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SAMANGI MUNASINGHE AND EMIL J. STRAUBE

We provide geometric conditions on the set of boundary points of infinite
type of a smooth bounded pseudoconvex domain in Cn implying that the
∂-Neumann operator is compact. These conditions are formulated in terms
of certain short time flows in suitable complex tangential directions. It is
noteworthy that compactness is not established via the known potential the-
oretic sufficient conditions. Our results generalize to Cn the C2 results of the
second author.

1. Introduction

In [Straube 2004], the second author provided geometric sufficient conditions for
compactness of the ∂-Neumann operator on the boundary points of infinite type
of a bounded smooth pseudoconvex domain in C2. In this paper, we study the
situation in higher dimensions and obtain suitable generalizations of the results in
that reference.

Let � be a bounded pseudoconvex domain in Cn . The ∂-Neumann operator Nq

on (0, q)-forms is the inverse of the complex Laplacian ∂∂∗
+ ∂∗∂ associated to

the Dolbeault complex. For detailed information on the ∂-Neumann problem and
related questions, see, for example, [Folland and Kohn 1972; Boas and Straube
1999; Chen and Shaw 2001; Lieb and Michel 2002; McNeal 2006; Straube 2006].
The compactness of Nq is discussed in [Fu and Straube 2001; Straube 2006].

Whether or not Nq is compact is relevant in a number of situations. These
include global regularity [Kohn and Nirenberg 1965], the Fredholm theory of
Toeplitz operators [Henkin and Iordan 1997], and the (non)existence of solution
operators to ∂ with well-behaved solution kernels [Hefer and Lieb 2000]. There are
also interesting connections to the theory of Schrödinger operators [Fu and Straube
2002; Christ and Fu 2005]. Catlin [1984] gave a sufficient condition, which he
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called property (P): near the boundary, there should exist plurisubharmonic func-
tions bounded between 0 and 1 with arbitrarily large Hessians. (The smoothness as-
sumptions on the boundary of the domain were considerably weakened in [Henkin
and Iordan 1997] and were completely removed in [Straube 1997].) Property (P)
was studied in detail (under the name B-regularity) by Sibony [1987]; see also
[Sibony 1991]. On sufficiently regular domains, property (P) is equivalent to a
quantitative version of Oka’s lemma [Harrington 2007]. A version of property(P),
called condition (P̃), was introduced, and shown to still imply compactness, by
McNeal [2002]. The uniform bound on the family of functions is replaced by a
uniform bound on the gradient measured in the metric induced by the complex
Hessian of the functions. (Both (P) and (P̃) can also be formulated naturally at
the level of (0, q)-forms; then (Pq) implies (Pq+1), (P̃q) implies (P̃q+1), and (Pq)

implies (P̃q), for 1 ≤ q ≤ n; see [Fu and Straube 2001; McNeal 2002; Straube
2006].) A sufficient condition that is intermediate, in a sense one can make precise
(see [Straube 2006] for discussion), had appeared earlier in [Takegoshi 1991].

On locally convexifiable domains, (Pq ) and (P̃q ) are equivalent and equivalent to
the compactness of Nq for 1 ≤ q ≤ n. Moreover, the three properties are equivalent
to a simple geometric condition, the absence of (germs of) q-dimensional varieties
from the boundary. For this, see [Fu and Straube 1998; 2001]. Thus the poten-
tial theory, the analysis, and the geometry mesh perfectly on locally convexifiable
domains. It is also known that on smooth bounded Hartogs domains in C2, com-
pactness of N1 is equivalent to (P1) and to (P̃1); see [Fu and Straube 2002; Christ
and Fu 2005]. However, it is well understood that the boundaries of convex (hence
of locally convexifiable) domains do not exhibit some of the more intriguing as-
pects of the interaction with the ambient space that occur on general pseudoconvex
boundaries [D’Angelo 1993]. For example, matters concerning orders of contact
are always decided by orders of contact of manifolds (affine manifolds in the convex
case) [McNeal 1992; Boas and Straube 1992; Yu 1992; Fu and Straube 1998]. A
similar caveat applies in the case of domains in C2 [D’Angelo 1993]. As a result,
these facts give no clear indication of how much (or how little) room there is, in the
general pseudoconvex case, between (P)/(P̃) and compactness of the ∂-Neumann
operator. (As far as we know, the exact relationship between (P) and (P̃) is also
unknown, but we do not address this question here.)

