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We develop a new approach to the linear ordering of the braid group Bn,
based on investigating its restriction to the set Div(1d

n) of all divisors of 1d
n

in the monoid B+
∞, that is, to positive n-braids whose normal form has length

at most d. In the general case, we compute several numerical parameters
attached with the finite orders Div(1d

n). In the case of 3 strands, we more-
over give a complete description of the increasing enumeration of Div(1d

3 ).
We deduce a new and especially direct construction of the ordering on B3,
and a new proof of the result that its restriction to B+

3 is a well-ordering of
ordinal type ωω.

This paper investigates the connection between the Garside structure of Artin’s
braid groups and their distinguished linear ordering, sometimes called the De-
hornoy ordering. This leads to a new, alternative construction of the ordering.

Artin’s braid groups Bn are endowed with several interesting combinatorial
structures. One of them stems from Garside’s analysis [1969] and is now known as
a Garside structure [Dehornoy 2002; McCammond 2005]. It describes Bn as the
group of fractions of a monoid B+

n with a rich divisibility theory. This theory gives
a unique normal decomposition of every braid in Bn into simple braids, which are
the divisors of Garside’s fundamental braid 1n , a finite family of B+

n that is in one-
to-one correspondence with the permutations of n objects. One obtains a natural
graduation of the monoid B+

n by considering the family Div(1d
n) of all divisors

of 1d
n , which also are the elements of B+

n whose normal forms have length at
most d .

On the other hand, the braid groups are equipped with a distinguished linear
ordering which is compatible with multiplication on the left and admits a simple
combinatorial characterization [Dehornoy 1994]: a braid x is smaller than another
braid y if, among all expressions of the quotient x−1 y in the standard generators
σi , there exists at least one expression in which the generator σm with maximal
(or minimal) index m appears only positively, that is, σm occurs, but σ−1

m does
not. Several deep results about that ordering have been proved, for example, that
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its restriction to B+
∞

is a well-ordering. A number of equivalent constructions are
known [Dehornoy et al. 2002].

Although both are combinatorial, the previous structures remain mostly uncon-
nected—and connecting them is among the most natural questions of braid com-
binatorics. For degree 1, that is, for simple braids, the linear ordering corresponds
to a lexicographical ordering of the associated permutations [Dehornoy 1999]. But
this connection does not extend to higher degrees, and almost nothing is known
about the restriction of the linear ordering to positive braids of a given degree. In
particular, no connection is known between the Garside normal form and the al-
ternative normal form constructed by S. Burckel [1997; 1999; 2001] which makes
comparison with respect to the linear ordering easy. For example, the Garside
normal form of 12d

3 is (σ1σ2σ1)
2d , while its Burckel normal form is (σ2σ

2
1 σ2)

dσ 2d
1 .

This paper investigates the finite linearly ordered sets (Div(1d
n), <). A nice way

of thinking about this structure is to view the increasing enumeration of Div(1d
n) as

a distinguished path from 1 to 1d
n in the Cayley graph of Bn . Completely describing

this path would arguably solve optimally the rather vague task of connecting the
Garside and the ordered structures of braid groups. The combinatorics of such a
description seems to be extremely intricate, and it remains out of reach for the
moment, but we prove partial results in this direction.

(i) In the general case, we determine some numerical parameters associated with
(Div(1d

n), <), which in some sense measure its size. For small values of n
and d , we find explicit values.

(ii) In the special case n = 3, we completely describe the increasing enumeration
of (Div(1d

n), <).

Specifically, the parameters we investigate are the complexity and the heights.
The complexity c(1d

n) is defined as the maximal number of σn−1 occurring in
an expression of 1d

n containing no σ−1
n−1. We connected the complexity with the

termination of the handle reduction algorithm in [Dehornoy 1997], but left its deter-
mination as an open question. The r -height hr (1

d
n) is defined to be the number of

r -jumps in the increasing enumeration of (Div(1d
n), <) (augmented by 1), where

the term r -jump refers to some natural filtration of the linear ordering < by a
sequence of partial orderings <r . When r increases, the r -jumps are higher and
higher, so hr (1

d
n) counts how many big jumps exist in (Div(1d

n), <). Here, we
prove that the complexity c(1d

n) equals the height hn−1(1
d
n) (Proposition 2.19),

and that, for each r , the r -height hr (1
d
n) is the number of divisors of 1d

n whose
d-th factor of the normal form is right divisible by 1r (Proposition 3.11). Together
with the combinatorial results of [Dehornoy 2007], this allows for computing the
explicit values listed in Table 1, and for establishing various inductive formulas
(Propositions 3.15 and 3.17, among others).
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Besides the enumerative results, we also prove a general structural result that
connects the ordered set (Div(1d

n), <) with subsets of (Div(1d
n−1), <) (Corollary

3.6). This result suggests an inductive method for directly constructing the in-
creasing enumeration of (Div(1d

n), <) starting from those of (Div(1d
n−1), <) and

(Div(1d−1
n ), <). This approach is completed here for n = 3 (Proposition 4.6). In

some sense, 3 strand braids are simple objects, and the result may appear as of only
modest interest; however, the order on B+

3 is a well-ordering of ordinal type ωω

and hence not such a simple object. The interesting point is that this approach
leads to a new, alternative construction of the braid ordering, with, in particular,
a new and simple proof for the so-called Comparison Property at the heart of the
construction (it guarantees the ordering’s linearity). In this way, one obtains not just
another ordering construction among many [Dehornoy et al. 2002] but, arguably,
the optimal one. After the initial inductive definition is correctly stated, it makes
all proofs simple and also makes explicit the connection to the Garside structure.

The paper is organized as follows. After an introductory section recalling basic
properties and setting the notation, we introduce the parameters c(1d

n) and hr (1
d
n)

in Section 2 and establish how they are connected. In Section 3, we connect in turn
hr (1

d
n) to the number of n-braids whose d-th factor in the normal form satisfies

certain constraints, and deduce explicit values. Finally, in Section 4, we study
(Div(1d

3), <), describe its increasing enumeration, and construct its braid ordering.

1. Background and preliminary results

Our notation is standard, and we refer to textbooks like [Birman 1974] or [Epstein
et al. 1992] for basic results about braid groups. We recall that the n strand braid
group Bn is defined for n > 1 by the presentation

(1-1) Bn =

〈
σ1, . . . , σn−1 ;

σiσ j = σ jσi for |i − j | > 2
σiσ jσi = σ jσiσ j for |i − j | = 1

〉
,

while, for n = 1, we let B1 be the trivial group. The next group B2 is freely
generated by σ1. The elements of Bn are called n strand braids, or simply n-braids.
We use B∞ for the group generated by an infinite sequence of σi ’s subject to the
relations of (1-1), that is, the direct limit of all Bn’s with respect to the inclusion
of Bn into Bn+1.

By definition, every n-braid x admits (infinitely many) expressions in terms of
the generators σi , 1 6 i < n. Such an expression is called an n strand braid word.
Two braid words w, w′ representing the same braid are said to be equivalent; the
braid represented by a braid word w is denoted [w].

1A. Positive braids and the element 1n. We denote by B+
n the monoid admitting

the presentation (1-1), and by B+
∞

the union (direct limit) of all B+
n ’s. The elements
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of B+
n are called positive n-braids. In B+

∞
, no element except 1 is invertible, and

we have a natural notion of divisibility:

Definition 1.1. For x, y in B+
n , we say that x is a left divisor of y, denoted x 4 y,

or, equivalently, that y is a right multiple of x , if y = xz holds for some z in B+
n .

We denote by Div(y) the (finite) set of all left divisors of y in B+
n .

The monoid B+
n is not commutative for n > 3, and therefore there are distinct,

but symmetric, notions of a right divisor and a left multiple; however, we shall
mostly use left divisors. Note that x is a (left) divisor of y in the sense of B+

n if
and only if it is a (left) divisor in the sense of B+

∞
, so there is no need to specify

the index n.
According to Garside theory [1969], B+

n equipped with the left divisibility rela-
tion is a lattice: any two positive n-braids x, y admit a greatest common left divisor
gcd(x, y), and a least common right multiple lcm(x, y). A special role is played
by the lcm 1n of σ1, . . . , σn−1, which can be defined inductively by

(1-2) 11 = 1, 1n = σ1σ2 . . . σn−1 1n−1.

It is well known that 12
n belongs to the center of Bn (and even generates it for

n > 3), and that the flip automorphism φn of Bn corresponding to conjugation by
1n exchanges σi and σn−i for 1 6 i 6 n − 1.

In B+
n , the left and the right divisors of 1n coincide, and they make a finite

sublattice of (B+
n , 4) with n! elements. These braids will be called simple. When

braid words are represented by diagrams as mentioned in Figure 1, simple braids
are those positive braids that can be represented by a diagram in which any two
strands cross at most once.

By mapping σi to the transposition (i, i + 1), one defines a surjective homo-
morphism π of Bn onto the symmetric group Sn . The restriction of π to simple
braids is a bijection: for every permutation f of {1, . . . , n}, there exists exactly one

σi :

σ−1
i :

1 2 i i+1

. . . . . .

. . . . . .

Figure 1. One associates to every n strand braid word w an n
strand braid diagram by stacking elementary diagrams as above.
Two braid words are equivalent if and only if the associated dia-
grams are the projections of ambient isotopic figures in R3, that is,
one can deform one diagram into the other without allowing the
strands to cross or moving the endpoints.
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simple braid x satisfying π(x) = f . It follows that the number of simple n-braids
is n!.

Example 1.2. The set Div(13) consists of six elements, namely 1, σ1, σ2, σ2σ1,
σ1σ2, and 13. In examples, we shall often use the shorter notation a for σ1, b for
σ2, etc. Thus, the six simple 3-braids are 1, a, b, ba, ab, aba.

1B. The normal form. For each positive n-braid x distinct from 1, the simple
braid gcd(x, 1n) is the maximal simple left divisor of x , and we obtain a dis-
tinguished expression x = x1x ′ with x1 simple. By decomposing x ′ in the same
way and iterating, we obtain the so-called normal expression [El-Rifai and Morton
1994; Epstein et al. 1992].

Definition 1.3. A sequence (x1, . . . , xd) of simple n-braids is said to be normal if,
for each k, one has xk = gcd(1n, xk . . . xd).

Clearly, each positive braid admits a unique normal expression. It will be con-
venient to consider the normal expression as unbounded on the right by completing
it with as many trivial factors 1 as needed. In this way, we can speak of the d-th
factor (in the normal form) of x for each positive braid x . We say that a positive
braid has degree d if d is the largest integer such that the d-th factor of x is not 1.
We shall use the following two properties of the normal form:

Lemma 1.4 [El-Rifai and Morton 1994]. Suppose (x1, . . . , xd) is sequence of sim-
ple n-braids. It is normal if and only if , for each k < d, each σi that divides xk+1

on the left divides xk on the right.

Lemma 1.5 [El-Rifai and Morton 1994]. For x a positive braid in B+
n , the follow-

ing are equivalent:

(i) The braid x belongs to Div(1d
n), that is, is a (left or right) divisor of 1d

n ;

(ii) The degree of x is at most d.

Example 1.6. There are 19 divisors of 12
3, which also are the 3-braids of degree at

most 2. Their enumeration in normal form—in an ordering that may seem strange
now, but should become familiar soon—is: 1, a, a·a, b, ba, ba·a, b·b, b·ba, ab,
aba, aba·a, ab·b, ab·ba, a·ab, aba·b, aba·ba, ba·ab, aba·ab, aba·aba.

By Lemma 1.5, every divisor of 1d
n can be expressed as the product of at most

d divisors of 1n , so we certainly have #Div(1d
n) 6 (n!)d for all n, d.

1C. The braid ordering.

