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TRIGONAL MINIMAL SURFACES IN FLAT TORI

TOSHIHIRO SHODA

We study trigonal minimal surfaces in flat tori. showing first a topological
obstruction similar to that of hyperelliptic minimal surfaces: the genus of
a trigonal minimal surface in a 3-dimensional flat torus must be 1 (mod 3).
Next we construct an explicit example of a trigonal minimal surface in a
4-dimensional flat torus. This surface satisfies good properties and is theo-
retically distinct from earlier examples.

1. Introduction

Let f : M, — R"/A be a minimal immersion of a compact surface of genus g
into an n-dimensional flat torus, and suppose that f does not lie in any subtorus of
R"/A. (Clearly, f can be replaced by an n-periodic minimal immersion from some
covering space of M, into R".) The conformal structure induced by the isothermal
coordinates makes M, a Riemann surface and f is called a conformal minimal
immersion.

Theorem 1.1 (Generalized Weierstrass Representation [Meeks 1990, p. 884]). Let
f Mgy — R"/A be a conformal minimal immersion. After a translation, f can be
represented by

p
f(p)=Re/ (@1, ®2, ..., w,)"  mod A,
Po

where py is a fixed point in M, superscript T means transpose, and wy, wa, ...,
wy, are holomorphic differentials on My such that

(1) wi,wy, ..., w, have no common zeros,

(2) Y 0 =0,and

3) {Refy(a)l, w2, ..., o) |y € H(Mg, 7)} is a sublattice of A.

Conversely, if w1, w, ..., w, are holomorphic differentials satisfying (1), (2), and

(3), then f, defined as above, is a conformal minimal immersion.
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Condition (3) is called the period condition and guarantees the well-definedness
of the path integral.
Using these notations, we define the associate surface fy:

r
fo(p) :=Re/ e (w1, w0, .., 00T

Po

The associate surface fy, is called the conjugate surface. We note that fy may
not be well defined for any torus, even though f = fj is well defined on M,.
Recall that the Gauss map G is the holomorphic map from M, to the quadric

Qs :={[w, wy, ..., w,] €CP" 1| > r_ (we)? = 0} given by
G:My— Q,p CCP" !
pr— [@1(p). @2(p). ..., u(p)]-

One of the beautiful classical theorems on compact Riemann surfaces states that
every compact Riemann surface of positive genus is holomorphically embedded in
the Jacobian by the Abel-Jacobi map: take a basis {n1, 12, ..., 7.} of the space of
holomorphic differentials of My, and consider

. . T
An={Re/(nl,---,ng,—”71,---,_”757) |y€H1(MgaZ)}
14

The Jacobian Jac(M,) is the complex torus represented by C¢/A, and the holo-
morphic embedding j : My — Jac(M,) defined by

. P . . \T
J(P)=R€/ (Mismg, =i, ..., —ing)
P

0

is the Abel-Jacobi map. The Jacobian satisfies the following universal property:

Theorem 1.2 [Nagano and Smyth 1980, p. 5]. Given a conformal minimal immer-
sion f: My — R"/A, and assuming without loss of generality that f(po) = 0,
there exists a real homomorphism h from Jac(M,) to R" /A so that f =ho j:

Jac(My)

M, 7

- "R"/A

The Abel-Jacobi map plays an important role in the theory of algebraic curves
(Torelli’s Theorem, the Schottky problem, etc.) and so, by Theorem 1.2, it is useful
to study minimal surfaces from the point of view of the theory of algebraic curves.
In fact, Ejiri [2002] translated the Schottky problem into a differential geometric
situation and studied the moduli space of compact minimal surfaces in flat tori.
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Algebraic curves can be divided into hyperelliptic and nonhyperelliptic curves,
and there is a topological obstruction to hyperelliptic minimal surfaces in 3-dimen-
sional flat tori. Actually, a hyperelliptic minimal surface of even genus cannot be
minimally immersed into any 3-dimensional flat torus [Meeks 1990, Theorem 3.3].

Every compact Riemann surface can be represented as a branched d-cover of
the sphere for some d > 1, and it is reasonable to ask whether there is a topological
obstruction or not for d > 2 (a Riemann surface with d =2 is a hyperelliptic curve,
and hence we omit the case d = 2). Now we consider this problem for d = 3.
Recall that a nonhyperelliptic curve with d = 3 is called a trigonal curve.