For obstructions, the situation is as follows. q-dimensional varieties in the
boundary obstruct property (Pq ); see [Sibony 1987; Fu and Straube 2001; Straube
≥ 2007]. Analytic discs in the boundary have been shown to obstruct condition
(P̃1) in [Straube 2006]. A q-dimensional complex manifold M in the boundary
of a smooth bounded pseudoconvex domain is known to be an obstruction to
compactness of Nq , provided M contains a point at which the domain is strictly
pseudoconvex in the directions transverse to M [Şahutoğlu 2006; Şahutoğlu and
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Straube 2006], but it is an open question whether the conclusion holds without
assuming that there is such a point. One would expect that a flatter boundary
is even more favorable for noncompactness, but the methods of [Şahutoğlu and
Straube 2006] do not seem strong enough to yield noncompactness without some
additional assumption on how M sits inside the boundary. On the other hand, both
for (P)/(P̃) and for compactness of the ∂-Neumann operator, there are obstructions
more subtle than varieties in the boundary [Sibony 1987; Matheos 1997; Fu and
Straube 2001]. For a connection of some of these issues with properties of the
Kobayashi metric, see [Kim 2004].

[Straube 2004] provided, for the first time, a method to prove compactness of the
∂-Neumann operator that does not proceed by verifying property (P) or condition
(P̃). That the dimension is two was only used in applying so-called maximal
estimates. Consequently, these results hold more generally on domains in Cn , n ≥2,
where such estimates hold, or, equivalently, on domains where all the eigenvalues
of the Levi form are comparable [Derridj 1978; 1991]. However, for the problem
of compactness of the ∂-Neumann operator, this assumption is too restrictive. It
excludes, for example, the situation where the Levi form has at most one degenerate
eigenvalue (see Remark 5 below). However, this assumption on the Levi form
has been shown to be a useful generalization of the case of C2 in the context of
compactness [Şahutoğlu 2006; Şahutoğlu and Straube 2006].

The obvious examples that satisfy the assumptions in Theorem 1 below also
satisfy property (P̃); we do not know whether the theorem can actually furnish do-
mains where the ∂-Neumann operator is compact but where (P̃) fails. But just as in
[Straube 2004], we obtain a simple geometric proof of compactness in these cases.
Moreover, the assumptions are in some instances “minimal”: they are necessary
modulo the size of certain balls; see Remark 6 for details.

We will only consider the case q = 1 in the remainder of this paper. This is the
main case in terms of understanding compactness. But note that compactness of N1

implies compactness of Nq for q > 1. (See [McNeal 2003; Fu 2005, Proposition
2.2]; this fact is also implicit in [Kohn 2002, Proposition 5.2].)

2. Results

If Z is a (real) vector field defined in some open subset of the boundary (or of Cn),
we denote by Ft

Z the flow generated by Z . We use the D’Angelo’s notion of finite
or infinite type [1993]. For a boundary point ζ , we denote by λ0(ζ ) the smallest
eigenvalue of the Levi form of the boundary at ζ . Recall that “the” Levi form is
the restriction to the complex tangent space of the complex Hessian Hρ(w, w̄) =∑n

j,k=1(∂
2ρ/∂z j∂zk)w jwk of a defining function ρ, and that the relevant properties

of this restriction do not depend on the choice of ρ. In particular, the condition
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in Theorem 1 below is independent of this choice. Since the domains in question
are pseudoconvex, λ0(ζ ) ≥ 0. For a set of real vector fields T1, . . . , Tm on an open
subset of b� (or of Cn), we define spanR(T1, . . . , Tm) to be the set of all linear
combinations of T1, . . . , Tm whose coefficients are smooth real-valued functions
(not necessarily constants).

Theorem 1. Let � be a C∞-smooth bounded pseudoconvex domain in Cn . De-
note by K the set of boundary points of infinite type. Assume that there exist
smooth complex tangential vector fields X1, . . . Xm (of type (1, 0)), defined on b�

near K , so that Hρ(X i (ζ ), X i (ζ )) ≤ Cλ0(ζ ), for some constant C , a sequence
{ε j }

∞

j=1 with lim j→∞ ε j = 0, and constants C1, C2 > 0, C3 with 1 ≤ C3 <

(n+1)/n, so that the following holds. For every j ∈ N and p ∈ K there is a
real vector field Z p, j ∈ spanR(Re X1, Im X1, . . . , Re Xm, Im Xm) of unit length,
defined in some neighborhood of p in b� with max|div Z p, j | ≤ C1, such that
F

ε j
Z p, j

(
B(p, C2(ε j )

C3) ∩ K
)

⊆ b� \ K . Then the ∂̄-Neumann operator N1 on �

is compact.

