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Using estimates for the number of spanning trees of planar graphs, we prove
inequalities for the determinant of alternating links in terms of their hyper-
bolic volume.

1. Introduction

If 1L denotes the (1-variable) Alexander polynomial [1928] of a link L in S3,
then det L = |1L(−1)| is the order of the homology group H1(DL) (over Z) of
the double branched cover DL of S3 over L (or 0 if this group is infinite). This
number is often called the determinant of L because of its expression (up to sign)
as the determinant of a Seifert matrix [Rolfsen 1976, page 213] or a Goeritz ma-
trix [Gordon and Litherland 1978]. The group H1(DL) carries much interesting
information on the link (in particular conditions for sliceness [Rolfsen 1976] and
achirality [Hartley and Kawauchi 1979; Stoimenow 2005], and unknotting number
estimates [Wendt 1937]). The determinant can be alternatively evaluated from the
Jones polynomial V [1985] as |V (−1)|, and for alternating diagrams it has a nice
combinatorial interpretation (see [Krebes 1999]) in terms of the Kauffman state
model [1987].

Based on experimental evidence, Dunfield [2000] proposed interesting relations
(though he did not state them very precisely) between the determinant and the
hyperbolic volume of (complements in S3 of) alternating knots and links. Roughly
speaking, he found that the determinant should have upper and lower bounds which
are exponential in terms of the volume. The main aim of this paper is to prove
rigorous versions of Dunfield’s conjectured inequalities. To formulate them, we
will denote by c(L) the crossing number of a link L , and by vol L the hyperbolic
volume of (the complement in S3 of) L , or 0 if L is not hyperbolic.

Theorem 1.1. If L is a nontrivial nonsplit alternating link, then

(1) det L ≥ 2 · 1.0355vol L .
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Theorem 1.2. There are constants C1, C2 > 0 such that, for any hyperbolic alter-
nating link L ,

(2) det L ≤

(
C1 · c(L)

vol L

)C2 vol L

.

It is natural (as in [Dunfield 2000]) to regard such statements also as a relation
between the Jones polynomial and hyperbolic volume. The motivation for such
a viewpoint lies in the variety of connections that has recently become apparent
between the volume and Jones-type invariants.

One such connection worth remarking on is the Volume conjecture [Murakami
and Murakami 2001], which asserts that one can exactly determine the volume of a
link from the Jones polynomial and all its cables. (The conjecture is of theoretical
rather than practical importance, since the volume evaluation it proposes is far
too expensive.) In another venue, Khovanov suggested an extension of Dunfield’s
correspondence to nonalternating links, replacing the determinant by the total di-
mension of his homology [Khovanov 2000] generalizing the Jones polynomial.
(This is more closely related to our result, but still outside our scope.)

There is also accumulating evidence that the (ordinary) Jones polynomial might
be able to provide way practical bounds on the volume in a different way. Such
bounds, which involve degrees or coefficients of the polynomial, have been ob-
tained for alternating links by Dasbach and Lin [2007] and for Montesinos and
3-braid links by myself [Stoimenow 2006]. Contrarily, the question whether one
can increase the hyperbolic volume without bound while preserving the Jones poly-
nomial (or at least its Mahler measure) remains open.

Theorems 1.1 and 1.2 improve on closely related, but unpublished, work of Chris
Leininger and Ilya Kofman. They seem qualitatively close to the optimum, apart
from the determination and improvement of constants. Both theorems apply the
twist number of link diagrams. Theorem 1.2 is not hard to deduce (with constants
C1, C2 which are easy to make explicit; see its proof in Section 4). It requires a
recent lower bound for the volume of alternating links, first obtained by Lackenby
[2004] and later, with an improved constant, by Agol, Storm and W. Thurston
[Agol et al. 2007].

Theorem 1.1, although similar in nature, requires considerably more effort, and
it is the main content of this paper. Our proof of it builds most decisively on the
useful relationship between knot and graph theory, stating that the determinant of
an alternating diagram is the number of spanning trees of a certain planar (checker-
board) graph associated to this diagram. This relationship is well known and was
used already decades ago by Crowell [1959]. However, the only general lower
estimates on the determinant derived from it so far have been linear in the crossing
number. We need to show that we can make the linear bound exponential, if we
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replace the crossing number by the twist number (Theorem 4.3). This occupies a
large part of the paper.

Our work can be considered mostly independent from [Lackenby 2004], because
the upper volume bounds follow from previously known classical facts about hy-
perbolic volume (see for example [Brittenham 1998]). It is only the optimal choice
of constants, due to I. Agol and D. Thurston [2004], that goes into Theorem 1.1
for a better estimate. The same is true of Proposition 6.3, which uses the proof of
Theorem 1.1 to improve the inequality in the special case of arborescent (Conway-
algebraic) links.

Other work relating the volume to the Alexander polynomial has been done
by Kalfagianni [2004] and Silver and Whitten [2005], and to the Jones polyno-
mial by Silver, Williams and myself [Silver et al. 2006]. The growth of the order
of the homology groups of the higher order cyclic branched covers of S3 over a
fixed link L has been studied by Gordon [1972], and later by González-Acuña and
Short [1991] and Riley [1990]. These numbers can still be determined from the
Alexander polynomial, but lack a nice combinatorial description, and are rather
of number-theoretical interest. (Riley’s growth estimates in fact use some deep
tools from number theory.) Their growth rate is related to questions on entropy
and Mahler measure.

2. The determinant and twist number of alternating diagrams

Before we come to the proof of our results, we will briefly review the necessary,
and previously initiated, framework to incorporate them into.

By means of the relation 1(−1) = V (−1) to the Jones polynomial (see [Jones
1987, §12]) the determinant provides a bridge between the classical Alexander
polynomial and its modern successors [Brandt et al. 1986; Freyd et al. 1985;
Kauffman 1990; Jones 1985], whose nature is largely combinatorial. It is part
of the small amount of topologically understandable information encoded in these
more recent invariants.

At the same time, this relation opens combinatorial approaches for calculating
the determinant. One such approach, which is particularly nice for alternating
diagrams, was given in [Krebes 1999] using the Kauffman bracket/state model for
the Jones polynomial.

If D is an alternating link diagram, consider D̂ ⊂ R2, the (image of) the as-
sociated immersed plane curve(s). Then det D is the number of ways to splice
the crossings (self-intersections) of D̂, as in (3), so that the resulting collection of

(3) −→ or
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A # B = A B

Figure 1. The connected sum.

disjoint circles has only one component (a single circle); such choices of splicings
are called monocyclic states in [Krebes 1999].

Definition 2.1. The diagram on the right in Figure 1 is called the connected sum
A# B of the diagrams A and B. If a diagram D can be represented as the connected
sum of diagrams A and B having each at least one crossing, D is called composite;
otherwise it is called prime. Equivalently, a diagram is prime if any closed curve
intersecting it in exactly two points does not contain a crossing in one of its interior
or exterior.