Our first result is a topological obstruction:

Main Theorem 1.3. Let f : M, — R3/A be a conformal minimal immersion of
a trigonal Riemann surface My with genus g. Then g = 3r + 1 for some r > 1.
Therefore, a trigonal Riemann surface of genus 0 or 2 mod 3 cannot be minimally
immersed into any 3-dimensional flat torus.

Remark 1.4. Among previous examples of trigonal minimal surfaces in 3-dimen-
sional flat tori, we mention the example with » =1 from [Shoda 2004] and Schoen’s
I-WP surface, with »r = 3 [Karcher 1989; Schoen 1970]. Here r is as in Main
Theorem 1.3.

Next we consider the higher-codimensional case. Nagano and Smyth [1976]
constructed compact minimal surfaces in n-dimensional flat tori abstractly, but
only few explicit examples are known. We will construct an explicit example of a
trigonal minimal surface in the simplest case (n = 4), with genus 10 (Section 3).
In general, the most difficult part in constructing examples comes from the period
condition. It is not always possible to solve the period condition, or even calculate
the periods. We overcome this problem through the following process: (i) taking
a suitable Riemann surface and considering its symmetries (Construction 3.1), (ii)
calculating the periods using functional-theoretic techniques (Lemma 3.4), and (iii)
finding a relation between one period and another (Lemma 3.5).

Our example satisfies the following properties:

(a) The conjugate surface fr/>: Mo — [F\RA'/ Ay 2 is well defined.

(b) The associate surfaces fy : Mg — [R“/ Ay are well defined for a countable
dense set of angles ¢/? C S!.

(c) The surface is homologous to 0 in the 4-torus. (Arezzo and Pirola [1999, §6]
have shown the existence of minimal surfaces that are not homologous to 0 in
the tori.)

Consider these properties in light of the discussion in [Nagano and Smyth 1980].
Let Sy(M,) be a subgroup of the automorphism group of M,. We say f has
symmetry Sy(M,) if and only if S;(M,) extends under f to a group of affine
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transformations of R" /A. When the corresponding linear representation of Sy (M)
is irreducible, we say that f has irreducible symmetry Sy(M,). If the complex-
ification of this representation is also irreducible, we say that f has absolutely
irreducible symmetry Sy(M,). Nagano and Smyth [Nagano and Smyth 1980,
Theorem 2] showed that if f has absolutely irreducible symmetry, then f satisfies
(c); they also showed [Nagano and Smyth 1980, Theorem 5] that if we assume the
irreducible conditions above on the part of the Weyl group, together with certain
additional conditions, then f satisfies (a) and (b). Our example satisfies (a), (b),
(c), but has only reducible symmetry (see Lemma 4.2). Therefore, Nagano and
Smyth’s irreducibility assumption is sufficient but not necessary.
We summarize our results as follows:

Main Theorem 1.5. There exists a trigonal minimal surface of genus 10 in a 4-
dimensional flat torus satisfying the following properties:

(i) The conjugate surface fr > : Mo — R*/A, /2 is well defined.
(i1) The associate surfaces fy : My — [R{“/ Ag are well defined for a countable
dense set of angles ¢'? c S

(i) The surface is homologous to O in the torus and has only reducible symmetry.

2. A topological obstruction to trigonal minimal surfaces
in three-dimensional flat tori

In this section we prove Main Theorem 1.3. First, we review the spinor represen-
tation of minimal surfaces [Kusner and Schmitt 1995]. Let f : M, — R3/A be
a conformal minimal immersion defined by f(p) = 15; (w1, w2, w3)T. The Gauss
map G makes the diagram

G 2
M, - 0, CCP

xo = v
CP!

commute, where V is the Veronese embedding, given by

V(s1,$2) = (sl2 — s%, i (sl2 —I—s%), 251s2)T.

Let Ocpr (1) be the hyperplane bundle on CP" and L = ¢*(Op1(1)) its pullback
to M,. Then L? = G*(Ogp2(1)) is the canonical bundle K of M,, so L defines a
spin structure on M,. Again by pullback, we find two holomorphic sections 71, 7,
of L having no common zeros and such that

T 2 2 -2 2 T
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The meromorphic function 7, /#; can be identified with the usual Gauss map M, —
$2 = CU{oo} (see [Hoffman and Osserman 1980]).

