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We investigate Möbius isoparametric hypersurfaces in the (n+1)-Euclidean
unit sphere Sn+1 with three distinct Möbius principal curvatures. As direct
consequence of our main result, we establish the complete classification for
all such hypersurfaces in S6.

1. Introduction

Let x : Mn
→ Sn+1 be a hypersurface in the (n + 1)-dimensional unit sphere

Sn+1 without umbilic point. We choose a local orthonormal basis {e1, · · · , en}

with respect to the induced metric I = dx · dx and the dual basis {θ1, · · · , θn}.
Let h =

∑
i, j hi jθi ⊗ θ j be the second fundamental form of x , with squared length

‖h‖
2

=
∑

i, j (hi j )
2 and mean curvature H =

1
n

∑
i hi i , respectively. Define ρ2

=

n/(n − 1) · (‖h‖
2
− nH 2). Then the positive definite form g = ρ2dx · dx is a

Möbius invariant and is called the Möbius metric of x : Mn
→ Sn+1. The Möbius

second fundamental form B, another basic Möbius invariant of x , together with
g determine completely a hypersurface of Sn+1 up to Möbius equivalence; see
Theorem 2.2.

An important class of hypersurfaces for Möbius differential geometry consists of
the so-called Möbius isoparametric hypersurfaces in Sn+1. Recall that, according
to [Li et al. 2002], a Möbius isoparametric hypersurface of Sn+1 is an umbilic-free
hypersurface of Sn+1 such that the Möbius invariant 1-form

8 = −ρ−1
∑

i

{
ei (H) +

∑
j

(hi j − Hδi j )e j (log ρ)
}
θi

vanishes and all of its Möbius principal curvatures are constant. Note that by
Möbius principal curvatures, we mean the so-called eigenvalues of the Möbius
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shape operator 9 := ρ−1(S − H id) with respect to g; here S denotes the shape
operator of x : Mn

→ Sn+1. This definition of Möbius isoparametric hypersurfaces
is meaningful when compared with that of (Euclidean) isoparametric hypersurfaces
in Sn+1. The images of all hypersurfaces of the sphere with constant mean cur-
vature and constant scalar curvature under Möbius transformation satisfy 8 ≡ 0,
and the Möbius invariant operator 9 plays the same role in Möbius geometry as
S does in Euclidean geometry (see Theorem 2.2). Standard examples of Möbius
isoparametric hypersurfaces are the images of (Euclidean) isoparametric hyper-
surfaces in Sn+1 under Möbius transformations, but there are other examples that
cannot be obtained in this way. For example, they occur in our classification for
hypersurfaces of Sn+1 with parallel Möbius second fundamental form; this means
that the Möbius second fundamental form is parallel with respect to the Levi-Civita
connection of the Möbius metric g. See [Li et al. 2002; Hu and Li 2004] for
details. On the other hand, it was proved in [Li et al. 2002] that any Möbius
isoparametric hypersurface is in particular a Dupin hypersurface, which implies
from [Thorbergsson 1983] that for a compact Möbius isoparametric hypersurface
embedded in Sn+1, the number γ of distinct principal curvatures can only take the
values γ = 2, 3, 4, 6.

Li et al. [2002] classified locally all Möbius isoparametric hypersurfaces of Sn+1

with γ = 2. By relaxing the restriction of γ = 2, Hu and Li [2005a] and Hu et al.
[2007] classified all Möbius isoparametric hypersurfaces in S4 and S5, respec-
tively. To be precise, they showed that a Möbius isoparametric hypersurface in S4

is either of parallel Möbius second fundamental form or Möbius equivalent to the
Euclidean isoparametric hypersurface in S4 with three distinct principal curvatures,
that is, a tube of constant radius over a standard Veronese embedding of RP2 into
S4. However, a hypersurface in S5 is Möbius isoparametric if and only if it satisfies
either of two properties: First, it has parallel Möbius second fundamental form or
is Möbius equivalent to the preimage of the stereographic projection of the cone
x̃ : N 3

×R+
→ R5 defined by x̃(x, t) = t x , where t ∈ R+ and x : N 3

→ S4 ↪→ R5 is
the Cartan isoparametric immersion in S4 with three principal curvatures. Second,
it is Möbius equivalent to the Euclidean isoparametric hypersurfaces in S5 with
four distinct principal curvatures. All these results remind us of their counterparts
in Dupin hypersurfaces; see [Thorbergsson 1983; Pinkall 1985; Niebergall 1991;
1992; Cecil and Jensen 1998; 2000].

Because all Möbius isoparametric hypersurfaces have been classified both for
n ≤ 4 in [Hu and Li 2005a; Hu et al. 2007] and for all n ≥ 2 with two distinct
Möbius principal curvatures in [Li et al. 2002], we will consider here Möbius
isoparametric hypersurfaces Mn in Sn+1 with three distinct Möbius principal cur-
vatures for all n ≥ 5. For further background, we note that the classification of
all such hypersurfaces under the Möbius transformation group equivalence can
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be compared with that of the Dupin hypersurfaces with three principal curvatures
under the Lie sphere transformation group equivalence established by Cecil and
Jensen [1998]. We find it interesting that the Lie sphere transformation group con-
tains the Möbius transformation group in Sn+1 as a subgroup and the dimension
difference is n + 3. Therefore, the Möbius differential geometry for hypersurfaces
in spheres seems essentially different from the Lie sphere geometry and therefore
merits more attention.

Nevertheless, for simplicity, we focus on when one of the three distinct Möbius
principal curvatures has multiplicity one. For Möbius isoparametric hypersurfaces
with nonparallel Möbius second fundamental form and three distinct Möbius prin-
cipal curvatures — all of which have multiplicity not smaller than two — the clas-
sification is much more involved and will be given in a forthcoming paper.

We will establish these classification results:

Main Theorem. Let x : Mn
→ Sn+1 (n ≥ 5) be a Möbius isoparametric hyper-

surface with three distinct Möbius principal curvatures such that one of them is
simple. Then x is Möbius equivalent to an open part of one of these hypersurfaces
in Sn+1:

(i) The preimage of the stereographic projection of the warped product embed-
ding

x̃ : Sp(a) × Sq(
√

1 − a2) × R+
× Rn−p−q−1

→ Rn+1,

with p ≥ 1, q ≥ 1, p + q ≤ n − 1, and 0 < a < 1, defined by

x̃(u′, u′′, t, u′′′) = (tu′, tu′′, tu′′′),

where u′
∈ Sp(a), u′′

∈ Sq(
√

1 − a2), t ∈ R+, and u′′′
∈ Rn−p−q−1.

(ii) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N 3

× Hn−3
(
−

n−1
6n

)
→ Sn+1,

where x̃1 = y1/y0, x̃2 = y2/y0, with y0 ∈ R+, y1 ∈ R5, y2 ∈ Rn−3. Here y1 :

N 3
→ S4

(√
6n/(n − 1)

)
↪→ R5 is Cartan’s minimal isoparametric hypersur-

face with vanishing scalar curvature and principal curvatures ±
√

(n − 1)/2n,
0. Also (y0, y2) : Hn−3 (−(n − 1)/6n) ↪→ Ln−2 is the standard embedding of
the hyperbolic space of sectional curvature −(n − 1)/6n into the (n − 2)-
dimensional Lorentz space with −y2

0 + y2
2 = −6n/(n − 1).

If n = 5, then hypersurfaces with three distinct Möbius principal curvatures
trivially satisfy the assumption that at least one of the principal curvatures is simple.
Hence we have immediately:
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Corollary 1.1. Let x : M5
→S6 be a Möbius isoparametric hypersurface with three

distinct Möbius principal curvatures. Then x is Möbius equivalent to an open part
of one of these hypersurfaces in S6:

(i) The preimage of the stereographic projection of the warped product embed-
ding

x̃ : Sp(a) × Sq(
√

1 − a2) × R+
× R4−p−q

→ R6,

with p ≥ 1, q ≥ 1, p + q ≤ 4, and 0 < a < 1, defined by

x̃(u′, u′′, t, u′′′) = (tu′, tu′′, tu′′′),

where u′
∈ Sp(a), u′′

∈ Sq(
√

1 − a2), t ∈ R+, u′′′
∈ R4−p−q .