Any diagram D can be written as D1 # D2 # · · · # Dn in such a way that all the
Di are prime and have at least one crossing. The Di are called the prime factors
of D. A link L is prime if, for any composite diagram D1 # D2 of L , exactly one
of D1, D2 is an unknot diagram. (Thus the unknot is not prime per convention,
though its 0-crossing diagram is prime.)

Definition 2.2. A diagram D is split, or disconnected, if there is a closed curve
which does not intersect D, but which contains parts of D in both its interior and
exterior. Otherwise D is called connected. A link is split if it has a split diagram.

Thus a diagram D is connected if and only if its plane curve D̂ is a connected set.
From the explanation above, then, we see that an alternating diagram has nonzero
determinant if and only if it is connected.

Definition 2.3. A crossing q in a link diagram D is called nugatory if there is a
closed (smooth) plane curve intersecting D transversely in q and nowhere else. A
diagram is called reduced if it has no nugatory crossings.

Theorem 2.4 [Menasco 1984]. An alternating reduced diagram of a link L is prime
if and only if L is prime.

Definition 2.5. Let c(D) be the crossing number of a link diagram D. Let c(L)

be the crossing number of a link L , that is, the minimal crossing number of all
diagrams D of L . A link L is trivial if c(L) = 0.

Theorem 2.6 [Kauffman 1987; Murasugi 1987; Thistlethwaite 1987]. Every alter-
nating reduced diagram is of minimal crossing number for the link it represents.

To explain the Lackenby–Agol–Thurston inequalities, we introduce the notion
of twist equivalence of crossings. The version of this relation we present here is
slightly different from that of [Lackenby 2004]. First we introduce a diagram move
called the flype, shown in (4):
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(4)
p

PQ →
p

P
Q

A clasp is a tangle consisting of two crossings, that is, a pair of crossings
that bound a bigonal (2-corner) region in the plane complement of a diagram.

Definition 2.7. Let D be a reduced link diagram. We say that two crossings p and
q of D are twist equivalent if there exists a flype making p and q into a clasp.

(5)
p q

P
Q →

p q

PQ

(This formulation assumes the obvious correspondence between the crossings in
the diagrams on both sides of (4).) We call this relation a twist equivalence. Let
t (D) be the twist number of a diagram D, that is, the number of its twist equivalence
classes. The twist number tmin(K ) of a knot or link K is the minimal twist number
of any diagram D of K .

For knot diagrams an alternative definition of twist equivalence, which follows
its independently studied variants in [Stoimenow 2001; 2003], goes thus: Call two
crossings p, q in a knot diagram linked if their crossing points are passed in cyclic
order pqpq (rather than ppqq) along the diagram plane curve. Then p and q are
twist equivalent if and only if each crossing r 6= p, q is linked with p exactly if it
is linked with q .

Menasco and Thistlethwaite [1991; 1993] proved that alternating diagrams of
the same link are related by flypes. Since our definition of twist equivalence is
invariant under flypes, we see that the twist number is independent of the choice
of alternating diagram. Hence we can say:

Definition 2.8. For an alternating link L , define the twist number of L as t (L) =

t (D), where D is some alternating diagram of L .

For an alternating knot the obvious inequality tmin(K ) ≤ t (K ) may be strict; an
easy example is the knot 74. Thus there are alternating knots with nonalternating
diagrams of smaller twist number than the twist number of their alternating dia-
gram(s). In particular, the minimal twist number and the minimal crossing number
(see Theorem 2.6) may not be simultaneously attainable by a diagram.

Our notion of twist equivalence is slightly more relaxed than Lackenby’s [2004],
the difference being that he did not allow flypes. We call Lackenby’s equivalence
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strong twist equivalence. It has been repeatedly observed that by means flypes all
twist equivalent crossings can be made strongly twist equivalent (and (5) indicates
how); Lackenby formulated this fact as the existence of twist reduced diagrams.
Thus we can work with twist equivalence in our sense as with twist equivalence
in Lackenby’s sense (or strong twist equivalence in our sense), provided we can
assume that the alternating diagram is twist reduced. With this remark, we can
state the inequalities (into which work of Agol, Lackenby, Storm, D. Thurston and
W. Thurston goes in) as follows:

Theorem 2.9 [Lackenby 2004; Agol et al. 2007]. For a nontrivial prime alternat-
ing link L , we have

10 V0 ( t (L) − 1 ) ≥ vol L ≥ V8 ( t (L) − 2 ),

where V0 = vol(41)/2 ≈ 1.01494 is the volume of the ideal tetrahedron, and V8 ≈

1.83193.

Both constants are optimal; the 10 on the left is approximated asymptotically
by links in a certain iterative pattern, described in [Agol and Thurston 2004]. The
constant V8 on the right makes the inequality sharp for the Borromean rings.

3. Graphs

General preliminaries. Later on it will be helpful for us to translate the statements
we would like to prove about link diagrams into statements about planar graphs.
As graphs occur throughout the paper, we set up some related terminology, most
of which (like dual graph, deleting or removing edges, etc.) is standard, and also
explained in [Murasugi and Stoimenow 2003]. For clarification, we repeat some
of these definitions, and collect several simple facts that will be used later. Some
new notions seem also necessary to introduce.

Definition 3.1. A loop edge is an edge connecting a vertex with itself. A multiple
edge e is the set of all n edges connecting the same pair of (distinct) vertices; we
assume n ≥ 2. The number n is the multiplicity of e. Edges that belong to the same
multiple edge (that is, connect the same 2 vertices) are called parallel. A graph is
called simple if it has no multiple edges, and loop-free if it has no loop edges.

Definition 3.2. For a graph G, let E(G) the set of edges and e(G) the number of
edges. An edge of multiplicity n is understood to contribute n to e(G). We call
G trivial if e(G) = 0. An edge between vertices v and w, which is not given a
separate name, will be written as vw.

We will assume that graphs are connected and have no loop edges and vertices
of valence 1, unless the opposite is clear.
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Definition 3.3. A cycle-free graph is a forest. A connected forest is a tree. If G
is a connected graph of n vertices, a spanning tree of G is a tree contained in the
edges of G, which is maximal, that is, has n − 1 edges. For a graph G, we denote
by s(G) the number of spanning trees G (or 0 if G is not connected).

Definition 3.4. If G is a graph, a set of edges {e1, . . . , en} of G is an n-cut (or
simply a cut) if the subgraph obtained by removing e1, . . . , en is disconnected. A
1-cut is an isthmus. We say that G is n-connected if it has no k-cut for k < n. If
G has more than one vertex, the set of all edges incident to a vertex forms a cut.
A cut vertex is a vertex for which the subgraph obtained by removing it (and all
incident edges) is disconnected.

Definition 3.5. The join G = G1 ∗ G2 of two graphs G1 and G2 is a graph G
obtained by identifying a vertex in G1 with a vertex in G2, called the join vertices.
The new vertex is a cut vertex of G. (The choice of join vertices has an effect on
G, but this choice is irrelevant for our purposes.) Every nontrivial graph G can be
written as a join G1 ∗ · · · ∗ Gn for some nontrivial graphs Gi such that no Gi has
a cut vertex. We call the Gi the join factors of the graph G. If the decomposition
is nontrivial (that is, if n > 1), we call G decomposable.

