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In this paper, we study a lower bound estimate of the first positive eigenvalue
of the sublaplacian on a three-dimensional pseudohermitian manifold. S.-Y.
Li and H.-S. Luk derived the lower bound estimate under certain conditions
for curvature tensors bounded below by a positive constant. By using the
Li–Yau gradient estimate, we are able to get an effective lower bound esti-
mate under a general curvature condition. The key is the discovery of a new
CR version of the Bochner formula which involves the CR Paneitz operator.

1. Introduction

Let M be a closed 3-manifold with an oriented contact structure ξ . There always
exists a global contact form θ obtained by patching together local ones with a
partition of unity. The characteristic vector field of θ is the unique vector field T
such that θ(T )= 1 and LT θ = 0 or dθ(T, · )= 0. A CR structure compatible with
ξ is a smooth endomorphism J : ξ→ξ such that J 2

= −Id. A pseudohermitian
structure compatible with ξ is a CR-structure J compatible with ξ together with a
global contact form θ . The CR structure J can extend to C ⊗ ξ and decomposes
C ⊗ ξ into the direct sum of T1,0 and T0,1, which are eigenspaces of J with respect
to i and −i , respectively.

Let {T, Z1, Z 1̄} be a frame of T M⊗C, where T is the characteristic vector field,
Z1 is any local frame of T1,0, and Z 1̄ = Z1 ∈ T0,1. Then {θ, θ1, θ 1̄

}, the coframe
dual to {T, Z1, Z 1̄}, satisfies

dθ = ih11̄ θ
1
∧ θ 1̄,

for some positive function h11̄. Actually we can always choose Z1 such that h11̄ =

1; hence, throughout this paper, we assume h11̄ = 1.
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The Levi form 〈 , 〉Lθ is the Hermitian form on T1,0 defined by

〈Z ,W 〉Lθ = −i
〈
dθ, Z ∧ W

〉
.

We can extend 〈 , 〉Lθ to T0,1 by defining
〈
Z ,W

〉
Lθ

=〈Z ,W 〉Lθ for all Z ,W ∈ T1,0.
The Levi form induces naturally a Hermitian form on the dual bundle 〈 , 〉L∗

θ
of T1,0

and hence on all the induced tensor bundles. Integrating the Hermitian form (when
acting on sections) over M with respect to the volume form dV = θ ∧ dθ , we get
an inner product on the space of sections of each tensor bundle. We denote the
inner product by 〈 , 〉. For example,

〈ϕ,ψ〉 =

∫
M
ϕψ̄ dV,

for functions ϕ and ψ .
The pseudohermitian connection of (J, θ) is the connection ∇ on T M ⊗C (and

extended to tensors) given in terms of a local frame Z1 ∈ T1,0 by

∇Z1 = θ1
1
⊗ Z1, ∇Z 1̄ = θ1̄

1̄
⊗ Z 1̄, ∇T = 0,

where θ1
1 is the 1-form uniquely determined by

dθ1
= θ1

∧ θ1
1
+ θ ∧ τ 1,

τ 1
≡ 0 mod θ 1̄,

0 = θ1
1
+ θ1̄

1̄,

where τ 1 is the pseudohermitian torsion. Put τ 1
= A1

1̄ θ
1̄. The structure equation

for the pseudohermitian connection is

dθ1
1
= Rθ1

∧ θ 1̄
+ 2i Im(A1̄

1,1̄ θ
1
∧ θ),

where R is the Tanaka–Webster curvature.
We will denote components of covariant derivatives with indices preceded by

comma; thus we write A1̄
1,1̄ θ

1
∧ θ . The indices {0, 1, 1̄} indicate derivatives with

respect to {T, Z1, Z 1̄}. For derivatives of a scalar function, we will often omit
the comma, for instance, ϕ1 = Z1ϕ, ϕ11̄ = Z 1̄ Z1ϕ − θ1

1 (Z 1̄)Z1ϕ, ϕ0 = Tϕ for a
(smooth) function.