Remark 1. In C2, take m = 1 and X1 = L , where L is a smooth nonvanishing
complex tangential vector field of type (1, 0) on b�. Then the condition on the
vector fields Z p, j becomes simply that they be complex tangential, as in [Straube
2004], and Theorem 1 therefore generalizes the main result there.

Remark 2. Compared to the main result in [Straube 2004], Theorem 1 assumes
additionally that there is a family of vector fields X1 . . . Xm satisfying

(1) Hρ(X j (ζ ), X j (ζ )) ≤ Cλ0(ζ ) ,

such that the vector fields Z p, j are contained in the linear span (over R) of the real
and imaginary parts of these fields (as opposed to just being complex tangential).
Without some assumption on the fields Z p, j more restrictive than being complex
tangential, such as the one made here, the result does not generalize to Cn . To see
this, consider a smooth bounded convex domain in C3 that is strictly convex except
for an analytic (affine) disc in the boundary. Then one can flow along complex
tangential directions from points of the disc into the set of strictly (pseudo) convex
boundary points as required in the second part of the assumption in the theorem.
Nonetheless, because there is a disc in the boundary, the ∂-Neumann operator on
(0, 1)-forms is not compact on such a domain; see [Fu and Straube 1998].

Remark 3. In the previous example, the value of the Levi form in the direction
parallel to the disc apparently goes to zero faster, upon approach to the disc, than the
value in the direction transverse to the disc. Thus (1) cannot hold for a vector field
transverse to the disc, and Theorem 1 does not apply. It would be very desirable to
have a direct general proof of this, that is, a proof that the assumptions in Theorem
1 exclude discs from the boundary (or, less likely, a counterexample). This relates



COMPLEX TANGENTIAL FLOWS AND COMPACTNESS 347

to the open question of whether discs in the boundary generally obstruct compact-
ness (for what is known, see the introduction). Note that in C2, such discs are
known to obstruct compactness [Fu and Straube 2001]; in this case, the theorem’s
assumptions obviously exclude discs from the boundary.

Remark 4. Because compactness of the ∂-Neumann operator follows from a com-
pactness estimate for forms supported in fixed, but possibly small neighborhoods
of boundary points (see [Fu and Straube 2001], for example), there is a version of
Theorem 1 where the assumptions are localized. See Example 3 below.

In Theorem 1, one would like to have a collection of vector fields {X j }
m
j=1 such

that, at each point p of K , spanR{Re X1(p), Im X1(p), . . . , Re Xm(p), Im Xm(p)}

is as big as possible, thus putting the least restrictions on the fields Z p, j . On the
other hand, this needs to be balanced with the requirement (1).

Example 1. When the eigenvalues of the Levi form are all comparable, any finite
collection of complex tangential vector fields X1, . . . , Xm will satisfy condition (1).
Taking a collection that spans T C

b�(p) at each point p ∈ K , we see that this part of
the assumptions of Theorem 1 reduces to Z p, j being complex tangential (as in C2).
Domains where all the eigenvalues of the Levi form are comparable play a special
role in the theory of the ∂-Neumann problem: certain estimates, called maximal es-
timates, hold. This class of domains was studied in detail by Derridj [1978; 1991].

Example 2. Assume there exists a smooth complex tangential vector field X1

near K such that for ζ ∈ K , X1(ζ ) is an eigenvector associated with the smallest
eigenvalue of the Levi form at ζ . This vector field trivially satisfies the condition
(1). Then the assumption in Theorem 1 requires that Z p, j (ζ ) is in the two real-
dimensional plane spanned by X1(ζ ) for all ζ .

Example 3. Assume that the Levi form has at most one degenerate eigenvalue at
each point of K (hence near K ). Fix a point p ∈ K . Choose an (n−2)-dimensional
subspace of T C

b�(p) on which the Levi form is strictly positive, and choose a basis.
Extending the basis vectors to local sections of T C

b� gives vector fields (defined
near p) Y2, . . . , Yn−1. In a neighborhood of p, the Levi form is strictly positive
on the span of Y2, . . . , Yn−1. As a consequence, at each point there is a unique
one-dimensional subspace of T C

b� that is orthogonal to this span with respect to
the Levi form. Indeed, if Y1 is such that Y1, . . . , Yn−1 is a basis for T C