By definition, a graph is 2-connected if and only if it has no isthmus. The
following is an easy observation:

Lemma 3.6. G1 ∗ G2 is 2-connected if and only if G1 and G2 are so. G1 ∗ G2 has
an isthmus or loop edge if and only if one of G1 or G2 has one. �

Definition 3.7. A graph G is planar if it is embedded in the plane. For each n-
cut {e1, . . . , en} of a planar graph G one can draw a closed curve in the plane,
intersecting G transversely only in (single interior points of) the edges e1, . . . , en .
We call such curve a cut curve or circuit in G. Clearly the curve of a cut determines
the cut uniquely.

Definition 3.8. Assume G is a planar graph. A region E of G is any connected
component of the complement of G. Its boundary is denoted ∂ E and understood
as a set of edges of G. If an edge e of G lies in the boundary of regions A and B,
we say that A is opposite to B at e, or that A and B are opposite.

Thus G is 2-connected if it is connected and no region is opposite to itself at
some edge. Also, G is 3-connected if it is 2-connected and for any two regions
there is at most one edge at which they are opposite.

The join, defined so far for abstract graphs, can naturally be extended to planar
graphs. (The ambiguity in the choice of vertices carries over, and a new ambiguity
arises from the planar embedding; but again this will not be a problem here.)

Definition 3.9. The dual graph of a planar graph G is denoted by G∗. There is a
natural bijection of edges between G and G∗; in that sense we can talk of the dual
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e∗
∈ E(G∗) of an edge e ∈ E(G). Similarly the dual A∗ of a region A of G is a

vertex of G∗. We consider G∗ embedded in the plane in the obvious way: an edge
e ∈ E(G) and its dual e∗ meet exactly once (and transversely), and other edges do
not meet at all.

We have the following simple properties of the dual:

Lemma 3.10. For planar graphs G1 and G2, and a proper choice of join vertices,
(G1 ∗ G2)

∗
= G∗

1 ∗ G∗

2. �

Lemma 3.11. Let G be a planar graph.

(i) An edge e of G is an isthmus if and only if the edge e∗ in G∗ is a loop edge.

(ii) G has a cut vertex if and only if G∗ has one.

(iii) If G has no isthmus or loop edge, then G is 3-connected if and only if G∗ is
simple. �

Checkerboard graphs. To any alternating link diagram D one can associate its
checkerboard graph G = 0(D) in the following manner (see Figure 2, or also
[Kauffman 1990; Dasbach and Hougardy 1996; Krebes 1999; Stoimenow 2005;
Thistlethwaite 1988]). Consider the plane curve D̂ of D as a 4-valent planar graph.
There is a black-white coloring of the regions of D̂, the checkerboard coloring,
which assigns different colors to each pair of regions opposite at some edge of D̂.
Then 0(D) is defined to have a vertex for each black region of D̂ and an edge for
each crossing of D as follows:

(6) or

Assuming D is connected, there are only two choices of checkerboard colorings
(equivalent up to the interchange of colors) and so 0(D) is uniquely defined up to
duality, and duality corresponds to interchanging the colors.

Thus the checkerboard graph is a planar graph, possibly with multiple edges.
Conversely, any such graph is the checkerboard graph of some link diagram. A
diagram D is alternating if for all crossings the same one of the two local pictures
in (6) occurs. Thus the checkerboard graph determines an alternating diagram up
to mirroring. The following is easy to see:

Lemma 3.12. The checkerboard graph G = 0(D) of a diagram D has no cut
vertex if and only if D is prime. More precisely, the connected sum of diagrams
corresponds to the join of checkerboard graphs:

0(D1 # D2) = 0(D1) ∗ 0(D2). �
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Figure 2. Left and middle: Two checkerboard colorings. Right:
checkerboard graph for the first coloring.

In accordance with the ambiguity of 0(D) up to duality, most of the graph
properties we will deal with below will be symmetric with respect to duality. We
can use this to simplify our arguments at some points. Also, the operations in (3)
correspond to contraction and deletion of an edge in the checkerboard graph.

Lemma 3.13. The property that G = 0(D) is 2-connected and (dually) loop-free
is equivalent to D having no nugatory crossings. �

The calculation of the determinant using monocyclic states can be reformulated
even more naturally in terms of graphs. This principle, which we will exploit
decisively later, states:

Lemma 3.14. If D is an alternating diagram of a link L , and G = 0(D) its
checkerboard graph, then det L = s(G).

Proof. There is a bijection between monocyclic states of D and spanning trees T
of 0(D), given by

v

→























if v /∈ T ,

if v ∈ T .

�

This lemma is well known, and one of its first applications goes probably back
to Crowell [1959]. The novel(ty and) additional difficulty below will be to control
the extent of the simplification under edge contraction and deletion not only in
the checkerboard graph itself but also simultaneously in its planar dual. Lemma
3.14 is also a consequence of Kauffman’s state models for the Jones polynomial
[Kauffman 1987] and Alexander polynomial [Kauffman 1983], and was discussed
extensively in [Stoimenow 2005; Murasugi and Stoimenow 2003]. In this paper,
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we mostly use the language of the latter reference. Our s(G) is written there as
1G(1), and in [Stoimenow 2005] as t (G) (a notation which will be used with a
different meaning later in this paper).

Twist number of graphs. The Lackenby–Agol–Thurston inequalities are essential
in establishing a link between graph theory and the volume. Since, in applying
Theorem 2.9, we want to pass from an alternating diagram D to its checkerboard
graph G, it is useful to remark how twist equivalence translates from D to G.
The aim of the next definition is to establish this translation. To describe it more
precisely, we use some of the above introduced terminology on graphs. Later we
need a few more remarks and notions for the analysis of this relation.

Definition 3.15. Let G be a planar 2-connected graph with no loop edges. We call
two (simple) edges e and f of G twist equivalent if

(i) e and f are parallel, or

(ii) {e, f } is a 2-cut of G.

The twist number t (G) of G is the number of twist equivalence classes of its edges.

Remark 3.16. For e 6= f only one of the alternatives (i) and (ii) is possible, except
if e and f are the two edges of , occurring as a join factor of G.

Lemma 3.17. If D is a link diagram and G = 0(D) its checkerboard graph, then
t (D) = t (G).

Proof. This is more or less by definition of t (G). Look at the diagram on the left of
(5). It is easy to see that p and q are in the boundary of a common pair of regions
(below and above the crossings in the diagram of (5)). Depending on whether these
regions are colored black or white in the checkerboard coloring, we obtain the two
alternatives in Definition 3.15. �

Lemma 3.18. Let G be a planar graph, and G∗ its dual. Then s(G) = s(G∗), and
if G is loop-free and 2-connected, t (G) = t (G∗).

Proof. The coincidence of s already follows from Lemma 3.14, the ambiguity of
0(D) up to duality, and the fact that the determinant is a link invariant. However,
there is a much more appropriate way to see this equality. It is a natural bijection
between spanning trees of G and G∗, which is described as follows. Let T be a
spanning tree of G. To construct the corresponding spanning tree T ∗ of G∗, include
an edge e∗ of G∗ into T ∗, if and only if e is not contained in T .