For a real function ϕ, the subgradient ∇b is defined by ∇bϕ∈ξ , and 〈Z ,∇bϕ〉Lθ =

dϕ(Z) for all vector fields Z tangent to contact plane. Locally, ∇bϕ=ϕ1̄ Z1+ϕ1 Z 1̄.
We can use the connection to define the subhessian as the complex linear map

(∇H )2ϕ : T1,0 ⊕ T0,1 → T1,0 ⊕ T0,1,

and
(∇H )2ϕ(Z)= ∇Z∇bϕ.
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The sublaplacian 1b is defined as −1 times the trace of the subhessian, that is,
1bϕ = − Tr

(
(∇H )2ϕ

)
= −(ϕ11̄ +ϕ1̄1). For all Z = x1 Z1 ∈ T1,0, define

Ric(Z , Z)= Rx1x 1̄
= R|Z |

2
Lθ ,

Tor(Z , Z)= 2< i A1̄1̄ x 1̄x 1̄.

Greenleaf [1985] proved the lower bound (n/n+1)k0 of the first positive eigen-
value λ1 of the sublaplacian for a pseudohermitian manifold M2n+1 with n ≥ 3
under a condition on the Webster curvature and the torsion. Li and Luk [2004]
proved the same result for n = 1 and n = 2. However, for n = 1, they needed a
condition depending not only on the Webster curvature and the torsion, but also on
a covariant derivative of the torsion.

The same result was proved in [Chiu 2006] under a more geometric condition
which involved the positivity of the CR Paneitz operator P0 (see Section 2 for a
definition) with respect to (J, θ).

Proposition 1.1 [Chiu 2006]. Let (M, J, θ) be a closed three-dimensional pseu-
dohermitian manifold with nonnegative Paneitz operator P0. Suppose that

Ricm(Z , Z)− Torm(Z , Z)≥ k0 〈Z , Z〉Lθ ,

for all m ∈ M , Z ∈ T1,0, and for some positive constant k0. Let λ1 be the first
positive eigenvalue of 1b. Then

λ1 ≥
k0

2
> 0.

Let (S3, J, θ) be a 3-sphere with the induced CR structure from C2 and the
standard contact form θ . One can show that [Chang et al. 2005; Chiu 2006]

λ1 =
k0

2
.

Here k0 is the positive, constant Webster curvature of S3. Thus we get a sharp
estimate of λ1 on the standard sphere (S3, J, θ).

Conjecture 1.2. Let (M, J, θ) be a closed three-dimensional pseudohermitian
manifold. Suppose that

λ1 =
k0

2
.

We conjecture that (M, J, θ) is the standard CR 3-sphere due to the theorems of
Lichnérowicz [1958] and Obata [1962] in the Riemannian case. In fact, here we
have (see the proof of Theorem 1.5)

(i) Ricm(Z , Z)− Torm(Z , Z)= k0 〈Z , Z〉Lθ ,

(ii) ker (1b − λ1 I )⊂ ker P0,
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(iii) ϕ11 = 0 for ϕ ∈ ker (1b − λ1 I ).

In this paper, we will try to place a good lower bound on the first positive eigen-
value when the curvature satisfies

Ricm(Z , Z)− Torm(Z , Z)≥ −k0 〈Z , Z〉Lθ

for some nonnegative constant k0.

Definition 1.3. On a closed pseudohermitian 3-manifold (M, J, θ), we call the
Paneitz operator P0 with respect to (J, θ) essentially positive if there exists a con-
stant 3 > 0 such that ∫

M
Pϕ ·ϕ dµ≥3

∫
M
ϕ2 dµ

for all real C∞ smooth functions ϕ ∈ (ker P0)
⊥ (that is, those perpendicular to the

kernel of P0 in the L2 norm with respect to the volume form dµ = θ ∧ dθ).

Remark 1.4. The essential positivity of P0 is a CR invariant in the sense that it is
independent of the choice of the contact form θ . Actually, if θ̃ = e2λθ is another
contact form, then we have dṼ = θ̃ ∧ d θ̃ = e4λθ ∧ dθ and the transformation
law P̃0 = e−4λP0 of the CR Paneitz operator [Hirachi 1993]. Therefore, we have∫

P̃0ϕ ·φ dṼ =
∫

P0ϕ ·φ dV .