b� (near
p), then X1 = Y1 + b2Y2 · · · + bn−1Yn−1, where b j = −Hρ(Y1, Y j )/Hρ(Y j , Y j ),
j = 2, . . . , n−1, will span this subspace. This was observed already in [Machedon
1988, Lemma 2.1]. When p ∈ K , the eigenvector of the Levi form at p with zero
eigenvalue is orthogonal to T C

b�(p) with respect to the Levi form (because the Levi
form is positive definite). Therefore, by uniqueness, X1(p) is an eigenvector of the
Levi form at p with eigenvalue zero. As a result, Hρ(X1(ζ ), X1(ζ )) ≤ Cλ0(ζ ) for
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ζ close enough to p (by continuity), that is, (1) holds for the family consisting of
the single field X1. We note that when ζ is a strictly pseudoconvex point, X1(ζ )

need not be an eigenvector of the Levi form. By multiplying with a cutoff function
that is identically equal to one near p, we may assume that X1(ζ ) is defined on
all of b�, with (1) still valid. Of course, this is at the expense of having a trivial
span on a big set. We may proceed in two ways. We can cover K with finitely
many open sets U1, . . . , Us on which the cutoff functions multiplying these local
fields are one, and then add finitely many of the fields. However, the resulting
field may still vanish at some points of K . Alternatively, we can take advantage
of the fact that compactness localizes: it suffices to prove a compactness estimate
for forms supported in (small) neighborhoods of boundary points (as long as the
neighborhood do not depend on the ε in the compactness estimate). The proof
of Theorem 1, using the field X j , gives a compactness estimate for forms whose
support meets the boundary in one of the U j ’s. Since the U j ’s cover K , the result
is a compactness estimate for all forms in dom(∂)∩dom(∂∗) (since away from K ,
we have subelliptic estimates).

Remark 5. On the domains discussed in Example 3, the Levi form is locally
diagonalizable (use Gram–Schmidt to orthonormalize Y2, . . . , Yn−1 with respect
to the Levi form). Derridj [1991, Theorem 7.1] showed that if maximal estimates
hold at p ∈ b� and p is a weakly pseudoconvex point, then the Levi form of �

cannot be diagonalizable near p when � is a domain in Cn with n ≥ 3. Therefore,
Examples 1 and 2 are mutually exclusive (when n ≥ 3).

Remark 6. In Example 3, the assumptions in the theorem are “minimal”, that is,
they are necessary modulo the size of the balls B(p, C2(ε j )

C3). The discussion is
analogous to that of [Straube 2004, Remarks 2 and 3] but uses recent results from
[Şahutoğlu and Straube 2006]. For p ∈ K , let X1 be the complex tangential field
from Example 3 above (defined near p, with Hρ(X1(p), X1(p)) = 0). Denote
by T θ the field T θ

= cos(θ) Re X1 + sin(θ) Im X1. For ζ near p, set Mζ,θ =

{Ft
T θ (ζ ) | 0 ≤ θ ≤ 2π, 0 ≤ t ≤ t0}. Then Mζ,θ is a smooth two-dimensional

submanifold of the boundary. Because N1 is compact, the boundary contains no
analytic discs (since the Levi form has at most one degenerate eigenvalue; see
[Şahutoğlu and Straube 2006, Theorem 1]). Therefore, [Şahutoğlu and Straube
2006, Lemma 3] implies that there exist points ζ ∈ MT θ arbitrarily close to p with
Hρ(X1(ζ ), X1(ζ ))> 0. Because of the way X1 was constructed, such a point ζ is a
strictly pseudoconvex point. Consequently, for ε j > 0 and ζ near p, there exist real
fields Zζ, j ∈ spanR(Re X1, Im X1) of unit length so that F

ε j
Zζ, j

(z) /∈ K for z close
enough to ζ . This yields balls as in the theorem, but without control of the radii
from below in terms of ε j . Because of the form of Zζ, j , the uniform boundedness
condition on the divergence of the fields Zζ, j is satisfied (near p).
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We say that b� \ K satisfies a complex tangential cone condition if there exists
a finite, open real cone 0 in Cn

≈ R2n such that: For each p ∈ K , there exists a
complex tangential direction such that when 0 is moved by a rigid motion to have
vertex at p and axis in that direction (that is, in the two dimensional real affine
subspace determined by that direction), the (open) cone obtained intersects b� in
a set contained in b� \K .

Theorem 1 has the following corollaries.