As for twist equivalence, note that duality precisely interchanges the conditions
(i) and (ii) in Definition 3.15. That is, two edges e and f in G satisfy (i) (respec-
tively (ii)) if and only if e∗ and f ∗ satisfy (ii) (respectively (i)) in G∗. �
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Lemma 3.19. The number of spanning trees is multiplicative under join, s(G1 ∗

G2) = s(G1) · s(G2). The twist number is additive under join of 2-connected loop-
free graphs, t (G1 ∗ G2) = t (G1) + t (G2).

Proof. For the first claim, note that T is a spanning tree of G1 ∗ G2, if and only if
T ∩ Gi is a spanning tree of Gi (i = 1, 2).

For the second claim, observe that if two edges are parallel in G1 ∗ G2, they
must be parallel in one of G1 or G2. If two edges e1,2 in G1 ∗ G2 form a 2-cut,
and belong both to one of G1 or G2, they form a 2-cut in that graph too. If e1 is
in G1 and e2 is in G2, then they form isthmuses therein, which we excluded. The
exclusion of loop edges is needed for “dual” reasons. �

Definition 3.20. For a graph G and an edge e ∈ E(G), we write G/e for the
contraction of e in G, followed by the deletion of loop edges. Similarly we write
G \ e for the graph obtained from G by deletion of e, and subsequent contraction
of all resulting isthmuses:

→

Note again that these operations as dual to each other; (G/e)∗ = G∗
\ e∗.

Lemma 3.21. s(G) = s(G/e) + s(G \ e).

Proof. Each spanning tree T of G either contains e or it does not. Exactly in former
case it descends to a spanning tree G/e, and exactly in latter case to one of G \ e.
Contracting isthmuses and deleting loop edges clearly does not affect the number
of spanning trees. �

Next we consider the behavior of the twist number under deletion and contrac-
tion. Here particular attention must be paid to cycles and cuts of length 3.

Definition 3.22. Let G be a graph and a be an edge of G. We call length-3 cycles
in G triangles, and denote them by 4. Abbreviate by ‘a ∈ n4’ the property ‘a is
contained in (at least) n triangles’, and write ‘a ∈ 4’ for ‘a ∈ 14’. The expression
‘(x, a) 6∈ 4’ means that x and a are not both contained in a common triangle etc.
We write 4(a), the triangle number of a, for the number of 43 a. (So for example
a ∈ 24 if and only if 4(a) ≥ 2.) Similarly we write c(a) for the cut number of a,
the number of different 3-cuts containing a.

Lemma 3.23. If G is 2-connected and loop-free, so are G \ e and G/e. Moreover,
t (G/e) ≥ t (G) − 1 − 4(e), and t (G \ e) ≥ t (G) − 1 − c(e).

Proof. The first property is clear for loop edges by definition, hence for isthmuses
by duality. As for the second, the two inequalities are also dual to each other, so
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we just argue for the first. Contracting an edge does not create any 2-cut; if two
edges f, g 6= e form a 2-cut in G/e, then so they do in G. Contraction may, though,
create parallel edges, which happens exactly in 43 e. For each such 4, the classes
of the other two edges are combined into a single class in G/e. Additionally we
will lose the twist equivalence class of e, except possibly when e is in a 2-cut. �

4. Properties of the volume and relation to main results

Dunfield’s experimental observations [2000] result from evaluating the knot tables
in Knotscape [Hoste and Thistlethwaite 1999]. This evaluation led to evidence that
for alternating links L , we have relations of the type

det L ≈ ea vol L+b, or(7)

det L ≈ c(L)a vol L+b(8)

for some numbers a > 0 and b. (Dunfield refers to the degree of the Jones poly-
nomial, but for alternating links this degree was known to be equal to c(L) from
[Kauffman 1987; Murasugi 1987; Thistlethwaite 1987].)

If one, however, likes to turn (7) and (8) into rigorous statements valid for all
alternating links (and not just for some, even if “generic”, subclass), one must
make sure to avoid misleading conclusions from the experimental evidence. This
requires to take into account some peculiar special cases.

For example, it is easy to construct alternating knots with bounded volume but
det → ∞ (see [Brittenham 1998]), so that an inequality ≤ in (7) instead of ≈ is
impossible. Similarly it is easy to see that an inequality ≥ in (8) is impossible.
Take for any a, b an alternating knot of sufficiently large volume (which exists
for example from the argument of [Lackenby 2004]). Then apply t̄ ′

2 twists of
[Stoimenow 2001] successively at one and the same crossing. Under these moves,
the determinant grows linearly, while the volume remains bounded. (In fact it
converges to the volume of a certain link by W. Thurston’s hyperbolic surgery
theorem, as explained in [Brittenham 1998] and [Lackenby 2004].) This in fact
shows also that the inequality ≥ in (7), stated in Theorem 1.1, is qualitatively close
to the best possible, up to at most a linear factor in c(L). That is, for any a > 1
and any continuous function f : R+ → R+, the inequality

det L > c(L)a
· f (vol L)

cannot hold in general.
Contrarily, the right-hand side of (8) can be made valid (for proper a and b) as an

upper bound on the determinant. As I was informed after my initial writing, such
a bound was obtained in unpublished work of Chris Leininger and Ilya Kofman,
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who proved

det L ≤ c(L)vol(L)/V0+2.

(They have apparently also obtained a special case of Theorem 1.1, with a weaker
inequality; compare Proposition 6.3.) In Theorem 1.2 we claimed that we can
qualitatively improve such an inequality, by putting vol L into a denominator of
the base. We can make the bound more explicit, thus obtaining an improvement of
the inequality of Kofman and Leininger.

Theorem 4.1. For any alternating hyperbolic link L , we have (with the constants
V0 and V8 of Theorem 2.9)

(9) det L ≤

1 +
c(L)

max
(

2, 1 +
vol L
10V0

)


vol L
V8

+2

.

For Theorem 4.1, we will use some arguments from standard Kauffman bracket
skein module theory. (Since they have been repeated many times, we will try to be
short; see [Stoimenow 1999; 2005] for more explanations.)

Proof of Theorem 4.1. Let D be a prime alternating diagram of L . Without
loss of generality, assume all twist equivalent crossings are strongly twist equiv-
alent (in the sense described in Theorem 2.9). Let t = t (D) and n1, . . . , nt , with∑t

i=1 ni = c(D), be the cardinalities of the twist equivalence classes of D. Each
twist equivalence class forms a tangle Ti . For each i , it is an easy exercise to see
that exactly 1 + ni choices of splicings of Ti result in two arcs (ni times with one
connectivity and once with the other one), and all others have additional circles.
In particular, at most 1 + ni choices of splicings for Ti can produce a monocyclic
state. So we have

det D ≤

t (D)∏
i=1

(1 + ni ).