Firstly, by using the same method as in [Chiu 2006], we are able to prove:

Theorem 1.5. Let (M, J, θ) be a closed three-dimensional pseudohermitian man-
ifold with essentially positive Paneitz operator P0. Suppose:

(i) For some nonnegative constant k0,

Ricm(Z , Z)− Torm(Z , Z)≥ −k0 〈Z , Z〉Lθ .

(ii) ker (1b − λ1 I )∩ (ker P0)
⊥

6= ∅.

Then

λ1 ≥

−k0 +

√
k2

0 + 63

4
> 0.

However if the torsion is zero, then the corresponding Paneitz operator is essen-
tially positive [Chang et al. 2005]. Therefore,

Corollary 1.6. Let (M, J, θ) be a closed three-dimensional pseudohermitian man-
ifold. Suppose:

(i) For some nonnegative constant k0,

R ≥ −k0 and A11 = 0.

(ii) ker (1b − λ1 I )∩ (ker P0)
⊥

6= φ.



FIRST EIGENVALUE OF A SUBLAPLACIAN 273

Then

λ1 ≥

−k0 +

√
k2

0 + 63

4
> 0.

Definition 1.7. We say that (M, J ) has a transversal symmetry if M admits a
one-parameter group of CR automorphisms transverse to the holomorphic tangent
bundle.

For example, (M, J, θ) has a transversal symmetry if A11 = 0. For details, we
refer to [Graham and Lee 1988] and [Hirachi 1993].

Definition 1.8. A piecewise smooth curve γ : [0, 1] → M is said to be horizontal
if γ ′(t) ∈ ξ whenever γ ′(t) exists. The length of γ is then defined by

l(γ )=

∫ 1

0
dt
√

〈γ ′(t), γ ′(t)〉Lθ .

The Carnot–Carathéodory distance between two points p, q ∈ M is

d(p, q)= inf
{
l(γ )| γ ∈ C p,q

}
,

where C p,q is the set of all horizontal curves joining p and q. By the Chow con-
nectivity theorem [1939], there always exists a horizontal curve joining p and q,
so the distance is finite. The diameter d is defined by

d = sup {d(p, q)| p, q ∈ M} .

Note that there is a minimizing geodesic joining p and q so that its length is equal
to the distance d(p, q).

Next, by using the Li–Yau gradient estimates [Yau 1975; Li and Yau 1980], we
have:

Theorem 1.9. Let (M, J, θ) be a closed three-dimensional pseudohermitian man-
ifold that has a transversal symmetry. Suppose:

(i) For some nonnegative constant k0,

Ricm(Z , Z)− Torm(Z , Z)≥ −k0 〈Z , Z〉Lθ .

(ii) ker (1b − λ1 I )∩ ker P0 6= φ.

Then

λ1 ≥

(
1 +

√
1 + 2(k0 + τ0)d2

)
6d2 e−

(
1+

√
1+2(k0+τ0)d2

)
.

Here τ0 = max |A11| and d is the diameter of M.

Corollary 1.10. Let (M, J, θ) be a closed three-dimensional pseudohermitian
manifold. Suppose:
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(i) For some nonnegative constant k0,

R ≥ −k0 and A11 = 0.

(ii) ker (1b − λ1 I )∩ ker P0 6= φ.

Then

λ1 ≥

(
1 +

√
1 + 2k0d2

)
6d2 e−

(
1+

√
1+2k0d2

)
.

Combining Theorem 1.5 and Theorem 1.9, we can prove:

Theorem 1.11. Let (M, J, θ) be a closed three-dimensional pseudohermitian man-
ifold which has a transversal symmetry. Suppose:

(i) For some nonnegative constant k0,

Ricm(Z , Z)− Torm(Z , Z)≥ −k0 〈Z , Z〉Lθ .

(1) 1b ker P0 ⊂ ker P0.

Then

λ1 ≥ max


(

1 +

√
1 + 2(k0 + τ0)d2

)
6d2 e−

(
1+

√
1+2(k0+τ0)d2

)
;

−k0 +

√
k2

0 + 63

4

 .
Here τ0 = max |A11| and d is the diameter of M.

