term of the form C ′

i j = Ci1 j1 . . . Ci2r−1 j2r−1 , where

{i1, i2, . . . , i2r−1} = {1, 2, . . . , 2r} \ {s} ,

{ j1, i2, . . . , j2r−1} = {1, 2, . . . , 2r} \ {p} .

Then

$(C ′

i j ) =

2r−1∑
k=1

(νik + ν jk + 2) = −νs − νp − 2,

A typical term of C−1
ps is of the form C ′

i j/1(C), where 1(C) is the determinant
of C . As C is of quasidegree zero, 1(C) is constant by the previous argument.
This observation was made in [Sabourin 2005, Theorem 2.3]. This gives us (11).

�

Remark 3.4. Our referee pointed out that the quasihomogeneity of the transverse
Poisson structure is implicit in [Gan and Ginzburg 2002] and [Premet 2002] for
the special transversal n = Ker ad f . Using the eigenspaces of adh , these authors
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consider a filtration on the universal enveloping algebra Ug of g, which yields a
grading on the transversal Poisson algebra for this n. With the quasidegrees that
we use, the filtration’s graded algebra is Sym(g∗).

Let us consider now any adjoint orbit G · x and x = s +e, the Jordan–Chevalley
decomposition of x . We already considered this case in Proposition 2.1. A well-
known result [Tauvel and Yu 2005, par. 32.1.7.] says that there exists an sl2-triple
(h, e, f ) such that [s, h] = [s, f ] = 0. Consequently, (h, e, f ) is an sl2-triple of
the reductive Lie algebra g(s), and we can also suppose that, up to conjugation
by elements of G(s), h is the characteristic of G(s) · e. Let Ns,h be the set of all
complementary subspaces to g(x) in g(s) that are adh-invariant. Then, by applying
Proposition 3.3, we get:

Corollary 3.5. As in Proposition 2.1, let ns = g(s)⊥, ne ∈ Ns,h and n = ns ⊕ ne.
Let Nx := x +n⊥, which is a transverse slice to G · x. Then the transverse Poisson
structure on Nx is polynomial and is quasihomogeneous of quasidegree −2.

From now on, a transverse Poisson structure given by Proposition 3.3 will be
called an adjoint transverse Poisson structure or ATP-structure.

4. Examples

We want to show in two examples how to compute the ATP-structure. In the first
example, we consider the subregular orbit of g2, and we compute it without choos-
ing a representation of g2. In the second example, the subregular orbit of so8, we
use a concrete representation rather than referring to tables of the Lie brackets in
a Chevalley basis. These two examples will also serve later to illustrate the results
we will prove on the nature of the ATP-structure. Both examples correspond to
subregular orbits and lead to two of the simplest nontrivial ATP-structures in the
following sense. If O is an adjoint orbit in g, then the ATP-structure to O has rank
dim g − ` − dim O at a generic point of any slice transverse to O, since the Lie–
Poisson structure on g has rank1 dim g − ` at a generic point of g. For the regular
nilpotent orbit Oreg, the ATP-structure is trivial because dim Oreg = dim g − `.
So, the first interesting nilpotent orbit to consider is the subregular orbit, denoted
by Osr . We recall two well-known facts [Collingwood and McGovern 1993]:

(1) the subregular orbit Osr is the unique nilpotent orbit that is open and dense in
the complement of Oreg in the nilpotent cone;

(2) dim Osr = dim g− ` − 2.

It follows that the ATP-structure of the subregular orbit had dimension ` + 2 and
generic rank 2. In both of the following examples, we give the characteristic triplet

1Recall that ` denotes the rank of g.
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(h, e, f ) that corresponds to the orbit; we derive from it a basis of the adh-weight
spaces, which leads to basis vectors Zi of g(e) and X j of an adh-invariant com-
plement to g(e) in g. The Lie brackets of these elements then lead to the matrices
A, B and C in (3), which, by Dirac’s formula (4), yields the matrix 3N of the
transverse Poisson structure.

The subregular orbit of type G2. We first consider the case of the subregular orbit
of the Lie algebra g := g2. Denoting the basis of simple roots by 5={α, β}, where
β is the longer root, its Dynkin diagram is given by

β α

and it has the positive roots

1+ = {α, β, α + β, 2α + β, 3α + β, 3α + 2β}.

The vectors in the Chevalley basis2 of g are denoted by Hα, Hβ for the Cartan
subalgebra, Xγ for the six positive roots γ ∈ 1+, and Yγ for the six negative roots
−γ , where γ ∈1+. According to [Collingwood and McGovern 1993, Chapter 8.4],
the characteristic h of the subregular orbit Osr is given by the sequence of weights
(0, 2), which means that 〈α, h〉 = 0 and 〈β, h〉 = 2 and yields h = 2Hα +4Hβ . The
decomposition of g into adh-weight spaces g(i) consists of five subspaces:

(12)

g(4) = 〈X3α+2β〉,

g(2) = 〈Xβ, Xα+β, X2α+β, X3α+β〉,

g(0) = 〈Hα, Hβ, Xα, Yα〉,

g(−2) = 〈Yβ, Yα+β, Y2α+β, Y3α+β〉,

g(−4) = 〈Y3α+2β〉.