By a computation, if we regard the ni as real variables, then for keeping fixed their
sum c(D), the highest possible value on the right-hand side is attained if all the
ni are equal to c(D)/t (D). Then use the inequality t (D) ≥ 2 (valid since L is
hyperbolic) and Theorem 2.9. �

Remark 4.2. It is easy to construct diagrams D where the splicings of Ti of the
connectivities occurring ni times join to a monocyclic state, and so

det D ≥

t (D)∏
i=1

ni .
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Therefore, an improvement of Theorem 4.1 beyond removing the additive 1 in the
base of the right-hand side of (9) is possible (with this type of argument), only if
the inequalities of Theorem 2.9 are improved for such examples.

Proof of Theorem 1.2. We estimate base and exponent on the right of (9) separately.
First consider the base. We would like to choose C1 so that

(10)
C1

vol L
≥

1
c(L)

+
1

max
(

2, 1 +
vol L
10V0

) .

Using the inequality vol L ≤ 4V0c(L), explained in [Brittenham 1998; Lackenby
2004], we see that (10) would follow from

C1

vol L
≥

4V0

vol L
+

1

1 +
vol L
10V0

,

which is equivalent to

C1 − 4V0

vol L
≥

10V0

10V0 + vol L
.

So we see that we can choose C1 = 14V0.
It remains to estimate the exponent on the right of (9) (from above; keeping

in mind that the base in (2) is bigger than 1, as already the one in (9) is). We
use the minimality of vol(41) = 2V0 among all hyperbolic link volumes [Cao and
Meyerhoff 2001], that is, vol L ≥ 2V0. Then we conclude that with C2 = 1/V0 +

1/V8 ≈ 1.53115 we can achieve the stated inequality. �

Our main contribution to the proof of the first main result is

Theorem 4.3. For every nontrivial planar 2-connected graph G with no loop
edges,

s(G) ≥ 2 · γ t (G)−1,

where γ ≈ 1.4253 is the inverse of the (unique) real positive root of x5
+ 2x4

+

x3
− 1 = 0, given by ≈ 0.701607.

This easily implies Theorem 1.1.

Proof of Theorem 1.1. If G is the checkerboard graph of an alternating diagram D
of L , then by Lemma 3.14, det L = s(G) and by Lemma 3.17, t (L)= t (D)= t (G).
By the left (Agol–Thurston) inequality in Theorem 2.9, we have

vol L ≤ 10 V0
(
t (D) − 1

)
= 10 V0

(
t (G) − 1

)
≤ 10 V0 logγ

s(G)

2
,

hence
det L = s(G) ≥ 2 · γ (vol L)/(10 V0),

and γ 1/(10 V0) ≈ 1.03553. �
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5. Proof of the spanning tree-twist number inequality

Induction for nonsimple, 2-connected and decomposable graphs. The proof of
Theorem 4.3 underlying Theorem 1.1 is more substantial, and will occupy a sig-
nificant part of the paper. Let us for later use sort out a few simple cases first, in
particular the graphs G with t (G) = 1, namely those of types

(11) Tn = and

(two-vertex graph and chain).

Lemma 5.1. If G is a join of loop-free 2-connected join factors Gi such that every
Gi has at most 5 edges or t (Gi ) = 1, then s(G) ≥ 2t (G).

Proof. It is direct to check that s(Gi ) ≥ 2t (Gi ) for each of the join factors Gi of G.
The inequality for G then follows from Lemmas 3.17 and 3.19, the multiplicativity
of s(G) and additivity of t (G) under join. �

Proof of Theorem 4.3. We proceed by induction on the number e(G) of edges of
G. With Lemma 5.1 we can assume that t (G) ≥ 2 (that is, G is not of the forms
in (11)) and e(G) ≥ 6.

In the following, a will be an edge in G. Excluding G from being in (11) means
that both G/a and G \ a (see Definition 3.20) are nontrivial (that is, have t > 0),
so that induction applies on both. The aim will be now to choose a so that both
t (G/a) and t (G \ a) can be controlled from below.

The choice of the constant γ will become clear throughout the course of the
proof.

We make now a case distinction (exhaustive, but not necessarily exclusive).

Case A. If G has a cut vertex (that is, is decomposable), then we are done induc-
tively by the multiplicativity of s(G) and additivity of t (G) under join (stated in
Lemma 3.19), and Lemma 3.6. So we may assume from now on, that G has no
cut vertex.

Case B. Assume G has a multiple edge, and let a be one edge of it:
a

. Our
strategy will be to use Lemmas 3.21 and 3.23, and control c(a) and 4(a) from
above.

Note that (see the proof of Lemma 3.23) the deletion of an edge never changes
the number of equivalence classes under the relation given by alternative (ii) in
Definition 3.15, while the same holds for contraction of an edge and the alternative
(i). Moreover, different twist equivalent edges with property (i) and (ii) are disjoint
by Remark 3.16.
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Since a has a nontrivial twist equivalent edge under property (i), deleting a
creates no 1-cut edges (by Remark 3.16). Also, a has a parallel edge, and so the
twist equivalence class of a remains in G \ a (unless G has as a join factor,
which we excluded). Thus if deleting a creates no new 2-cut (that is, c(a) = 0),
then t (G \ a) = t (G), and induction applies (using Lemma 3.21 and s(G/a) ≥ 0).

So we assume, for the rest of case B, that c(a) > 0. Then we have (up to a
change of the ∞-region)

(12)

a

yx

zb

Here x and z may be connected to other vertices outside of the dotted line. Note
also that a is not in a (multiple) edge of multiplicity ≥ 3, because otherwise the
only option of having a in a 3-cut is

y

x

and e(G) = 3, or one of x or y is a cut vertex, both of which we excluded. Also
note that there may be several edges b of the kind shown in (12), but any two of
them form a 2-cut.

The reader should now recall the terminology in Definition 3.22 and Lemma
3.23.

Case B1. Now assume that in a graph G as in (12) we have a ∈ 4. Then we have
something of the type shown in (13). In this case every 4 3 a consists of a, yz and
(one of) the (possibly multiple) edge between x and z.

(13)
a y

x

z

B

C

a y

x

z

C

Now consider G/a. Then t (G/a) ≥ t (G) − 2, since contracting a we lose its
twist equivalence class of edges, and at most two other twist equivalence classes
unify to one class under the contraction.

Let C be the region opposite (see Definition 3.8) at the parallel edge xy to a to
the bigon region enclosed by xy and a. If xz is simple, let B be the region opposite
at xz to the 4 3 a. If xz is multiple, then the specification of B is easily refined,
but in fact irrelevant.
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Since G has more than the 4 edges drawn in (13), and x , y and z are not cut
vertices, if xz is simple, regions B and C are different, that is, they are separated
by edges incident to x and z but not drawn in (12) and (13). If a had now a second
3-cut, different from the dotted line in (13), the edge b in (12) would not be unique,
and so yz in (13) would have a 2-cut. But such a 2-cut would pass through an edge
between x and z, and thus xz must be simple and B = C , which we excluded.