In particular, if A11 = 0, then (M, J, θ) has a transversal symmetry and we
also have 1b ker P0 ⊂ ker P0. Therefore, as a consequence of Theorem 1.5 and
Theorem 1.11,

Corollary 1.12. Let (M, J, θ) be a closed three-dimensional pseudohermitian
manifold with A11 = 0. Suppose

R ≥ −k0,

for some nonnegative constant k0. Then

λ1 ≥ max


(

1 +

√
1 + 2k0d2

)
6d2 e−

(
1+

√
1+2k0d2

)
;

−k0 +

√
k2

0 + 63

4

 .
That is, there is a positive constant C(k0, d,3) such that

λ1 ≥ C(k0, d,3).
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We briefly describe the methods used in our proofs. In Section 2, we first derive
the CR version of Bochner formula which involves the CR Paneitz operator. This
formula, involving a term that has no analogue in the Riemannian case, is hard to
control. A key step is that we relate this extra term to a third-order operator P that
characterizes CR-pluriharmonic functions [Lee 1988]. After integrating by parts,
we get the CR Paneitz operator.

Section 3 contains the second crucial step. By using the Li–Yau gradient esti-
mate [Yau 1975; Li and Yau 1980], we are able to prove the main Theorem 1.11.

2. The Bochner formula and CR Paneitz operator

We define an operator through

Pϕ = (ϕ1̄
1̄

1 + i A11ϕ
1)θ1

= Pϕ = (P1ϕ)θ
1,

which characterizes the CR-pluriharmonic functions. Here P1ϕ = ϕ1̄
1̄

1 + i A11ϕ
1,

and Pϕ = (P1)θ
1̄ is the conjugate of P . Now define δb as the divergence operator

that takes (1, 0)-forms to functions by δb(σ1θ
1) = σ1,

1, and similarly define δ̄b

through δ̄b(σ1̄θ
1̄)= σ1̄,

1̄. The CR Paneitz operator P0 is then defined through

P0ϕ = 4
(
δb(Pϕ)+ δb(Pϕ)

)
.

We observe that

(1)
∫

〈Pϕ+ Pϕ, dbϕ〉L∗

θ
dV = −

1
4

∫
P0ϕ ·ϕ dV .

One can check that P0 is self-adjoint, that is, 〈P0ϕ,ψ〉=〈ϕ, P0ψ〉 for all smooth
functions ϕ andψ . For more details about these operators, read [Lee 1988; Graham
and Lee 1988; Hirachi 1993; Gover and Graham 2003; Fefferman and Hirachi
2003].

We first derive the following new CR version of the Bochner formula:

Lemma 2.1. For a real function ϕ,

1
2
1b|∇bϕ|

2
= − |(∇H )2ϕ|

2
+ 3〈∇bϕ,∇b1bϕ〉Lθ

− (2 Ric −3 Tor)((∇bϕ)C, (∇bϕ)C)

+ 4〈Pϕ+ Pϕ, dbϕ〉L∗

θ
.

Here (∇bϕ)C = ϕ1̄ Z1 is the corresponding complex (1, 0)-vector field of ∇bϕ and
dbϕ = ϕ1θ

1
+ϕ1θ

1.
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Proof. From [Greenleaf 1985], we have for a real function ϕ

(2) 1b|∇bϕ|
2
= − 2|(∇H )2ϕ|

2
+ 2〈∇bϕ,∇b1bϕ〉Lθ

− (4 Ric +2 Tor)((∇bϕ)C, (∇bϕ)C)− 4〈J∇bϕ,∇bϕ0〉Lθ .

Lemma 2.1 follows from this and

(3) 〈J∇bϕ,∇bϕ0〉Lθ = − 〈∇bϕ,∇b1bϕ〉Lθ

−2 Tor((∇bϕ)C, (∇bϕ)C)− 2〈Pϕ+ Pϕ, dbϕ〉L∗

θ
,

which we next prove. The commutation relation iϕ0 = ϕ11̄ −ϕ1̄1 [Lee 1988] gives
ϕ11̄1 −ϕ1̄11 = iϕ01. Thus

(4) 〈J∇bϕ,∇bϕ0〉Lθ = i(ϕ1̄ϕ01 −ϕ1ϕ01̄)

= ϕ1̄(ϕ11̄1 −ϕ1̄11)+ϕ1(ϕ1̄11̄ −ϕ11̄1̄).