Taking for e and f an arbitrary linear combination of the above basis elements
of g(2) and g(−2), respectively, and using [e, f ] = h, one easily finds that the
sl2-triple corresponding to Osr is

e = Xβ + X3α+β, h = 2Hα + 4Hβ, f = 2Yβ + 2Y3α+β .

Picking the vectors in the positive subspaces g(i) that commute with e leads to
basis vectors of g(e):

(13)
Z1 = Xβ + X3α+β, Z2 = X2α+β,

Z3 = Xα+β, Z4 = X3α+2β .

2The Chevalley basis that we use is explicitly described in [Tauvel 1998, Chapter VII.4].
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We obtain an adh-invariant complementary subspace n of g(e) by completing these
vectors with additional vectors taken from the bases (12) of the subspaces g(i). Our
choice of basis vectors for n, ordered by weight, is

X1 = Xβ,

X2 = Xα,

X3 = Hα,

X4 = Hβ,

X5 = Yα,

X6 = Yβ,

X7 = Yα+β,

X8 = Y2α+β,

X9 = Y3α+β,

X10 = Y3α+2β .

The Lie brackets of these basis vectors for g, which are listed in [Tauvel 1998,
Chapter VII.4], yield the Poisson matrix ((A, B), (−B>, C)) of the Lie–Poisson
structure on g in the coordinates FZ1, . . . , FZ4, FX1, . . . , FX10 on g, as

Ai j =
{
FZi , FZ j

}
= F[Zi ,Z j ] +

〈
e | [Zi , Z j ]

〉
(see (10)), and similarly for the other elements of the Poisson matrix. We give
the restriction of the matrices A, B and C to the transverse slice N := e + n⊥

only, which amounts to keeping in the Lie brackets only the vectors Z1, . . . , Z4,
as FX (n) = 〈e − n | X〉 = 0 for X ∈ n and n ∈ N = e + n⊥. In the coordinates
q1, . . . , q4 on N , where qi is the restriction of FZi to N , we get

A =


0 0 0 0
0 0 –3q4 0
0 3q4 0 0
0 0 0 0

 ,

B =


0 0 0 –q4 0 q1 –q2 q3 0 0
0 3q1 –q2 0 2q3 0 0 0 0 0
0 2q2 q3 –q3 0 0 0 0 0 0
q4 q3 –3q1 q1 q2 0 0 0 0 0

 ,

C =
1
3



0 3q3 0 0 0 0 0 0 0 1
–3q3 0 0 0 0 0 3 0 0 0

0 0 0 0 0 3 0 0 –3 0
0 0 0 0 0 –2 0 0 1 0
0 0 0 0 0 0 0 3 0 0
0 0 –3 2 0 0 0 0 0 0
0 –3 0 0 0 0 0 0 0 0
0 0 0 0 –3 0 0 0 0 0
0 0 3 –1 0 0 0 0 0 0

–1 0 0 0 0 0 0 0 0 0


.
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Substituted in (4), this yields the Poisson matrix for the ATP-structure:

(14) 3N =


0 0 0 0

0 0 −3q4 2q1q2 − 2q2
3

0 3q4 0 2q2
2 − 2q1q3

0 −2q1q2 + 2q2
3 −2q2

2 + 2q1q3 0

 .

It follows from (12) and (13) that the quasidegree of q1, q2 and q3 is 4, while the
quasidegree of q4 is 6. One easily reads off from (14) that, with respect to these
quasidegrees, the ATP-structure is quasihomogeneous of quasidegree −2.

The subregular orbit of type D4. We now take g = so8 and we realize g as the
following set of matrices:{(

Z1 Z2

Z3 −Z>

1

)
| Zi ∈ Mat4(C), with Z2, Z3 skew-symmetric

}
.

Let h denote the Cartan subalgebra of g consisting of all diagonal matrices in g.
Clearly, h is spanned by the four matrices Hi := Ei,i − E4+i,4+i , 1 ≤ i ≤ 4. Define
for i = 1, . . . , 4 the linear map ei ∈ h∗ by

ei (
∑

ak Hk) = ai .

Then the root system of g is

1 := {±ei ± e j | 1 ≤ i, j ≤ 4, i 6= j},

and a basis of simple roots is 5 := {α1, α2, α3, α4}, where

α1 = e1 − e2, α2 = e2 − e3, α3 = e3 − e4, α4 = e3 + e4.