So the dotted line in (13) is the loop of the only 3-cut in which a participates.
Then t (G \ a) ≥ t (G) − 1, since one identification of twist equivalence classes
occurs when deleting a, but, as noted, with a being part of a double edge the twist
equivalence class of a remains in G \ a. Then from Lemma 3.21 we have by
induction

(14) s(G) = s(G \ a) + s(G/a) ≥ 2(γ t (G\a)−1
+ γ t (G/a)−1)

≥ 2(γ t (G)−2
+ γ t (G)−3 ) = 2γ t (G)−1 (γ −1

+ γ −2) ≥ 2γ t (G)−1.

This last inequality follows from the fact that γ ≈ 1.4253, and so γ −1
+γ −2 > 1.

(It would suffice here to use the inverse of the positive root of x + x2
− 1.)

Case B2. If a 6∈4, then we may have several possible b in (12) with which a forms
a 3-cut. But we noted that they are all twist equivalent, so still t (G \a) ≥ t (G)−1,
while a 6∈4 implies also that t (G/a)≥ t (G)−1, and thus the estimate (14) applies
again.

Case C.

If G has a 2-cut, then argue using case B and duality (Lemma 3.18).

Simple 3-connected graphs: properties of 3-cut circuits.

Case D. Thus we can assume now that G has no 2-cut and no double edges (that
is, is simple and 3-connected). Then the link diagram D (for which G = 0(D)) is
a polyhedral diagram in the sense of [Conway 1970]. The simplest such diagram
has 6 crossings, so we can assume that t (G) = c(D) ≥ 6.

Now, for each 3-cut we draw a 3-cut circuit in the plane. (We consider these
circuits up to homotopy, which does not change the three edges intersected, and
does not change the number of intersections with each edge.) We exhibit now in
several claims some properties of this collection of circuits.

Claim 5.2. No 3-cut circuit intersects the same edge twice: . �

Claim 5.3. We can homotope all 3-cut circuits so that no two of them intersect.

Proof. Assume the contrary, and consider two intersecting 3-cut circuits a and
b, after homotoping all 3-cut circuits so that they have the minimal possible total
number of intersections. We derive a contradiction by showing that one can further
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minimize this number. For this purpose, we define two simple homotopies of a pair
of circuits x and y, shown in Figure 3, pushing off within a region (a) and pushing
off along an edge (b). It is in fact easy to see that these types of homotopies can
(and are understood to) be chosen so that the total number of intersections of x and
y with other circuits is not augmented.

x

y

→
x

y

G

x

y

→

G

x

y

(a) (b)

Figure 3. Cut circuit homotopies that reduce the number of in-
tersections: pushing off within a region (a) and pushing off along
an edge (b). In both cases, we assume no part of G — other than
the drawn edge fragment in (b) — enters the bigon present at the
beginning of the move.

If a and b intersect in only one region of G, then they can be pushed off each
other within that region. So assume a and b intersect in at least two regions of G,
say A and B.

Consider G∗. Since G is simple and 3-connected, so is G∗. Any 3-cut circuit
x of G corresponds in G∗ (in the sense of Definition 3.9) to a cycle x∗ of length
3, that is, a triangle of G∗. Thus a∗ and b∗ are two triangles in G∗ which share a
pair of common vertices A∗ and B∗. Now by simplicity of G∗, any two distinct
triangles in it which meet in two vertices, must share the unique edge between
these vertices. Thus a and b pass between A and B through the same edge of G.
Then it is clear that a and b can be pushed off each other along this edge. �

We assume from now on that all 3-cut circuits are homotoped so as to be disjoint.

Claim 5.4. No two 3-cuts have a pair of common edges.

Proof. Assume there were such two 3-cuts, and pair of edges e and f , and consider
the cut circuits. By 3-connectivity of G, no edge bounds the same region from both
sides, and each pair of edges has at most one common region R. For e and f clearly
R must exist, and then both circuits must pass (without intersecting, by Claim 5.3)
through R. By the Jordan curve theorem no circuit can leave R and enter it again
(more than once). Thus we have the situation on the left:

(15)
R

→
R
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Modifying this to the situation on the right gives a 2-cut circuit (with two different
edges intersected, because the original two 3-cuts were different). This is a con-
tradiction. �

The next result is a direct consequence of Claim 5.4.

Claim 5.5. If E is a triangle (that is, a cycle of length 3; not necessarily the
boundary of a face), then all three edges in E have cut number at most two. �

Claim 5.6. If E is a ≤ 5-gonal face (that is, a face bounded by at most 5 edges),
then for each pair e and f of neighbored edges in ∂ E there exists an edge a ∈

∂ E \ {e, f } with c(a) ≤ 2. (Neighbored edges means edges incident to a common
vertex, which is a corner of E.)

Proof. If we assume that c(a) ≥ 3 for all a 6∈ {e, f }, it is an easy exercise to check
that one cannot install the pieces of the arcs of the 3-cut circuits within E so that
the conditions of the first 3 claims are satisfied simultaneously. �

Claim 5.7. Assume l is a simple closed curve intersecting n edges of G trans-
versely, and (among these edges) a exactly once. Then n > 4(a).

Proof. Let B and C be the two regions bounded by a, and l be oriented so as to
pass from B to C through a. This passage changes the inside/outside position of
the curve l with respect to any of the triangles containing a. Thus, in order to return
from C to B, the closed curve l must intersect at least one (further) edge for each
triangle containing a, and these edges are all distinct by Claim 5.4. �

Completing the induction: finding a good edge. With the above claims prepared,
we continue with case D. Let G be simple and 3-connected. It is well known, that
in every planar embedding of G there is a ≤ 5-gonal face E . Let a be an edge in
its boundary ∂ E .

If we now choose a ∈ ∂ E to have at most two 3-cut circuits intersecting it,
by Lemma 3.23, we have t (G \ a) ≥ t (G) − 3, since deleting a we lose its twist
equivalence class, and at most two pairs of other twist equivalence classes identify.
It remains to refine the choice of a so as to control also t (G/a). To this vein,
we must count again the triangles containing a. Since we assumed that G has no
double edge, two such triangles have only a as a common edge.

We claim that one can find an edge a so that

(i) 4(a) ≤ 2 and c(a) ≤ 2, but

(ii) unless G is the graph in (17) (see page 443), it is not the case that 4(a) =

c(a) = 2.

We describe an algorithm to find some edge a satisfying (i). (Here the choice of
the ∞ region is kept fixed!) Condition (ii) will be dealt with subsequently.
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(1) Start with some edge a ∈ ∂ E with c(a) ≤ 2. Such an edge exists by Claim
5.6.

(2) If a ∈ 34, there is always a pair among these three 4 such that one triangle
encloses the other:

a

a
′

or a

a
′

(There may be further edges in the interior of these triangles.) Note in par-
ticular that the valence of the two vertices connected by a is higher than the
number of different 4 3 a.

(3) Take a′
6= a in the boundary of an innermost triangle from the ones in the

figure immediately above. Set a := a′ and go to step (2).
Since this iteration augments the number of 4 enclosing a (and for any

edge of G there are only finitely many such triangles), at some point the test
in (2) fails, and a is in at most 2 triangles. Since a ∈ 4, we have c(a) ≤ 2 by
Claim 5.5.