Definition 1.7. Let w be a nonempty braid word. We say that σm is the main
generator in w if σm or σ−1

m occurs in w, but no σ±1
i with i > m does. We say that

w is σ -positive if the main generator occurs only positively in w, and similarly it
is σ -negative if that generator occurs negatively.
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A positive nonempty braid word, that is, one that contains no σ−1
i at all, is σ -

positive, but the inclusion is strict: for instance, σ−1
1 σ2 is not positive, but it is

σ -positive, as its main generator, namely σ2, occurs positively (with one σ2) but
not negatively (no σ−1

2 ).
The following two properties have received a number of independent proofs

[Dehornoy et al. 2002]:

Property A. A σ -positive braid word does not represent 1.

Property C. Every braid except 1 can be represented by a σ -positive word or by a
σ -negative word.

Building on these results, it is straightforward to order the braids:

Definition 1.8. If x , y are braids, we say that x < y holds if the braid x−1 y admits
at least one σ -positive representative.

It is clear that the relation < is transitive and compatible with multiplication on
the left; Property A implies that < has no cycle and hence is a strict partial order,
and Property C then implies that it is actually a linear order.

As every nonempty positive braid word is σ -positive, x 4 y implies x 6 y for
all positive braids x, y. The converse is not true: σ1 is not a left divisor of σ2, but
σ1 < σ2 holds because σ−1

1 σ2 is a σ -positive word.

Example 1.9. The increasing enumeration of the set Div(13) is

1 < a < b < ba < ab < aba.

For instance, we have ba < ab, that is, σ2σ1 < σ1σ2 because the quotient, namely
σ−1

1 σ−1
2 σ1σ2 (or ABab), also admits the expression σ2σ

−1
1 , a σ -positive word. Sim-

ilarly, the reader can check that the increasing enumeration of Div(12
3) is the one

given in Example 1.6.

Lemma 1.10. The linear ordering < extends the left divisibility ordering ≺.

Proof. By definition, 1 <σi holds for every i . As the ordering < is compatible with
multiplication on the left, it follows that x < xσi holds for all i, x , and, therefore,
x < xy holds whenever y is a nontrivial positive braid. �

Lemma 1.10 implies that 1 is always the first element of (Div(1d
n), <), and 1d

n
is always its last element. A deep result by Laver [1996] shows that, although <

is not compatible with right multiplication in general, nevertheless x < σi x always
holds, that is, < also extends the right divisibility ordering.

By Property C, every nontrivial braid admits at least one σ -positive or σ -negative
expression. In general, such a σ -positive or σ -negative expression is not unique,
but the main generator in such expressions is uniquely defined:
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Lemma 1.11. If a braid x admits a σ -positive expression, then the main generators
in any two σ -positive expressions of x coincide.

Proof. Assume that w, w′ are σ -positive expressions of x , and let σm , σm′ be their
main generators. Assume for instance m < m′. Then w−1w′ is a σ -positive word,
and it represents the trivial braid 1: this contradicts Property A. �

Thus, there will be no ambiguity in referring to the main generator of some
nontrivial braid x : this means the main generator in any σ -positive (or σ -negative)
expression of x .

Remark 1.12. Our definition corresponds to the order <φ of [Dehornoy et al.
2002]. It differs from the one most used in the literature in that the definition of
a σ -position refers to the maximal index rather than the minimal one. Switching
from one definition to the other amounts to conjugating by 1n , that is, to applying
the flip automorphism. The results are entirely similar for both versions. However,
it is much more convenient to consider the “max” choice here, because it guarantees
that B+

n is an initial segment of B+

n+1. Using the “min” convention would make
the statements in the following sections less natural.

2. Measuring the ordered sets (Div(1d
n), <)

To investigate the finite ordered sets (Div(1d
n), <), and, more generally, the sets

(Div(z), <) for positive braids z, we shall define numerical parameters that reflect
their size. The first parameter involves the length of the σ -positive words that are, in
a natural sense defined below, drawn in the Cayley graph of 1d

n . It will be called the
complexity of 1d

n , because it is directly connected with the complexity analysis of
the handle reduction algorithm of [Dehornoy 1997]. The other parameters involve
a filtration of the linear ordering by the σi ’s, and they will be called the heights of
1d

n because they count the jumps of a given height in (Div(1d
n), <).

2A. Sigma-positive paths in the Cayley graph. The first parameter we attach to
(Div(z), <) involves the σ -positive paths in the Cayley graph of z.

We recall that the Cayley graph of the group Bn with respect to the standard
generators σi is a labeled graph: it has the vertex set Bn and is such that there
exists a σi -labeled edge from x to y if and only if y = xσi . The Cayley graph of
the monoid B+

n is obtained by restricting the vertices to B+
n . Note that the Cayley

graph of Bn (and a fortiori of B+
n ) can be seen as a subgraph of the Cayley graph

of B∞.

Definition 2.1. (See Figure 2.) For z a positive braid, we denote by 0(z) the
subgraph of the Cayley graph of B∞ obtained by restricting the vertices to Div(z)
and removing the edges do not connect two vertices in Div(z).
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Because every element of B+
n is a left divisor of 1d

n for sufficiently large d , the
Cayley graph of B+

n is the union over all d of the graphs 0(1d
n).

1

σ2 σ2σ1

σ1 σ1σ2

13 1

σ2

σ 2
2 σ 2

2 σ1 σ2σ
2
1 σ2σ

2
1 σ2

σ2σ1σ2σ1 13σ1 13σ1σ2

σ1 σ1σ2 13σ2 13σ2σ1

13 12
3

σ 2
1 σ 2

1 σ2 σ1σ
2
2 σ1σ

2
2 σ1

Figure 2. The graphs of 0(13) and 0(12
3); the dotted edges rep-

resent σ1, the plain ones σ2; observe that the graph of 12
3 is not

planar; in grey: two σ -positive words traced in the graphs, namely
aAbab and bbabAbab (see Lemma 2.3).

A path in the Cayley graph can be specified by its initial vertex and the listed
labels of its successive edges, that is, by a braid word. For each i < n and each x
in Bn , there is in Bn’s Cayley graph exactly one σi -labeled edge leading into x and
exactly one other going out of it. Hence, in the complete Cayley graph of Bn , for
each initial vertex x and each n-braid word w, there is always one path labeled w

starting from x . When we restrict to some fragment 0, this need not be the case,
but we do have an unambiguous notion of w being drawn in 0 from x . Formally:

Definition 2.2. If 0 is a subgraph of the Cayley graph of B∞, and x is a vertex
in 0, we say that a braid word w is drawn from x in 0 if, for every prefix vσi

(resp. vσ−1
i ) of w, there exists a σi -labeled edge starting (resp. finishing) at x [v]

in 0.

For instance, we can check on Figure 2 that the word σ 2
1 is drawn from σ2 in

0(12
3), but not in 0(13). In algebraic terms,

Lemma 2.3. Assume that z is a positive braid, and w is a braid word. Then w is
drawn from x in 0(z) if and only if x[v] 4 z holds for each prefix v of w.

Proof. The condition is sufficient. Indeed, assume it is satisfied by w, and vσi is a
prefix of w. Then, by hypothesis, x[v] and x[v]σi are left divisors of z. Hence are
vertices in 0(z), and, therefore, there is a σi -labeled edge between x[v] and x[v]σi

in 0(z). The argument is similar for a prefix of the form vσ−1
i . Using induction

on the length of w, we deduce that w is drawn from x in 0(z).
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Conversely, if there is a w-labeled path from x in 0(z), then, for each prefix v of
w, the braid x[v] represents some vertex in 0(z). Hence it’s a left divisor of z. �

For z a positive braid, we shall investigate the σ -positive words drawn in the
graph 0(z). It is clear that, even if Div(z) is a finite set, arbitrary long words are
drawn in 0(z) whenever the latter contains at least 2 vertices, that is, z is not 1. The
example of Figure 2 shows that restricting to σ -positive words does not change the
result: for instance, for each k, the word (σ1σ

−1
1 )kσ2σ1σ2 is a σ -positive expression

of 13, and it is drawn in 0(13). So we cannot hope for any finite upper bound on
the length of the σ -positive words drawn in 0(z) in general. The situation changes
if we concentrate on the main generators, that is, we forget about the generators
with nonmaximal index.

Lemma 2.4. Assume that 0 is subgraph of the Cayley graph of B∞, and w is
a σ -positive word drawn in 0(z). Then the number of occurrences of the main
generator in w is at most the number of nonterminal vertices in 0.

Proof. Assume that w is drawn from x in 0. Let σm be the main generator in w.
As there is at most one σm-labeled edge starting from each vertex of 0, it suffices
to show that the number of σm’s in w is bounded above by the number of σm-edges
in 0. Hence, it suffices to show that the path γ associated with w cannot cross the
same σm-edge twice. Now assume that some σm-edge starts from the vertex y, and
that γ crosses this edge twice. This means that γ contains a loop from y to y. Let
v be the subword of w labeling that loop. By construction, v begins with σm , it
contains no σ−1

m and no σ±1
i with i > m as it is a subword of w, and it represents

the braid 1 as it labels a loop in the Cayley graph of B∞: this means that v is a
σ -positive word representing 1, which contradicts Property A. �

Lemma 2.4 applies in particular to every graph 0(z) in which z is a positive
braid. We can introduce our first parameter measuring the size of the ordered set
(Div(z), <):

Definition 2.5. (See Figure 2.) When z is a positive braid with main generator σm ,
the complexity c(z) of z is defined to be the maximal number of σm’s in a σ -positive
word drawn in 0(z).

Example 2.6. The word σ2σ1σ2 is a σ -positive word drawn from 1 in 0(13),
and it contains two σ2’s. Hence we have c(13) > 2. Actually, it is not hard to
obtain the exact value c(13) = 2. Indeed, if a σ -positive path γ contains the two
σ2-edges starting from 1 and σ1σ2, it cannot come back to σ2 without crossing
the third σ2-edge; and if γ contains the σ2-edge that starts from σ1, it can never
come back to 1 or to σ2σ1 and therefore contains at most one σ2-edge. As we have
1d

3 = (σ2σ1σ2)
d , we deduce c(1d

3) > 2d for every d . This value is certainly not
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optimal: Figure 2 contains five σ2’s, proving c(12
3) > 5. The exact value here is 6,

and, more generally, we have c(1d
n) = 2d+1

− 2, as will be seen in Section 3.

Remark 2.7. Restricting to σ -positive words drawn in 0(z) is essential: for in-
stance, for each k, we have

(2-1) 13 = σ k+1
2 σ1σ2σ

−k
1 ,

a σ -positive word containing k +2 letters σ2. Now, for k > 1, the word involved in
(2-1) is not drawn in 0(11

3), because its prefix σ 2
2 is not. Thus the parameter c(z)

does involve the left divisors of z.

Directly applying Lemma 2.4 gives:

Proposition 2.8. Every positive braid has a finite complexity; more precisely, for z
of length ` in B+

n with n > 3, we have c(z) 6 (n − 1)`.

Proof. The number of nonterminal vertices in 0(z), that is, the number of proper
left divisors of z, is at most 1 + (n − 1) + (n − 1)2

+ · · · + (n − 1)`−1. �

As the length of any positive expression of 1n is n(n − 1)/2, we obtain in
particular for all n, d

(2-2) c(1d
n) 6 (n − 1)dn(n−1)/2.

Before going further, we observe that, in defining the complexity of z, we can
restrict to decompositions of z, that is, instead of considering paths starting and
finishing at arbitrary vertices, we can restrict to paths going from 1 to z:

Lemma 2.9. Assume that z is a positive braid with main generator σm . Then c(z)
is the maximal number of σm’s in any σ -positive decomposition of z drawn in 0(z).