It leads to the following Chevalley basis of g:

Xei −e j = Ei, j − E4+ j,4+i ,

Xei +e j = Ei,4+ j − E j,4+i ,

X−ei −e j = −E4+i, j + E4+ j,i ,

Hei −e j = Hi − H j ,

Hei +e j = Hi + H j .

i < j,

i < j,

According to [Collingwood and McGovern 1993, Chapter 5.4], the characteristic
h of the subregular orbit is given by the sequence of weights (2, 0, 2, 2). It follows
that

h = 4Hα1 + 6Hα2 + 4Hα3 + 4Hα4 .
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The positive adh-weight spaces are

(15)

g(0) = h ⊕ 〈Xα2, X−α2〉,

g(2) = 〈Xα1, Xα3, Xα4, Xα1+α2, Xα2+α3, Xα2+α4〉,

g(4) = 〈Xα1+α2+α3, Xα2+α3+α4, Xα1+α2+α4〉,

g(6) = 〈Xα1+α2+α3+α4, Xα1+2α2+α3+α4〉.

As in the first example, it follows that the canonical sl2-triple associated to Osr is

e = Xα1 + Xα1+α2 − Xα2+α4 + 2Xα3 − Xα4,

h = 4Hα1 + 6Hα2 + 4Hα3 + 4Hα4,

f = X−α1 + 3X−α1−α2 − 3X−α2−α4 + 2X−α3 − X−α4 .

We can now define the basis vectors Zi of g(e) and X j of an adh-invariant com-
plementary subspace n to g(e) in the Chevalley basis:

(16)

Z1 = Xα1+α2 − Xα2+α4 + 2Xα3,

Z2 = Xα1+α2+α3+α4,

Z3 = Xα1+2α2+α3+α4,

Z4 = Xα1 − Xα4,

Z5 = Xα2+α3 + Xα2+α4 − Xα3 − Xα4,

Z6 = Xα1+α2+α3 + Xα1+α2+α4 − Xα2+α3+α4,

X1 = Xα1+α2+α3,

X2 = Xα2+α3+α4,

X3 = Xα4,

X4 = Xα3,

X5 = Xα2+α4,

X6 = Hα1,

X7 = Hα2,

X8 = Hα3,

X9 = Hα4,

X10 = Xα2,

X11 = X−α2,

X12 = X−α1,

X13 = X−α3,

X14, = −X−α4,

X15 = X−α1−α2,

X16 = X−α2−α3,

X17 = −X−α2−α4,

X18 = −X−α1−α2−α3,

X19 = −X−α1−α2−α4,

X20 = −X−α2−α3−α4,

X21 = −X−α1−α2−α3−α4,

X22 = −X−α1−2α2−α3−α4 .

If we denote by Z̄1, . . . , Z̄6 the dual basis (with respect to 〈X | Y 〉 =
1
2 Trace(XY ))

of the basis Z1, . . . , Z6 of g(e), then a typical element of the transverse slice N =



126 PANTELIS A. DAMIANOU, HERVÉ SABOURIN AND POL VANHAECKE

e + n⊥ is e +
∑6

i=1 qi Z̄i , that is,

(17) Q =



0 1 1 0 0 0 0 0
q4 0 0 0 0 0 0 –1
q1 0 0 2 0 0 0 –1
0 q5 0 0 0 1 1 0
0 –q3 –q2 0 0 –q4 –q1 0
q3 0 q6 0 –1 0 0 –q5

q2 –q6 0 0 –1 0 0 0
0 0 0 0 0 0 –2 0


,

and we can compute the matrix A restricted to N by Ai j =
〈
Q | [Zi , Z j ]

〉
, and

similarly for the matrices B and C . A direct substitution in (4) leads to the Poisson
matrix for the ATP-structure:

(18) 3N =
1
2



0 q4q6 –q4q6 0 –2q6 2q16

–q4q6 0 0 q4q6 –q5q6 –2q36

q4q6 0 0 –q4q6 q5q6 2q36

0 –q4q6 q4q6 0 2q6 –2q16

2q6 q5q6 –q5q6 –2q6 0 2q56

–2q16 2q36 –2q36 2q16 –2q56 0


,

where

(19)

q16 = 2q2 − q1q4 − q4q5 + q2
4 ,

q36 = q3q4 − q2q4 − q2q5,

q56 = 2q3 − 2q2 − q2
5 + q4q5 − q1q5.

It follows from (15) and (16) that the quasidegrees of the variables qi are $(q1) =

$(q4) = $(q5) = 4, $(q2) = $(q3) = 8, and $(q6) = 6. That the ATP-structure
is quasihomogeneous of quasidegree −2 can again be easily read off from (18).

5. The subregular case

In this section we will explicitly describe the ATP-structure of the subregular orbit
Osr ⊂ g, where g is a semisimple Lie algebra. Since in the subregular orbit the
generic rank of the ATP-structure on the transverse slice N is two, and since we
know dim(N ) − 2 independent Casimirs, namely the basic Ad-invariant functions
on g restricted to N , we will easily derive that the ATP-structure is the determi-
nantal structure (also called Nambu structure) determined by these Casimirs, up to
multiplication by a function. What is much less trivial to show is that this function
is only a constant. For this we will use Brieskorn’s theory of simple singularities,
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which is recalled in Section 5 below. First we recall the basic facts on Ad-invariant
functions on g and link them to the ATP-structure.

