Pacific Journal of Mathematics

UNIQUENESS OF WHITTAKER MODEL FOR THE METAPLECTIC GROUP

DANI SZPRUCH

Volume 232 No. 2 October 2007

UNIQUENESS OF WHITTAKER MODEL FOR THE METAPLECTIC GROUP

DANI SZPRUCH

Let F be a local nonarchimedean field. We prove the uniqueness of the Whittaker model for irreducible admissible representations of $\overline{\mathrm{Sp}_{2n}(F)}$, the metaplectic double cover of $\mathrm{Sp}_{2n}(F)$. An ingredient of the proof is an explicit extension of Rao's normalized cocycle from $\mathrm{Sp}_{2n}(F)$ to $\mathrm{GSp}_{2n}(F)$.

1. Introduction

Let F be a p-adic field. Let $\overline{\mathrm{Sp}_{2n}(F)}$ be the metaplectic double cover of $\mathrm{Sp}_{2n}(F)$. The uniqueness of Whittaker models for irreducible admissible representations of $\overline{\mathrm{Sp}_{2n}(F)}$ is well known to experts. Although it has been used many times, there is no general written proof, although a uniqueness theorem for principal series representations can be found in [Bump et al. 1991]. In this paper, we correct the situation and prove this uniqueness as Theorem 3.4. It turns out that one may use similar methods to those used in [Shalika 1974; Gel'fand and Kazhdan 1975; Bernstein and Zelevinskii 1976] for quasisplit groups over F. A central role is played by $\overline{\tau}$, a certain involution on $\overline{\mathrm{Sp}_{2n}(F)}$ which is an extension of the involution $g \mapsto {}^{\tau} g = \sigma_0 {}^{t} g \sigma_0^{-1}$ defined on $\mathrm{Sp}_{2n}(F)$, where σ_0 is a certain Weyl element.

Here, we realize $\overline{\mathrm{Sp}_{2n}(F)}$ using Rao's cocycle [1993]. In Section 2, we extend it explicitly to $\mathrm{GSp}_{2n}(F) \times \mathrm{GSp}_{2n}(F)$ and then use this extension to define $\overline{\tau}$. The unexpected fact, at least to us, is that τ extends to $\overline{\mathrm{Sp}_{2n}(F)}$ in the simplest possible way, namely $\overline{\tau}(g,\epsilon) = ({\tau}g,\epsilon)$.

2. Rao's cocycle

Let F be a local nonarchimedean field. Let $X = F^{2n}$ be a vector space of even dimension over F equipped with $\langle \cdot, \cdot \rangle : X \times X \to F$, a non degenerate symplectic form, and let $\operatorname{Sp}(X) = \operatorname{Sp}_{2n}(F)$ be the subgroup of $\operatorname{GL}(X)$ of symplectomorphisms of X onto itself. We shall write the action of $\operatorname{GL}(X)$ on X from the right. R. Rao [1993] constructs an explicit nontrivial 2-cocycle $\operatorname{c}(\cdot, \cdot)$ on $\operatorname{Sp}(X)$. The

MSC2000: 11F70.

Keywords: Whittaker model, metaplectic group, Rao's cocycle.

set $\overline{\mathrm{Sp}(X)} = \mathrm{Sp}(X) \times \{\pm 1\}$ is then made a group, called the metaplectic group, via

$$(2-1) (g_1, \epsilon_1)(g_2, \epsilon_2) = (g_1g_2, \epsilon_1\epsilon_2c(g_1, g_2)).$$

In Section 2A, we describe this cocycle.