On the other hand,

(5) 〈∇bϕ,∇b1bϕ〉Lθ = ϕ1̄(1bϕ)1 +ϕ1(1bϕ)1̄

= −ϕ1̄(ϕ11̄1 +ϕ1̄11)−ϕ1(ϕ1̄11̄ +ϕ11̄1̄).

It follows from (4) and (5) that

〈J∇bϕ,∇bϕ0〉Lθ + 〈∇bϕ,∇b1bϕ〉Lθ = − 2ϕ1̄ϕ1̄11 − 2ϕ1ϕ11̄1̄

= − 2ϕ1̄
(
P1ϕ− i A11ϕ1̄

)
− 2ϕ1

(
P1ϕ+ i A1̄1̄ϕ1

)
= − 2 Tor((∇bϕ)C, (∇bϕ)C)− 2〈Pϕ+ Pϕ, dbϕ〉L∗

θ
. �

Proof of Theorem 1.5. Let ϕ ∈ (ker P0)
⊥ be an eigenfunction of 1b having the first

positive eigenvalue λ1. By definition,

(6)
∫

M
ϕP0ϕdV ≥3

∫
M
ϕ2dV .

By integrating (2), (3) and using (1), we have

(7)
∫

|(∇H )2ϕ|
2
LθdV =

∫
(1bϕ)

2dV + 2
∫
ϕ2

0 dV

−

∫
(2 Ric + Tor)((∇bϕ)C, (∇bϕ)C)dV,

and

(8)
∫
ϕ2

0dV =

∫
(1bϕ)

2dV + 2
∫

Tor((∇bϕ)C, (∇bϕ)C)dV −
1
2

∫
P0ϕ ·ϕdV .

On the other hand, it is easy to verify that∣∣(∇H )2ϕ
∣∣2

Lθ
= 2 |ϕ11|

2
+

1
2(1bϕ)

2
+

1
2ϕ

2
0 .
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Substituting this into the left hand of (7) and combining with (8), we get

2
∫

|ϕ11|
2 dV = 2

∫
(1bϕ)

2dV − 2
∫
(Ric − Tor)((∇bϕ)C, (∇bϕ)C) dV

−
3
4

∫
P0ϕ ·ϕ dV .

By combining with (6), we get

0 ≥ −2
∫
(1bϕ)

2dV + 2
∫
(Ric − Tor)((∇bϕ)C, (∇bϕ)C) dV +

3
4

∫
P0ϕ ·ϕ dV

≥

∫
−2λ1|∇bϕ|

2
LθdV −

∫
k0|∇bϕ|

2
LθdV +

∫
33
4
ϕ2dV

=

∫ (
−2λ1 − k0 +

33
4λ1

)
|∇bϕ|

2
LθdV .

This holds if and only if

−2λ1 − k0 +
33
4λ1

≤ 0,

and Theorem 1.5 follows immediately. �

3. The Li–Yau gradient estimate

Let (M, J, θ) be a closed three-dimensional pseudohermitian manifold. In the case
that ker (1b − λ1 I ) ∩ (ker P0) 6= φ, then, by using the so-called Li–Yau gradient
estimate [Yau 1975; Li and Yau 1980], one can place a lower bound on the positive
first eigenvalue of a sublaplacian 1b.

Lemma 3.1. Let ϕ = ln f for f > 0. Then

4
〈
Pϕ+ P̄ϕ, dbϕ

〉
L∗

θ

= 4

〈
P f + P̄ f, db f

〉
L∗

θ

f 2 − 4〈∇bϕ,∇b|∇bϕ|
2
〉Lθ

+ 2
1b f

f
|∇bϕ|

2.

Proof. Let Q(x)= |∇bϕ|
2 (x). We compute

∇b Q = Q1 Z1 + Q1 Z1 = 2∇b(ϕ1ϕ1)

=
f 2 f1 f11 + f 2 f1 f11 − 2 f f 2

1
f1

f 4 Z1 + complex conjugate.
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It follows that

P1ϕ = ϕ1̄11 + i A11ϕ1̄ =
f 3 f1̄11 − f 2 f1̄ f11 − 2 f 2 f1 f1̄1 + 2 f f1

2 f1̄

f 4 + i A11
f1̄

f

=
P1 f

f
− Q1 −

f1 f1̄1

f 2 =
P1 f

f
− Q1 −ϕ1

f1̄1

f
.