Invariant functions and Casimirs. Let Osr = G · e, be a subregular orbit in the
semisimple Lie algebra g. Let (h, e, f ) be the corresponding canonical sl2-triple,
and consider the transverse slice N := e + n⊥ to G · e, where n is an adh-invariant
complement to g(e). We know from Section 3 that the ATP-structure on N , when
equipped with the linear coordinates q1, . . . , qk , is a quasihomogeneous polyno-
mial Poisson structure of generic rank 2. Let S(g∗)G be the algebra of Ad-invariant
polynomial functions on g. By a classical theorem due to Chevalley, S(g∗)G is a
polynomial algebra generated by ` homogeneous polynomials (G1, . . . , G`) whose
degree di := deg(Gi ) = mi + 1, where m1, . . . , m` are the exponents of g. These
functions are Casimirs of the Lie–Poisson structure on g, since Ad-invariance of
Gi implies that [x, dGi (x)] = 0, and hence the Lie–Poisson bracket (2) is

{F, Gi } (x) = 〈x | [d F(x), dGi (x)]〉 = − 〈[x, dGi (x)] | d F(x)〉 = 0

for any function F on g. If we denote by χi the restriction of Gi to the transverse
slice N then, it follows that these functions are Casimirs of the ATP-structure. The
polynomials χi are not homogeneous, but they are quasihomogeneous.

Lemma 5.1. Each χi is a quasihomogeneous polynomial of quasidegree 2di rela-
tive to the quasidegrees (2 + n1, . . . , 2 + nk).

Proof. Since χi is of degree di and χi is Ad-invariant, we get

ρ∗

t (χi ) = χi ◦ ρt−1 = χi ◦ (t−2 Adλ−1(t)) = t−2di χi ◦ Adλ−1(t) = t−2di χi ,

so that χi has quasidegree 2di . �

Simple singularities. Let h be a Cartan subalgebra of g. The Weyl group W acts on
h, and the algebra S(g∗)G of Ad-invariant polynomial functions on g is isomorphic
to S(h∗)W, the algebra of W-invariant polynomial functions on h∗. The inclusion
homomorphism S(g∗)G ↪→ S(g∗), is dual to a morphism g → h/W, called the
adjoint quotient. Concretely, the adjoint quotient is given by

(20)
G : g → C`

x 7→ (G1(x), G2(x), . . . , G`(x)).

The zero-fiber G−1(0) of G is exactly the nilpotent variety N of g. As we are
interested in N ∩ N = N ∩ G−1(0) = χ−1(0) — which is an affine surface with
an isolated, simple singularity — let us recall the notion of simple singularity (see
[Slodowy 1980a] for details). Up to conjugacy, there are five types of finite sub-
groups of SL2 = SL2(C), which are denoted by Cp, Dp, T, O, and I. Given such a
subgroup F, one looks at the corresponding ring of invariant polynomials C[u, v]

F .



128 PANTELIS A. DAMIANOU, HERVÉ SABOURIN AND POL VANHAECKE

In each of the five cases, C[u, v]
F is generated by three fundamental polynomials

X, Y, Z , subject to only one relation R(X, Y, Z) = 0; hence the quotient space
C2/F can be identified, as an affine surface, with the singular surface in C3 defined
by R = 0. The origin is its only singular point; it is called a (homogeneous) simple
singularity. The exceptional divisor of the minimal resolution of C2/F is a finite set
of projective lines. If two of these lines meet, then they meet in a single point, and
transversally. Moreover, the intersection pattern of these lines forms a graph that
coincides with one of the simply laced Dynkin diagrams of type A`, D`, E6, E7,
or E8. This type is called the type of the singularity. Moreover, every such Dynkin
diagram (that is, of type ADE) appears in this way; see Table 1.

For the other simple Lie algebras (of type B`, C`, F4 or G2), there exists a
similar correspondence. By definition, an (inhomogeneous) simple singularity of
type 1 is a couple (V, 0) consisting of a homogeneous simple singularity V =

C2/F and a group 0 = F′/F of automorphisms of V , according to Table 2.
The connection between the diagram of (V, 0) and that of V can be described

as follows. The action of 0 on V lifts to an action on a minimal resolution of V
that permutes the components of the exceptional set. Then, we obtain the diagram
of (V, 0) as a 0-quotient of that of V . It leads to Table 3, which is the nonsimply-
laced analog of Table 1.

We can now state an extension of a theorem of Brieskorn.

Proposition 5.2 [Slodowy 1980a, Theorems 1 and 2]. Let g be a simple complex
Lie algebra with Dynkin diagram of type 1. Let Osr = G ·e be the subregular orbit,
and let N = e +n⊥ be a transverse slice to G · e. The surface N ∩ N = χ−1(0) has
a (homogeneous or inhomogeneous) simple singularity of type 1.