(ii) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃5
= N 3

× H2(
−

2
15

)
→ S6

with x̃1 = y1/y0, x̃2 = y2/y0, where y0 ∈ R+, y1 ∈ R5, y2 ∈ R2. Here
y1 : N 3

→ S4(
√

30/2 ↪→ R5 is Cartan’s minimal isoparametric hypersur-
face with vanishing scalar curvature and principal curvatures ±

√
10/5, 0,

and (y0, y2) : H2 (−2/15) ↪→ L3 is the standard embedding of the hyperbolic
space of sectional curvature −2/15 into the 3-dimensional Lorentz space with
−y2

0 + y2
2 = −15/2.

Remark 1.2. The hypersurfaces in (i) consist of two families both of which are of
parallel Möbius second fundamental form, whereas (ii) has only one hypersurface
whose Möbius second fundamental form is not parallel.

This paper has four more sections. In Section 2, we first review some elemen-
tary facts of Möbius geometry for hypersurfaces in Sn+1, and then we present
classifications for hypersurfaces of Sn+1 with parallel Möbius second fundamen-
tal form and for those with two distinct constant Blaschke eigenvalues. These
classifications have been achieved in [Hu and Li 2004] and [Li and Zhang 2007],
respectively. In Section 3, by investigating Möbius isoparametric hypersurfaces of
Sn+1 with nonparallel Möbius second fundamental form and having three distinct
Möbius principal curvatures, one of which is simple, we show its Möbius principal
curvature must be zero with multiplicity n − 2. Furthermore, we prove Theorem
3.7, which gives a preliminary classification for such hypersurfaces. In Section
4, we prove Proposition 4.2, Proposition 4.5 and Proposition 4.6 by calculating
the Möbius invariants of the hypersurfaces appearing in Theorem 3.7. Finally, in
Section 5, we complete the proof of Main Theorem.
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2. Möbius invariants for hypersurfaces in Sn+1

Here, we define Möbius invariants and recall structure equations for hypersurfaces
in Sn+1. For more detail, see [Wang 1998]. Let Ln+3 be the Lorentz space, namely
Rn+3 with inner product 〈 · , · 〉 defined by

〈x, w〉 = −x0w0 + x1w1 + · · · + xn+2wn+2

for x = (x0, x1, · · · , xn+2) and w = (w0, w1, · · · , wn+2) ∈ Rn+3.
Let x : Mn

→ Sn+1 ↪→ Rn+2 be an immersed umbilic-free hypersurface of Sn+1.
We define the Möbius position vector field Y : Mn

→ Ln+3 of x by Y = ρ(1, x),
where

ρ2
=

n
n−1

(
‖h‖

2
− nH 2)> 0.

Then we have this classical result:

Theorem 2.1 [Wang 1998]. Two hypersurfaces x, x̃ : Mn
→ Sn+1 are Möbius

equivalent if and only if there exists T in the Lorentz group O(n + 2, 1) in Ln+3

such that Y = Ỹ T .

It follows immediately that g = 〈dY, dY 〉 = ρ2dx ·dx is a Möbius invariant, and
it is defined as the Möbius metric of x : Mn

→ Sn+1.
Let 1 be the Beltrami–Laplace operator of g. Defining

(2-1) N = −
1
n

4 Y −
1

2n2 〈1Y, 1Y 〉Y,

one can show that

(2-2)
〈1Y, Y 〉 = − n,

〈Y, Y 〉 = 0,

〈1Y, dY 〉 = 0,

〈N , Y 〉 = 1,

〈1Y, 1Y 〉 = 1 + n2 R,

〈N , N 〉 = 0,

where R is the normalized scalar curvature of g and is called the normalized
Möbius scalar curvature of x : Mn

→ Sn+1.
Let {E1, · · · , En} be a local orthonormal basis for (Mn, g) with dual basis

{ω1, · · · , ωn}, and write Yi = Ei (Y ). Then it follows from (2-1) and (2-2) that

〈Yi , Y 〉 = 〈Yi , N 〉 = 0, 〈Yi , Y j 〉 = δi j , 1 ≤ i, j ≤ n.

Let V be the orthogonal complement to the subspace span{Y, N , Y1, · · · , Yn} in
Ln+3. Then along M we have the orthogonal decomposition

Ln+3
= span{Y, N } ⊕ span{Y1, · · · , Yn} ⊕ V,

where V is called the Möbius normal bundle of x : Mn
→ Sn+1. A local unit vector

basis E = En+1 for V can be written as

E = En+1 := (H, H x + en+1).
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Then, along Mn , {Y, N , Y1, · · · , Yn, E} forms a moving frame in Ln+3. Unless
otherwise stated, we will henceforth use the range 1 ≤ i, j, k, l, t ≤ n for indices.

We can write the structure equations as:

(2-3)

dY =
∑

i
Yiωi ,

d N =
∑
i, j

Ai jω j Yi +
∑

i
Ciωi E,

dYi = −
∑

j
Ai jω j Y − ωi N +

∑
j

ωi j Y j +
∑

i
Bi jω j E,

d E = −
∑

i
Ciωi Y −

∑
i, j

Bi jω j Yi ,

where ωi j is the connection form of the Möbius metric g and is defined by the
structure equations dωi =

∑
j ωi j ∧ω j , ωi j +ω j i =0. The tensors A=

∑
i, j Ai jωi ⊗

ω j , 8 =
∑

i Ciωi , and B =
∑

i, j Bi jωi ⊗ ω j are respectively called the Blaschke
tensor, the Möbius form, and the Möbius second fundamental form of x : Mn

→

Sn+1. The relations between 8, B, A and the Euclidean invariants of x are given
by [Wang 1998]:

(2-4)

Ci = − ρ−2(ei (H) +
∑

j
(hi j − Hδi j )e j (log ρ)

)
,

Bi j = ρ−1(hi j − Hδi j ),

Ai j = − ρ−2(Hessi j (log ρ) − ei (log ρ)e j (log ρ) − Hhi j
)

−
1
2ρ−2(

|∇ log ρ|
2
− 1 + H 2)δi j ,

where Hessi j and ∇ are the Hessian matrix and the gradient operator with respect
to the orthonormal basis {ei } of dx · dx .

The covariant derivatives of Ci , Ai j , Bi j are defined by∑
j

Ci, jω j = dCi +
∑

j
C jω j i ,(2-5) ∑

k
Ai j,kωk = d Ai j +

∑
k

Aikωk j +
∑
k

Ak jωki ,(2-6) ∑
k

Bi j,kωk = d Bi j +
∑
k

Bikωk j +
∑
k

Bk jωki .(2-7)

The integrability conditions for the structure equations (2-3) are

Ai j,k − Aik, j = BikC j − Bi j Ck,(2-8)

Ci, j − C j,i =
∑
k

(Bik Ak j − Aik Bk j ),(2-9)

Bi j,k − Bik, j = δi j Ck − δikC j ,(2-10)

Ri jkl = Bik B jl − Bil B jk + δik A jl + δ jl Aik − δil A jk − δ jk Ail,(2-11)
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where

(2-12) Ri j :=
∑
k

Rik jk = −
∑
k

Bik B jk + (tr A)δi j + (n − 2)Ai j ,

(2-13)
∑

i
Bi i = 0,

∑
i, j

(Bi j )
2
=

n−1
n

, tr A =
∑

i
Ai i =

1
2n

(1 + n2 R).

Here Ri jkl is the curvature tensor of g defined by the structure equations

(2-14) dωi j −
∑
k

ωik ∧ ωk j = −
1
2

∑
k,l

Ri jklωk ∧ ωl,

and R =
1

n(n−1)

∑
i, j Ri j i j is the normalized Möbius scalar curvature of x : Mn

→

Sn+1.
The second covariant derivatives of Bi j are defined through

(2-15)
∑

l
Bi j,klωl = d Bi j,k +

∑
l

Bl j,kωli +
∑

l
Bil,kωl j +

∑
l

Bi j,lωlk .