Next, we give some notations for a linear series (or system). The standard ter-
minology is as in [Arbarello et al. 1985]. Given a divisor D on My, the complete
linear series | D| is the set of effective divisors linearly equivalent to D. We have
an identification between |D| and projectivization of the space of holomorphic
sections of the line bundle defined by D: namely, |D| = PH O(Mg, O(D)). Thus a
complete linear series is a projective space. More generally, every linear subspace
of a complete linear series is called a linear series. A linear series P W, where W
is a vector subspace of |D|, is said tobe a g, if deg D =d and dim W =r+1. A g}l
is called a pencil, a gﬁ anet, and a gfl a web. We write 7 g/, for the complete linear
series |t E|, and |K — g/;| for the complete linear series |[K — E|, where E € g/,.
By a basepoint of a linear series PW we mean a point common to all divisors of
PW. If there are none, we say that the linear series is basepoint-free.

Proof of Main Theorem 1.3. We first observe that the degree of the Gauss map is
g — 1 [Meeks 1990, Theorem 3.1]. Hence M, is not trigonal if g =0, 1, 2, 3, and
we conclude that g > 4.

We can omit the case g = 4 because it corresponds to r = 1. Note that M, is
trigonal if and only if there is a basepoint-free pencil g31 on M,. If g > 4, the g31
on M, is a unique complete linear series [Shokurov and Danilov 1994, p. 124].

Let L be the spin bundle given by the spinor representation of f and Dy the
divisor defined by L. Note that Theorem 1.1(1) implies that | Dy | is basepoint-free
complete linear series. It is known that every basepoint-free complete linear series
g, 1s represented by

g:l:rg% or |K—g2|:r/g§+F (r'=g—d+r—1),

where F is an effective divisor and consists of the basepoints of |K — g/|; see
[Coppens and Martens 2000, Remark 1.2, Coppens et al. 1992, (1.2.7)]. Applying
these facts to | Dy | =|K — Dy |, we obtain | Dy | =r g31 for some r > 1. In particular,
deg D =g — 1 =3r =deg(r g3). O

3. A trigonal minimal surface in a 4-dimensional flat torus

We now present the example promised in Main Theorem 1.5 and prove its validity,
according to the outline given on page 403.

Construction 3.1. In [Shoda 2004] we constructed a trigonal minimal surface
defined by w? = z® — 1. We now consider the higher-genus version of it. Let M ¢
be the cyclic covering of a line [Miranda 1995, p. 73] given by

wi=z282 -1 (g=3r+1, r=1,2,3,...).
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We can find an explicit basis for the space of holomorphic differentials H°(M ¢ K):
dz o dz dz _dz o %}

c ey 3

0 _ a 3
H" (Mg, K) = span > Z L
w w w w w

F, .
Note that M, is not well defined if g = 3r +2, because Riemann—Hurwitz’s formula
does not hold, and M, has a cusp singularity at z = oo if g = 3r. We select the
simplest case, that is, the case g = 3r + 1 as above.

Now we consider the following conformal minimal immersion f from M, into
a R*/A (we will define A later):

PUl—Z i(147¥) 2l 2o\
5 dz.

f(p)=Re/

Po

i
w? w

’ ’

w? w?

v

Remark 3.2. In [Shoda 2004] we found a component of the moduli space that
correspondes to trigonal minimal surfaces in 4-tori. The minimal immersion f
defined as above is an element of the component of the moduli space.

To find the symmetries of f, we consider the automorphism ¢ defined by

(p(z’ U)) — (82n/(3(r+1))iz’ w)

2 2
R (_ _ ) 0
23 3 3(r+1)

4 27
0 R (3(r+l) _T)

R©) = (cos@ —sin@) .

Then

OV =¢ v,

where

sinf cosf

Remark 3.3. For r =1, 3, 7, 9, the value of
sin 2—7[ — 27
3 3(r+1D

V3o V34 5+5
PN 8
Since we use ¢* to calculate periods, we cannot solve the period condition if this
sine expression is too complicated. Hence r = 1, 3 may be the best cases for
explicit constructions.

is respectively
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We now consider the case g = 10, that is, r = 3. Then Mg is defined by

w3 =z'>—1 and f reduces to

Pr1—28 i(1+2% 2247 i(@—2) !
f(p)=Re/pO( —Z, iy ) az.

w? w? w?

v

The map ¢ is given by ¢(z, w) = (¢"/°z, w) and

0 -1 0 0
R(Z) o 10 0 0
*yy _ 27i)3 2 27i/3
PV =¢ v 1 3|V
0 R(—%) 00 3 3
0o o Y31
2 2

We next prove the well-definedness of the following conformal minimal immer-
sion of My into R*/A:

4) f My — RYA

P1—25 i(1+2% D+z i@—-2\
p+—— Re , , , dz
Po

w? w? w? w?