Thus

4
〈
Pϕ+ P̄ϕ, dbϕ

〉
L∗

θ

= 4
〈
(P1ϕ) θ

1
+
(
P̄1ϕ

)
θ 1̄, ϕ1θ

1
+ϕ1̄θ

1̄
〉

L∗

θ

= 4
[
(P1ϕ) ϕ1̄ +

(
P̄1ϕ

)
ϕ1
]
= 4

(
P1 f

f
− Q1 −ϕ1

f1̄1

f

)
ϕ1̄ + complex conjugate

= 4

〈
P f + P̄ f, db f

〉
L∗

θ

f 2 − 4
〈
∇bϕ,∇b |∇bϕ|

2〉
+ 2

(
1b f

f
|∇bϕ|

2
)
.

This implies the lemma. �

The next lemma will ready us to show Theorem 1.9.

Lemma 3.2 [Graham and Lee 1988; Hirachi 1993]. Let (M, J, θ) be a closed
three-dimensional pseudohermitian manifold with a transversal symmetry, and let
θ be any pseudohermitian structure on M. Then a smooth real-valued function f
satisfies P0 f =0 on M if and only if P1 f =0 on M , that is, f is CR-pluriharmonic.

Proof of Theorem 1.9. Let f be an eigenfunction of 1b with eigenvalue λ1, that is,
1b f = λ1 f . Also suppose P0 f = 0. Since

λ1

∫
M

f =

∫
M
1b f = 0,

f must change sign. We may normalize f to satisfy min f = −1 and max f ≤ 1.
Let us consider the function ϕ = ln (a + f ), for some constant a > 1. Then the
function ϕ satisfies

1bϕ =
1b f
a + f

−

〈
∇b

(
1

a + f

)
,∇b (a + f )

〉
Lθ

=
1b f
a + f

+
|∇b f |

2

(a + f )2
=

λ1 f
a + f

+ |∇bϕ|
2 .

Since
∣∣(∇ξ )2ϕ

∣∣2
Lθ

= 2 |ϕ11|
2
+

1
2(1bϕ)

2
+

1
2ϕ

2
0 , we have

−
∣∣(∇ξ )2ϕ

∣∣2
Lθ

≤ −
1
2
(1bϕ)

2
≤ −

1
2

|∇bϕ|
4
−
λ1 f

a + f
|∇bϕ|

2 .
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On the other hand, we have

〈∇bϕ,∇b1bϕ〉Lθ =

〈
∇bϕ,∇b

(
λ1 f

a + f
+ |∇bϕ|

2
)〉

Lθ

=
〈
∇bϕ,∇b |∇bϕ|

2〉
Lθ

+
λ1a

a + f
|∇bϕ|

2 .

Because Ricm(Z , Z)− Torm(Z , Z)≥ −k0 〈Z , Z〉Lθ , we have

(9) 2 Ricm(Z , Z)− 2 Torm(Z , Z)≥ −2k0 〈Z , Z〉Lθ .

On the other hand, put τ0 = max |A11|. Then from

−2|A11| 〈Z , Z〉Lθ ≤ − Tor(Z , Z)≤ 2|A11| 〈Z , Z〉Lθ ,

we have

(10) −2τ0 〈Z , Z〉Lθ ≤ − Tor(Z , Z)≤ 2τ0 〈Z , Z〉Lθ .

Combining (9) and (10), one has

2 Ricm(Z , Z)− 3 Torm(Z , Z)≥ −2(k0 + τ0) 〈Z , Z〉Lθ .

Now we define Q(x) = |∇bϕ|
2. Then, by Lemma 2.1 and Lemma 3.1, we see

that the sublaplacian satisfies

1
2
1b Q + 〈∇bϕ,∇b Q〉 ≤ −

1
2

Q2
−

(
λ1 −

2(k0 + τ0)

2
−

4λ1a
a + f

−
2λ1 f
a + f

)
Q

≤ −
1
2

Q2
−

(
λ1 −

2(k0 + τ0)

2
−

6λ1a
a − 1

)
Q.