This algorithm gives an edge a which is in at most two triangles, and at most
two cuts. We must show now that we can avoid a being in exactly two triangles
and exactly two cuts.

Assume that any a with c(a) ≤ 2 and 4(a) ≤ 2 has c(a) = 4(a) = 2. Let E1,
E2 be the 24 3 a.

Now a is in two 3-cuts, and by Claim 5.4 each cut must pass through one other
edge of each of the 4 3 a. By Claim 5.7, then there are at most two triangles
containing a, and both cut circuits do not pass through any further edges. Thus the
vertices v and w that a connects are trivalent, and the cut circuits are going around
them (that is, their interior contains this one single vertex):

(16) av w

x

y

b′ a′

Then v, w cannot be incident to edges in the interior of E1. Now E1 is a triangle,
and its other vertex, different from v, w, is not a cut vertex (as G has no cut vertex
by assumption). So E1 must have empty interior, that is, be a triangular face. The
same assertion similarly follows for E2.
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(Actually, one may need to replace “interior” by “exterior” in this argument, for
one of E1 or E2; it depends on the choice of the ∞ region. We used “interior” to
keep the wording simple. Alternatively, one could avoid considering the exterior,
if one continues the iteration in part (2) of the algorithm above even if 4(a) = 2,
as long as one 4 3 a encloses the other.)

Since all the 4 edges in ∂ E1 ∪ ∂ E2 \ {a} are incident to a trivalent vertex, by
Claim 5.7 they cannot belong to more than two triangles. But since they do belong
to a triangle, by Claim 5.5 they cannot have cut number > 2. Thus assume all they
belong to (exactly) two triangles and two 3-cuts — otherwise we can choose a to
be one of them, and we are done.

Then consider a′ in (16) instead of a. The only way in which a′ can have a
second 3-cut X conforming to Claims 5.2, 5.3 and 5.4 is if X goes through a′ and
b′. Then the same argument as for a shows that a′

∈ 24 only if x is trivalent and
connected to a vertex, which is different from v and connected to w. The only such
vertex is y. Thus we have

(17)
av w

x

y

a
′′

a
′

Now, arguing for a′′ the same way as with a, we see that y is also trivalent, and
that hence G has no more edges than those 6 drawn in (17). This graph G has 16
spanning trees and t (G) = 6, and the inequality in the theorem is directly verified.
Otherwise one of the 4 edges in ∂ E1 ∪∂ E2 \{a} has at most one cut, and we found
the edge we sought.

Having found this edge a, we reach one of two cases:

t (G \ a) ≥ t (G) − 2 and t (G/a) ≥ t (G) − 3, or

t (G \ a) ≥ t (G) − 3 and t (G/a) ≥ t (G) − 2.

This way we could already conclude the theorem with a base of the exponential
being the inverse of the real positive root of x3

+ x2
−1. However, we can do a bit

better in applying induction. (Recall the remarks on the polynomials we made at
the beginning of the proof.)

Case D1. If none of c(a) and 4(a) is zero, then observe that both G/a and G \ a
contain a multiple edge respectively a 2-cut. Assume that t (G)− t (G \a) ≤ 3 and
t (G)− t (G/a) ≤ 2; the reverse case is symmetric with respect to the argument that
follows (only the estimates in (19) and (20) would interchange).
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Case D1a. If G/a has a join factor G ′ with e(G ′) ≤ 5 or t (G ′) = 1, let G ′′ with
G/a = G ′

∗ G ′′ be the (join of the) other factor(s). Then apply Lemma 5.1 on G ′

and induction on G ′′. We obtain, using also Lemma 3.19,

(18) s(G/a) = s(G ′) · s(G ′′) ≥ 2 t (G ′)
· 2γ t (G ′′)−1

= 2 · 2t (G ′)−1
· 2γ t (G ′′)−1

≥ 4 · γ t (G ′)+t (G ′′)−2
= 4 γ t (G/a)−2

≥ 4 γ t (G)−4.

We will see that this estimate subsumes the one in the next case.

Case D1b. If G/a has no such join factor, the multiple edge respectively 2-cut is
contained in a join factor G ′ of G/a which is recursively subjectable to cases B
or C. This means that we can find an edge a′ in G ′, and hence G/a, such that the
graphs Gcc = (G/a)/a′ and Gcd = (G/a)\a′, obtained by contracting respectively
deleting a′ in G/a, satisfy (up to interchange) t (Gcc) ≥ t (G/a) − 2 ≥ t (G) − 4
and t (Gcd) ≥ t (G/a)−1 ≥ t (G)−3. (Here again Lemma 3.19 is tacitly applied.)
Then

(19) s(G/a) ≥ 2 γ t (G)−5
+ 2 γ t (G)−4.

Since (18) is stronger, it is enough to keep working with (19).

Similarly, using graphs Gdc = (G \ a)/a′, Gdd = (G \ a) \ a′ with t (Gdc) ≥ t (G \

a)−2 ≥ t (G)−5 and t (Gdd) ≥ t (G \a)−1 ≥ t (G)−4 (again up to interchange),
we obtain for s(G \ a) the inequality

(20) s(G \ a) ≥ 2 γ t (G)−5
+ 2 γ t (G)−6.

(There is no problem in writing down these quantities because we ensured in the
beginning of case D that t (G) ≥ 6. So none of Gcc, Gcd , Gdc, Gdd is the trivial
1-vertex graph.) Using inequalities (19) and (20) and Lemma 3.21, we have

s(G) = s(G \ a) + s(G/a)

≥ 2γ t (G)−5
+ 2γ t (G)−4

+ 2γ t (G)−5
+ 2γ t (G)−6

= 2γ t (G)−1 ( γ −5
+ 2γ −4

+ γ −3 ) = 2γ t (G)−1.

This last equality uses the fact that 1/γ is a root of x5
+ 2x4

+ x3
− 1 (and so

explains our choice of γ ). Then we obtain the claim.

Case D2. If some of c(a) and 4(a) is zero (and the other one is at most two), we
obtain the recursive estimate

s(G) ≥ 2γ t (G)−1 (γ −3
+ γ −1).

In order the right-hand side to evaluate to at least 2γ t (G)−1, we need 1/γ to be not
smaller than the (real positive) root of the polynomial x3

+ x − 1. But one indeed
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checks that this polynomial is positive for x = γ −1. In other words, the γ we have
chosen so far is smaller than the one we would need for this recursive estimate.

Now the proof of Theorem 4.3 is complete. �

6. Possible improvements, computations and examples

Let us conclude the topic with some observations on experimental data and partial
improvements.

Alternating arborescent links.

Definition 6.1. The doubling of an edge (installing an edge connecting the same
two vertices) is the operation

→

The bisection of an edge (putting a valence-2 vertex on it) is the operation

→

(Other edges may be incident from the left- and rightmost vertices on both sides,
and the rest of the graphs on both sides are assumed to be equal.)

For a graph G ′ let
〈
G ′

〉
be the family of graphs obtained from G ′ by repeated

edge bisections and doublings. A graph G is series parallel if G ∈
〈 〉

. We say
that G is n-series parallel if G ∈

〈
G ′

〉
and G ′ is a simple 3-connected planar graph

of n edges.