(wd=z12—1),
where A is given by the beta function B(a, b):

30 3 0 0

o =
0 3¢ 0 0 62
1
— L B(1/3,1/6).
Y 12(/ /6)

Periods. We now calculate the periods of f defined by (4), and consider the con-
jugate surface and associate surfaces. The 1-cycles Ay, Ay, ..., Ao, By, By, .
By are established by defining

A= {(z, w) = (e, w(t)) ‘te [0, %] w(lz) =—€/§}

1
U{(z, w) = (e~ w(r)) ‘ te [ %

cey

Ay = {(z, w) = (', w(r)) ‘ te [O, %] w (l) = —\3/5}

U{(Z, w) = (e, w(t)) ‘te[ % 0], w(—l) =—&7§e4”i/3},



408 TOSHIHIRO SHODA

and then taking successive images under ¢:

A =@*(A) (1 <k <8), =¢(A) (1 <k=<10).
Lemma 3.4. The periods along Ay and A, are given by
) 1;56 &z e B/
[ Zwtz | M b o
\/Al Z(Z;—;Z) dz —i ™) /1/12 J4 (1—z§l)t(4z2—1)2

3 1;216 dz ) ezm/;%mﬁ B(2/3,1/6)
/Azl(lw%% dz i _ zm/;j/rf B(2/3,1/6)

[ Zw# e | M) B3, 1/6)
/Azi(i}—?) de )\ /1/12 4 (1-;5;(4;2_1)2

Proof. Ay-period, integrand (1 —

z8)/w?. For t € [0, /6] we set

1 1 1 :
6
Then dn—3 dz, so
1—z6 1—2° 274 2 4
dz = dn=—=—dn.
w2 T T 30T T3 w2
To calculate z*/w?, we consider
i 3_ 712 _ 1
w2 - (Z12_ 1)2 - 7124 -12_ 9"
1
Note that z6—|——6=4n2—2and thus
z
1
P+ =@n" =2 —2=16n"— 167" +2.
z
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A\ 1 0
- = <0,
w? 1672 (1 —n?)

and we can take a suitable branch for z*/w?:

Hence

Z4 (7‘[ ) B em’/3 B em’/3

w? \12) (=922 VA
Choosing the branch /n%(1 —n?) > 0, we get
A /3

w22 P -
It follows that
1— 6 oTil3

1
- dz=-— dn.
w? 3V2 A=)

For t € [-m/6, 0] we obtain, through similar arguments,

1—2° 1 1
w 3V2 (1 = n?)
Hence
1-2° 0 1 e/ ! 1
/—deZf T a3 3 d77+ 3 3 dn
YR 132 nr =Y 0 3V2 Jnr(1—n?)
1 wi/3 1 d 1 wi/3 1
- +f il = +f 17351 — )13 gy
372 Jo (=) 672
1473
=— B(2/3,1/6).
63 /3, 1/

As-period, integrand (1 — z°)/w?. This is calculated similarly:

1— 46 0 1 oTi/3 1 o2mi/3
/—zdF/—s 3 it | 3553 dn
A, W 132 U2 —n?) 0 372 In2(1—n?)

B e27‘ri/3_|_em'/3 1 d77 eZni/3_|_eﬂi/3

T 32 b Jra=p 62

A1-period, integrand i (1 + z0) /w?. For t € [0, /6] we set

B(2/3,1/6).

. . - |
S— (Z3 _ _3> - _% (€3 —e73") = sin 31,
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6
1
Thendn:—3i12+4 dz, so
Z
i(1+z6)dz_i(1+z6) 27 _ 27
W T T S T 3w

To calculate z*/w?, we consider

Z4 B 12 _ 1
w2 - (le_l)z - Z12_i_Z712_2'

1
Note that z6 + <= —4 71?42 and thus
z

1
zlz—l—zﬁ:(—4n2+2)2—2:16n4—16n2+2.

4\’ 1 0
—_— = <,
w? 162 (1 —1n?)