Corollary 1. Let � be a C∞-smooth bounded pseudoconvex domain in Cn . Denote
by K the set of boundary points of infinite type. For all points ζ in a neighborhood
of K in b�, denote by λ0(ζ ) the smallest eigenvalue of the Levi form. Assume there
exist smooth complex tangential vector fields X1, . . . , Xm , defined on b� near K ,
such that Hρ(X i (ζ ), X i (ζ )) ≤ C λ0(ζ ) for some constant C and all ζ , and such
that b� \K satisfies a complex tangential cone condition with the axis of the cone
at p ∈ K in spanR(Re X1(p), Im X1(p), . . . , Re Xm(p), Im Xm(p)) for all p ∈ K .
Then the ∂̄-Neumann operator on � is compact.

In C2, the assumption in Corollary 1 reduces to the simple requirement that K
satisfy a complex tangential cone condition; this is Corollary 2 in [Straube 2004].
The example of Remark 2 shows that this is not sufficient in Cn when n ≥ 3, not
even when one assumes that the axis of the cone at p ∈ K lies in the null space
of the Levi form at p. So some complication in the statement of the corollary
cannot be avoided. On the other hand, when the Levi form of b� has at most one
degenerate eigenvalue, there is (locally) a complex tangential vector field X1 and a
constant such that Hρ(X1(p), X1(p)) = 0 and Hρ(X1, X1) ≤ Cλ0 near p ∈ K (see
Example 3 on page 347). With this additional information, it suffices to require
that the axis of the cone lie in the null space of the Levi form.

Corollary 2. Let � be a smooth bounded pseudoconvex domain in Cn . Assume
that at each boundary point, the Levi form has at most one degenerate eigenvalue.
If the set b� \K satisfies a complex tangential cone condition with the axis of the
cone at p ∈ K in the null space of the Levi form at p, then the ∂-Neumann operator
on � is compact.

In C2, this also reduces to [Straube 2004, Corollary 2].

3. Proof of Theorem 1

We will establish a compactness estimate for forms in C∞

(0,1)(�) ∩ dom(∂∗): for all
ε > 0, there is a constant Cε such that

‖u‖
2
≤ ε(‖∂u‖

2
+ ‖∂∗u‖

2) + Cε‖u‖
2
−1.

This is equivalent to the compactness of N1; see, for example, [Fu and Straube
2001, Lemma 1.1].
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We may assume that the vector fields Xk, 1 ≤ k ≤ m, are defined on all of
b�, by multiplying them with suitable cutoff functions that are identically equal
to one near K . This preserves (1), which now holds on all of b�. Then we can
extend the vector fields Z p, j and Xk from b� to the inside of � by letting them
be constant along the real normal, so that the extended fields, still denoted by Z p, j

and Xk , are complex tangential to the level sets of the boundary distance. Finally,
by multiplying by a suitable cutoff function that equals one near the boundary, we
may assume that the fields Xk are defined and smooth on �.

There are two ideas in the proof. The first comes from [Straube 2004] and says
that near a point p ∈ K , the values of a form u can be expressed by the values near
F

ε j
Z p, j

(p) plus the integrals of Z p, j u along the integral curves of Z p, j . If the points
near F

ε j
Z p, j

(p) are of finite type, the contribution from there can easily be estimated
by subelliptic estimates. Because the integrals of Z p, j u in the second contribu-
tion are over curves of length ε j (|Z p, j | = 1), a (small) factor ε j appears (via the
Cauchy–Schwarz inequality) when computing the relevant L2-norms. There are
overlap issues, but these are handled by the uniformity built into the assumptions
(for example the uniform bound on div Z p, j ). The second idea concerns control
of ‖Z p, j u‖

2, or ultimately ‖Xku‖
2, by ‖∂u‖

2
+ ‖∂∗u‖

2. In C2, this can be done
for any complex tangential field via maximal estimates; see [Derridj 1978; Straube
2004]. In higher dimensions, additional assumptions are needed; that (1) suffices
is implicit in [Derridj 1978].