Let $\operatorname{GSp}(X)$ be the group of similitudes of the symplectic form above. It is the subgroup of $\operatorname{GL}(X)$ of elements g such that $\langle v_1g, v_2g \rangle = \lambda_g \langle v_1, v_2 \rangle$ for all $v_1, v_2 \in X$, where $\lambda_g \in F^*$. The similitude factor λ_g defines a homomorphism from $\operatorname{GSp}(X)$ to F^* whose kernel is $\operatorname{Sp}(X)$. In Section 2B, we will extend $c(\cdot, \cdot)$ from $\operatorname{Sp}(X) \times \operatorname{Sp}(X)$ to $\operatorname{GSp}(X) \times \operatorname{GSp}(X)$. The result of this extension is that the set $\overline{\operatorname{GSp}(X)} = \operatorname{GSp}(X) \times \{\pm 1\}$ is given a group structure by (2-1).

2A. *Description of Rao's cocycle.* We start with recalling some of the notations and facts that appear in Rao's formula. Detailed proofs can be found in [Rao 1993].

Let $E = \{e_1, e_2, \dots, e_n, e_1^*, e_2^*, \dots, e_n^*\}$ be a symplectic basis of X: For $1 \le i, j \le n$, we have $\langle e_i, e_j \rangle = \langle e_i^*, e_j^* \rangle = 0$ and $\langle e_i, e_j^* \rangle = \delta_{i,j}$. In this basis, $\operatorname{Sp}(X)$ is realized as the set $\{A \in \operatorname{Mat}_{2n \times 2n}(F) \mid AJ^{-t}A = J\}$, where $J = ((0, I_n), (-I_n, 0))$. Define $V = \operatorname{span}\{e_1, e_2, \dots, e_n\}$, $V^* = \operatorname{span}\{e_1^*, e_2^*, \dots, e_n^*\}$. These are two transverse Lagrangian subspaces. Let P be the Siegel parabolic subgroup of $\operatorname{Sp}(X)$ consisting of the elements that preserve V^* . In coordinates,

$$P = \left\{ \begin{pmatrix} A & B \\ 0 & {}^{t}A^{-1} \end{pmatrix} \middle| A \in GL_n(F), B \in Mat_{n \times n}(F), {}^{t}B = A^{-1}B {}^{t}A \right\}.$$

Let *S* be a subset of $\{1, 2, ..., n\}$. We define τ_S , a_S to be the following elements of Sp(X):

$$e_{i} \cdot \tau_{S} = \begin{cases} -e_{i}^{*}, & i \in S, \\ e_{i}, & \text{otherwise,} \end{cases} \quad e_{i}^{*} \cdot \tau_{S} = \begin{cases} e_{i}, & i \in S, \\ e_{i}^{*}, & \text{otherwise,} \end{cases}$$

$$e_{i} \cdot a_{S} = \begin{cases} -e_{i}, & i \in S, \\ e_{i}, & \text{otherwise,} \end{cases} \quad e_{i}^{*} \cdot a_{S} = \begin{cases} -e_{i}^{*}, & i \in S, \\ e_{i}^{*}, & \text{otherwise.} \end{cases}$$

The elements τ_S , a_S , $\tau_{S'}$, $a_{S'}$ commute. Note that $a_S \in P$, $a_S^2 = I_{2n}$, and that $\tau_{S_1}\tau_{S_2} = \tau_{S_1 \triangle S_2}a_{S_1 \cap S_2}$, where $S_1 \triangle S_2 = S_1 \cup S_2 \setminus S_1 \cap S_2$. In particular, $\tau_S^2 = a_S$. For $S = \{1, 2, ..., n\}$, we define $\tau = \tau_S$; in this case $a_S = -I_{2n}$.

Define now $\Omega_j = \{\sigma \in \operatorname{Sp}(X) \mid \dim(V^* \cap V^*\sigma) = n - j\}$. Note that $P = \Omega_0$, $\tau_S \in \Omega_{|S|}$, and, more generally, if α , β , γ , $\delta \in \operatorname{Mat}_{n \times n}(F)$ and $\sigma = ((\alpha, \beta), (\gamma, \delta)) \in \operatorname{Sp}(X)$, then $\sigma \in \Omega_{\operatorname{rank} \gamma}$. The Bruhat decomposition states that each Ω_j is a single double coset in $P \setminus \operatorname{Sp}(X) / P$, that $\Omega_j^{-1} = \Omega_j$, and that $\bigcup_{j=1}^n \Omega_j = \operatorname{Sp}(X)$. In particular, every element of $\operatorname{Sp}(X)$ has the form $p\tau_S p'$, where $p, p' \in P$, $S \subseteq \{1, 2, \ldots, n\}$.