By exterior differentiation of (2-7), we have the Ricci identity

(2-16) Bi j,kl − Bi j,lk =

∑
t

Bt j Rtikl +

∑
t

Bi t Rt jkl .

From the second of (2-4), we see that the Möbius type operator of x : Mn
→Sn+1

takes the form
9 = ρ−1(S − H id) =

∑
i, j

Bi jωi E j ,

which implies that for an umbilic-free hypersurface in Sn+1, the number of distinct
Möbius principal curvatures is the same as that of its distinct Euclidean principal
curvatures.

One can easily show that all coefficients in (2-3) are determined by {g, 9} and
thus we obtain:

Theorem 2.2 [Akivis and Goldberg 1996; 1997; Wang 1998]. Two hypersurfaces
x : Mn

→ Sn+1 and x̃ : M̃n
→ Sn+1 (n ≥ 3) are Möbius equivalent if and only if

there exists a diffeomorphism F : Mn
→ M̃n that preserves the Möbius metric and

the Möbius shape operator.

Recall that an umbilic-free hypersurface x : Mn
→ Sn+1 is said to have parallel

Möbius second fundamental form if Bi j,k = 0 for all i, j, k. Hu and Li [2004] es-
tablished a complete classification for hypersurfaces of Sn+1 with parallel Möbius
second fundamental form. In particular, we have:
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Theorem 2.3 [Hu and Li 2004]. Let x : Mn
→ Sn+1 (n ≥ 2) be an immersed

umbilic-free hypersurface with parallel Möbius second fundamental form and with
three distinct principal curvatures. Then x is Möbius equivalent to an open part of
the image of σ of the warped product embedding

x̃ : Sp(a) × Sq(
√

1 − a2) × R+
× Rn−p−q−1

→ Rn+1,

with p ≥ 1, q ≥ 1, p + q ≤ n − 1, and 0 < a < 1, defined by

x̃(u′, u′′, t, u′′′) = (tu′, tu′′, tu′′′)

with u′
∈ Sp(a), u′′

∈ Sq(
√

1 − a2), t ∈ R+, and u′′′
∈ Rn−p−q−1. The conformal

diffeomorphism σ : Rn+1
→ Sn+1

\ {(−1, 0, · · · , 0)} is the inverse of the stereo-
graphic projection and is defined by

σ(u) =

(
1 − |u|

2

1 + |u|2
,

2u
1 + |u|2

)
, for u ∈ Rn+1.

To prove our main theorem, we also need the following partial classification of
umbilic-free hypersurfaces in Sn+1 with two distinct Blaschke eigenvalues.

Theorem 2.4 [Li and Zhang 2007]. Let x : Mn
→ Sn+1(n ≥ 3) be an immersed

umbilic-free hypersurface with two distinct, constant Blaschke eigenvalues and
vanishing Möbius form. If x has three distinct principal Möbius curvatures, then it
is locally Möbius equivalent to one of these two families of hypersurfaces in Sn+1

:

(i) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

× Hn−p(−r−2) → Sn+1,

where x̃1 = y1/y0, x̃2 = y2/y0,

with y0 ∈ R+, y1 ∈ Rp+2, y2 ∈ Rn−p, 2 ≤ p ≤ n − 1, and r > 0. Also, y1 :

N p
→ Sp+1(r) ↪→ Rp+2 is an immersed umbilic-free minimal hypersurface

in the (p + 1)-dimensional sphere of radius r with constant scalar curvature

R̃1 =
np(p − 1) − (n − 1)r2

nr2 .

(y0, y2) : Hn−p(−r−2) → Ln−p+1 is the standard embedding of the hyperbolic
space of sectional curvature −r−2 into the (n − p + 1)-dimensional Lorentz
space with −y2

0 + y2
2 = −r2.

(ii) Nonminimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

× Sn−p(r) → Sn+1,

where x̃1 = y1/y0, x̃2 = y2/y0,
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with y0 ∈ R+, y1 ∈ Rp+1, y2 ∈ Rn−p+1, 2 ≤ p ≤ n−1, and r > 0. Also (y0, y1) :

N p
→ Hp+1(−r−2) ↪→ Lp+2, with −y2

0 + y2
1 = −r2, is an immersed umbilic-

free minimal hypersurface in the (p + 1)-dimensional hyperbolic space of
sectional curvature −r−2 and with constant scalar curvature

R̃1 = −
np(p − 1) + (n − 1)r2

nr2 .

y2 : Sn−p(r) → Rn−p+1 is the standard embedding of (n − p)-dimensional
sphere of radius r .

3. Möbius isoparametric hypersurfaces with γ = 3

Here, we consider Möbius isoparametric hypersurfaces x : Mn
→ Sn+1 of any

dimension n ≥ 5 with three distinct principal curvatures with multiplicities m1 ≥

m2 ≥ m3.
For our choice of the local orthonormal basis {Ei }1≤i≤n , that 9 has constant

eigenvalues is equivalent to that the matrix (Bi j ) has constant eigenvalues. From
8 = 0 and (2-9), we see that, for all i, j ,

(3-17)
∑

k

(Bik Ak j − Aik Bk j ) = 0.

This implies that we can choose {Ei } to simultaneously diagonalize (Ai j ) and (Bi j ).
Let us write

(3-18) (Bi j ) = diag(b1, · · · , bn), (Ai j ) = diag(A1, · · · , An),

where the {bi } are constants. By assumption and without loss of generality, we can
put

(3-19)

b1 = · · · = bm1 = B1,

bm1+1 = · · · = bm1+m2 = B2,

bm1+m2+1 = · · · = bn = B3,

with distinct B1, B2, and B3. From (2-13), they satisfy the conditions

(3-20) m1 B1 + m2 B2 + m3 B3 = 0, m1 B2
1 + m2 B2

2 + m3 B2
3 =

n−1
n

.

In this section, if not stated otherwise, we use the further index conventions

1 ≤ a, b ≤ m1,

m1 + 1 ≤ p, q ≤ m1 + m2,

m1 + m2 + 1 ≤ α, β ≤ m1 + m2 + m3 = n.
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Applying the condition 8 = 0 to (2-8) and (2-10), we see that both Bi j,k and
Ai j,k are totally symmetric. As usual we define

ωi j =

∑
k

0i
k jωk, 0i

k j = −0
j
ki .

From this, (2-7), (3-18), and that {bi }1≤i≤n consists of constants, we get

Bi j,k = (bi − b j )0
i
k j = (b j − bk)0

j
ik = (bk − bi )0

k
ji , for all i, j, k.

Thus we see that

(3-21) Bi i, j = Bi j,i = Bab, j = Bpq, j = Bαβ, j = 0, for all i, j, a, b, p, q, α, β,

and the only possible nonzero elements in {Bi j,k} are of the form Bαa,p.
From now on in this section, we assume Bi j,k 6≡ 0 and m3 = 1. Then we can

prove three lemmas:

Lemma 3.1. The set {Bna,p} has only one nonzero element.

Proof. From the calculation∑
i

Bab,piωi = d Bab,p +
∑

i
Bib,pωia +

∑
i

Bai,pωib +
∑

i
Bab,iωi p

= Bnb,pωna + Ban,pωnb =
∑
q

(
Bnb,p0

n
qa + Bna,p0

n
qb

)
ωq

=

∑
q

Bnb,p Bna,q + Bna,p Bnb,q

B3 − B1
ωq ,

we have for all a, b, p, i that

(3-22) Bab,pi =
Bnb,p Bna,i + Bna,p Bnb,i

B3 − B1
, Bab,pp =

2Bna,p Bnb,p

B3 − B1
.

On the other hand, from the calculation∑
i

Bpp,aiωi =2
∑

i
Bi p,aωi p =2Bnp,aωnp =2

∑
b

Bnp,a0
n
bpωb =

∑
b

2Bna,p Bnb,p

B3 − B2
ωb,

we have for all a, b, p, i that

(3-23) Bpp,ai =
2Bna,p Bni,p

B3 − B2
, Bpp,ab =

2Bna,p Bnb,p

B3 − B2
.

For a 6= b, using (3-18), (3-19) and (2-11), we obtain from (2-16) that

(3-24) Bpp,ab = Bpa,pb = Bpa,bp = Bab,pp.

