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We prove some rigidity results for compact manifolds with boundary. For a
compact Riemannian manifold with nonnegative Ricci curvature and sim-
ply connected mean convex boundary, we show that if the sectional curva-
ture vanishes on the boundary, the metric must be flat.

Schroeder and Strake [1989, Theorem 1] proved a rigidity theorem:

Theorem. Let (M, g) be a compact Riemannian manifold with convex boundary
and nonnegative Ricci curvature. Assume that the sectional curvature is identically
zero in some neighborhood U of ∂ M and that one of these conditions holds:

• ∂ M is simply connected;

• dim ∂ M is even and ∂ M is strictly convex at some point p ∈ ∂ M.

Then M is flat.

As they remarked, the condition that the metric is flat in a whole neighborhood
of ∂ M is very strong. They conjectured that it suffices to only assume that the
sectional curvature vanishes on ∂ M and proved this in the special case of a convex
metric ball. Xia [1997; 2002] studied the problem and confirmed the conjecture
under various additional conditions, such as the boundary has constant mean cur-
vature or constant scalar curvature, or the second fundamental form satisfies some
pinching condition. We refer to Xia’s papers for the precise statements. Here we
present some results related to the conjecture.

Theorem 1. Let M be a smooth compact connected Riemannian manifold with
boundary and nonnegative Ricci curvature. If every component of ∂ M is simply
connected and has nonnegative mean curvature and the sectional curvature of M
vanishes on ∂ M , then M is flat and ∂ M has only one component.
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Therefore when ∂ M is simply connected, the conjecture of Schroeder and Strake
is true. Moreover, one only needs ∂ M to be mean convex instead of convex. That
∂ M has only one component follows from theorems in [Ichida 1981; Kasue 1983].
Below we present a different argument for it based on Reilly’s formula [1977].

To continue, we need some notation. We will often write 〈 , 〉 for the metric on
M and denote its connection by D. For convenience we write 6 = ∂ M and denote
the Levi-Civita connection, curvature tensor, and so on of the induced metric on 6

by adding the subscript 6 to the standard notations. Let ν be the unit outer normal
vector. The shape operator is given by A (X) = DXν and the second fundamental
form is given by h (X, Y ) = 〈A (X) , Y 〉 = 〈DXν, Y 〉, where X, Y ∈ T 6. The mean
curvature H = tr A. Recall Reilly’s formula [1977, formula (14)] for a smooth
function u on M
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A special case of theorems in [Ichida 1981; Kasue 1983] claims that if Mn is
a compact connected Riemannian manifold with mean convex boundary 6 and
nonnegative Ricci curvature, then 6 has at most two components; moreover if
6 has two components, then M is isometric to 0 × [0, a] for some connected
compact Riemannian manifold 0 with nonnegative Ricci curvature and a > 0. For
Theorem 1, it is clear that M cannot have the product metric; hence 6 has one
component. Interestingly, one may give an argument for the above special case
based on Reilly’s formula. Indeed, assume 6 is not connected, and fix a component
60 of 6; then we may solve the Dirichlet problem

1u = 0 on M , u|60 = 0, u|6\60 = 1.

Applying Reilly’s formula to u, we get

−
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Hence D2u = 0. This implies |∇u| ≡ c > 0. Since ∇u = −cν on 60 and ∇u = cν
on 6 \ 60, we see DXν = 0 for X ∈ T 6, that is, 6 is totally geodesic. If we
look at the flow generated by ∇u/c, then it sends 60 to 6 \ 60 at time 1/c and
hence 6 has exactly two components. Note that the flow lines are just geodesics.
If we fix a coordinate on 60, namely θ1, · · · , θn−1 and let r = u/c, then we have
g = dr ⊗dr + gi j (r, θ) dθ i

⊗dθ j . Using D2r = 0, we see ∂r gi j (r, θ) = 0. Hence
M is isometric to 60 × [0, 1/c].
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Under the assumption of Theorem 1 that the sectional curvature of M vanishes
on 6, it follows from the Gauss and Codazzi equations that

R6 (X, Y, Z , W ) = h (X, Z) h (Y, W ) − h (X, W ) h (Y, Z) ,

(D6)X h (Y, Z) = (D6)Y h (X, Z) ,

where X , Y , Z , and W belong to T 6. By the fundamental theorem for hyper-
surfaces [Spivak 1999, part (2) of Theorem 21 on p. 63] and that 6 is simply
connected, we may find a smooth isometric immersion φ : 6 → Rn such that the
second fundamental form of the immersion has hφ = h. If 6 is convex, then φ

is an embedding by a Hadamard-type theorem of Sacksteder [1960]. With this
immersion φ in hand, Theorem 1 follows from:

Proposition 2. Let Mn be a smooth compact connected Riemannian manifold with
connected boundary 6 = ∂ M and Rc ≥ 0. If φ : 6 → Rl is an isometric immersion
with |Hφ| ≤ H on 6, where Hφ is the mean curvature vector of the immersion φ,
then M is flat. If φ is also an imbedding, M is isometric to a domain in Rn .

This generalizes [Ros 1988, Theorem 2], a congruence theorem for hypersur-
face in Euclidean space. Following the Ros’s argument, we will show by Reilly’s
formula that the harmonic extension of the map φ is in fact an isometric immersion.

Proof. We can find a smooth function F : M → Rl such that 1F = 0 in M and
F
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where e1, . . . , en−1 is a local orthonormal frame on 6; hence
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Hence D2 Fα
= 0 for all α. It follows that F∗gRl is parallel on M . We may find

some p ∈ 6 such that |Hφ| > 0 at p; hence H(p) > 0. From the above argument,
this implies |F∗ν| = 1 at p and F∗ν is perpendicular to φ∗6p; hence F∗gRl = gM

at p. It follows that F∗gRl = gM on M , that is, F is an isometric immersion and
M is flat. Now assume φ is an imbedding. Let D be the connection on Rl , then
DX F∗Y − F∗DX Y = XY F −(DX Y ) F = 0. It follows that F : M → Rl is a totally
geodesic submanifold, and hence the image lies in a n dimensional affine subspace.
Without loss of generality, we may assume l = n and 6 is a compact hypersurface
in Rn . Then there exists a bounded open domain � such that ∂� = 6. Since F is
an immersion, we see F (M) \� is both open and closed in Rn

\�; hence it must
be empty. Based on this, we show F : M → � is a covering map, and hence it
must be a diffeomorphism. �

If we assume that ∂ M is convex, then it is clear from the above that M is isomet-
ric to a convex domain in Rn . In fact, in this case one may replace the nonnegativity
of the Ricci curvature by the much weaker nonnegativity of the scalar curvature,
at least when M is spin.

Theorem 3. Let M be a smooth compact connected Riemannian manifold with
boundary and nonnegative scalar curvature. If M is spin, each component of ∂ M
is convex and simply connected, and the sectional curvature of M vanishes on ∂ M ,
then M is isometric to a convex domain in Rn .

Proof. For every component 0 of ∂ M , we have an isometric embedding φ :0 → Rn

that has h as the second fundamental form. Let � be the convex domain enclosed
by φ (0). We glue M and Rn

\ � along 0 via the diffeomorphism φ for all the
0’s and obtain a complete Riemannian manifold N that has nonnegative scalar
curvature and is flat outside a compact set. Note that the metric is C1 along the
gluing hypersurface. Since M is spin, we conclude by the generalized positive
mass theorem [Shi and Tam 2002, Theorem 3.1] that N is isometric to Rn . It
follows that M is isometric to a convex domain in Rn . �
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