To finish this section we illustrate the results above for the examples of Section 4.
In both cases we give the invariants restricted to the slice N and their zero locus,

Group F Singularity R(X, Y, Z) = 0 Type 1

C`+1 X`+1
+ Y Z = 0 A`

D`−2 X`−1
+ XY 2

+ Z2
= 0 D`

T X4
+ Y 3

+ Z2
= 0 E6

O X3Y + Y 3
+ Z2

= 0 E7

I X5
+ Y 3

+ Z2
= 0 E8

Table 1. The basic correspondence between finite subgroups F
of SL2, homogeneous simple singularities defined by an equation
R(X, Y, Z) = 0, and simply laced simple Lie algebras of type 1.
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the surface χ−1(0).
First, for the subregular orbit of g2, the invariant functions restricted to the

slice N are

(21)
χ1 = q1,

χ2 = 12q1q2q3 − 4q3
2 − 4q3

3 + 9q2
4 ,

which leads to an affine surface χ−1(0) in C4 that is isomorphic to the surface in
C3 defined by

4q3
2 + 4q3

3 − 9q2
4 = 0.

Up to a rescaling, this is the polynomial R that was given in Table 3.
Second, for the subregular orbit of so8, the invariant functions restricted to the

slice N are found as the (nonconstant) coefficients of the characteristic polynomial

Type 1 V F F′ 0 = F′/F

B` A2`−1 C2` D` Z/2Z

C` D`+1 D`−1 D2`−2 Z/2Z

F4 E6 T O Z/2Z

G2 D4 D2 O Z/3Z

Table 2. List of all possible inhomogeneous singularities of type
1 = (V, 0), where V is one of the homogeneous simple singu-
larities and 0 = F′/F is a group of automorphisms of V . The
labels B`, C`, F4 and G2 for these types will become clear in
Proposition 5.2.

Type 1 Singularity R(X, Y, Z) = 0 0-action

B` X2`
+ Y Z = 0 (X, Y, Z) −→ (−X, Z , Y )

C` X`
+ XY 2

+ Z2
= 0 (X, Y, Z) −→ (X, −Y, −Z)

F4 X4
+ Y 3

+ Z2
= 0 (X, Y, Z) −→ (−X, Y, −Z)

G2 X3
+ Y 3

+ Z2
= 0 (X, Y, Z) −→ (αX, α2Y, Z)

Table 3. For each of the inhomogeneous simple singularities of
type 1 (see Table 2), the corresponding homogeneous simple sin-
gularity V = C2/F is given by its equation R(X, Y, Z) = 0 to-
gether with the action of 0 = F′/F on V . In the last line, α is a
nontrivial cubic root of unity.
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of the matrix Q (see (17)):

(22)

χ1 = −2q1 − 2q4,

χ2 = −12q2 − 4q3 − 4q4q5 + (q1 + q4)
2,

χ3 = −q2 + q3 − q4q5,

χ4 = −4q1q2 −16q2q5 −12q3q4 +12q2q4 +4q1q3 +4q2
4 q5 +4q1q4q5 −4q2

6 .

By linearly eliminating the variables q1, q2 and q3 from the equations χi = 0 for
i = 1, 2, 3, we find that χ−1(0) is isomorphic to the affine surface in C3 defined by

4q2
4 q5 − 2q4q2

5 + q2
6 = 0.

Its defining polynomial corresponds to the polynomial R in Table 1, after putting
X = iγ q4, Y = γ (q5 − q4), and Z = q6, where γ is any cubic root of 2i .

The determinantal Poisson structure. We prove here the announced result that
the ATP-structure in the subregular case is a determinantal Poisson structure deter-
mined by the Casimirs. Let us first point out how such a structure is defined. Let
C1, . . . , Cd−2 be d −2 (algebraically) independent polynomials in d > 2 variables
x1, . . . , xd . For a polynomial F in the variables x1, . . . , xd , let us denote by ∇F its
differential dF , expressed in the natural basis dxi , that is, ∇F is a column vector
with elements (∇F)i = ∂ F/∂xi . Then a polynomial Poisson structure is defined
on Cd by

(23) {F, G}det := det(∇F, ∇G, ∇C1, . . . , ∇Cd−2),

where F and G are arbitrary polynomials. It is clear that each of the Ci is a Casimir
of { · , · }det, so that in particular the generic rank of { · , · }det is two. Notice also that
if the Casimirs Ci are quasihomogeneous with respect to the weights $i := $(xi ),
then for any quasihomogeneous elements F and G we have

$({F, G}det) = $(F) + $(G) +

d−2∑
i=1

$(Ci ) −

d∑
i=1

$i .

This follows easily from the definition of a determinant and that if F is any quasi-
homogeneous polynomial, then ∂ F/∂xi is quasihomogeneous and $(∂ F/∂xi ) =

$(F)−$i . It follows that { · , · }det is quasihomogeneous of quasidegree κ , where

(24) κ =

d−2∑
i=1

$(Ci ) −

d∑
i=1

$i .