From (3-22)–(3-24), we obtain

(3-25) Bna,p Bnb,p = 0, for all a, b, p with a 6= b if m1 ≥ 2.
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Similarly, we can show

Bnn,ab =
2

∑
p Bna,p Bnb,p

B2 − B3
, for all a, b;(3-26)

Bnn,ap = 0, for all a, b, p;(3-27)

Bpq,ai =
Bna,p Bni,q + Bna,q Bni,p

B3 − B2
, for all a, i , p, q;(3-28)

Bna,p Bna,q = 0, for all a, p, q with p 6= q if m2 ≥ 2.(3-29)

From (3-22), (3-28) and that

Bab,pq = Bpq,ab, if a 6= b or p 6= q,

we obtain

(3-30) Bna,p Bnb,q + Bna,q Bnb,p = 0, for all a, b, p, q with (a, p) 6= (b, q).

As Bi j,k 6≡ 0, we can take indices ā and p̄ to satisfy

Bnā, p̄ 6= 0, ā ∈ {1, · · · , m1}, p̄ ∈ {m1 + 1, · · · , m1 + m2}.

Then from (3-25) and (3-29), we have

Bnb, p̄ = 0, for all b 6= ā if m1 ≥ 2, Bnā,q = 0, for all q 6= p̄ if m2 ≥ 2,

and this, together with (3-30), gives Bnā, p̄ Bnb,q = 0 for all (b, q) 6= (ā, p̄). There-
fore, we have Bnb,q = 0 for all (b, q) 6= (ā, p̄). �

Lemma 3.2. For the indices ā, p̄ in Lemma 3.1, the Bnā, p̄ are constant.

Proof. From Lemma 3.1 and (2-15), we have d Bnā, p̄ =
∑

i Bnā, p̄iωi . Seeing that
the four indices in Bnā, p̄i are totally symmetric, using (3-22), (3-27) and (3-28),
we get for all b, q that

Bnā, p̄b = Bāb, p̄n = 0, Bnā, p̄q = B p̄q,ān = 0, Bnā, p̄n = Bnn,ā p̄ = 0. �

Lemma 3.3. We have these results for the sectional curvature:

Rapap = 0, for all (a, p) 6= (ā, p̄); Rā p̄ā p̄ =
2B2

nā, p̄

(B1 − B3)(B2 − B3)
;

Rnana = 0, for all a 6= ā; Rnānā =
2B2

nā, p̄

(B1 − B2)(B3 − B2)
;

Rnpnp = 0, for all p 6= p̄; Rn p̄n p̄ =
2B2

nā, p̄

(B2 − B1)(B3 − B1)
.
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Proof. Now we have the facts

ωap = 0, if (a, p) 6= (ā, p̄); ωā p̄ =
Bnā, p̄

B1 − B2
ωn;

ωna = 0, if a 6= ā; ωnā =
Bnā, p̄

B3 − B1
ω p̄;

ωnp = 0, if p 6= p̄; ωn p̄ =
Bnā, p̄

B3 − B2
ωā.

According to this, (2-14), and Bnā, p̄ being constant, we have, for all a 6= ā and
p 6= p̄,

−
1
2

∑
i, j

Rapi jωi ∧ ω j = dωap −
∑

i
ωai ∧ ωi p = 0,

−
1
2

∑
i, j

Ra p̄i jωi ∧ω j = dωa p̄ −
∑

i
ωai ∧ωi p̄ = −ωaā ∧ωā p̄ = −

Bnā, p̄

B1 − B2
ωaā ∧ωn,

−
1
2

∑
i, j

Rā pi jωi ∧ω j = dωā p −
∑

i
ωāi ∧ωi p = −ωā p̄ ∧ω p̄ p = −

Bnā, p̄

B1 − B2
ωn ∧ω p̄ p,

−
1
2

∑
i, j

Rnai jωi ∧ω j = dωna −
∑

i
ωni ∧ωia = −ωnā ∧ωāa = −

Bnā, p̄

B3 − B1
ω p̄ ∧ωāa,

−
1
2

∑
i, j

Rnpi jωi ∧ω j = dωnp −
∑

i
ωni ∧ωi p = −ωn p̄ ∧ω p̄ p = −

Bnā, p̄

B3 − B2
ωā ∧ω p̄ p,

−
1
2

∑
i, j

Rnāi jωi ∧ ω j = dωnā −
∑

i
ωni ∧ ωi ā = d(0n

p̄āω p̄) − ωn p̄ ∧ ω p̄ā

= 0n
p̄ā

∑
i

ω p̄i ∧ ωi − ωn p̄ ∧ ω p̄ā = 0n
p̄ā(ω p̄ā ∧ ωā + ω p̄n ∧ ωn) − ωn p̄ ∧ ω p̄ā

= −
2B2

nā, p̄

(B1 − B2)(B3 − B2)
ωn ∧ ωā.

Similarly,

−
1
2

∑
i, j

Rn p̄i jωi ∧ ω j = dωn p̄ −
∑

i
ωni ∧ ωi p̄ = −

2B2
nā, p̄

(B2 − B1)(B3 − B1)
ωn ∧ ω p̄,

−
1
2

∑
i, j

Rā p̄i jωi ∧ ω j = dωā p̄ −
∑

i
ωāi ∧ ωi p̄ = −

2B2
nā, p̄

(B1 − B3)(B2 − B3)
ωā ∧ ω p̄.

From the equations above, we come to the conclusion immediately. �

Now, we are ready to prove:

Proposition 3.4. Let x : Mn
→ Sn+1 (n ≥ 5) be a Möbius isoparametric hy-

persurface with three distinct Möbius principal curvatures of multiplicities m1 ≥

m2 ≥ m3. If the Möbius second fundamental form is not parallel and m3 = 1, then
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m2 = 1 and the Möbius principal curvatures are B1 = 0 with multiplicity n −2 and
B2 = −B3 = ±

√
(n − 1)/2n.

Proof. From Lemma 3.3 and the Gauss Equation (2-11), we obtain the equations

Ra p̄a p̄ = B1 B2 + Aa + A p̄ = 0, a 6= ā,(3-31)

Rā pā p = B1 B2 + Aā + Ap = 0, p 6= p̄(3-32)

Rapap = B1 B2 + Aa + Ap = 0, a 6= ā, p 6= p̄,(3-33)

Rnana = B1 B3 + Aa + An = 0, a 6= ā,(3-34)

Rnpnp = B2 B3 + Ap + An = 0, p 6= p̄,(3-35)

Rnānā = B1 B3 + Aā + An =
2B2

nā, p̄

(B1 − B2)(B3 − B2)
,(3-36)

Rn p̄n p̄ = B2 B3 + A p̄ + An =
2B2

nā, p̄

(B2 − B1)(B3 − B1)
,(3-37)

Rā p̄ā p̄ = B1 B2 + Aā + A p̄ =
2B2

nā, p̄

(B1 − B3)(B2 − B3)
.(3-38)

If m2 ≥ 2, then we can form (3-31)+(3-36)−(3-34)−(3-38) and (3-32)+(3-37)−
(3-35) − (3-38), which give (B2 − B3)(2B1 − B2 − B3) = 0 and (B1 − B3)(2B2 −

B1 − B3) = 0, respectively. Therefore we have

2B1 − B2 − B3 = 2B2 − B1 − B3 = 0,

which implies B1 = B2 = B3. This contradiction thus means we should have m2 =1.
Now for m2 = 1, we form (3-31) + (3-36) − (3-34) − (3-38) once again to

obtain 2B1 = B2 + B3. On the other hand, the first equation of (3-20) now reads
(n − 2)B1 + B2 + B3 = 0. These imply that B1 = B2 + B3 = 0. Now applying the
second equation of (3-20), we obtain

B2 = −B3 = ±

√
n − 1

2n
. �

In the rest of this section, we assume Bi j,k 6≡ 0 and m2 = m3 = 1. Without loss
of generality, we assume that

(3-39) B1 = 0, B2 =

√
n−1
2n

, B3 = −

√
n−1
2n

Bā p̄,n 6= 0,

where, for simplicity, we use the notation p̄ = n − 1, ā = n − 2.
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Lemma 3.5. With the assumptions above, we have for all a 6= ā that

ωaā = ωa p̄ = ωan = 0, Ra p̄a p̄ = Ranan = 0,

ωā p̄ =
Bnā, p̄

B1 − B2
ωn, Rā p̄ā p̄ =

2B2
nā, p̄

(B1 − B3)(B2 − B3)
,

ωān =
Bnā, p̄

B1 − B3
ω p̄, Rānān =

2B2
nā, p̄

(B1 − B2)(B3 − B2)
,

ω p̄n =
Bnā, p̄

B2 − B3
ωā, R p̄n p̄n =

2B2
nā, p̄

(B2 − B1)(B3 − B1)
.