Proof. Let c′(z) be the number involved in the above statement. Clearly we have
c′(z) 6 c(z). Conversely, assume that w is drawn in 0(z) from x , and that the
w-labeled path starting at x finishes at y. Let u be a positive expression of x , and
v be a positive expression of y−1z. The latter exists as, by hypothesis, y is a left
divisor of z. Then uwv is a σ -positive decomposition of z drawn in 0(z). Hence
we have c′(z) > c(z). �

Remark 2.10. We call Property A∗ the statement that all numbers c(1d
n) are finite.

Above, we derived Property A∗ from Property A. The two properties are actually
equivalent, that is, we can also deduce Property A from Property A∗. For that,
assume that some σ -positive braid word w represents 1. The word w may involve
negative letters. We must find a vertex x that begins a path labeled w in some
0(1d

n). Let σm be the main generator in w. The word w has finitely many prefixes,
say w0, . . . , w`. By Garside theory, each word wi is equivalent to one the form
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u−1
i vi , with ui , vi positive. Let x be the least common left multiple of the positive

braids

[u0], . . . , [u`].

For each i , the braid x[wi ] is positive. Moreover, there exist n and d such that

x[w0], . . . , x[w`]

are all divisors of 1d
n . Thus the word w is drawn from x in 0(1d

n), and the associ-
ated path is a loop around x . It follows that wk is drawn in 0(1d

n) from x for each
k. By construction, wk contains at least k generators σm . Hence c(1d

n) cannot be
finite.

2B. Connection with handle reduction. Handle reduction [Dehornoy 1997] is an
algorithmic solution to the word problem of braids that relies on the braid ordering.
It is the most efficient method today. The method converges, and the argument in
[Dehornoy 1997] shows the complexity upper bound to be exponential in the input
word length, an estimate seemingly very far from sharp.

Each step of handle reduction involves a specific generator σi , and, for an in-
duction, the point is to obtain an upper bound on the reduction steps involving the
main generator. The latter will naturally be called the main reduction steps. The
connection between handle reduction and the complexity as defined above relies
on the following technical result:

Lemma 2.11 [Dehornoy 1997]. Assume that z is a positive braid with main gener-
ator σm and that w is drawn in 0(z). Then, for each sequence of handle reductions
from w — that is, each sequence Ew with w0 = w such that wk is obtained by re-
ducing one handle from wk−1 for each k — there exists a witness-word u that is
σ -positive, drawn in Div(z), and such that the number of σm’s in u is the number
of main reductions in Ew.

It follows that the number of main reduction steps in any sequence of handle
reductions starting with a word drawn in 0(z) is bounded above by c(z). In partic-
ular, if we start with an n strand braid word w of length `, then it is easy to show
that w is drawn in 0(1`

n), and, applying the upper bound of Equation (2-2), we
deduce the upper bound on the number of possible main reductions from w, and it
is exponential in `.

A natural way to improve this coarse upper bound would be to determine c(1d
n)

more precisely. This will be done in Section 3 below. However, the explicit for-
mulas show that, for n > 3, the growth in d really is exponential, thus dashing any
hopes of proving a polynomial upper bound for the number of reduction steps by
this approach.
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2C. A filtration of the braid ordering. We now introduce new numerical param-
eters for the ordered sets (Div(z), <). These numbers connect with a natural fil-
tration of the ordering <, using an increasing sequence of partial orderings.

By Lemma 1.11, the index of the main generator of a nontrivial braid is well
defined. We can use this index to measure the height of the jump between two
braids x, y satisfying x < y:

Definition 2.12. For x, y in B∞ and r >1, we say that x <r y holds or, equivalently,
that (x, y) is an r-jump, if x−1 y admits a σ -positive expression in which the main
generator is σm with m > r .

Lemma 2.13. For each r >1, the relation <r is a strict partial order that refines < ;
the relation <1 coincides with <, and r 6 q implies that <q refines <r .

Proof. That <r is transitive follows because the concatenation of a σ -positive
word with main generator σm and a σ -positive word with main generator σm′ is a
σ -positive word with main generator σmax(m,m′). �

In the sequel, we consider the <r -chains included in Div(z), and their length:

Definition 2.14. For z a positive braid and r > 1, we define the r-height hr (z) of
z to be the maximal length of a <r -chain included in Div(z).

Before giving examples, we observe the connection between hr (z) and the in-
creasing enumeration of the set Div(z):

Lemma 2.15. Let z be a positive braid and r > 1. Then hr (z)− 1 is the number of
r-jumps in the increasing enumeration of (Div(z), <).

Proof. If the number of r -jumps in the increasing enumeration of Div(z) is Nr −1,
we can extract from Div(z) a <r -chain of length Nr . Conversely, assume that
(y0, . . . yNr ) is a <r -chain in Div(z). Let z0 < . . . < zN be the increasing enu-
meration of Div(z). As <r refines <, there exists an increasing function f of
{0, . . . , Nr } into {0, . . . , N } such that yi = z f (i) holds for every i . Now the hy-
pothesis z f (i) <r z f (i+1) implies that there exists at least one r -jump between z f (i)

and z f (i+1). Indeed, by Lemma 1.11, it is impossible that a concatenation of m-
jumps with m < r results in a r -jump. So the number of r -jumps in (z0, . . . , zN )

is at least Nr . �

In other words, to determine hr (z), there is no need to consider arbitrary chains:
it is enough to consider the maximal chain obtained by enumerating Div(z) ex-
haustively.

Example 2.16. Refining the increasing enumeration of Div(13) of Example 1.9
by indicating for each step the height of the corresponding jump, we obtain:

(2-3) 1 <1 a <2 b <1 ba <2 ab <1 13,
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where we recall a, b, . . . stand for σ1, σ2, . . . . For instance, (ba, ab) is a 2-jump,
because we have in (ba)−1(ab) = ABab = AabA = bA a σ -positive decomposition
with main generator σ2. The number of 1-jumps in (2-3), that is, the number of
symbols <r with r > 1, is 5, while the number of 2-jumps is 2, so, by Lemma 2.15,
we deduce h1(13) = 6 and h2(13) = 3. Similarly, we obtain for 12

3

1 <1 a <1 aa <2 b <1 ba <1 baa <2 bb <1 bba <2 ab <1 aba <1 abaa <2 abb

<1 abba <2 aab <1 aaba <1 aabaa <2 baab <1 baaba <1 baabaa,

leading to h1(1
2
3) = 19 and h2(1

2
3) = 7.

Proposition 2.17. (i) For every braid z in B+
n , we have

h1(z) = #Div(z) > h2(z) > · · · > hn(z) = 1.

(ii) For all positive braids z, z′ and r > 1, we have

(2-4) hr (zz′) > hr (z) + hr (z′).

Proof. (i) A <1-chain is simply a <-chain. Hence every subset of Div(z) gives
such a chain. So the maximal <1-chain in Div(z) is Div(z) itself, and h1(z) is the
cardinality of Div(z).

On the other hand, no <n-chain in B+
n has length more than 1, as the main

generator of a σ -positive n-strand braid word cannot be σn or any generator above
it. Thus hn(z) is 1.

Then, for q 6 r , every <r -chain is a <q -chain, which implies hr (z) > hq(z).
Point (ii) is obvious, as the concatenation of two <r -chains is a <r -chain. �

From (2-4) we deduce hr (zd)>d ·hr (z) for all r, z. By Lemma 1.5, every divisor
of 1d

n can be decomposed as the product of at most d divisors of 1n . There are n!

such divisors, so we obtain the (coarse) bounds

d · hr (1n) 6 hr (1
d
n) 6 (n!)d ,

for all r, n, d. Better estimates will be given below.

Remark 2.18. Instead of restricting to subsets of B∞ of the form Div(z), we can
define the complexity and the r -height for every (finite) set of braids X . Most of
the general results extend, but, when X is not closed under left division, nothing
can be said about the number of σr ’s involved in an r -jump. Considering such an
extension is not useful here.

2D. Connection with the complexity. We shall now connect the complexity c(z)
with the numbers hr (z) just defined. The result is simple:
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Proposition 2.19. For z a positive braid with main generator σm , we have

c(z) = hm(z) − 1.

In particular, for n > 2 and d > 0, we have

c(1d
n) = hn−1(1

d
n) − 1.

One inequality is easy:

Lemma 2.20. For z a positive braid with main generator σm , we have c(z) 6
hm(z) − 1.

Proof. The argument is reminiscent of the one used for Lemma 2.15 but requires
a little more care. Assume that w is a σ -positive word drawn in 0(z) from x
containing Nm occurrences of σm . By Lemma 2.9, we can assume x = 1 without
loss of generality. Let z0 < z1 < . . . < zN be the increasing enumeration of Div(z).
By definition, all prefixes of w represent divisors of z, so, letting ` be the length
of w, there exists a mapping f : {0, . . . , `} → {0, . . . , N } such that, for each k,
the length k prefix of w represents z f (k). By construction, we have f (0) = 0 and
f (`) = N .

The difference from Lemma 2.15 is that f need not be increasing. Now, let
p1, . . . , pNm be the Nm positions in w where the generator σm occurs, completed
with p0 = 0. Then, in the prefix of w of length p1, that is, in the subword of w

corresponding to positions from p0 + 1 to p1, there is one σm , plus letters σ±1
i

with i < m (Figure 3). This subword is therefore σ -positive. Hence we must have
z f (p0) < z f (p1), which requires f (p0)< f (p1). Moreover, the quotient z−1

f (p0)
z f (p1)

is a braid that admits at least one σ -positive expression containing σm , and hence
z f (p0) <m z f (p1). Now the same is true between f (p1) and f (p2), etc. Hence the
number of m-jumps in the increasing enumeration of Div(z) is at least Nm , that is,
we have hm(z) > Nm + 1. �

σ -positive
expression of z

increasing
enumeration of Div(z)z0 z1 z2 <m z3 z4 z5 <m z6 z7 z8

f (0) f (2) f (1) f (4) f (3) f (5)
f (7)

f (6)

Figure 3. Proof of Lemma 2.20. The main generator σm corre-
sponds to the bold arrow: the function f need not be increasing,
but the projection of a bold arrow upstairs must include at least
one bold arrow downstairs, that is, at least one m-jump.
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It remains to prove the second inequality in Proposition 2.19, that is, to prove
that, if z is a positive n-braid satisfying hm(z) = N +1, then z admits a σ -positive
expression containing N generators σm . The problem is as follows: if z is a positive
braid and x, y are left divisors of z satisfying x < y, then, by definition, the quotient
x−1 y admits some σ -positive expression w, but nothing a priori guarantees that w

be drawn in 0(z). In other words, we might have x < y but no σ -positive witness
for this inequality inside Div(z). It turns out this cannot happen, but the proof
requires a rather delicate argument.

Proposition 2.21. Let z be a positive braid. Then, for all x, y in Div(z), the
following are equivalent:

(i) The relation x < y holds, that is, there exists a σ -positive path from x to y in
the Cayley graph of B∞;

(ii) There exists a σ -positive path from x to y in the Cayley graph of Bn;

(iii) There exists a σ -positive path from x to y in 0(z).

Proof. Clearly (iii) implies (ii), which in turn implies (i). We shall prove that (i) im-
plies (iii) — and thus reprove that (i) implies (ii), which was first proved in [Larue
1994] — by using the handle reduction method of [Dehornoy 1997; Dehornoy et al.
2002]. The problem is to prove that, among all σ -positive paths connecting x to y
in the Cayley graph of B∞, at least one is drawn in 0(z).