The first part of the proof follows [Straube 2004] verbatim, with only one obvi-
ous modification. Fix ε > 0 and choose j big enough so that ε j <ε. The arguments
in [Straube 2004, pages 705–708] give estimate (2) below, the only modification
being the exponent of ε j , which depends on the dimension. This dimension de-
pendence arises from a comparison of volumes argument used to resolve certain
overlap issues; see the paragraph in [Straube 2004] that starts at the bottom of page
707. Note that when n = 2 we have 2n+2−2nC3 = 6−4C3, as in equation (14) of
[Straube 2004]. Combining (the analogues of) equations (6) and (14) in the same
reference gives

(2)
∫
�

|u|
2

≤ 2ε(‖∂u‖
2
0 + ‖∂∗u‖

2
0) + Cε‖u‖

2
−1

+4ε j

∫ ε j

0

(
C(C2)ε

2n−2nC3
j 2m

m∑
k=1

∫
�

(
|ReXku(y)|2+|ImXku(y)|2

)
dV (y)

)
dt

≤ 2ε(‖∂u‖
2
0 + ‖∂∗u‖

2
0) + Cε‖u‖

2
−1

+ 16mC(C2)ε
2n+2−2nC3
j

m∑
k=1

∫
�

(
|Xku(y)|2 + |X ku(y)|2

)
dV (y).
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In C2, the last term can be estimated using maximal estimates [Derridj 1978]:

(3) ‖X ku‖
2
+ ‖Xku‖

2
≤ Ck

(
‖∂u‖

2
0 + ‖∂∗u‖

2
0
)
.

We next show that (3) also holds under the hypothesis (1) on the vector fields Xk .
The estimates below owe much to [Derridj 1978]. For convenience, fix k and write
X for Xk . First, the estimate on ‖Xu‖

2 follows directly from the Kohn–Morrey
formula; see [Chen and Shaw 2001, Proposition 4.3.1], with weight e−φ

≡ 1. For
‖Xu‖

2, we integrate by parts to obtain

(4) ‖Xu‖
2
= −

∫
�

u X Xu + O(‖u‖ ‖Xu‖)

= −

∫
�

u
[
X, X

]
ū −

∫
�

u X Xū + O(‖u‖ ‖Xu‖)

= −

∫
�

u
[
X, X

]
ū + ‖X̄u‖

2
+ O(‖u‖ ‖Xu‖ +‖u‖ ‖Xu‖).

Using that ‖u‖
2 . (‖∂u‖

2
+ ‖∂∗u‖

2), ‖u‖‖Xu‖ ≤ cl‖u‖
2
+ cs‖Xu‖

2 [Chen and
Shaw 2001, 4.4.6, page 79], and again the Kohn–Morrey formula for ‖Xu‖

2, we
see that it suffices to estimate the first term on the last line of (4). Here cs and cl

denote small and large constants; the term ‖Xu‖
2 on the right-hand side in (4) can

then be absorbed into the left-hand side.
Near b� (say, on the support of the cutoff functions used at the beginning of

this section to extend X to all of �), we write[
X, X

]
ū = Hρ(X, X)(Ln − Ln)ū + Aū + Bū,

where A and B are smooth complex tangential fields and Ln is the complex normal∑n
j=1(∂ρ/∂ z̄ j )(∂/∂z j ), appropriately normalized. The contributions from Aū and

Ln ū (or Au and Lnu) are estimated as above. In the contribution from Bū, we
integrate B by parts and proceed as before. We are left with estimating the term
involving Hρ(X, X)Ln ū. We integrate Ln by parts (with a boundary term) to obtain

(5)
∣∣∣∣∫

�

u Hρ(X, X)Ln ū
∣∣∣∣ . ‖Lnu‖ ‖u‖ +

∫
b�

Hρ(X, X)|u|
2
+ O(‖u‖

2).

The first and third term on the right are estimated as above, while for the middle
term we have

(6)
∫

b�

Hρ(X, X)|u|
2 .

∫
b�

λ0|u|
2 .

∫
b�

Hρ(u, ū) . ‖∂u‖
2
+ ‖∂∗u‖

2.

The first inequality comes from (1), the last one from the Kohn–Morrey formula.
We have slightly abused notation in the third term: u is a (0, 1)-form, not a vector
field, but it is identified with a vector field in the usual way via its coefficients.
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Combining Equations (4), (5), and (6) shows that (3) holds under the assumptions
of Theorem 1 — that is, under (1). Inserting (3) into (2) gives

(7)
∫

�

|u|
2
≤ C(ε + ε2n+2−2nC3)

(
‖∂u‖

2
+ ‖∂∗u‖

2)
+ Cε‖u‖

2
−1 ,

with C independent of ε. Since 2n + 2 − 2nC3 > 0 (because C3 < (n + 1)/n),
the limit limε→0+ C(ε + ε2n+2−2nC3) vanishes, and so (7) implies the compactness
estimate we set out to prove, concluding the demonstration of Theorem 1. �
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