Proof. These are direct consequences of (3-21), Lemma 3.3, and the equations that
finish its proof. To make it clear that ωaā = 0 for all a 6= ā, we note

ωaā ∧ ω p̄ = ωaā ∧ ωn = 0, for all a 6= ā,

which are also implied by the second and fourth equations in the second group in
the proof of Lemma 3.3.

Lemma 3.6. In our situation, we have for all a 6= ā

(3-40) Aa = −Aā = −A p̄ = −An = −
n − 1
12n

, Bnā, p̄ = ±
n − 1

6n

√
3,

Raāaā = 0, Rā p̄ā p̄ =
n − 1

6n
, Rānān =

n − 1
6n

, R p̄n p̄n = −
n − 1

3n
.

Furthermore, also for a 6= ā, the first structure equations can be written as

dωa =

∑
b 6=ā

ωab ∧ ωb, dωā = ±

√
2(n−1)

3n
ω p̄ ∧ ωn,

dω p̄ = ∓

√
n−1
6n

ωā ∧ ωn, dωn = ±

√
n−1
6n

ωā ∧ ω p̄.

Proof. Assuming always that a 6= ā, from (3-39), Lemma 3.5, and the Gauss
Equation (2-11), we now have

Ra p̄a p̄ = Aa + A p̄ = Ranan = Aa + An = 0,

Rā p̄ā p̄ = Aā + A p̄ = Rānān = Aā + An =
2n

n−1
B2

nā, p̄,

R p̄n p̄n = −
n−1
2n

+ A p̄ + An = −
4n

n−1
B2

nā, p̄.
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From these, we obtain

Aa = − A p̄ = − An = −
n−1
4n

+
2n

n−1
B2

nā, p̄,

Aā = −
n−1
4n

+
4n

n−1
B2

nā, p̄.

On the other hand, because ωaā = ωa p̄ = ωan = 0, we obtain from (2-14) that
Raāaā = 0, According to Raāaā = B2

1 + Aa + Aā , we find Aa = −Aā . Putting this
into the above, we find B2

nā, p̄ = ((n − 1)/n)2/12. Then our conclusion follows
immediately from Lemma 3.5. �

Lemma 3.6 shows that, in this case, the Blaschke tensor has exactly two distinct
constant eigenvalues. Therefore, as an application of Theorem 2.4, we have proved:

Theorem 3.7. Let x : Mn
→ Sn+1 (n ≥ 5) be a Möbius isoparametric hypersur-

face with nonparallel Möbius second fundamental form and three distinct Möbius
principal curvatures, one of which is simple. Then locally x can only be Möbius
equivalent to one of these two families of hypersurfaces in Sn+1:

(C1) Minimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

× Hn−p(−r−2) → Sn+1,

where x̃1 = y1/y0, x̃2 = y2/y0,

with y0 ∈ R+, y1 ∈ Rp+2, y2 ∈ Rn−p, 2 ≤ p ≤ n − 1, and r > 0. Also, y1 :

N p
→ Sp+1(r) ↪→ Rp+2 is an immersed umbilic-free minimal hypersurface in

the (p+1)-dimensional sphere of radius r and with constant scalar curvature

(3-41) R̃1 =
np(p − 1) − (n − 1)r2

nr2 .

(y0, y2) : Hn−p(−r−2) → Ln−p+1 is the standard embedding of the hyperbolic
space of sectional curvature −r−2 into the (n − p + 1)-dimensional Lorentz
space with −y2

0 + y2
2 = −r2.

(C2) Nonminimal hypersurfaces defined by

x̃ = (x̃1, x̃2) : M̃n
= N p

× Sn−p(r) → Sn+1,

where x̃1 = y1/y0, x̃2 = y2/y0,

with y0 ∈ R+, y1 ∈ Rp+1, y2 ∈ Rn−p+1, 2 ≤ p ≤ n−1, and r > 0. Also (y0, y1) :

N p
→ Hp+1(−r−2) ↪→ Lp+2, with −y2

0 + y2
1 = −r2, is an immersed umbilic-

free minimal hypersurface in the (p + 1)-dimensional hyperbolic space of
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sectional curvature −r−2 and with constant scalar curvature

(3-42) R̃1 = −
np(p − 1) + (n − 1)r2

nr2 .

y2 : Sn−p(r) → Rn−p+1 is the standard embedding of (n − p)-dimensional
sphere of radius r .

To answer which of the hypersurfaces in C1 and C2 are Möbius isoparametric,
we need to calculate their Möbius invariants, and we do this next.

4. Möbius invariants of hypersurfaces in C1 and C2

Keeping in mind that some of the hypersurfaces in C1 and C2 might be not Möbius
isoparametric, we will sort them out by direct calculation.

Example 4.1. Calculation for hypersurfaces in C1. Compare with [Li and Zhang
2007].

For x̃ = (x̃1, x̃2) as defined under C1 in Theorem 3.7, we have

(4-43) dx̃ = −
dy0

y2
0

(y1, y2) +
1
y0

(dy1, dy2),

and then its Euclidean induced metric is given by

Ĩ = dx̃ · dx̃ = y−2
0 (−dy2

0 + dy2
1 + dy2

2)
∣∣

M̃n .

Let ξ1 be the unit normal vector field of y1 : N p
→ Sp+1(r) ↪→ Rp+2. Then

ξ = (ξ1, 0) ∈ Rn+2 is a unit normal vector field of x̃ . Consequently, by (4-43), the
(Euclidean) second fundamental form h̃ of x̃ is related to the (Euclidean) second
fundamental form h̃∗ of y1 by

h̃ = − dξ · dx̃ = −y−1
0 (dξ1 · dy1) = y−1

0 h̃∗.

Let {Ẽi }1≤i≤p and {Ẽi }p+1≤i≤n be the local orthonormal bases on (N p, dy2
1)

and Hn−p(−r−2), respectively. Then {Ẽi }1≤i≤n form a local orthonormal basis on
M̃n with respect to the metric (−dy2

0 + dy2
1 + dy2

2)
∣∣

M̃n = y2
0 Ĩ .

Put ẽi = y0 Ẽi , 1 ≤ i ≤ n. Then {ẽi }1≤i≤n is a local orthonormal basis on M̃n

with respect to the metric Ĩ . Thus

(4-44)

h̃i j = h̃(ẽi , ẽ j ) = y2
0 h̃(Ẽi , Ẽ j )

= y0h̃∗(Ẽi , Ẽ j ) = y0h̃∗

i j if 1 ≤ i, j ≤ p,

h̃i j = 0 if i > p or j > p.
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From this and the minimality of y1, we see that x̃ : M̃n
→ Sn+1 is also minimal,

that is, H̃ = 0. Therefore, by definition, the Möbius factor ρ̃ of x̃ is determined by

ρ̃2
=

n
n − 1

( n∑
i, j=1

h̃2
i j − nH̃ 2

)
=

n
n − 1

y2
0

p∑
i, j=1

(h̃∗

i j )
2
= y2

0 ,

where in the last equality, we use that
∑p

i, j=1(h̃
∗

i j )
2
= (n −1)/n, which is implied

by (3-41) and the Gauss equation of y1. Hence, the Möbius position vector of x̃ is
Ỹ = ρ̃(1, x̃) = (y0, y1, y2) ∈ Ln+3 and the Möbius metric of x̃ is

(4-45) g̃ = 〈dỸ , dỸ 〉 =
(
−dy2

0 + dy2
1 + dy2

2
)∣∣

M̃n = y2
0 Ĩ .