Let $p_1, p_2 \in P$. Rao defines

$$x(p_1\tau_S p_2) \equiv \det(p_1 p_2 |_{V^*}) \pmod{(F^*)^2}$$

and proves that it is a well defined map from $\operatorname{Sp}(X)$ to $F^*/(F^*)^2$. Note that $x(a_S) \equiv (-1)^{|S|}$, and, more generally, if $p = ((A, B), (0, {}^tA^{-1})) \in P$, then $x(p) \equiv \det A$. Also note that $x(\tau_S) \equiv 1$ and that for $g \in \Omega_i$, and $p_1, p_2 \in P$,

$$x(g^{-1}) \equiv x(g)(-1)^j$$
, $x(p_1gp_2) \equiv x(p_1)x(g)x(p_2)$.

Theorem 5.3 in [Rao 1993] states that a nontrivial 2-cocycle on Sp(X) can be defined by

(2-2)
$$c(\sigma_1, \sigma_2) = (x(\sigma_1), x(\sigma_2))_F (-x(\sigma_1)x(\sigma_2), x(\sigma_1\sigma_2))_F \cdot ((-1)^l, d_F(\rho))_F (-1, -1)_F^{l(l-1)/2} h_F(\rho),$$

where ρ is the Leray invariant $-q(V^*, V^*\sigma_1, V^*\sigma_2^{-1})$, $d_F(\rho)$ and $h_F(\rho)$ are its discriminant and Hasse invariant, $(\cdot, \cdot)_F$ is the quadratic Hilbert symbol of F, and $2l = j_1 + j_2 - j - \dim \rho$, where $\sigma_1 \in \Omega_{j_1}$, $\sigma_2 \in \Omega_{j_2}$, $\sigma_1\sigma_2 \in \Omega_j$. We use Rao's normalization of the Hasse invariant. (Note that the cocycle formula just given differs slightly from the one appearing in Rao's paper, as there is a small mistake in its Theorem 5.3. A correction by Adams can be found in [Kudla 1994], Theorem 3.1). For future reference, we recall some of the properties of the Hilbert symbol:

$$(2-3) \quad (a,-a)_F = 1, \quad (aa',b)_F = (a,b)_F (a',b)_F, \quad (a,b)_F = (a,-ab)_F.$$

From (2-2) and from previous remarks we obtain the following properties of $c(\cdot, \cdot)$. For $\sigma \in \Omega_j$, $p \in P$ we have

(2-4)
$$c(\sigma, \sigma^{-1}) = (x(\sigma), (-1)^j x(\sigma))_F (-1, -1)_F^{j(j-1)/2},$$

(2-5)
$$c(p,\sigma) = c(\sigma,p) = (x(p),x(\sigma))_{F}.$$

As a consequence of (2-5) and (2-3), we see that

(2-6)
$$(p, \epsilon_1)(\sigma, \epsilon)(p, \epsilon_1)^{-1} = (p\sigma p^{-1}, \epsilon),$$

for all $\sigma \in \operatorname{Sp}(X)$, $p \in P$, and $\epsilon_1, \epsilon \in \{\pm 1\}$.