Applied to our case, it means that we have two polynomial Poisson structures on
the transverse slice N that have χ1, . . . , χ` as Casimirs on N ∼= C`+2, namely, the
ATP-structure and the determinantal structure constructed by using these Casimirs.
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Remark 5.3. The determinantal Poisson structure first appears (without proof that
it is a Poisson structure) in [Damianou 1989], who attributes the formula to H.
Flaschka and T. Ratiu. The first explicit proof appears in [Grabowski et al. 1993].
A more conceptual proof appears in [Takhtajan 1994, Remark 1 and Theorem 4].

In our two examples (see Section 4), these structures are easily compared by
explicit computation. For the subregular orbit of g2, we have, according to (23),

(3det)i j = det
(
∇qi ∇q j ∇χ1 ∇χ2

)
,

where χ1 and χ2 are the Casimirs (21). This leads to

3det = −6


0 0 0 0

0 0 −3q4 2q1q2 − 2q2
3

0 3q4 0 2q2
2 − 2q1q3

0 −2q1q2 + 2q2
3 −2q2

2 + 2q1q3 0

 .

In view of (14), it follows that 3det = −63N , so that both Poisson structures
coincide. For so8, one finds similarly, using the Casimirs χ1, . . . , χ4 in (22),

3det = −128



0 q4q6 −q4q6 0 −2q6 2q16

−q4q6 0 0 q4q6 −q5q6 −2q36

q4q6 0 0 −q4q6 q5q6 2q36

0 −q4q6 q4q6 0 2q6 −2q16

2q6 q5q6 −q5q6 −2q6 0 2q56

−2q16 2q36 −2q36 2q16 −2q56 0


,

where q16, q36 and q56 are given by (19). In view of (18), both Poisson structures
again coincide, 3det = −2563N .

To show that, in the subregular case, the ATP-structure and the determinantal
structure always coincide, that is, they differ only by a constant factor, we first
show that both structures coincide up to a rational function.

Proposition 5.4. Suppose { · , · } and { · , · }′ are two nontrivial polynomial Pois-
son structures on Cd that have d − 2 common independent polynomial Casimirs
C1, . . . , Cd−2. Then there exists a rational function R ∈ C(x1, . . . , xd) such that
{ · , · } = R { · , · }′.

Proof. Let M and M ′ denote the Poisson matrices of { · , · } and { · , · }′ in the
coordinates x1, . . . , xd . If we denote R := C(x1, . . . , xd), then M and M ′ both
act naturally as skew-symmetric endomorphisms on the R-vector space Rd . The
subspace H of Rd spanned by ∇C1, . . . ,∇Cd−2 is the kernel of both maps; hence
we have two induced skew-symmetric endomorphisms ϕ and ϕ′ of the quotient
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space Rd/H . Since the latter is two-dimensional, ϕ′ and ϕ are proportional, that
is, ϕ′

= Rϕ with R ∈ R. Since M and M ′ have the same kernel, M ′
= RM . �

Applied to our two Poisson structures { · , · }N and { · , · }det, the proposition yields
that { · , · }N = R { · , · }det, where R = P/Q ∈ R. We show next that R is actually
a (nonzero) constant and thereby characterize completely the ATP-structure in the
subregular case.

Theorem 5.5. Let Osr be the subregular nilpotent adjoint orbit of a complex
semisimple Lie algebra g, and let (h, e, f ) be the canonical triple associated
to Osr . Let N = e + n⊥ be a slice transverse to Osr , where n is an adh-invariant
complementary subspace to g(e). Let { · , · }N and { · , · }det denote respectively the
ATP-structure and the determinantal structure on N. Then { · , · }N = c { · , · }det for
some c ∈ C∗.

Proof. By the above, { · , · }N = R { · , · }det, where R ∈ R. If R has a nontrivial de-
nominator Q, then all elements of the Poisson matrix of { · , · }det must be divisible
by Q, since both Poisson structures are polynomial. Then along the hypersurface
Q = 0, the rank of (∇χ1, . . . ,∇χ`) is smaller than `; hence χ−1(0) is singular
along the curve χ−1(0) ∩ (Q = 0). However, by Proposition 5.2, we know that
χ−1(0) has an isolated singularity, which leads to a contradiction. This shows that
Q is a constant and hence that R is a polynomial.

To show that the polynomial R is constant, it suffices to show that the quaside-
grees of { · , · }N and { · , · }det are the same, which amounts (in view of Proposition
3.2) to showing that the quasidegree of { · , · }det is −2. This follows from the
following formula due to Kostant [1963, Thm 7], which expresses the dimension
of the regular orbit in terms of the exponents mi of g:

2
∑̀
i=1

mi = dim Oreg = dim g− `.