Therefore, {Ẽi }1≤i≤n is in fact a local orthonormal basis of the Möbius metric g̃.
Furthermore, the Möbius second fundamental form of x̃ is

(4-46) B̃ = ρ̃−1
n∑

i, j=1

(h̃i j − H̃δi j )ω̃i ω̃ j =

p∑
i, j=1

h̃∗

i j ω̃i ω̃ j ,

where {ω̃i }1≤i≤n is the dual basis of {Ẽi }1≤i≤n on M̃n . Note that (4-46) is equivalent
to

(4-47) B̃i j = h̃∗

i j , for 1 ≤ i, j ≤ p; B̃i j = 0, for i > p or j > p.

Since (4-45) shows that (M̃n, g̃) is the Riemannian direct product

(M̃n, g̃) = (N p, dy2
1) × Hn−p(−r−2),

we can use the Gauss equation to write down the Ricci tensor of g̃ with respect to
{Ẽi }1≤i≤n as:

(4-48) R̃i j =



p − 1
r2 δi j −

p∑
k=1

h̃∗

ik h̃∗

k j , if 1 ≤ i, j ≤ p;

−
n − p − 1

r2 δi j , if p + 1 ≤ i, j ≤ n;

0, for all other cases,

which implies that the normalized scalar curvature R̃ of g̃ satisfies

(4-49) n(n − 1)R̃ =
p(p − 1) − (n − p)(n − p − 1)

r2 −

p∑
i, j=1

(
h̃∗

i j
)2

=
p(p − 1) − (n − p)(n − p − 1)

r2 −
n − 1

n
.
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Thus

(4-50)
1

2n
(1 + n2 R̃) =

p(p − 1) − (n − p)(n − p − 1)

2(n − 1)r2 .

From (2-12), (2-13), and (4-47)–(4-50), it follows easily that the Blaschke tensor
of x̃ is given by Ã =

∑n
i, j=1 Ãi j ω̃i ω̃ j , where the Ãi j form a diagonal matrix with

entries Ãi i = 1/(2r2) if 1 ≤ i ≤ p, Ãi i =−1/(2r2) if p+1 ≤ i ≤ n, and 0 elsewhere.
For the Möbius form 8̃ =

∑n
i=1 C̃i ω̃i of x̃ , from (2-4), (4-44) and that H̃ =

0, ρ̃ = y0, we see, for 1 ≤ i ≤ n, that
(4-51)

C̃i = −ρ̃−2
(

ẽi (H̃) +

n∑
j=1

(h̃i j − H̃δi j )ẽ j (log ρ̃)
)

= −y−1
0

p∑
j=1

h̃∗

i j ẽ j (log y0) = 0.

Therefore, we have 8̃ = 0. To summarize the above calculation, we present:

Proposition 4.2. A hypersurface x̃ in C1 is Möbius isoparametric if and only if it
satisfies:

(i) p = 3;

(ii) r =
√

6n/(n − 1);

(iii) y1 : N 3
→ S4

(√
6n/(n − 1)

)
is a minimal isoparametric hypersurface with

vanishing scalar curvature; moreover, it has three distinct principal curva-
tures with values ±

√
(n − 1)/(2n), 0.

Proof. From (3-40) and the expression for Ã, we see that p=3 and r =
√

6n/(n−1).
From (3-41) we find that y1 : N 3

→ S4(r) has vanishing scalar curvature. From
(4-46), we know that all the nonzero Möbius principal curvatures of x̃ are equal
to the nonzero Euclidean principal curvatures of y1. From (3-39), we then deduce
that the principal curvatures of y1 are exactly ±

√
(n − 1)/(2n), 0. �

Remark 4.3. According to E. Cartan [1939], minimal isoparametric hypersurfaces
in S4(r), r =

√
6n/(n − 1), with three distinct principal curvatures do exist, and

they are unique. More precisely, the hypersurface is the tube of constant radius
over the standard Veronese embedding of RP2 into S4(r) with principal curvatures
±

√
(n − 1)/(2n), 0.

Example 4.4. Calculation for hypersurfaces in C2. Compare with [Li and Zhang
2007].

For x̃ = (x̃1, x̃2) as defined under C2 in Theorem 3.7, we have

(4-52) dx̃ = −
dy0

y2
0

(y1, y2) +
1
y0

(dy1, dy2),
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and then its Euclidean induced metric is

Ĩ = dx̃ · dx̃ = y−2
0 (−dy2

0 + dy2
1 + dy2

2)
∣∣

M̃n .

Let (ξ0, ξ1) be the unit normal vector field of

ỹ := (y0, y1) : N p
→ Hp+1(−r−2) ↪→ Lp+2,

where ξ0 ∈ R+, ξ1 ∈ Rp+1. Then we can easily verify that

ξ = (ξ1, 0) − ξ0 x̃ ∈ Rn+2

is a unit normal vector field of x̃ , and the Euclidean second fundamental form h̃ of
x̃ is given by

h̃ = −dξ · dx̃ = ξ0dx̃ · dx̃ − (dξ1, 0) · dx̃ = −y−1
0 (−dξ0dy0 + dξ1 · dy1) + ξ0 Ĩ

= −y−1
0 〈d(ξ0, ξ1), d(y0, y1)〉 + ξ0 Ĩ = y−1

0 h̃∗
+ ξ0 Ĩ ,

where h̃∗ denotes the Euclidean second fundamental form of ỹ : N p
→Hp+1(−r−2)

and, in the third equality, we have used dξ1 · y1 = y0dξ0 which is implied by

− ξ0 y0 + ξ1 · y1 = − ξ0dy0 + ξ1 · dy1 = 0.

Let {Ẽi }1≤i≤p and {Ẽi }p+1≤i≤n be the local orthonormal bases on (N p, d ỹ2)

and Sn−p(r), respectively. Then {Ẽi }1≤i≤n form a local orthonormal basis on M̃n

with respect to the metric (−dy2
0 + dy2

1 + dy2
2)

∣∣
M̃n = y2

0 Ĩ .
Put ẽi = y0 Ẽi , 1 ≤ i ≤ n. Then {ẽi }1≤i≤n is a local orthonormal basis on M̃n

with respect to the metric Ĩ . Thus, we have, for 1 ≤ i, j ≤ p,

h̃i j = h̃(ẽi , ẽ j ) = y2
0 h̃(Ẽi , Ẽ j ) = y0h̃∗(Ẽi , Ẽ j ) + ξ0 y2

0 Ĩ (Ẽi , Ẽ j ) = y0h̃∗

i j + ξ0δi j

and, for i > p or j > p,

h̃i j = y2
0 h̃(Ẽi , Ẽ j ) = y0h̃∗(Ẽi , Ẽ j ) + ξ0 y2

0 Ĩ (Ẽi , Ẽ j ) = ξ0δi j .

From this and the minimality of ỹ, the mean curvature of x̃ : M̃n
→ Sn+1 is

H̃ =
1
n

n∑
i=1

h̃i i =
y0

n

p∑
i=1

h̃∗

i i + ξ0 = ξ0.

Therefore, by definition, the Möbius factor ρ̃ of x̃ is determined by

ρ̃2
=

n
n − 1

( n∑
i, j=1

h̃2
i j − nH̃ 2

)
=

n
n − 1

y2
0

p∑
i, j=1

(
h∗

i j
)2

= y2
0 ,

where, in the last equality, we use
∑p

i, j=1(h̃
∗

i j )
2
= (n − 1)/n, which is implied by

(3-42) and the Gauss equation of ỹ.
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Hence, the Möbius position vector of x̃ is Ỹ = ρ̃(1, x̃) = (y0, y1, y2) ∈ Ln+3 and
the Möbius metric of x̃ is

(4-53) g̃ = 〈dỸ , dỸ 〉 =
(
−dy2

0 + dy2
1 + dy2

2
)∣∣

M̃n = y2
0 Ĩ .