Now, let u, v be positive words representing x and y. Then the word u−1v

represents x−1 y, and, by hypothesis, it is drawn in 0(z) from x . Handle reduction
transforms a braid word into equivalent words and eventually produces a σ -positive
word if it exists. It is proved in [Dehornoy 1997] that, for every n strand braid word
w, there exists a finite fragment 0w of the Cayley graph of B+

n and a vertex xw

of 0w such that w and all words obtained from w by handle reduction are drawn
from xw in 0w. Moreover, when w has the form u−1v with u, v positive, then all
vertices in 0w are the left divisors of the least common right multiple of the braids
represented by u and v, here x and y, while xw is the braid represented by u, that
is, x . As x and y are divisors of z, so is their least common right multiple, and the
graph 0w is included in 0(z). It follows that every word obtained from u−1v using
handle reduction is drawn from x in 0(z). The termination of handle reduction
guarantees that, among these words, at least one is σ -positive, so (iii) follows. �

A direct application of Proposition 2.21 is the existence of σ -positive quotient
sequences drawn in the Cayley graph. The definition is as follows:

Definition 2.22. Assume that z is a positive braid and X is a subset of Div(z).
Let x0 < . . . < xN be the increasing enumeration of X . We say that a sequence of
words Ew = (w1, . . . , wN ) is a quotient sequence for X if, for each k, the word wk

is an expression of x−1
k−1xk for each k. We say that Ew is σ -positive if every entry in
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Ew is σ -positive, and that Ew is drawn in 0(z) (from x0) if wk is drawn from xk−1

in 0(z) for each k.

Corollary 2.23. Assume that z is a positive braid. Then every subset of Div(z)
admits a σ -positive quotient sequence drawn in 0(z).

Example 2.24. (Figure 4) By computing the successive quotients in the increasing
enumeration of Div(12

3) given in Example 1.9, we easily find that

(a, a, AAb, a, a, AAb, a, AAb, a, a, bAA, a, bAA, a, a, bAA, a, a)

is a σ -positive quotient sequence for Div(12
3) drawn in 0(12

3). This sequence
turns out to be the unique sequence with the above properties, but this uniqueness
is specific to the case of 3-braids (see Figure 8 below).

We can now easily complete the proof of Proposition 2.19:

Proof of Proposition 2.19. Let (z0, . . . , zN ) be the <-increasing enumeration
of Div(z). By Corollary 2.23, there exists a σ -positive quotient sequence Ew for
Div(z) that is drawn in 0(z). Let w=w1 . . . wN . By construction, w is a σ -positive
word drawn in 0(z), and the number of occurrences of the main generator σm in w

is (at least) the number of m-jumps in (z0, . . . , zN ). So we have c(z) > hm(z)−1.
Invoking Lemma 2.20 completes the proof. �

Remark 2.25. Assume that Ew is a σ -positive quotient sequence for Div(z), and
σm is the main generator occurring in Ew. Then each word wi contains zero or one
letter σm . Indeed, if wi contained two σm’s or more, then the vertex reached after
the first σm ought to lie in the open <-interval determined by two successive entries
of Ez, and the latter is empty by construction since all elements of Div(z) occur in Ez.

1

12
3

Figure 4. The increasing enumeration of the divisors of 12
3,

and a σ -positive quotient sequence drawn in 0(12
3): the associ-

ated path visits every vertex, and is labeled aaAAbaaAAbabAAa
aAAbabAAaabAAaa; it crosses 6 σ2-edges (and no σ−1

2 ).
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3. A decomposition result for (Div(z), <)

In this section, we establish a structural result describing (Div(1d
n), <) as the

concatenation of c(1d
n) + 1 intervals isomorphic to subsets of (Div(1d

n−1), <).
We deduce an explicit formula connecting hr (1

d
n) with the number of braids in

Div(1d
n) whose d-th factor is right divisible by 1r , which in turn enables us to

finish computing c(1d
n) and hr (1

d
n) for small values of r , n and d .

3A. Br -classes. To analyze the linearly ordered sets (Div(1d
n), <), and, more

generally, (Div(z), <) for z a positive braid, we introduce convenient partitions.
As Br is a group for each r , it is clear that the relation x−1 y ∈ Br defines an
equivalence relation on (positive) braids, so we may put:

Definition 3.1. For r > 1 and x, y in B+
∞

, we say that x and y are Br -equivalent if
x−1 y belongs to Br .

By construction, Br -equivalence is compatible with multiplication on the left.
In the sequel, we consider the restriction of Br -equivalence to finite subsets of B+

∞

of the form Div(z), that is, we use Br -equivalence to partition Div(z) into subsets,
naturally called Br -classes.

Example 3.2. As B1 is trivial, B1-equivalence is equality, and so, therefore, the
B1-classes are singletons. On the other hand, any two elements of Bn are Br -
equivalent for each r > n, so, for z in B+

n , there is only one Br -class for r > n, and
the only interesting relations arise for 1 < r < n. For instance, Div(13) contains
three B2-classes, while Div(12

3) contains seven of them (Figure 5).

Saying that there is an r -jump between two braids x and y means that x−1 y is
σ -positive and does not belong to Br , so, for x < y, we have the equivalence

(3-1)
(
x, y are not Br -equivalent

)
⇐⇒

(
there is a r -jump between

between x and y

)
.

Figure 5. The B2-classes in Div(13) and Div(12
3).
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Lemma 3.3. Assume that z is a positive braid. Then, each Br -class in Div(z) is an
interval for < and there is an r-jump between each Br -class and the next one.

Proof. Assume x < y ∈ Div(z). By (3-1), if x and y are not Br -equivalent, there is
an r -jump between x and y and hence also between x and any element of Div(z)
above y. Thus no such element may be Br -equivalent to x . This implies that each
Br -class is an <-interval. �

Corollary 3.4. For each r > 1, the number of Br -classes in Div(z) is hr (z).

Proof. By (3-1), there is no r -jump between two elements of the same Br -class,
and there is one between two elements not in the same Br -class. Thus the number
of Br -classes is the number of r -jumps in the <-increasing enumeration of Div(z)
augmented by 1. Hence, by Lemma 2.15, it is hr (z). �

With Br -equivalence, we can partition (Div(z), <) into finitely many subinter-
vals. The interest of this partition is that we can describe Br -classes rather precisely
and, typically, connect them with subsets of Br . In particular, this will allow for
connecting the ordered sets (Div(1d

n), <) with the sets (Div(1d
n−1), <).

Proposition 3.5 (Figure 6). Assume z ∈ B+
∞

and r > 1. Let C be a Br -class in
Div(z), and let a, b be its <-extremal elements. Then a divides every element of
C on the left, and the left translation by a establishes an isomorphism between
(Div(a−1b), 4, <) and (C, 4, <). In particular, (C, 4) is a lattice.

Proof. By Lemma 3.3, C is the <-interval determined by a and b, that is, we have

C = {x ∈ Div(z); a < x < b}.

We know that Div(z) is a lattice with respect to left divisibility: any two elements
x, y of Div(z) admit a greatest common left divisor, here denoted gcd(x, y), and a
least common right multiple, denoted lcm(x, y). Firstly, we claim that C is a lattice
with respect to left divisibility, that is, the left gcd and the right lcm of two elements
of C lie in C . So assume x, y ∈ C . Let x0, y0 be defined by x = gcd(x, y)x0 and
y = gcd(x, y)y0. The hypothesis that x−1 y belongs to Br implies that there exist
x1, y1 in B+

r satisfying x−1 y = x−1
1 y1. By definition of the gcd, there must exist

a positive braid z1 satisfying x1 = z1x0 and y1 = z1 y0. Because z1 is positive,
x1 ∈ B+

r implies x0 ∈ B+
r , and hence gcd(x, y)∈ C . As for the lcm, the conjunction

of x = gcd(x, y)x0 and y = gcd(x, y)y0 implies

lcm(x, y) = gcd(x, y) lcm(x0, y0).

As x0, y0 ∈ B+
r implies lcm(x0, y0) ∈ B+

r , we deduce lcm(x, y) ∈ C .
As C is finite, it follows that C admits a global gcd. Because the linear or-

dering 6 extends the partial divisibility ordering 4, this global gcd must be the
<-minimum a of C . Symmetrically, C admits a global lcm, which must be the
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C

a

b

1

σr

σr

σr

z

Figure 6. Decomposition of (Div(z), <) into Br -classes: each
class C is a lattice with respect to divisibility; the increasing enu-
meration of Div(z) exhausts the first class, then jumps to the next
one by an r -jump, etc. The number of classes is hr (z).

<-maximum b. So, at this point, we know that a is a left divisor of every element
in C , and b is a right multiple of each such element, that is, we have

(3-2) C ⊆ {x ∈ B+

∞
; a 4 x 4 b}.

Moreover, a 4 x 4 b implies a 6 x 6 b. Hence x ∈ C , and so the inclusion in (3-2)
is an equality.

Now, put F(x) = ax for x in Div(a−1b). As B+
∞

is left cancellative, F is
injective. Moreover, for x a positive braid, x 4 a−1b is equivalent to ax 4 b, so
the image of F is {x ∈ B+

∞
; a 4 x 4 b} = C . Finally, by construction, F preserves

both 4 and <. �

For r = 1, each Br -class is a singleton, and Proposition 3.5 says nothing; sim-
ilarly, if the main generator of z is σm , there is only one Br -class for r > m, and
we gain no information. But, for 1 < r 6 m, and specially for r = m, Proposition
3.5 states that the chain Div(z) is obtained by concatenating hr (z) copies of sets
of the form Div(z′) with z′ of index at most r . In particular, for z = 1d

n , we have:

Corollary 3.6. For each n and r such that r < n, the chain (Div(1d
n), <) is ob-

tained by concatenating hr (1
d
n) intervals, each of which, when equipped with 4,

is a translated copy of some initial sublattice of (Div(1d
r ), 4).

The case of 12
3 and 14 are illustrated in Figure 7 and Figure 8.

3B. Extremal elements. The next step is to observe that extremal points in Br -
classes admit a simple characterization in terms of divisibility.

Proposition 3.7. Assume that z is a positive braid.

(i) An element x of Div(z) is the maximum of its Br -class if and only if the relation
xσi 4 z fails for 1 6 i < r .
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(ii) An element x of Div(z) is the minimum of its Br -class if and only if no σi with
1 6 i < r divides x on the right.

Proof. (i) The condition is necessary: if xσi lies in Div(z) for some i with i < r ,
then xσi lies in the same Br -class as x , and it is larger both for 4 and <, so x
cannot be maximal in its Br -class. Conversely, assume that x is not maximal in
its Br -class. Then there exists y satisfying x < y and y is Br -equivalent to x .
Now, by Proposition 3.5, the lcm of x and y is also Br -equivalent to x , which
means that there exists y1 in B+

r satisfying lcm(x, y) = xy1. Now x < y implies

1

2

3

4 5

67

9

10

11

1314

15 16

17

18

19

12

8

1
12

3

Figure 7. Decomposition of (Div(12
3), <) into B2-classes. The

increasing enumeration of (Div(12
3), <) is the concatenation of

the increasing enumeration of the successive classes, separated by
2-jumps (compare with Figure 4); in this case, B2-classes are sim-
ply chains with respect to divisibility.

2

5

3

4

6

13

5

20

5
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6

21

22
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1

7

1011

8 9

12

2

1415
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18

23

24

20

1

14

Figure 8. Decomposition of (Div(14), <) into B3-classes. The
σ3-arrows (thick) corresponding to 3-jumps are not unique; in this
case, all B3-classes are isomorphic to the lattice (Div(13), <,4),
that is, to the Cayley graph of 13.
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y1 6= 1, so there must exist i < m such that σi is a left divisor of y1. Then we have
xσi 4 xy1 4 z. Hence xσi 4 z.

(ii) The argument is symmetric. If x = yσi for some positive braid y and i < r , then
y belongs to the Br -class of x , and x cannot be minimal in its Br -class. Conversely,
assume that x is not minimal in its Br -class. Then there exists y satisfying y < x
and y is Br -equivalent to x . By Proposition 3.5 again, the gcd of x and y is also Br -
equivalent to x , which means that there exists y0 in B+

r satisfying gcd(x, y)y0 = x .
As y < x implies y0 6= 1, there must exist i < m such that σi is a right divisor of
y0 and hence of x . �

When we apply the previous criterion to the braids 1d
n , we obtain:

Proposition 3.8. For x in Div(1d
n) and 1 6 r 6 n, the following are equivalent.