If x0 ∈ M is a point where Q achieves its maximum, we have

0 ≤
1
2
1b Q(x0)+ 〈∇bϕ,∇b Q〉 (x0).

Hence
1
2

Q2(x0)+

(
λ1 −

2(k0 + τ0)

2
−

6λ1a
a − 1

)
Q(x0)≤ 0

which implies that

Q(x)≤ Q(x0)≤ −2
(
λ1 −

2(k0 + τ0)

2
−

6λ1a
a − 1

)
≤

12a
a − 1

λ1 + 2(k0 + τ0),
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for all x ∈ M . Integrating Q
1
2 =|∇bϕ|= |∇b ln (a + f )| along a minimal horizontal

geodesic γ joining the points at which f = −1 and f = max f , it follows that

ln
a

a − 1
≤ ln

(
a + max f

a − 1

)
= ln (a + max f )− ln (a − 1)

≤

∫
γ

|∇b ln (a + f )| ≤ d

√
12a

a − 1
λ1 + 2(k0 + τ0),

for all a > 1. Setting t = (a − 1)/a, we have

12λ1 ≥

(
1
d2

(
ln 1

t

)2
− 2(k0 + τ0)

)
t

for all 0 < t < 1. Maximizing the right hand side as a function of t by setting
t = exp(−1 −

√
1 + 2(k0 + τ0)d2), we obtain the estimate

λ1 ≥
1
12

(
(1 +

√
1 + 2(k0 + τ0)d2)2

d2 − 2(k0 + τ0)

)
e
(
−1−

√
1+2(k0+τ0)d2

)

=

(
1 +

√
1 + 2(k0 + τ0)d2

)
6d2 e

(
−1−

√
1+2(k0+τ0)d2

)
. �

Proof of Theorem 1.11. If (M, J, θ) is a closed three-dimensional pseudohermitian
manifold that has a transversal symmetry, then there exists a torsion free pseudo-
hermitian contact structure θ̃ = e2 f θ for some real smooth function f . Therefore
P̃0, the CR Paneitz operator with respect to θ̃ , is essentially positive. But P̃0 = e−4 f

P0. It follows that P0 is essentially positive.
On the other hand, suppose that the CR Paneitz operator P0 and the sublaplacian

1b satisfy 1b (ker P0)⊂ ker P0. Hence we have the following decomposition (see
[Chang et al. 2005, Section 5] for details):

ker (1b − λ1 I )= EK ⊕P0 EK
⊥,

where EK ⊂ ker P0 and EK
⊥

⊂ (ker P0)
⊥ .

Let f be an eigenfunction of 1b with respect to the first positive eigenvalue λ1.
P0 decomposes f as

f = f ⊥
⊕ fker,

whence

1b f ⊥
= λ1 f ⊥ and 1b fker = λ1 fker.

Theorem 1.11 then follows directly from Theorem 1.5 and Theorem 1.9. �
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dimensional CR manifolds”, pp. 67–76 in Complex geometry (Osaka, 1990), edited by G. Ko-
matsu and Y. Sakane, Lecture Notes in Pure and Appl. Math. 143, Dekker, New York, 1993.
MR 93k:32036 Zbl 0805.32014

[Lee 1988] J. M. Lee, “Pseudo-Einstein structures on CR manifolds”, Amer. J. Math. 110:1 (1988),
157–178. MR 89f:32034 Zbl 0683:32019

[Li and Luk 2004] S.-Y. Li and H.-S. Luk, “The sharp lower bound for the first positive eigenvalue of
a sub-Laplacian on a pseudo-Hermitian manifold”, Proc. Amer. Math. Soc. 132:3 (2004), 789–798.
MR 2005c:58056 Zbl 1041:32024

[Li and Yau 1980] P. Li and S. T. Yau, “Estimates of eigenvalues of a compact Riemannian man-
ifold”, pp. 205–239 in Geometry of the Laplace operator (Honolulu, 1979), edited by R. Osser-
man and A. Weinstein, Proc. Sympos. Pure Math. 36, Amer. Math. Soc., Providence, R.I., 1980.
MR 81i:58050 Zbl 0441.58014