Therefore, {Ẽi }1≤i≤n is in fact a local orthonormal basis of the Möbius metric g̃.
Furthermore, the Möbius second fundamental form of x̃ is

B̃ = ρ̃−1
n∑

i, j=1

(h̃i j − H̃δi j )ω̃i ω̃ j =

p∑
i, j=1

h̃∗

i j ω̃i ω̃ j ,

where {ω̃i }1≤i≤n is the dual basis of {Ẽi }1≤i≤n on M̃n . This is equivalent to

(4-54) B̃i j =

{
h̃∗

i j 1 ≤ i, j ≤ p,

0 i > p or j > p.

Since (4-53) shows that (M̃n, g̃) is the Riemannian direct product

(M̃n, g̃) = (N p, d ỹ2) × Sn−p(r),

we can use the Gauss equation to write down the Ricci tensor of g̃ with respect to
{Ẽi }1≤i≤n as

(4-55) R̃i j =


−

p − 1
r2 δi j −

p∑
k=1

h̃∗

ik h̃∗

k j if 1 ≤ i, j ≤ p,

n − p − 1
r2 δi j if p + 1 ≤ i, j ≤ n,

0, for all other cases,

which implies that the normalized scalar curvature R̃ of g̃ satisfies

(4-56)
n(n − 1)R̃ =

(n − p)(n − p − 1) − p(p − 1)

r2 −

p∑
i, j=1

(
h̃∗

i j
)2

=
(n − p)(n − p − 1) − p(p − 1)

r2 −
n − 1

n
.

Thus

(4-57)
1

2n
(1 + n2 R̃) =

(n − p)(n − p − 1) − p(p − 1)

2(n − 1)r2 .

From (2-12), (2-13) and (4-54)–(4-57), it follows that the Blaschke tensor of x̃
is given by Ã =

∑n
i, j=1 Ãi j ω̃i ω̃ j , where the Ãi j form a diagonal matrix with entries

Ãi i = −1/(2r2) if 1 ≤ i ≤ p, Ãi i = 1/(2r2) if p + 1 ≤ i ≤ n, and 0 elsewhere.
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To show that x̃ : M̃n
→ Sn+1 has vanishing Möbius form, we can calculate

directly according to its Equation (2-4). Nevertheless, compared with (4-51), it is
not easy this time. Here is a simple argument proving 8̃ = 0: On the Riemannian
direct product (M̃n, g̃)= (N p, d ỹ2)×Sn−p(r), the Blaschke tensor has two distinct
constant eigenvalues as seen from the expression of Ã, and their eigendistributions
are both integrable with (N p, d ỹ2) and Sn−p(r) as their respective integrable man-
ifolds. Then we easily see that the Blaschke tensor is also parallel. Now, according
to [Li and Zhang 2006], we have 8̃ = 0.

Then, similarly to Proposition 4.2, if we compare the expression of Ã with (3-40)
and (4-54) with (3-39), we can summarize the above calculation:

Proposition 4.5. If a hypersurface x̃ in C2 is Möbius isoparametric, then must
necessarily satisfy three conditions:

(i) p = n − 3;

(ii) r =
√

6n/(n − 1);

(iii) ỹ = (y0, y1) : N n−3
→ Hn−2(−(n − 1)/(6n)) is a minimal isoparametric hy-

persurface with principal curvatures ±
√

(n − 1)/(2n) and 0 with multiplicity
n − 5.

On the other hand, according to E. Cartan [1938], an isoparametric hypersurface
Mn in hyperbolic space Hn+1 can have at most two distinct principal curvatures,
and Mn must be either totally umbilic or else an open subset of a standard product
Sk

× Hn−k in Hn+1; moreover, the later must be nonminimal. From this fact and
Proposition 4.5, we have proved:

Proposition 4.6. There are no Möbius isoparametric hypersurfaces in C2. More
precisely, any hypersurface in C2, if it exists, is of vanishing Möbius form, has two
distinct, constant Blaschke eigenvalues, and nevertheless has nonconstant Möbius
principal curvatures.

5. Proof of the Main Theorem

Let x : Mn
→ Sn+1 be a Möbius isoparametric hypersurface with three distinct

Möbius principal curvatures, one of which is simple. Then we have two cases:
if x has parallel Möbius second fundamental form, then we apply Theorem 2.3
to obtain that it is locally Möbius equivalent to a hypersurface in (i) of the Main
Theorem; if x has nonparallel Möbius second fundamental form, then we can apply
Theorem 3.7, Proposition 4.2, Remark 4.3 and Proposition 4.6 to conclude that it
is locally Möbius equivalent to the hypersurface in (ii) of the Main Theorem. �

Final Remark. For the general theory of Möbius submanifolds in Sn+p (see [Wang
1998]), the Möbius form 8 is an important invariant. In many interesting situations,
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we find that 8 = 0 is a very natural condition. For details, we refer to [Guo et al.
2001; Li et al. 2001; Liu et al. 2001; Li et al. 2002; 2003b; Li and Wang 2003a;
Hu and Li 2003; 2004; 2005a; 2005b; Hu et al. 2007; Li and Zhang 2006; 2007],
a series of nice results established in recent years under the condition 8 = 0.
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X. X. Li for his many valuable comments on the first version of this paper. Both
authors are greatly indebted to [Li and Zhang 2007], which makes the present paper
more easily accessible.

References

[Akivis and Goldberg 1996] M. A. Akivis and V. V. Goldberg, Conformal differential geometry and
its generalizations, Pure and Applied Mathematics (New York), John Wiley & Sons, New York,
1996. A Wiley-Interscience Publication. MR 98a:53023 Zbl 0863.53002

[Akivis and Goldberg 1997] M. A. Akivis and V. V. Goldberg, “A conformal differential invariant
and the conformal rigidity of hypersurfaces”, Proc. Amer. Math. Soc. 125:8 (1997), 2415–2424.
MR 97j:53017 Zbl 0887.53030

[Cartan 1938] É. Cartan, “Familles de surfaces isoparamétriques dans les espaces à courbure con-
stante”, Ann. Mat. Pura Appl. 17:1 (1938), 177–191. MR 1553310 Zbl 0020.06505

[Cartan 1939] E. Cartan, “Sur des familles remarquables d’hypersurfaces isoparamétriques dans les
espaces sphériques”, Math. Z. 45 (1939), 335–367. MR 1,28f Zbl 0021.15603

[Cecil and Jensen 1998] T. E. Cecil and G. R. Jensen, “Dupin hypersurfaces with three principal
curvatures”, Invent. Math. 132:1 (1998), 121–178. MR 2000k:53051 Zbl 0908.53007

[Cecil and Jensen 2000] T. E. Cecil and G. R. Jensen, “Dupin hypersurfaces with four principal
curvatures”, Geom. Dedicata 79:1 (2000), 1–49. MR 2001g:53103 Zbl 0965.53039

[Guo et al. 2001] Z. Guo, H. Li, and C. Wang, “The second variational formula for Willmore sub-
manifolds in Sn”, Results Math. 40:1-4 (2001), 205–225. Dedicated to Shiing-Shen Chern on his
90th birthday. MR 2003b:53065 Zbl 01698602

[Hu and Li 2003] Z. Hu and H. Li, “Submanifolds with constant Möbius scalar curvature in Sn”,
Manuscripta Math. 111:3 (2003), 287–302. MR 2004c:53080 Zbl 1041.53007

[Hu and Li 2004] Z. Hu and H. Li, “Classification of hypersurfaces with parallel Möbius sec-
ond fundamental form in Sn+1”, Sci. China Ser. A 47:3 (2004), 417–430. MR 2005c:53066
Zbl 1082.53016

[Hu and Li 2005a] Z. Hu and H. Li, “Classification of Möbius isoparametric hypersurfaces in S4”,
Nagoya Math. J. 179 (2005), 147–162. MR 2006e:53098 Zbl 05010498

[Hu and Li 2005b] Z. Hu and H. Li, “A rigidity theorem for hypersurfaces with positive Möbius
Ricci curvature in Sn+1”, Tsukuba J. Math. 29:1 (2005), 29–47. MR 2006g:53077 Zbl 05015594

[Hu et al. 2007] Z. Hu, H. Li, and C. Wang, “Classification of Möbius isoparametric hypersurfaces
in S5.”, Monatsh. Math. 151:3 (2007), 201–222. Zbl pre05180833