(i) The element x is <-maximal in its Br -class.

(ii) The element xσi belongs to Div(1d
n) for no i < r .

(iii) The d-th factor of x is right divisible by 1r .

(iv) The (d + 1)-st factor of x1r is 1r .

Proof. The equivalence of (i) and (ii) is given by Proposition 3.7(i). It remains
to establish the equivalence of (ii)–(iv). For r = 1, (ii) is vacuously true, while
(iii) and (iv) always hold. So the expected equivalences are true. We henceforth
assume r > 2.

Let x belong to Div(1d
n), and let xd be the d-th factor in the normal form of

x . For i < n, saying that xσi does not belong to Div(1d
n) means that the normal

form of xσi has length d + 1. Hence, equivalently, that the normal form of xdσi

has length 2. This occurs if and only if σi is a right divisor of xd . So, for r 6 n,
(ii) is equivalent to xd being right divisible by all σi ’s with 1 6 i < r and hence to
xd being right divisible by the (left) lcm of these elements, which is 1r .

Finally, (iii) and (iv) are equivalent. Indeed, if the d-th factor xd in the normal
form of x is divisible by 1r on the right, then (xd , 1r ) is a normal sequence as
no σi with i < r from 1r may pass to xd . Hence (x1, . . . , xd , 1r ) is a normal
sequence and necessarily the normal form of x1r . Conversely, assume that the
normal form of x1r is (x1, . . . , xd , 1r ). The hypothesis that (xd , 1r ) is normal
implies that xd is divisible on the right by each σi with i < r . Hence is divisible
on the right by 1r . Now (x1, . . . , xd) is the normal form of x . �

Observe that, for r > 2, an element of Div(1d
n) that is <-maximal in its Br -class

cannot belong to Div(1d−1
n ), that is, it cannot have degree d − 1 or less because

the d-th factor of its normal form cannot be 1.
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Similar conditions characterize the minimal elements of the Br -classes. Because
the normal form has a privileged orientation, the results are not entirely symmetric
with those of Proposition 3.8

Proposition 3.9. For x in Div(1d
n) and 1 6 r 6 n, the following are equivalent.

(i) The element x is <-minimal in its Br -class.

(ii) No σi with i < r is a right divisor of x.

(iii) The degrees of x and x1r are equal.

Proof. The equivalence of (i) and (ii) is given by Proposition 3.7(ii), and everything
is obvious for r = 1. So it remains to establish the equivalence of (ii) and (iii) when
r > 2. Now, assume that (ii) holds and x has degree d . The hypothesis that σi is
not a right divisor of x implies that xσi is a divisor of 1d

n . As this holds for each
i < r , the lcm of xσ1, . . . , xσr−1, namely x1r , also divides 1d

n , which means that
x1r has degree (at most) d . So (ii) implies (iii).

Conversely, assume that σi divides x on the right. Then the degree of xσi is
strictly larger than that of x , and, a fortiori, the same is true for x1r . �

3C. Determination of hr(1
d
n). A direct application of the previous results is a

formula connecting the number hr (1
d
n) of Br -classes in Div(1d

n) with the number
of braids whose normal form ends with some specific factor.

Definition 3.10. For n, d > 1 and for s a simple n-braid, we denote by bn,d(s) the
number of positive braids of degree at most d, that is, of divisors of 1d

n , whose
d-th factor is s.

Proposition 3.11. For 1 6 r 6 n, we have

(3-3) hr (1
d
n) =

∑
s right divisible by 1r

bn,d(s) = bn,d+1(1r ).

In words, the number of r -jumps in (Div(1d
n), <) is the number of n-braids of

degree at most d whose d-th factor is right divisible by 1r .

Proof. By Corollary 3.4, hr (1
d
n) is the number of Br -classes in Div(1d

n). Each
class contains exactly one maximum element, and, by Proposition 3.8, its d-th
factor is right divisible by 1r . The first equality in (3-3) follows. The second one
follows from the equivalence of (iii) and (iv) in Proposition 3.8. �

For r = 1, as every simple braid is divisible by 1 on the right, Equation (3-3)
reduces to

h1(1
d
n) =

∑
s

bn,d(s) = bn,d+1(1),
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a special case of the relation h1(z) = #Div(z) of Proposition 2.17. For r = n, be-
cause the only normal sequence of length d that finishes with 1n is (1n, . . . ,1n),
Equation (3-3) reduces to

hn(1
d
n) = 1,

already noted in Proposition 2.17. Finally, for r = n − 1, we obtain using Propo-
sition 2.19:

Corollary 3.12. For n > 2, we have

c(1d
n) = hn−1(1

d
n) − 1 =

n∑
i=2

bn,d(σiσi+1 . . . σn−11n−1) = bn,d+1(1n−1) − 1.

Proof. The simple n-braids that are right divisible by 1n−1 are the braids of the
form σiσi+1 . . . σn−1 with 1 6 i 6 n. Indeed, it is clear that every such braid is
simple and right divisible by 1n−1. Conversely, the only possibility for z1n−1 to be
simple is that z moves the n-th strand to some position between 1 and n without in-
troducing any crossing between the remaining strands. Finally, σ1σ2 . . . σn−11n−1

is 1n , and, remembering that bn,d(1n) is 1, we obtain the first equality. �

3D. Computation of bn,d(s). By Lemma 1.4, normal sequences are characterized
by a local condition involving only pairs of consecutive elements. It follows that
the set of all normal sequences is a rational set, that is, it can be recognized by
a finite state automaton. Standard arguments then show that the numbers bn,d(s)
obey a linear recurrence. Building on this observation, seemingly first used for
braids in [Charney 1995], we can obtain explicit formulas for the parameters c(1d

n)

and hr (1
d
n) for small values of r , n, or d. We shall not go into details here but

refer to [Dehornoy 2007] where we established the formulas and, more generally,
investigated the rich combinatorics underlying the normal form of braids.

In the sequel, we write (M)x,y for the (x, y)-entry of a matrix M . The general
principle for computing the numbers bn,d(s) for some fixed n is as follows:

Lemma 3.13. For n >1, let Mn be the square matrix with entries indexed by simple
n-braids defined by

(Mn)s,t =

{
1 if (s, t) is normal,

0 otherwise.

Then, for every simple t and d > 1, we have bn,d(t) = ((1, 1, . . . , 1) Md−1
n )t .

The proof is an easy induction on d .

Example 3.14. The matrix M1 is (1), corresponding to b1,d(1) = 1. For n = 2,
using the enumeration (1, σ1) of simple 2-braids, we find M2 = ((1, 0), (1, 1)),
leading to b2,d(1) = d and b2,d(σ1) = 1, giving d + 1 braids of degree at most
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d . The first d are the braids σ e
1 with e < d in which the d-th factor is 1; the

last is σ d
1 , whose d-th factor is 12, that is, σ1. For n = 3, using the enumeration

(1, σ1, σ2, σ2σ1, σ1σ2, 13) of simple 3-braids, we obtain

M3 =



1 0 0 0 0 0
1 1 0 0 1 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1


,

from which we can deduce b3,3(1) = 19 or b3,4(σ1) = 15 using Lemma 3.13.

Using Proposition 3.11, we deduce:

Proposition 3.15. With Mn as in Lemma 3.13, we have for n > r > 1 and d > 1

c(1d
n) = ((1, 1, . . . , 1) Md

n )1n−1 − 1,

hr (1
d
n) = ((1, 1, . . . , 1) Md

n )1r .

Corollary 3.16. (i) For fixed n, r , the generating functions for the sequences
c(1d

n) and hr (1
d
n) are rational.

(ii) For fixed n, r , the numbers c(1d
n) and hr (1

d
n) admit expressions of the form

(3-4) P1(d)ρd
1 + · · · + Pk(d)ρd

k .

where ρ1, . . . , ρk are the nonzero eigenvalues of Mn and P1, . . . , Pk are poly-
nomials with deg(Pi ) of at most the multiplicity of ρi in Mn .

Because the matrix Mn is an n! × n! matrix, completing the computation is not
so easy, even for small values of n. Actually, it is shown in [Dehornoy 2007]
how to replace Mn with a smaller matrix Mn of size p(n) × p(n), where p(n)

is the number of partitions of n. The property is connected with classical results
of Solomon [1976] about the descents of permutations. With such methods, one
easily obtains the values listed in Table 1.

Using the reduced matrices

M3 =

1 0 0
4 2 0
1 1 1

 and M4 =


1 0 0 0 0
11 4 1 0 0
5 3 2 1 0
6 4 2 2 0
1 1 1 1 1

 ,

we obtain the following explicit form for (3-4) involving the nonzero eigenvalues
(1, 1, 2) of M3 and (1, 1, 3 ±

√
6) of M4:
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Proposition 3.17. Let ρ± = 3 ±
√

6. Then, for d > 1, we have

h1(1
d
3) = 8 · 2d

− 3d − 7,

h2(1
d
3) = c(1d

3) + 1 = 2 · 2d
− 1,

h1(1
d
4) =

∑
±

3
20

(32 ± 13
√

6)ρd
±

−
128
5

· 2d
+ 6d + 17,

h2(1
d
4) =

∑
±

1
20

(32 ± 13
√

6)ρd
±

−
16
5

· 2d
+ 1,

h3(1
d
4) = c(14

3) + 1 =

∑
±

1
20

(4 ±
√

6)ρd
±

+
8
5

· 2d
− 1.

These formulas show each parameter grows exponentially in d , with estimate
O(2d) for n = 3, and O((3 +

√
6)d) for n = 4. For practical purposes, it may be

more convenient to resort to recursive formulas, for instance,

h1(1
d
3) = 2h1(1

d−1
3 ) + 3d + 1,(3-5)

h1(1
d
4) = 6h1(1

d−1
4 ) − 3h1(1

d−2
4 ) + 32 · 2d

− 12d − 34,(3-6)

together with initial values h1(1
0
3) = h1(1

0
4) = 1, h1(1

1
4) = 24 (or h1(1

−1
4 ) = 0).

3E. Small values of d. Another approach is to keep d fixed and let n vary. Once
again, we only mention a few results, and refer the reader to [Dehornoy 2007] for
the proofs and additional comments. For d = 1, it is easy to determine all values:

Proposition 3.18 [Dehornoy 2007]. For n > r > 1, we have

hr (1n) =
n!

r !
.

For d = 2, it is easier to complete the computation for hn−r (1
2
n).

Proposition 3.19 [Dehornoy 2007]. For n > r > 1, we have

hn−r (1
2
n) = r ! (r + 1)n

+

r∑
i=1

Pi (n) in−r+i−1,

for some polynomial Pi of degree at most r − i + 1. The values for r = 1, 2 are

hn−1(1
2
n) = 2n

− 1,

hn−2(1
2
n) = 2 · 3n

− (n + 6) · 2n−1
+ 1.
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For hr (1
2
n) itself, no general formula is known. We mention the case of h1(1

2
n),

which follows from results of Carlitz et al. [1976]:

Proposition 3.20 [Dehornoy 2007]. The numbers h1(1
2
n) are determined by the

induction

h1(1
2
0) = 1, h1(1

2
n) =

n−1∑
i=0

(−1)n+i+1
(

n
i

)2

h1(1
2
i ).

Their double exponential generating function is, with J0(x) is the Bessel function,
∞∑

n=0

h1(1
2
n)

zn

n!2
=

( ∞∑
n=0

(−1)n zn

n!2

)−1

=
1

J0(
√

z)
.