Hence

and we take the branch

Z4 (7‘[ ) eni/3 em'/?a

w2 \12) = e =
Choosing the branch /n%(1 —n?) > 0, we get
4 i3

W " 2R

It follows that

i(142° 1 emi/3
———dz=—— dn.
w 3V2 I =)

For t € [—m /6, 0] we obtain

i+ 1 1

S =
w? 3V2 =)

dn,

SO

l(1+Z6) 1 1 eni/3 0 1 1

w2 = 733 dn+ | 2553 dn
AW o 32 —n?) 132V —n?)
1+em/3 1 dn 1 4emi/3

W2 Jo Ira—m) 62

B(2/3,1/6).
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Ap-period, integrand i (1 + z°) /w?.

i(1+26) 1 1 em'/3 0 1 e27ri/3
Ay W 0o 3V2 I —n?) 1332 In2(1—n?)
2mi/3 4 omi/3 1 dn Q27i/3 4 pi/3

B(2/3,1/6).

- 3h o - 62

A1-period, integrand (z° + z)/w?. For t € [0, /6] we set

L2 in2¢
= — — ) =sin2t.
=P T2

1 4
Then dn = Py dz, so
5 4 3 4
2+z z(1+27%) iz .2
d7 = ——- dn=i—dn.
w? . w? 14+z4 7 lwz 7

To calculate z*/w?, we consider

i . 712 _ 1
w2) T E2=12 24771227

Note that 72 —z > =2inand z*+ 7 *=2—4n% hence 28 + 7 8 =2 —4n?)? -2 =

2 — 16n% + 16n*, and finally

1
2+ 2= —4n*(3 — 4.
Therefore

2\ 1 0
—_— =<,
w? 4n2(3 — 4n?)?

and we take the branch A

[al 1 emi/f3
w? (E) N7

Choosing the branch /4n%(3 —4n?)2 > 0, we get

2 Qi3
w? A3 —an?)?
It follows that _
D4z , emif3

D) dZ =l
w ARG —4)?

For ¢t € [-m /6, 0] we obtain

dn.

D+z ) -1

dz =1 ———=—=dn
w? VA (3 —4n?)?
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SO

/- 5 +Zd [/2. mi/3 /o -1 4
= i——————d N
A w? 0 arG_amr | Jan' JanrG - an?

_ V3/2 d
:i(1+e”’/3)/ 3—”
4n2<3 —4n?)?

z(1+em/3)/ ( _£t>
- [2(1 12)2 = 2

mi/3
l(l;i-j_ ) [ ’5/6(1—s)72/3ds (s =12
l(1+e7rt/3)
=———— " B(1/3,1/6).
Wz (1/3,1/6)

As-period, integrand (z° + z) /w>.

/ D4z p V3/2 . 7i/3 /0 _2mi/3 p
—dz7 = ] — D —
4 w2 0 Jan2(3 —4n2>2 J3/2 J 4n2(3 —4n?)?

__ (/3 2mi/3 V32 dﬂ . i(e”l/3+627rl/3)
=4 = B(1/3,1/6).
/402 (3 — 4n?)? 43

Aj-period, integrand i @ — z)/wz. For t € [0, /6] we set

1 2_|_1 o
=- — | =cos2t.
n > < 2

L5 iA1=t 3 4
i(z 2z)dzz izl—z%) —z dn:iz—dn.
w

4
-z
dz, so

Then dn = —

w

To calculate z*/w?, we consider

A\ 2 1
w2) T G212 2412

Now z2+z72=2n, z* 4z *=4n>—2,hence 2°+z 0= (2 +z ) (* - 14+zH =
2n(4n? —3), and finally

1
22+ 2= Qn@n* =3))> —4=—41—nH@n" - 1)".

Therefore

74 : 1
) == <0,
w? 4(1— 242 —1)2



TRIGONAL MINIMAL SURFACES IN FLAT TORI 413

and we take the branch
4 oTi/3

7 (13)=
w2 \12) Y4~
Choosing the branch /4 (1 — n2)(4n? —1)2 > 0, we get

Z4 em’/3

WP a1

It follows that S "
. _ i
i@ _ D g =i ¢ d
w VAd =) P ~1)2
For t € [—m/6, 0] we obtain
. 5 _ _1
i@ Zz)dzzi dn,
w VAQ =) =1y

SO

.5
1(z7—z2
/(z)dz

Al w

1/2 oil3 1 -1
i dn+/ i dn
L VA=) —1)? 12 A=) @ = 1)?
. dt
=—i(1+e’”/3)/ :
172 /4 (1 —12)(412 —1)2

As-period, integrand i (z° — z)/w>.

i(2°—72)
[,
As w

1/2 ei/3 1 _e2mi/3
= i d / i d
1 YA —n?)@dn2—1)2 12 41 —n2)En*—1)>
1
:—i(e”i/3+62”i/3)f dt . O
172 A —12)(412 — 1)2

Lemma 3.5. Set

o =

1 1 ! dt
B(2/3,1/6), B=—=B(1/3,1/6), y= :
62 G/3. 10 43 (/3,170 fl/z J4(1—12)(412—1)2

Then

/3:\/3)/.