[Li and Wang 2003a] H. Li and C. Wang, “Möbius geometry of hypersurfaces with constant mean
curvature and scalar curvature”, Manuscripta Math. 112:1 (2003), 1–13. MR 2004e:53092

http://www.ams.org/mathscinet-getitem?mr=98a:53023
http://www.emis.de/cgi-bin/MATH-item?0863.53002
http://dx.doi.org/10.1090/S0002-9939-97-03828-8
http://dx.doi.org/10.1090/S0002-9939-97-03828-8
http://www.ams.org/mathscinet-getitem?mr=97j:53017
http://www.emis.de/cgi-bin/MATH-item?0887.53030
http://www.ams.org/mathscinet-getitem?mr=1553310
http://www.emis.de/cgi-bin/MATH-item?0020.06505
http://dx.doi.org/10.1007/BF01580289
http://dx.doi.org/10.1007/BF01580289
http://www.ams.org/mathscinet-getitem?mr=1,28f
http://www.emis.de/cgi-bin/MATH-item?0021.15603
http://dx.doi.org/10.1007/s002220050220
http://dx.doi.org/10.1007/s002220050220
http://www.ams.org/mathscinet-getitem?mr=2000k:53051
http://www.emis.de/cgi-bin/MATH-item?0908.53007
http://dx.doi.org/10.1023/A:1005008224753
http://dx.doi.org/10.1023/A:1005008224753
http://www.ams.org/mathscinet-getitem?mr=2001g:53103
http://www.emis.de/cgi-bin/MATH-item?0965.53039
http://www.ams.org/mathscinet-getitem?mr=2003b:53065
http://www.emis.de/cgi-bin/MATH-item?01698602
http://www.ams.org/mathscinet-getitem?mr=2004c:53080
http://www.emis.de/cgi-bin/MATH-item?1041.53007
http://dx.doi.org/10.1360/03ys0134
http://dx.doi.org/10.1360/03ys0134
http://www.ams.org/mathscinet-getitem?mr=2005c:53066
http://www.emis.de/cgi-bin/MATH-item?1082.53016
http://projecteuclid.org/getRecord?id=euclid.nmj/1128518459
http://www.ams.org/mathscinet-getitem?mr=2006e:53098
http://www.emis.de/cgi-bin/MATH-item?05010498
http://www.ams.org/mathscinet-getitem?mr=2006g:53077
http://www.emis.de/cgi-bin/MATH-item?05015594
http://www.emis.de/cgi-bin/MATH-item?pre05180833
http://dx.doi.org/10.1007/s00229-003-0383-3
http://dx.doi.org/10.1007/s00229-003-0383-3
http://www.ams.org/mathscinet-getitem?mr=2004e:53092


MÖBIUS HYPERSURFACES WITH THREE PRINCIPAL CURVATURES 311

[Li and Wang 2003b] H. Li and C. Wang, “Surfaces with vanishing Moebius form in Sn”, Acta
Math. Sin. (Engl. Ser.) 19:4 (2003), 671–678. MR 2004j:53076 Zbl 1078.53012

[Li and Zhang 2006] X. Li and F. Zhang, “A classification of immersed hypersurfaces in spheres
with parallel Blaschke tensors”, Tohoku Math. J. (2) 58:4 (2006), 581–597. MR 2297201

[Li and Zhang 2007] X. Li and F. Zhang, “Immersed hypersurfaces in the unit sphere Sm+1 with
constant Blaschke eigenvalues”, Acta Math. Sin., Engl. Ser. 23:3 (2007), 533–548. Zbl pre05162331

[Li et al. 2001] H. Li, C. Wang, and F. Wu, “A Moebius characterization of Veronese surfaces in
Sn”, Math. Ann. 319:4 (2001), 707–714. MR 2002b:53098 Zbl 1031.53086

[Li et al. 2002] H. Li, H. Liu, C. Wang, and G. Zhao, “Möbius isoparametric hypersurfaces in
Sn+1 with two distinct principal curvatures”, Acta Math. Sin. (Engl. Ser.) 18:3 (2002), 437–446.
MR 2003h:53079 Zbl 1030.53017

[Liu et al. 2001] H. Liu, C. Wang, and G. Zhao, “Möbius isotropic submanifolds in Sn”, Tohoku
Math. J. (2) 53:4 (2001), 553–569. MR 2002f:53096 Zbl 1014.53010

[Niebergall 1991] R. Niebergall, “Dupin hypersurfaces in R5. I”, Geom. Dedicata 40:1 (1991), 1–
22. MR 92k:53106 Zbl 0733.53031

[Niebergall 1992] R. Niebergall, “Dupin hypersurfaces in R5. II”, Geom. Dedicata 41:1 (1992),
5–38. MR 93b:53008 Zbl 0824.53008

[Pinkall 1985] U. Pinkall, “Dupinsche Hyperflächen in E4”, Manuscripta Math. 51:1-3 (1985), 89–
119. MR 86m:53010

[Thorbergsson 1983] G. Thorbergsson, “Dupin hypersurfaces”, Bull. London Math. Soc. 15 (1983),
493–498. MR 85b:53066 Zbl 0529.53044

[Wang 1998] C. Wang, “Moebius geometry of submanifolds in Sn”, Manuscripta Math. 96:4 (1998),
517–534. MR 2000a:53019 Zbl 0912.53012

Received August 20, 2006. Revised December 22, 2006.

ZEJUN HU

DEPARTMENT OF MATHEMATICS

ZHENGZHOU UNIVERSITY

ZHENGZHOU 450052, HENAN

CHINA

huzj@zzu.edu.cn

DEYING LI

DEPARTMENT OF MATHEMATICS AND PHYSICS

PINGDINGSHAN INSTITUTE OF TECHNOLOGY

PINGDINGSHAN 467001, HENAN

CHINA

lideying@hncj.edu.cn

http://dx.doi.org/10.1007/s10114-003-0309-8
http://www.ams.org/mathscinet-getitem?mr=2004j:53076
http://www.emis.de/cgi-bin/MATH-item?1078.53012
http://www.ams.org/mathscinet-getitem?mr=2297201
http://www.emis.de/cgi-bin/MATH-item?pre0516233
http://dx.doi.org/10.1007/PL00004455
http://dx.doi.org/10.1007/PL00004455
http://www.ams.org/mathscinet-getitem?mr=2002b:53098
http://www.emis.de/cgi-bin/MATH-item?1031.53086
http://dx.doi.org/10.1007/s10114-002-0173-y
http://dx.doi.org/10.1007/s10114-002-0173-y
http://www.ams.org/mathscinet-getitem?mr=2003h:53079
http://www.emis.de/cgi-bin/MATH-item?1030.53017
http://dx.doi.org/10.2748/tmj/1113247800
http://www.ams.org/mathscinet-getitem?mr=2002f:53096
http://www.emis.de/cgi-bin/MATH-item?1014.53010
http://dx.doi.org/10.1007/BF00181647
http://www.ams.org/mathscinet-getitem?mr=92k:53106
http://www.emis.de/cgi-bin/MATH-item?0733.53031
http://dx.doi.org/10.1007/BF00181540
http://www.ams.org/mathscinet-getitem?mr=93b:53008
http://www.emis.de/cgi-bin/MATH-item?0824.53008
http://dx.doi.org/10.1007/BF01168348
http://www.ams.org/mathscinet-getitem?mr=86m:53010
http://dx.doi.org/10.1112/blms/15.5.493
http://www.ams.org/mathscinet-getitem?mr=85b:53066
http://www.emis.de/cgi-bin/MATH-item?0529.53044
http://dx.doi.org/10.1007/s002290050080
http://www.ams.org/mathscinet-getitem?mr=2000a:53019
http://www.emis.de/cgi-bin/MATH-item?0912.53012
mailto:huzj@zzu.edu.cn
mailto:lideying@hncj.edu.cn

	1. Introduction
	2. Möbius invariants for hypersurfaces in Sn+1
	3. Möbius isoparametric hypersurfaces with =3
	4. Möbius invariants of hypersurfaces in C1 and C2
	5. Proof of the Main Theorem
	Acknowledgements
	References