Indeed, if we apply this formula, Lemma 5.1, and (8) to the formula (24) for the
quasidegree of { · , · }det, then we find

κ =

∑̀
i=1

$(χi ) −

`+2∑
i=1

$(qi ) = 2
∑̀
i=1

di −

`+2∑
i=1

(ni + 2)

= 2
∑̀
i=1

mi −

`+2∑
i=1

ni − 4

= dim g− ` − (dim g− ` − 2) − 4 = −2. �
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Reduction to a 3×3 Poisson matrix. Let Osr be the subregular nilpotent adjoint or-
bit of a complex semisimple Lie algebra g of rank `. Let (h, e, f ) be its associated
canonical sl2-triple, and let N := e +n⊥ be a transverse slice to Osr , where n is an
adh-invariant complementary subspace to g(e). Let { · , · }N be the ATP-structure
defined on N . Recall that N is equipped with linear coordinates q1, . . . , q`+2 de-
fined in Section 2, and that { · , · }N has independent Casimirs χ1, . . . , χ`, which
are the restrictions to N of the basic homogeneous invariant polynomial functions
on g.

Our goal now is to show that, in well-chosen coordinates, the ATP-structure
{ · , · }N on N is essentially given by a 3 × 3 skew-symmetric matrix which is
closely related to the polynomial that defines the singularity. More precisely:

Theorem 5.6. After possibly relabeling the coordinates qi and the Casimirs χi , the
` + 2 functions

χi , 1 ≤ i ≤ ` − 1, and q`, q`+1, q`+2

form a system of (global) coordinates on the affine space N. The Poisson matrix of
the ATP-structure on N in these coordinates is

(25) 3̃N =

(
0 0
0 �

)
, where � = c′



0
∂χ`

∂q`+2
−

∂χ`

∂q`+1

−
∂χ`

∂q`+2
0

∂χ`

∂q`

∂χ`

∂q`+1
−

∂χ`

∂q`

0


,

for some nonzero constant c′. It has the polynomial χ` as Casimir, which reduces
to the polynomial that defines the singularity if we set χ j =0 for j =1, 2, . . . , `−1.

Proof. The non-Poisson part of this theorem is due to Brieskorn and Slodowy.
Before proving the Poisson part of the theorem, namely, that the Poisson matrix
takes the form (25), we explain for the reader’s convenience the basics of singu-
larity theory used in their proof, but see [Slodowy 1980a] for details. Let (X0, x)

be the germ of an analytic variety X0 at the point x . A deformation of (X0, x) is
a pair (8, ı) where 8 : X → U is a flat morphism of varieties with 8(x) = u and
where the map ı : X0 → 8−1(u) is an isomorphism. Such a deformation is called
semiuniversal if any other deformation of (X0, x) is isomorphic to a deformation
induced from (8, ı) by a local change of variables in a neighborhood of x . The
semiuniversal deformation of (X0, x) is unique up to isomorphism. It can be ex-
plicitly described in the following case. Let (X0, 0) be a germ of a hypersurface
of Cd that is singular at 0, and say X0 is locally given by f (z) = 0. Then the
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semiuniversal deformation of (X0, 0) is the (germ at the origin of the) map

8 : Ck
× Cd

→ Ck
× C

(u, z) 7→ (u, F(u, z)),
where

F(u, z) = f (z) +

k∑
i=1

gi (z)ui

and where the polynomials 1, g1, g2, . . . , gk represent a vector space basis of the
Milnor (or Tjurina) algebra

(26) M( f ) :=
C[z1, . . . , zd ](

f,
∂ f
∂z1

, . . . ,
∂ f
∂zd

) =
C[z1, . . . , zd ](
∂ f
∂z1

, . . . ,
∂ f
∂zd

) .

The last equality is valid whenever f is quasihomogeneous, which is true in this
case. The dimension dim M( f ) = k + 1 is called the Milnor number of f .

We can now formulate Brieskorn’s result. It says that the map χ : N → C`,
which is the restriction of the adjoint quotient (20) to the slice N , is a semiuniversal
deformation of the singular surface N ∩ N. More precisely, when the Lie algebra
is of the type ADE, then the map

8 : C`−1
× C3

→ C`−1
× C

((χ1, . . . , χ`−1), (q`, q`+1, q`+2)) 7→ ((χ1, . . . , χ`−1), χ`)

is the semiuniversal deformation of the singular surface N ∩ N; for the other
types one has to consider 0-invariant semiuniversal deformations, as was shown
by Slodowy [1980a], see Table 2. It is implicit in Brieskorn’s statement that
(χ1, . . . , χ`−1, q`, q`+1, q`+2) form a system of coordinates on N , which comes
from the fact that one can solve the ` − 1 equations χi = χi (q) linearly for ` − 1
of the variables qi . That is, the Casimirs have the form

(27)

 χ1
...

χ`−1

 = A

 q1
...

q`−1

 +

 F1(q`, q`+1, q`+2)
...

F`−1(q`, q`+1, q`+2)

 ,

where A is a constant matrix with det A 6= 0; this will be illustrated in the examples
below.

We now get to the Poisson part of the proof. Since the coordinate functions
χ1, . . . , χ`−1 are Casimirs, the Poisson matrix 3̃N has with respect to these coor-
dinates the block form

3̃N =

(
0 0
0 �

)
,

where � is a 3 × 3 skew-symmetric matrix. We know from Theorem 5.5 that the
ATP-structure is a constant multiple of the determinantal structure. Since det A
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lies in C∗, it follows from (27) that, for ` ≤ i, j ≤ ` + 2,

3̃i j := c det(∇qi ∇q j ∇χ1 . . . ∇χ`) = c′ det(∇ ′qi ∇
′q j ∇

′χ`),

where c and c′ are nonzero constants and ∇
′ denotes the restriction of ∇ to C3,

namely,

∇
′F =

(
∂ F
∂q`

∂ F
∂q`+1

∂ F
∂q`+2

)>

.