Proof. We consider the period of (22+2)/w?dz along Bs = ¢>(A}). The arguments
below are similar to those used to prove Lemma 3.4. For ¢ € [57/6, m] we set
n = sin 2f. Now
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Z4 11 B ellni/?) _ 6271’1'/3
w\127 )T T T
so choosing a branch /4n2(3 — 41n2)2 > 0, we get
5 _ 2mi/3
S S S —
w VA2 (3 — 4n?)?

Similarly, for ¢t € [—m, —5m /6], we obtain

ZS +z ] eni/S

Cdz=i—————d
w VA2 (3 —4n?)?

It follows that
)

0 _owi)3 —/3/2 ni/3
[ a0 i 2 e [ Sy
B W V32 4An2(3 —4n?)? 0 /4n%(3 —4n?)?
_ —l (62ﬂi/3+e7l’i/3) ﬂ~

On the other hand, using the action of ¢, we obtain

0-1 0 0
5
T 1 0 0 0
(0*) = ¢'07i/3 R <5) 0 — T3 | VL)
(p - i - 0 0 ~ T A
0 R<—§> 2 T2
0 oY3 1
2 2

5 5
6) / Z—szz:/ Z—szz—/( )S(Z +Zdz)
Bs W pSAn W
+
/Z zzdz
_em'/3<l B ) AW
2 / i(z°—72)
———dz
\Al w?
m’/3(1 ) i(1+e™ ) B
= —e€ - — .
2 —i(1+e"P)y
:_em’/3( (1_|_ nz/S)/g+\/_l(1+ent/3)y>
l(em/3+62m/3)(ﬂ f )

]G,

IS
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The equality of (5) and (6) implies the claim of the lemma. Il

Using the equality 8 = +/3 y, Lemma 3.4, and the action of ¢, we can write the
period matrix Re €2 of f in terms of the quantities «, y introduced in Lemma 3.5:

Re Q =Re (1, 22, 23, Q. Qs, L6, 27),

where
o o o
Q (14 /%) (23 4 gmif3y —« (=14 23 a ,
3iy iy 0
—iy —iy —2iy
o o o
Q _ 1+eﬂ1/3 , e2m/3+em/3 , _1+e2m/3 ,
2 ( "o | ) V3iy ( ) iy
—2iy iy iy
o o o
Q _ 1+enz/3 ,— 62n1/3+en1/3 , _1+e2m/3 ,
’ ( Nzip | N ziy | "o
—iy —iy 2iy
o o o
Q _ 1+em/3 ,— 62n1/3+em/3 , 1—627”/3 ,
! ( "o ( N ziy | " v3iy
2iy iy iy
o o o
Q _ 1+en1/3 - 62711/3 +enz/3 , 1_62m/3 ,
s=] - N _vziy | N _vriy | | o
iy iy 2iy
o o o
. o . . —o . —a
Q 1+enl/3 ,— eZm/3 +em/3 , 1_62711/3 ,
6= ( Il I N _vaiy | € N s,
2iy —iy —iy
o o
) o . . o
Q 1+enl/3 , eZm/3 +em/3
7 ( ) —/3iy ( ) —\/gi]/
iy iy
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The lattices A and Aj;. To complete the construction of our minimal surface,
we still need to show that the periods form a lattice; in the same step we will
also show the well-definedness of the conjugate, claimed by the Main Theorem
1.5(i). Recall that a lattice in a real vector space R" is a discrete subgroup of
maximal rank in R”; a set of lattice vectors is any set that generates the lattice as
an abelian group. Given a spanning set {1, us, ..., U, } of R"” (so m > n), it is easy
to see that {uy, us, ..., u,} is a set of lattice vectors if and only if there exists a
set {vy, vy, ..., vy} of lattice vectors and integer matrices G| and G, (respectively
m x n and n x m in shape) such that

"7um}G1a
.y Un}Gg.

'avn} = {M], u27 .

'aum}:{vlvv2"'

{vi, v2, ..