Series parallel graphs correspond, via the checkerboard construction, to alter-
nating arborescent link diagrams, that is, alternating diagrams with Conway poly-
hedron 1∗ [1970]. More generally, link diagrams with an n-crossing Conway poly-
hedron come from n-series parallel graphs.

For a series parallel graph, one can use the proof of Theorem 4.3 to obtain, more
easily, a better inequality. Here T2 is the two-vertex graph with a double edge as in
(11) (and Remark 3.16), and Fi denote the Fibonacci numbers, defined by F1 = 1,
F2 = 1 and Fn = Fn−1 + Fn−2 for n > 2.

Proposition 6.2. If G is series parallel, or the join of such graphs, and G 6=

T2, T2 ∗ T2, then

(21) s(G) ≥ Ft (G)+3.

Proof. For a series parallel graph, case 5 in the induction of the proof of Theorem
4.3 never occurs. So we can use the estimate (14), which yields the recursion of
the Fibonacci numbers. With that argument completed, now one needs to take care
only of graphs G, for which G/a or G \a is one of T2 or T2 ∗ T2. The proof shows
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that such graphs G have twist number at most 4, and they can be easily dealt with.
(It suffices to check graphs with at most two edges in each twist equivalence class,
and so at most 8 edges.) �

Note that if G1,2 are series parallel, then one can always perform the join G1∗G2

(by proper choice of join vertices) so that the result is series parallel, but not every
possible join will be so.

The inequality (21) can be realized sharply (that is, as equality) taking (checker-
board graphs of) rational link diagrams (21 . . . 12), so it is optimal. This inequality
in particular allows us to improve the base of the exponential in Theorem 1.1 for
alternating arborescent links (which seems related to the partial cases obtained also
by Kofman and Leininger).

Proposition 6.3. If L is a hyperbolic alternating arborescent link, then det L ≥

1.4424 · 1.0485vol L
− 0.0118.

Proof. If an alternating link L is arborescent, then an alternating diagram D of
L has a Conway polyhedron 1∗ or 6∗; see [Thistlethwaite 1991]. This means that
its checkerboard graph G ∈ 〈1〉 ∪

〈
G ′

〉
, where we write 1 for and G ′ is the

graph in (17). For G ∈ 〈1〉, Proposition 6.2 applies directly (the two exceptional G
yield nonhyperbolic L). For G ∈

〈
G ′

〉
the same inductive argument as in the proof

of Proposition 6.2 can be used, unless G = G ′, a situation which we examined
separately already. In all other cases, the proof of Theorem 4.3 shows that, with
an edge a chosen properly, t (G/a), t (G \ a) ≥ t (G) − 3, so if G ∈

〈
G ′

〉
, then

t (G) ≥ 6, and none of G/a, G \a is T2 or T2 ∗T2. Moreover, if G ∈ 〈1〉∪
〈
G ′

〉
, then

the same holds for G/a and G \a. By adapting constants to G ′, where s = 16 and
F9 = 34, we have

(22) det D ≥
8
17 Ft (D)+3.

Now from (22), using t (D) ≥ 2, the explicit formula

Fn =
1

√
5

((
1+

√
5

2

)n
−

(
1−

√
5

2

)n
)

,

and the Agol–Thurston bound in Theorem 2.9, we find

det L ≥
8

17
√

5

(1+
√

5
2

)vol L
10V0

+4
−

8
17

√
5

(√
5−1
2

)6

≈ 1.44247 · 1.04855vol L
− 0.01172,

which implies the estimate. �

Remark 6.4. There is some annoying confusion as to the meaning of “alternat-
ing arborescent link”. As we explained, there are links which are alternating and
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arborescent, but whose alternating diagrams are not arborescent. (The Borromean
rings, whose checkerboard graph is G ′, are the simplest example.) These patholo-
gies are often tacitly ignored by many uncareful authors. If we consider alternat-
ingly arborescent links, that is, links whose alternating diagrams are arborescent,
then the treatment of G ′ and the constant 8

17 in (22) are not needed, and we can
slightly improve our estimate.

Experimental and computational remarks. A natural question is to what extent
the base in (1) can be improved in general. By refining the argument that led to the
occurrence of the polynomial x5

+ 2x4
+ x3

− 1, one could try to ‘push’ the zero
below that of x3

+x −1, and then have a better (and writable in radicals) constant γ

in Theorem 4.3. Such an improvement seems very burdensome and little efficient,
though.

To obtain some idea about the maximum possible, we evaluated (neglecting
the unnatural multiplicative factor in (1)) for alternating hyperbolic knots K the
invariant µ(K ) :=

vol K√det K . The smallest value among alternating knots of at
most 16 crossings was found attained by 16375396 with µ ≈ 1.2507. In general the
minimal µ decreases with increasing crossing number. It is somewhat surprising
that in fact the knots of largest determinant [Stoimenow 2007] have the smallest
or second smallest (for 10, 11, 16 crossings) µ.

Since the numeric data suggests (as expected) space for improvement, a further
question is where such improvement is possible. Theorem 1.1 is a coupling of
two independent parts, Theorem 4.3 and Theorem 2.9. As we observed, the base
γ ≈ 1.42 in Theorem 4.3 is likely not optimal, but can not be increased beyond
1
2(1 +

√
5) ≈ 1.62. Contrarily, while Agol–Thurston show that their inequality

is (asymptotically) sharp in general, in practice it often fails considerably. We
examined the inequality

(23)
vol K

10 V0 (t (K ) − 1)
<

(ln γ) · (t (K ) − 1)

ln(det K/2)
,

whose two sides compare the unsharpness of the estimates in Theorems 4.3 and 2.9.
For example, among the 6723 hyperbolic alternating knots K of ≤ 13 crossings,
6273 (or ≈ 93.3%) satisfy (23). Such evidence suggests that the loss of quality in
the constant in Theorem 1.1 is to a larger extent due to the application of Theorem
2.9, rather than Theorem 4.3. This, however, seems natural, since the volume is
more complex to understand than the graphs.

We make a final remark that, apart from estimates, an exact relation between
determinant and volume is unlikely to exist. Examples of (even alternating) knots
with equal determinant but different volume are easy to find, and, at least including
nonalternating knots, there are well known pairs with equal volume but different
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1579500 165435

Figure 4. Two alternating knots with (almost?) equal volume but
different determinant.

determinant, for instance 942 and 10132. For alternating knots such pairs are not
obvious, but one has situations where the volumes are very close to each other.

Example 6.5. The best pair I have found that sufficiently demonstrates the problem
is 1579500 and 165435 (see Figure 4). Their polynomials and determinants are quite
different, while their volumes differ only by 10−10, when calculated up to this same
precision (vol(1579500) ≈ 27.3456887210, and vol(165435) ≈ 27.3456887209).
Since such computational deviations occur even among different diagrams of the
same knot, the volumes may even be equal. (Note that, in very contrast to discrete
invariants, to decide whether two volumes are equal is not always trivial.)
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