The explicit formula (25) for � follows at once. �

6. Examples

The subregular orbit of g2. For this we have, according to (21), that χ1 = q1.
Then χ2 expressed in terms of q2, q3, q4, and χ1 is

χ2 = 9q2
4 − 4q3

2 − 4q3
3 + 12χ1q2q3.

The Poisson matrix (14) of the ATP-structure is already in the form (25), with
c′

= −1/6 (and χ1 = q1). Since the Milnor algebra (26) is given in this case by
M(9q2

4 − 4q3
2 − 4q3

3 ) = C[q2, q3, q4]/
(
q2

2 , q2
3 , q4

)
, one easily sees that 1 and the

coefficient q2q3 of u1 indeed form a vector space basis for the 0-invariant elements
of the Milnor algebra (see Table 3); compare [Slodowy 1980a, page 136].

The subregular orbit of so8. Recall from (22) that its ATP structure has Casimirs
χ1, . . . , χ4. As stated in the proof of Theorem 5.6, we can solve three of them
linearly for q1, q2, q3 in terms of χ1, χ2, χ3 and the last three variables q4, q5,
and q6. We obtain

q1 = −q4 −
1
2χ1,

q2 =
1

64

(
χ2

1 − 16χ3 − 4χ2 − 32q4q5
)
,

q3 =
1

64

(
χ2

1 + 48χ3 − 4χ2 + 32q4q5
)
.

Substituted in χ4, this yields

χ4 = 8q4q2
5 − 16q2

4 q5 − 4q2
6 − 4χ1q4q5 + (χ2 −

1
4χ2

1 + 4χ3)q5 − 16χ3q4 − 2χ1χ3,

so that

χ̂4 = 8q4q2
5 − 16q2

4 q5 − 4q2
6 − 4χ1q4q5 + χ̂2q5 − 16χ3q4,

where χ̂2 := χ2 −
1
4χ2

1 + 4χ3 and χ̂4 := χ4 + 2χ1χ3 can be used instead of χ2 and
χ4 as basic Ad-invariant polynomials restricted to N . Using (18), expressed in the
coordinates χ1, χ̂2, χ3, q4, q5 and q6, we find that the matrix � is indeed of the
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form (25) with c′
= −

1
8 , since

{q4, q5} = q6 = −
1
8

∂χ̂4

∂q6
, {q4, q6} = 2q4q5 − 2q2

4 −
1
2
χ1q4 +

1
8
χ̂2 =

1
8

∂χ̂4

∂q5
,

{q5, q6} = −q2
5 + 4q4q5 +

1
2
χ1q5 + 2χ3 = −

1
8

∂χ̂4

∂q4
.

It follows easily that the Milnor algebra is given by

M(8q4q2
5 − 16q2

4 q5 − 4q2
6 ) = C[q4, q5, q6]/(q6, q4(q5 − q4), q5(q5 − 4q4)),

so that 1 and the coefficients q4, q5 and q4q5 of χ̂4 indeed form a vector space basis
for it.

The subregular orbit Osr in sl4. This example is from [Damianou 1996]. It was
also examined by Sabourin [2005], who showed that the slice, originally due to
Arnold [1971], belongs to the set Nh . It is the orbit of the nilpotent element

e =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 .

The transverse slice in Arnold’s coordinates consists of matrices of the form

Q =


0 1 0 0
0 0 1 0
q1 q2 q3 q4

q5 0 0 –q3

 .

The basic Casimirs of the ATP-structure, as computed from the characteristic poly-
nomial of Q, are

χ1 = q2 + q2
3 , χ2 = q1 + q2q3, χ3 = q1q3 + q4q5.

If we solve the first two equations for the variables q1, q2 in terms of χ1, χ2 and
q3, q4, q5, and substitute the result in χ3, then we find that

χ3 = q4
3 + q4q5 − χ1q2

3 + χ2q3.

Using the explicit formulas for the ATP-structure given in [Damianou 1996], ex-
pressed in the coordinates χ1, χ2, q3, q4 and q5, we find that the matrix � is indeed
of the form (25) with c′

= 1, since

{q3, q4} = q4 =
∂χ3

∂q5
, {q3, q5} = −q5 = −

∂χ3

∂q4
,
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{q4, q5} = 4q3
3 − 2χ1q3 + χ2 =

∂χ3

∂q3
.

It can be read from these formulas that the Milnor algebra is given by

M(q4
3 + q4q5) = C[q3, q4, q5]/(q4, q5, q3

3 ),

so that the coefficients 1, q3 and q2
3 of χ3 indeed span its vector space.
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