{uy, us, ..
To determine the lattice A of our example, we first define the four matrices

) (62711'/3_1)a 2(1+eni/3)a (erri/3+82m'/3)a _(1+eni/3)a

0 0 — ("4 By (1+e™P)
Qg = ,
0 0 0 0
0 0 0 0
0 0 0 0
9 0 0 0 0

P T —2vBiemi ety 0 V3i(l+em Ry VEi(e P42y y
0 2i(14+e™ Py i1+ By —i( TPy

o 0 0 0o O O 0 O o 0 0-1 0-1 1 0

o 0 1 -1 -1 -1 0 1 o 0 1 0 0 0 0 1

-1 0 0 1 0 1 0 -1 -1 0 -1 -1 1 1 0 2

O0-1 0-1 0-1 0 1 0O-1 0-1 0 1T 0 O

o 0-1 1 0 1 0 -1 o 0 1 0-1 0 0 -1

o 0 o0 1 0 1 0 O 0 0 1 I -1 0 1 -1

o 0 0 0 0O 0 0 O oO-1r 0-1 0 1 -1 0

o o0 o0 1 0 1 0 -1 I -1 I 0 0 0 0 -1

-1 0 1 -1 0 -1 0 0 0o 0 1 1 -1 -1 0 =2

Q_ 0O-1-1 0 0-1 -1 0 ONT __ o o0 o0 1 0-1 0 O
Gl - 00 0 0 0 0 0 0| (GZ) - I -1 1 0 1 0 0 1
o 0 0 o O O 0 O 1 0 1 1 I 0 1 1

o 0 o0 1 0 1 1 0 o 0 o0 1 0-1 1 0

o 0 0 o O O 0 O o 0-1 0 0 0 0 1

o 0 0 o0 0 0 O O 1 0o 1 1 1 1 0 2

o 0 0 0 O 0 O O o 1 o0 1 0 1 0 O

o 0 0 O0-1 0 0 O o 0 -1 0-1 0 0 -1

o 0 0 0 O 0 O O o 0 -1 -1-1 0 -1 -1

o 0 0 0o O O 0 O o 1 0 1 0 1 -1 0

o 0 0 0 0O 0 O O -1 1 -1 0 0 0 0 -1

We have arranged these matrices so that

QGY = (Q,Q) and (Qs, Q)G =Q.
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Taking the real and imaginary parts, we get (2g, 29) = Qre + i Q2m, With

le

Then

o8}
S

o

o

N[W N|Ww

()

3¢ 3«

IS S
o8}
< =) (=)

o
%

(=)

=)

N | W
<

<

+

are related to Qge and Qyy via integer matrices:

34 0 0 0 0
2
34 0 0 0 0
2
3
0 6y 0 —Ey -3y
0 0 -3y —ﬁy V3y
Va —“/;a 0 0 0
—3a +“/7§a 0 0 0
0 o o o 33,
2
0 0 0 3y 2
vy S
\/goz %ga 0
o Y34 o
s Agpi= 2
0 0 3V3y
0 0 0
A GK = Qx.,

Qre G = A,

Qm G| = Arja, Arp Gh = Qum,

showing that Qg. spans the lattice defined by A and Qy, the lattice defined by
Ax 2. This concludes the proof that the minimal surface f : Mo — R*/A and its
conjugate fr,2: Mo — [R“/ Ay 2 are well defined.

The associate surfaces. To prove the well-definedness of the associate surfaces fy
of f, we take the period matrix of fp:

Refe'? Q) = cos 6 (R0 Q1)



418 TOSHIHIRO SHODA

where
GB++3tanb)a B—+3tanf)a —+3a tand —%(3—J§tan9)
Qo = 0 0 V3a tan %(3—«/§tan9) 7
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
Q= 6y 0 —37)/(1+\/§tan0) -3y
0 —v3y(1++/3tan6) —%(l—kﬁtam@) 3y

If /3 tan® = m/n € @, we can show that rankg Re{e!? Q} = 4. This implies the
condition Theorem 1.1(3), so each fy is well defined. Thus the associate surfaces
are defined for a countable dense set of angles ¢/’ € S! because 6 is parametrized
by the rationals.

4. Homological triviality and reducible symmetry
Finally, the proof of Main Theorem 1.5(iii) is given in the next two lemmas.
Lemma 4.1. f (M) is homologous to 0 in R*/A.