[Lichnérowicz 1958] A. Lichnérowicz, Géométrie des groupes de transformations, Travaux et re-
cherches mathématiques 3, Dunod, Paris, 1958. Zbl 0096.16001

[Obata 1962] M. Obata, “Certain conditions for a Riemannian manifold to be isometric with a
sphere”, J. Math. Soc. Japan 14 (1962), 333–340. MR 25 #5479 Zbl 0115:39302

[Yau 1975] S. T. Yau, “Harmonic functions on complete Riemannian manifolds”, Comm. Pure Appl.
Math. 28 (1975), 201–228. MR 55 #4042 Zbl 0291:31002

http://www.arxiv.org/abs/math/0510494
http://www.arxiv.org/abs/math/0510494
http://dx.doi.org/10.1007/s10455-006-9033-9
http://dx.doi.org/10.1007/s10455-006-9033-9
http://www.ams.org/mathscinet-getitem?mr=2007j:58034
http://www.emis.de/cgi-bin/MATH-item?1098.32017
http://dx.doi.org/10.1007/BF01450011
http://dx.doi.org/10.1007/BF01450011
http://www.ams.org/mathscinet-getitem?mr=1,313d
http://www.emis.de/cgi-bin/MATH-item?0022.02304
http://www.ams.org/mathscinet-getitem?mr=2005d:53044
http://www.ams.org/mathscinet-getitem?mr=2005d:53044
http://www.emis.de/cgi-bin/MATH-item?02064736
http://www.arxiv.org/abs/math/0301092v1
http://dx.doi.org/10.1215/S0012-7094-88-05731-6
http://dx.doi.org/10.1215/S0012-7094-88-05731-6
http://www.ams.org/mathscinet-getitem?mr=90c:32031
http://www.emis.de/cgi-bin/MATH-item?0699.35112
http://dx.doi.org/10.1080/03605308508820376
http://dx.doi.org/10.1080/03605308508820376
http://www.ams.org/mathscinet-getitem?mr=86f:58157
http://www.emis.de/cgi-bin/MATH-item?0563.58034
http://www.ams.org/mathscinet-getitem?mr=93k:32036
http://www.emis.de/cgi-bin/MATH-item?0805.32014
http://dx.doi.org/10.2307/2374543
http://www.ams.org/mathscinet-getitem?mr=89f:32034
http://www.emis.de/cgi-bin/MATH-item?0683:32019
http://dx.doi.org/10.1090/S0002-9939-03-07174-0
http://dx.doi.org/10.1090/S0002-9939-03-07174-0
http://www.ams.org/mathscinet-getitem?mr=2005c:58056
http://www.emis.de/cgi-bin/MATH-item?1041:32024
http://www.ams.org/mathscinet-getitem?mr=81i:58050
http://www.emis.de/cgi-bin/MATH-item?0441.58014
http://www.emis.de/cgi-bin/MATH-item?0096.16001
http://www.ams.org/mathscinet-getitem?mr=25:5479
http://www.emis.de/cgi-bin/MATH-item?0115:39302
http://dx.doi.org/10.1002/cpa.3160280203
http://www.ams.org/mathscinet-getitem?mr=55:4042
http://www.emis.de/cgi-bin/MATH-item?0291:31002


282 SHU-CHENG CHANG AND HUNG-LIN CHIU

Received April 25, 2006.

SHU-CHENG CHANG

DEPARTMENT OF MATHEMATICS

NATIONAL TSING HUA UNIVERSITY

HSINCHU 30013
TAIWAN

scchang@math.nthu.edu.tw

HUNG-LIN CHIU

DEPARTMENT OF APPLIED MATHEMATICS

NATIONAL CENTRAL UNIVERSITY

CHUNG-LI 32054
TAIWAN

hlchiu@math.ncu.edu.tw

mailto:scchang@math.nthu.edu.tw
mailto:hlchiu@math.ncu.edu.tw

	1. Introduction
	2. The Bochner formula and CR Paneitz operator
	3. The Li--Yau gradient estimate
	Acknowledgments
	References