Finally, for d =3, the computation can be completed at least in the case n−r =1:

Proposition 3.21 [Dehornoy 2007]. For n > 1, we have, with e = exp(1),

hn−1(1
3
n) =

n−1∑
i=0

n!

i !
= bn!ec − 1.

d 0 1 2 3 4 5 6

h1(1d
2 ) 1 2 3 4 5 6 7

h1(1d
3 ) 1 6 19 48 109 234 487

h2(1d
3 ) 1 3 7 15 31 63 127

h1(1d
4 ) 1 24 211 1,380 8,077 45,252 249,223

h2(1d
4 ) 1 12 83 492 2,765 15,240 83,399

h3(1d
4 ) 1 4 15 64 309 1,600 8,547

h1(1d
5 ) 1 120 3,651 79,140 1,548,701 29,375,460 551,997,751

h2(1d
5 ) 1 60 1,501 30,540 585,811 11,044,080 207,154,921

h3(1d
5 ) 1 20 311 5,260 94,881 1,755,360 32,741,851

h4(1d
5 ) 1 5 31 325 4,931 86,565 1,590,231

h1(1d
6 ) 1 720 90,921 7,952,040 634,472,921 49,477,263,360 3,836,712,177,121

h2(1d
6 ) 1 360 38,559 3,228,300 254,718,389 19,808,530,620 1,535,016,069,499

h3(1d
6 ) 1 120 8,727 649,260 49,654,757 3,831,626,580 296,361,570,667

h4(1d
6 ) 1 30 1,075 61,620 4,387,195 332,578,230 25,612,893,355

h5(1d
6 ) 1 6 63 1,956 116,423 8,448,606 643,888,543

Table 1. First values of hr (1
d
n) for 1 6 r < n — the value is 1

for r > n. For instance, the number h1(1
2
3) of 3-strand braids

of degree at most 2 is 19 (see Example 2.16), while the maximal
number c(14

4) of σ3’s in a σ -positive word drawn in 0(14
4) —

which is h3(1
4
4) − 1, according to Proposition 2.19 — is 308.
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Using Proposition 2.19, we deduce the following explicit values for c(1d
n), that

is, for the maximal number of occurrences of σn−1 in a σ -positive word drawn in
the Cayley graph of 1d

n :

c(1n) = n − 1, c(12
n) = 2n

− 2, c(13
n) =

n−1∑
i=0

n!

i !
− 1 = bn!ec − 2.

The formulas listed above show that a number of different induction schemes ap-
pear, suggesting that the combinatorics of normal sequences of braids is very rich.

4. A complete description of (Div(1d
3 ), <)

Our ultimate goal is a complete description of each chain (Div(1d
n), <). Typically,

this means that we are able to explicitly specify the increasing enumeration of its
elements. The goal remains generally out of reach, but we can show how the
process can be completed when n = 3. The counting formulas of Section 3 play
a key role in the construction, and, in particular, the Pascal’s triangle of Figure 9
connects directly with the 2d factor in the inductive formulas of Proposition 3.17.
As an application, we deduce a new proof of Property C and of the well-ordering
property and hence a complete reconstruction of the braid ordering when n = 3.

The general principle is to make the decomposition of Corollary 3.6 explicit.
The latter shows that, for all n and d , the chain (Div(1d

n), <) can be decomposed
into c(1d

n) subintervals each of which copies some fragment of (Div(1d
n−1), <).

Moreover, the approach of Section 3 suggests an induction on d as well. We are
led to seek a recursion for (Div(1d

n), <) in (Div(1d
n−1), <) and (Div(1d−1

n ), <);
here this means expressing (Div(1d

3), <) in (Div(1d
2), <) and (Div(1d−1

3 ), <).

4A. The braids θn, p. The subsequent construction will appeal to a double series
θn,p of braids, and we begin with a few preliminary properties.

Definition 4.1. For n > 2, let σn,1 and σ1,n denote the braid words σn−1σn−2 . . . σ1

and σ1σ2 . . . σn−1. For p > 0, we define θ̃n,p as (the braid represented by) the
length p prefix of the right-infinite word (σn,1σ1,n)

∞, and let θn,p be (the braid
represented by) the length p suffix of the left-infinite word ∞(σn,1σ1,n).

For instance, we find θ3,0 = 1, θ3,1 = b, θ3,2 = ab, . . . , θ3,4 = baab, . . . , θ3,7 =

aabbaab, etc. Similarly, we have θ4,6 = cbaabc and, more generally, θn,2n−2 =

θ̃n,2n−2 = σn,1σ1,n . Note that, as words, θn,p is the reverse of θ̃n,p.

Lemma 4.2. For n > 2 and p, q > 0 satisfying p + q = d(n − 1), we have

(4-1) θn,p 1d
n−1 θ̃n,q = 1d

n .
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Proof. We first prove using induction on d the relation

(4-2) θn,d(n−1) 1d
n−1 = 1d

n ,

that is, (4-1) with q = 0. For d = 0, (4-2) reduces to 1 = 1. Assume d > 1.
By definition, θn,d(n−1) is σn,1 θn,(d−1)(n−1) for d odd and is σ1,n θn,(d−1)(n−1) for d
even. In either case, we can write

θn,d(n−1) = φd−1
n (σ1,n) θn,(d−1)(n−1),

where we recall φn denotes the flip automorphism of Bn that exchanges σi and
σn−i . Using the induction hypothesis and (1-2), we find

θn,d(n−1) 1d
n−1 = φd−1

n (σ1,n) θn,(d−1)(n−1) 1d−1
n−1 1n−1

= φd−1
n (σ1,n) 1d−1

n 1n−1 = 1d−1
n σ1,n 1n−1 = 1d−1

n 1n = 1d
n .

We return to the general case of (4-1). For d even, we have θn,d(n−1) = θ̃n,d(n−1)

and hence θ̃n,q θn,p = θn,d(n−1). If d is odd, we have θn,d(n−1) = φn(θ̃n,d(n−1)),
which implies φn(θ̃n,q) θn,p = θn,d(n−1). So φd

n (θ̃n,q) θn,p = θn,d(n−1) holds in both
cases. Now, using (4-2), we find

φn(θ̃n,q) θn,p 1d
n−1 θ̃n,q = θn,d(n−1) 1d

n−1 θ̃n,q = 1d
n θ̃n,q = φn(θ̃n,q) 1d

n ,

from which we deduce (4-1) by cancelling φn(θ̃n,q) on the left. �

Lemma 4.3. For 1 6 i 6 n − 2 we have

(4-3) θn,d(n−1) σi = σi+e θn,d(n−1)

with e = 0 if d is even and e = 1 if d is odd.

Proof. For 1 6 i 6 n − 2, we have σ1,n σi = σi+1 σ1,n and σn,1 σi+1 = σi σn,1,
as an easy induction shows. This implies σn,1 σ1,n σi = σi σn,1 σ1,n and therefore
(σn,1 σ1,n)

d σi = σi (σn,1 σ1,n)
d , that is, θn,2d(n−1) σi = σi θn,2d(n−1) for every d . On

the other hand, we have θn,(2d+1)(n−1) = σ1,n θn,2d(n−1) and hence

θn,(2d+1)(n−1) σi = σ1,n σi θn,2d(n−1) = σi+1 σ1,n θn,2d(n−1) = σi+1 θn,(2d+1)(n−1),

as was expected. �

4B. A Pascal triangle. We shall now construct for every d a sequence of positive
braids Sd

3 that will be the increasing enumeration of (Div(1d
3), <). The construc-

tion relies on an induction similar to Pascal’s triangle. To make it easily under-
standable, we start with the (trivial) cases n = 1 and n = 2.

Because B1 is the trivial group, for every d , 1 is the only element of degree at
most d , and we can state:
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Proposition 4.4. Define Sd
1 for d > 0 by

Sd
1 = (1).

Then Sd
1 is the increasing enumeration of Div(1d

1).

The group B2 is the rank 1 free group generated by σ1. The braid 12 is just σ1,
and the braids of degree at most d, that is, the divisors of 1d

2 , consist of the d + 1
braids 1, σ1, . . . , σ

d
1 . On the other hand, we have σ1,2 = σ2,1 = σ1, and θ1,i = σ i

1
for every i .

Notation 4.5. If S1, S2 are sequences (of braids), we denote by S1+S2 the (ordered)
concatenation of S1 and S2. If S is a sequence of braids and x is a braid, we denote
by x S the translated sequence obtained by multiplying each entry in S by x on the
left.

In these terms, the sequence (1, σ1, . . . , σ
d
1 ) can be expressed as a sum of se-

quences θ2,0(1) + θ2,1(1) + · · · + θ2,d(1). Hence:

Proposition 4.6. Define Sd
2 for d > 0 by

(4-4) Sd
2 = θ2,0Sd

1 + θ2,1Sd
1 + · · · + θ2,d Sd

1 .

Then Sd
2 is the increasing enumeration of Div(1d

2).

We repeat the process for n = 3, introducing a sequence Sd
3 by a definition

similar to (4-4) that involves Sd
2 and Sd−1

3 . The result we shall prove is:

Proposition 4.7. Let Sd
3 be defined for d > 0 by

Sd
3 = θ3,0Sd

2 + Sd,1
3 + θ3,1Sd

2 + · · · + θ3,2d−1Sd
2 + Sd,2d

3 + θ3,2d Sd
2 ,(4-5)

where Sd,1
3 , · · · , Sd,2d

3 are defined by Sd,1
3 = Sd,2d

3 = ∅ and, for 2 6 p 6 2d − 1,

Sd,p
3 =


σ1(Sd−1,p−1

3 + θ3,p−1Sd−1
2 + Sd−1,p

3 ) for p = 0 (mod 4),

σ2σ1(Sd−1,p−2
3 + θ3,p−1Sd−1

2 + Sd−1,p−1
3 ) for p = 1 (mod 4),

σ2(Sd−1,p−1
3 + θ3,p−1Sd−1

2 + Sd−1,p
3 ) for p = 2 (mod 4),

σ1σ2(Sd−1,p−2
3 + θ3,p−1Sd−1

2 + Sd−1,p−1
3 ) for p = 3 (mod 4).

Then Sd
3 is the increasing enumeration of Div(1d

3).

The general scheme is illustrated in Figure 9. The sequence Sd
3 is constructed

by starting with 2d + 1 copies of Sd
2 translated by θ3,0, . . . , θ3,2d and inserting

(translated copies of) fragments of the previous sequence Sd−1
3 .

Example 4.8. The difference between the definition of Sd
3 in (4-5) and that of Sd

2 in
(4-4) is the insertion of the additional factors Sd,p

3 between the consecutive terms
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θ3,0S3
2 (S3,1

3 ) θ3,1S3
2 S3,2

3 θ3,2S3
2 S3,3

3 θ3,3S3
2 S3,4

3 θ3,4S3
2 S3,5

3 θ3,4S3
2 (S3,6

3 ) θ3,6S3
2︸ ︷︷ ︸

σ2· σ1σ2·↙ ↘

︸ ︷︷ ︸
σ1· σ2σ1·↙ ↘

︸ ︷︷ ︸
σ2· σ1σ2·↙ ↘

· · · · · · · · · · · · · · · · · ·

θ3,0S2
2 (S2,1

3 ) θ3,1S2
2 S2,2

3 θ3,2S2
2 S2,3

3 θ3,3S2
2 (S2,4

3 ) θ3,4S2
2︸ ︷︷ ︸

σ2· σ1σ2·↙ ↘

︸ ︷︷ ︸
σ1· σ2σ1·↙ ↘

θ3,0S1
2 (S1,1

3 ) θ3,1S1
2 (S1,2

3 ) θ3,2S1
2︸ ︷︷ ︸

σ2· σ1σ2·↙ ↘

θ3,0S0
2

Figure 9. The inductive construction of Sd
3 as a Pascal triangle:

the subsequence Sd,p
3 is obtained by translating and concatenating

the previous subsequences Sd−1,p−1
3 and Sd−1,p

3 , or Sd−1,p−2
3 and

Sd−1,p−1
3 , depending on the parity of p. The bracketed sequences

are empty; if we remove the subsequences θ3,q Sd
2 , we have the

Pascal triangle.