Proof. Setting

Pr1—28 i(142% 224z i(@®—z2 !
(x‘,xz,x3,x4)=Refp( U . ) —, ( - )> dz,

. w? w w w
we obtain
1—2° 1-z% _
( 5 dz + ) dz
1
dx P4z i)
dx*| 1 w2 BT T #*
3| 2 P +z P4z
. 5 dz + — dz
dx w w
. 5_ . _5__
i(z 2z)d _z(z_2 Z)dZ
w w

It follows that
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1 [1-2° 176 i (1428 1476
dxl/\dx2_—( 2Z dz —2Z dz)/\(l( -|-2Z)dZ i( +22) Z)
4 w w w w
i 1—|z|'2 i}
— dzndz,
2 Tl z Z
1— 6 1_—6 5 =5 3
dx' ndx? = ( zz dz + _2Z dZ)/\(Z —szz—l-z_—'_zdz)
w w w w?

dzndz,

1

1

1~z = +12") — & =) +1zP)
T4 |w|*

1 1— 6 1_-6 co 5 -
dxl/\dx4=Z( * dz+ _ZdZ>/\(l(Z Dy, LG Z)d2>

w? w? w? w?

i —+DU+121"+ @+ +z)? )

= 2 ol dzndz,
A+ l(1+z6) B4z 75 +Z
dx* Adx® = A dz e
i G+ + 2"+ @+ ) A + [z ) .
4 jwf? Ends
1 (i(1+28 i (1476 (25— 2 PG5z
dszdx4=Z<(w2 )g; - 104D Z>A((wz ) 4o <_2 3) Z)
1 —2)(1 10y _ — 751 2
_ 1 G@=90d+1) (=21 +1z] )dz/\dz,
4 E
1 (2 P4z (25 _
dx3 Ndxt = — (Z -1;de+2 _—l;zdz)/\(z(z - Z) dz— i(Z°—72) dz)
4 w w w w

=z 412

7 op dzNdZ.

Setting z =re'? (0<r <00, 0<0 <2m), we getdz AdZ = —2ir dr Ad6. First,

2
/ dx' Adx? _3/ / 1-r 2irdrdo
Mo 0=0Jr=0 2 J(r?* —2r12 cos(126) + 1)2
(L)
60=0 r=0 r=1
27 1 1
—3/ (/ —/ ) r'=1/r)
=0 r=0 r'=0
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Similarly, we can see that | Mo dx3 Adx* = 0. Next, we obtain

/ i ndd — 3 /2” /00 rsin@(1+r1% 4+ sin(56)(1 4+ r?) v d
Mo 6=0Jr=0  J(r?* —2r12 cos(126) + 1)2

(L)
ULl [Lf) o=emn

Similarly, f,, dx'Adx*= [, dx*Aadx’= [, dx*Adx*=0follows. Therefore
[f (M10)] =0. O

Lemma 4.2. The map f has only reducible symmetry. The maximal symmetry of
f is the dihedral group Dq;.

=3
=0.

Proof. Let Sy(Mjp) be an arbitrary symmetry. For every ¢ € S;(Mo), we have
the commutative diagram

Mo f R*/A
3 affine transformation
¢ O AcO@4,R), teR*
Mo 7 - RY/A

where we define the automorphism j by j(z, w)=(z, e2™/31y). Because the Gauss
map G is j-invariant, ¢ induces an automorphism ¢’ of $2:

G

Mo - Q,CCP?
/j\‘ Myo/j = S* —embedding
o} O 3¢ O
A
Mo - O C Ccp3

G

Let S} (M10) be a subgroup of automorphims of My which induce automor-
phisms of My/j = $2 = CU{oo}. Then, we obtain Sr(Myp) C S}-(Mlo). Now let
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Po = (/91 0) (1 <« < 12) be branch points of /j. Every element of S'-(M10)
induces an automorphism of C U {co} that preserves {e™/®«}12 It is easy to
verify that a subgroup of automorphisms of C U {co} with the above property is
generated by z > e™/97 7 and z > 1/z. To lift these automorphisms, we consider
the automorphism ¢’ of My given by ¢'(z, w) = (1/z, e™/3 w/z*). Thus S} (M)
is generated by j, ¢, and ¢'. Setting ¢ = ¢ o j% and ¢ (z, w) = ¢’ o j, we obtain

0

[ R

x 0
s - (*) . 83) TR P f

0

0

0 0
3 1

0
—1
0 0 O
Obviously, ¢ and ¢, are reducible actions respectively and generate the dihedral
group Dp;. Note that j does not induce any affine transformation of the torus.
Hence, S (M) is a subgroup of D> generated by ¢; and ¢». Therefore, S (M)

has only reducible symmetry and its maximal symmetry is D, generated by ¢
and ¢. O
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