θ3,q Sd
2 . Because Sd,1

3 and Sd,2d
3 are empty, the difference occurs for d > 2 only.

The first values are:

S0
3 = θ3,0S0

2 = (1),

S1
3 = θ3,0S1

2 + S1,1
3 + θ3,1S1

2 + S1,2
3 + θ3,2

= (1, a) + ∅ + b(1, a) + ∅ + ab(1, a) = (1, a, b, ba, ab, aba),

S2
3 = θ3,0S2

2 + S2,1
3 + θ3,1S2

2 + S2,2
3 + θ3,2S2

2 + S2,3
3 + θ3,3S2

2 + S2,4
3 + θ3,4S2

2

= (1, a, aa) + ∅ + b(1, a, aa) + b(b, ba) + ab(1, a, aa)

+ ab(b, ba) + aab(1, a, aa) + ∅ + baab(1, a, aa)

= (1, a, aa, b, ba, baa, bb, bba, ab, aba, abaa, abb, abba, aab,

aaba, aabaa, baab, baaba, baabaa).

It is easy to check directly that the sequence Sd
3 provides the increasing enumeration

of Div(1d
3) for d = 0, 1, 2.

The proof of Proposition 4.7 will be split into several pieces, each of which is
established using an induction on the degree d .

Lemma 4.9. All entries in Sd
3 are divisors of 1d

3 .

Proof. The result is true for d = 0. Assume d > 1. By construction, each entry
in Sd

3 either is of the form θ3,qσ e
1 with 0 6 q 6 2d and 0 6 e 6 d or belongs to

some subsequence Sd,p
3 with 2 6 p 6 2d − 1. In the first case, θ3,qσ e

1 is a right
divisor of θ3,2dσ e

1 , which itself is a left divisor of θ3,2dσ d
1 . By Equation (4-1), the
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latter is 1d
3 . Hence each θ3,qσ e

1 is a divisor of 1d
3 . As for the entries coming

from some subsequence Sd,p
3 , by definition they are of the form xy with x one of

σ2, σ1σ2, σ1, σ2σ1 and y an entry in Sd−1
3 . Then x is a divisor of 13, while, by the

induction hypothesis, y is a divisor of 1d−1
3 . Thus xy is a divisor of 1d

3 . �

Lemma 4.10. The length of the sequence Sd
3 equals the cardinality of Div(1d

3).

Proof. Let `d denote the length of Sd
3 . Computing `d by recursion is not very

difficult but also unnecessary. Indeed, we saw in Section 3 that the cardinality
h1(1

d
3) of Div(1d

3) obeys the inductive rule (3-5). So it will be enough to check
that `d satisfies the relation

(4-6) `d = 2`d−1 + 3d + 1

and starts from the initial `1 = 6 (or `0 = 1). The latter point was checked in
Example 4.8.

Figure 9 shows that most entries in Sd−1
3 generate two entries in Sd

3 . More
precisely, each entry of Sd−1

3 not belonging to a factor of the form θ3,2q Sd−1
2 gen-

erates two entries in Sd
3 , and, conversely, each entry in Sd

3 not belonging to a factor
θ3,q Sd

2 comes from such an entry in Sd−1
3 . The d factors θ3,2q Sd−1

2 in Sd−1
3 each

have length d, and the 2d + 1 factors θ3,2q Sd
2 in Sd

3 each have length d + 1. So we
obtain

`d − (2d + 1)(d + 1) = 2(`d−1 − d2),

which gives Equation (4-6). �

At this point, we cannot (yet) conclude that each divisor of 1d
3 occurs exactly

once in Sd
3 , as there could be some repetitions.

4C. A quotient sequence for Sd
3 . Our next aim is to show that Sd

3 is <-increasing.
To this end, we shall explicitly determine the quotient of adjacent entries in Sd

3 ,
that is, we shall specify a quotient sequence for Sd

3 in the sense of Definition 2.22.
We begin by determining the first and the last entries of the sequence Sd,p

3 . For
S a nonempty sequence, we denote by (S)1 and (S)

∞
the first and last entry in S.

Lemma 4.11. For 1 < p < 2d , we have

(Sd,p
3 )1 = θ3,p−1 σ2 and (Sd,p

3 )
∞

σ2 = θ3,p σ d
1 .

Proof. The result is vacuously true for d =0, 1. Assume d >2 with p =0 (mod 4).
Using the definition, the induction hypothesis, and (4-3), we find

(Sd,p
3 )1 = σ1 (Sd−1,p−1

3 )1 = σ1 θ3,p−2 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ1 (Sd−1,p

3 )
∞

σ2 = σ1 θ3,p σ d−1
1 = θ3,p σ d

1 .
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Similarly, for p = 1 (mod 4), we have

(Sd,p
3 )1 = σ2σ1 (Sd−1,p−2

3 )1 = σ2σ1 θ3,p−3 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ2σ1 (Sd−1,p−1

3 )
∞

σ2 = σ2σ1 θ3,p−1 σ d−1
1 = σ2 θ3,p−1 σ d

1 = θ3,p σ d
1 .

Then, for p = 2 (mod 4), we have

(Sd,p
3 )1 = σ2 (Sd−1,p−1

3 )1 = σ2 θ3,p−2 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ2 (Sd−1,p

3 )
∞

σ2 = σ2 θ3,p σ d−1
1 = θ3,p σ d

1 .

Finally, for p = 3 (mod 4), we find

(Sd,p
3 )1 = σ1σ2 (Sd−1,p−2

3 )1 = σ1σ2 θ3,p−3 σ2 = θ3,p−1 σ2,

(Sd,p
3 )

∞
σ2 = σ1σ2 (Sd−1,p−1

3 )
∞

σ2 = σ1σ2 θ3,p−1 σ d−1
1 = σ1σ2σ1σ2 θ3,p−3 σ d−1

1

= σ1σ1σ2σ1 θ3,p−3 σ d−1
1 = σ1σ1σ2 θ3,p−3 σ d

1 = θ3,p σ d
1 . �

We shall now construct an explicit quotient sequence for Sd
3 , that is, a sequence

of braid words representing the quotients of the consecutive entries of Sd
3 . Before

doing it for Sd
3 , let us consider the (trivial) cases of Sd

1 and Sd
2 . As Sd

1 consists of
one single entry, it vacuously admits the empty sequence as a quotient sequence.
As for Sd

2 , we can state:

Lemma 4.12. For d > 0, let wd
1 be the empty sequence, and let wd

2 be defined by

wd
2 = wd

1 + (σ1) + wd
1 + · · · +wd

1 + (σ1) + wd
1 ,

d times (σ1). Then wd
2 is a quotient sequence for Sd

2 .

In a similar way, we shall prove:

Proposition 4.13. Let wd
3 be the sequence defined by w0

3 = ∅ and

(4-7) wd
3 = wd

2 + (σ−d
1 σ2) + wd

2 + (σ−d
1 σ2) + w

d,2
3 + (σ2σ

−d
1 )

+ wd
2 + (σ−d

1 σ2) + w
d,3
3 + (σ2σ

−d
1 ) + · · ·

+ wd
2 + (σ−d

1 σ2) + w
d,2d−1
3 + (σ2σ

−d
1 )

+ wd
2 + (σ2σ

−d
1 ) + wd

2 ,
with

w
d,2
3 = w

d,3
3 = wd−1

2 + (σ2σ
−d+1
1 ) + w

d−1,2
3 ,

w
d,2d−2
3 = w

d,2d−1
3 = w

d−1,2d−3
3 + (σ−d+1

1 σ2) + wd−1
2 ,

w
d,2p
3 = w

d,2p+1
3 = w

d−1,2p−1
3 + (σ−d+1

1 σ2) + wd−1
2 + (σ2σ

−d+1
1 ) + w

d−1,2p
3 ,

for 4 6 2p 6 2d − 4. Then wd
3 is a quotient sequence for Sd

3 .
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Example 4.14. We find w1
3 = w1

2 + (Ab)+w1
2 + (bA)+w1

2 = (a, Ab, a, bA, a), and

w2
3 = w2

2 + (AAb) + w2
2 + (AAb) + w

2,2
3 + (bAA)

+ w2
2 + (AAb) + w

2,3
3 + (bAA) + w2

2 + (bAA) + w2
2

with w
2,2
3 = w

2,3
3 = w1

2 = (a), whence

w2
3 = (a, a, AAb, a, a, AAb, a, bAA, a, a, AAb, a, bAA, a, a, bAA, a, a).

Proof of Proposition 4.13. We prove using induction on d that wd
3 is a quotient

sequence for Sd
3 with the 4d−2 terms in (4-7) corresponding to the 4d−1 nonempty

terms in (4-5). In particular, for 2 6 p 6 2d −1, the subsequence w
d,p
3 is a quotient

sequence for Sd,p
3 . The result is vacuously true for d = 0. Assume d > 1. By

definition, the sequence Sd
3 consists of the concatenation of the 2d + 1 sequences

θ3,0Sd
2 , · · · , θ3,2d Sd

2 , in which the 2d −2 sequences Sd,2
3 , . . . , Sd,2d−1

3 are inserted.
We shall consider these subsequences separately and then consider the transitions
between consecutive subsequences.

First, since wd
2 is a quotient sequence for Sd

2 , it is a quotient sequence for ev-
ery sequence θ3,q Sd

2 as well, because, by definition, the quotients we consider are
invariant under left translation. Then, by construction, each subsequence Sd,2p

3 or
Sd,2p+1

3 appearing in Sd
3 is obtained by translating some subsequence S of Sd−1

3 ,
namely

S = Sd−1,2p−1
3 + θ3,q−1Sd−1

2 + Sd−1,2p
3 .

By the induction hypothesis, the sequence

w
d−1,2p−1
3 + (σ−d+1

1 σ2) + wd−1
2 + (σ2σ

−d+1
1 ) + w

d−1,2p
3 ,

which by definition is precisely w
d,2p
3 and w

d,2p+1
3 , is a quotient sequence for S.

The property remains true in the special cases p = 1 and p = d , which correspond
respectively to removing the initial term Sd−1,2p−1

3 and the final term Sd−1,2p
3 . Then

w
d,2p
3 and w

d,2p+1
3 are also quotient sequences for any sequence obtained from S

by a left translation, and, in particular, for Sd,2p
3 and Sd,2p+1

3 .
It remains to study the transitions between the consecutive terms in the expres-

sion (4-5) of Sd
3 , that is, to compare the last entry in each term with the first entry

in the next term. Four cases are to be considered, namely the special cases of the
first two terms and of the final two terms, and the generic cases of the transitions
from θ3,q Sd

2 to Sd,p+1
3 and from Sd,p

3 to θ3,q Sd
2 .

As for the first two terms θ3,0Sd
2 = Sd

2 and θ3,1Sd
2 = σ2Sd

2 , the last entry in Sd
2

is σ d
1 , while the first entry in σ2Sd

2 is σ2, so σ−d
1 σ2 is a quotient. For the last two

terms θ3,2d−1Sd
2 and θ3,2d Sd

2 , the last entry in θ3,2d−1Sd
2 is θ3,2d−1 σ d

1 , while the
first entry in θ3,2d Sd

2 is θ3,2d . Now, by (4-1), we have θ3,2d−1 σ d
1 σ2 = θ3,2d σ d

1 , so
σ2σ

−d
1 expresses the quotient.
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Consider now the transition from θ3,q Sd
2 to Sd,q+1

3 . The last entry in θ3,q Sd
2 is

θ3,q σ d
1 , while, by Lemma 4.11, the first entry in Sd,q+1

3 is θ3,q σ2. Hence σ−d
1 σ2

represents the quotient. Finally, consider the transition from Sd,p
3 to θ3,q Sd

2 . By
Lemma 4.11 again, the last entry x in θ3,q Sd

2 satisfies x σ2 = θ3,q σ d
1 , while the first

entry in θ3,q Sd
2 is θ3,q . Hence σ2σ

−d
1 represents the quotient. �

Corollary 4.15. For each d the sequence Sd
3 is <-increasing; so, in particular, it

consists of pairwise distinct braids.

Proof. By definition, every word in wd
3 is σ -positive. Hence, by Property A, it does

not represent 1. �

As Sd
3 consists of pairwise distinct divisors of 1d

3 , Lemma 4.10 implies that
every divisor of 1d

3 occurs exactly once in Sd
3 . Then, as Sd

3 is <-increasing, it
must be the increasing enumeration of Div(1d

3), and the proof of Proposition 4.7
is complete.

Remark 4.16. Once we know that Sd
3 is the increasing enumeration of Div(1d

3)

and that wd
3 is a σ -positive quotient sequence for Sd

3 , we can count the 2-jumps in
Sd

3 and obtain the value of h2(1
d
3) directly. This amounts to forgetting about all

σ±1
1 in the construction of wd

3 , and it is then fairly obvious that there only remains
2d

− 2 times σ2.

4D. Larger values of n. The same construction can be developed for n = 4 and
beyond. The general scheme is to define Sd

4 using an inductive rule

Sd
4 = θ4,0Sd

3 + Sd,1
4 + θ4,1Sd

3 + · · · + θ4,3d−1Sd
3 + Sd,3d

4 + θ4,3d Sd
3 ,

where the intermediate factor Sd,p
4 is constructed by concatenating and translating

convenient fragments of Sd−1
4 . Owing to the inductive rule (3-6) satisfied by the

number of elements h1(1
d
4) of Div(1d

4), we can expect the generic entry of Sd−1
4 to

be repeated six times in Sd
4 , but with some entries from Sd−2

4 repeated three times
only. After completing the inductive definition of Sd

4 , showing that the sequence
is <-increasing and counting its entries should be easy. As we have no complete
description so far, we leave the question open here.

4E. A new construction for the linear ordering of B3. In pursuing the approach
described above, we were interested in connecting the Garside structure of Bn with
its linear ordering. In the process, we found something more: a new, independent
construction of the braid ordering, at least for B3, which is currently the only
completed case.

As recalled in the introduction, the existence of the linear ordering of braids
relies on two properties of braids, namely Property A and Property C. These prop-
erties have received a number of independent proofs [Dehornoy et al. 2002]. In
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particular, Property A has now a very short proof based on Dynnikov’s coordiniza-
tion for singular triangulations of a punctured disk [Dehornoy et al. 2002, Chapter
9]. As for Property C, no really simple proof exists so far. Even without the initial
argument involving self-distributive algebra, the remaining arguments—the com-
binatorial proofs based on handle reduction or on Burckel’s uniform tree approach,
or the geometric proofs based on standardization of curve diagrams—all require
some care. For now, it seems that the optimal proof of Property C is forthcoming.

Here is a direct application of our construction of the sequence Sd
3 :

Proposition 4.17. Property C holds for B3; that is, every nontrivial 3-braid admits
a σ -positive or a σ -negative expression.

New proof. We take as an hypothesis that Property A is true, so that the relation <

is a partial ordering, but we do not assume that < is linear. As every braid in B3

is the quotient of two positive braids in B+

3 , proving Property C for B3 amounts to
proving that, if x, y are arbitrary elements of B+

3 , then the quotient x−1 y admits a
σ -positive or a σ -negative expression.

Now the construction of Sd
3 is self-contained, as is that of wd

3 . Then, by con-
struction, every word in wd

3 is σ -positive. As any concatenation of σ -positive
words is σ -positive, it follows that, if x, y are any braids occurring in

⋃
d Sd

3 ,
then the quotient x−1 y admits a σ -positive or a σ -negative expression, according
to whether x occurs before or after y in Sd

3 . To conclude Property C is true, it
remains to check that each positive 3-braid occurs in

⋃
d Sd

3 . Because every entry
of Sd

3 belongs to Div(1d
3), this is equivalent to proving that each divisor of 1d

3
occurs in Sd

3 . Property A guarantees that the entries of Sd
3 are pairwise distinct

(Corollary 4.15), so it suffices to compare the length of Sd
3 with the cardinality of

Div(1d
3), and this is what we made in Lemma 4.10. �

The construction of Sd
3 gives more. The approach developed by S. Burckel

[1997] introduces a convenient notion of normal braid words such that every posi-
tive braid admits exactly one normal expression. For 3-strand braids, the definition
is as follows. Every positive 3-strand braid word w can be written as an alternating
product of blocks σ e

1 and σ e
2 . Then we define the code of w to be the sequence of

the sizes of these blocks. To avoid ambiguity, we consider the last block to be a
block of σ1’s, that is, we decide that the code of σ1 is (1), while the code of σ2 is
(1, 0). For instance, the code of σ 2

2 σ 3
1 σ 5

2 is (2, 3, 5, 0).

Definition 4.18. A positive 3 strand braid word w is said to be normal in the sense
of Burckel if its code has the form (e1, . . . , e`) with ek > 2 for 2 6 k 6 ` − 2.

Burckel [1997] shows that every positive 3-braid admits a unique normal ex-
pression and, moreover, that x < y holds if and only if the normal form of x
is ShortLex-smaller than the normal form of y, where ShortLex refers to the
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variant of the lexicographic ordering of sequences in which the length is given
priority: (e1, . . . , e`) <ShortLex (e′

1, . . . , e′

`′) always holds for ` < `′ and, when
` = `′, it holds when (e1, . . . , e`) is lexicographically smaller than (e′

1, . . . , e′

`′).
Burckel’s method defines an iterative reduction process on nonnormal braid words.
Our current approach provides for a simpler method. First, a direct inspection
shows:

Lemma 4.19. Let Sd
3 be the sequence of braid words defined by the inductive rule

(4-5). Then Sd
3 consists of words that are normal in the sense of Burckel.

Then, by construction, every braid in Sd
3 is represented by a word of Sd

3 . As
every positive 3-braid occurs in

⋃
Sd

3 , we immediately deduce:

Proposition 4.20. Every positive 3-braid admits an expression that is normal in
the sense of Burckel.

This in turn enables us to obtain a simple proof for the following deep, and so
far not very well understood, result due to Laver [1996] and to Burckel [1997] for
the ordinal type:

Corollary 4.21. The restriction of < to B+

3 is a well-ordering of ordinal type ωω.

Proof. The ShortLex ordering of sequences of nonnegative integers is a well-
ordering of ordinal type ωω, so its restriction to codes of normal words in the
sense of Burckel is a well-ordering as well. The type of the latter cannot be less
than ωω, as one can easily exhibit an increasing sequence of length ωω. �

Burckel’s approach extends to all braid monoids B+
n . Burckel introduces a

convenient notion of a normal word, but the associated reduction process is very
intricate. Hopefully, the above approach will provide a much simpler approach
to completing the construction of the sequences Sd

4 and, more generally, Sd
n . In

particular, once the correct definition is given, all subsequent proofs should reduce
to easy inductions.

Acknowledgement

The author thanks the PJM production editors, Matt Cargo and Silvio Levy, for
their suggestions.

References

[Birman 1974] J. S. Birman, Braids, links, and mapping class groups, Princeton University Press,
Princeton, N.J., 1974. Annals of Mathematics Studies, No. 82. MR 51 #11477

[Burckel 1997] S. Burckel, “The wellordering on positive braids”, J. Pure Appl. Algebra 120:1
(1997), 1–17. MR 98h:20062 Zbl 0958.20032

[Burckel 1999] S. Burckel, “Computation of the ordinal of braids”, Order 16:3 (1999), 291–304.
MR 2001i:20075 Zbl 0980.20026

http://www.ams.org/mathscinet-getitem?mr=51:11477
http://dx.doi.org/10.1016/S0022-4049(96)00072-2
http://www.ams.org/mathscinet-getitem?mr=98h:20062
http://www.emis.de/cgi-bin/MATH-item?0958.20032
http://dx.doi.org/10.1023/A:1006476629234
http://www.ams.org/mathscinet-getitem?mr=2001i:20075
http://www.emis.de/cgi-bin/MATH-item?0980.20026


STILL ANOTHER APPROACH TO THE BRAID ORDERING 175

[Burckel 2001] S. Burckel, “Syntactical methods for braids of three strands”, J. Symbolic Comput.
31:5 (2001), 557–564. MR 2002b:20051 Zbl 0990.20022

[Carlitz et al. 1976] L. Carlitz, R. Scoville, and T. Vaughan, “Enumeration of pairs of permutations”,
Discrete Math. 14:3 (1976), 215–239. MR 53 #156 Zbl 0322.05008

[Charney 1995] R. Charney, “Geodesic automation and growth functions for Artin groups of finite
type”, Math. Ann. 301:2 (1995), 307–324. MR 95k:20055 Zbl 0813.20042

[Dehornoy 1994] P. Dehornoy, “Braid groups and left distributive operations”, Trans. Amer. Math.
Soc. 345:1 (1994), 115–150. MR 95a:08003 Zbl 0837.20048

[Dehornoy 1997] P. Dehornoy, “A fast method for comparing braids”, Adv. Math. 125:2 (1997),
200–235. MR 98b:20060 Zbl 0882.20021

[Dehornoy 1999] P. Dehornoy, “Strange questions about braids”, J. Knot Theory Ramifications 8:5
(1999), 589–620. MR 2000d:20052 Zbl 0933.20024

[Dehornoy 2002] P. Dehornoy, “Groupes de Garside”, Ann. Sci. École Norm. Sup. (4) 35:2 (2002),
267–306. MR 2003f:20068 Zbl 1017.20031

[Dehornoy 2007] P. Dehornoy, “Combinatorics of normal sequences of braids”, J. Combin. Theory
Ser. A 114:3 (2007), 389–409. MR MR2310741 Zbl 1116.05006

[Dehornoy et al. 2002] P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest, Why are braids order-
able?, Panoramas et Synthèses 14, Société Mathématique de France, Paris, 2002. MR 2004e:20062
Zbl 1048.20021

[El-Rifai and Morton 1994] E. A. El-Rifai and H. R. Morton, “Algorithms for positive braids”,
Quart. J. Math. Oxford Ser. (2) 45:180 (1994), 479–497. MR 96b:20052 Zbl 0839.20051

[Epstein et al. 1992] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson,
and W. P. Thurston, Word processing in groups, Jones and Bartlett, Boston, 1992. MR 93i:20036
Zbl 0764.20017

[Garside 1969] F. A. Garside, “The braid group and other groups”, Quart. J. Math. Oxford Ser. (2)

20 (1969), 235–254. MR 40 #2051 Zbl 0194.03303
[Larue 1994] D. Larue, Left-distributive and left-distributive idempotent algebras, Ph.D. thesis, Uni-

versity of Colorado, Boulder, 1994.
[Laver 1996] R. Laver, “Braid group actions on left distributive structures, and well orderings in the

braid groups”, J. Pure Appl. Algebra 108:1 (1996), 81–98. MR 97e:20061 Zbl 0859.20029
[McCammond 2005] J. McCammond, “An introduction to Garside structures”, Preprint, 2005, Avail-

able at http://www.math.ucsb.edu/~mccammon/papers/intro-garside.pdf.
[Solomon 1976] L. Solomon, “A Mackey formula in the group ring of a Coxeter group”, J. Algebra

41:2 (1976), 255–264. MR 56 #3104 Zbl 0355.20007

Received April 6, 2006.

PATRICK DEHORNOY
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