Finally, we recall Corollary 5.6 in Rao's paper. For $S \subset \{1, 2, ..., n\}$, define $X_S = \text{span}\{e_i, e_i^* \mid i \in S\}$. We may now consider x_S and $c_{X_S}(\cdot, \cdot)$ defined by analogy with x and $c(\cdot, \cdot)$. Let S_1 and S_2 be a partition of $\{1, 2, ..., n\}$. Suppose $\sigma_1, \sigma_1' \in \text{Sp}(X_{S_1})$ and $\sigma_2, \sigma_2' \in \text{Sp}(X_{S_2})$. Put $\sigma = \text{diag}(\sigma_1, \sigma_2), \sigma_1' = \text{diag}(\sigma_1', \sigma_2')$. Rao proves that

(2-7)
$$c(\sigma, \sigma') = c_{S_1}(\sigma_1, \sigma'_1) c_{S_2}(\sigma_2, \sigma'_2) (x_{S_1}(\sigma_1), x_{S_2}(\sigma_2))_F$$

 $\cdot (x_{S_1}(\sigma'_1), x_{S_2}(\sigma'_2))_F (x_{S_1}(\sigma_1\sigma'_1), x_{S_2}(\sigma_2\sigma'_2))_F.$

2B. Extension of Rao's cocycle to GSp(X). F^* is embedded in GSp(X) via

$$\lambda \mapsto i(\lambda) = \begin{pmatrix} I_n & 0 \\ 0 & \lambda I_n \end{pmatrix}.$$

Using this embedding we define an action of F^* on Sp(X): $(g, \lambda) \mapsto g^{\lambda} = i(\lambda^{-1})g\,i(\lambda)$. Let $F^* \ltimes Sp(X)$ be the semidirect product corresponding to this action. For α , β , γ , $\delta \in Mat_{n \times n}(F)$ and $g = {\alpha \choose k} \in GSp(X)$, define

$$p(g) = \begin{pmatrix} \alpha & \beta \\ \lambda_g^{-1} \gamma & \lambda_g^{-1} \delta \end{pmatrix} \in \operatorname{Sp}(X),$$

and note that $g = i(\lambda_g)p(g)$. The map $g \mapsto \iota(g) = (\lambda_g, p(g))$ is an isomorphism between GSp(X) and $F^* \ltimes Sp(X)$.

From the theory of the Weil representation (see [Mæglin et al. 1987, page 36]), we know that for any $\lambda \in F^*$, we can define a map $v_\lambda : \operatorname{Sp}(X) \to \{\pm 1\}$ such that $(g, \epsilon) \mapsto (g, \epsilon)^\lambda = \left(g^\lambda, \epsilon v_\lambda(g)\right)$ is an automorphism of $\overline{\operatorname{Sp}(X)}$. In 2B, we compute v_λ . We shall also show there that $(\lambda, (g, \epsilon)) \mapsto (g, \epsilon)^\lambda$ defines an action of F^* on $\overline{\operatorname{Sp}(X)}$. Here we just want to show how this computation enables us to extend $c(\cdot, \cdot)$ to a 2-cocycle $\tilde{c}(\cdot, \cdot)$ on $\operatorname{GSp}(X)$ and hence write an explicit multiplication formula of $\overline{\operatorname{GSp}(X)}$, the metaplectic double cover of $\operatorname{GSp}(X)$. We define the group $F^* \ltimes \overline{\operatorname{Sp}(X)}$ using the multiplication

$$(a, (g, \epsilon_1))(b, (h, \epsilon_2)) = (ab, (g, \epsilon_1)^b(h, \epsilon_2)).$$

We also define a bijection from $GSp(X) \times \{\pm 1\}$ to $F^* \times \overline{Sp(X)}$ by $\overline{\iota}(g, \epsilon) = (\lambda_g, (p(g), \epsilon))$, whose inverse is given by $\overline{\iota}^{-1}(\lambda, (h, \epsilon)) = (i(\lambda)h, \epsilon)$. We use $\overline{\iota}$ to define a group structure on $GSp(X) \times \{\pm 1\}$. A straightforward computation will show that the multiplication in $\overline{GSp(X)}$ is given by

$$(g, \epsilon_1)(h, \epsilon_2) = (gh, v_{\lambda_h}(p(g))c(p(g)^{\lambda_h}, p(h)\epsilon_1\epsilon_2)).$$

Thus,

$$\tilde{c}(g,h) = v_{\lambda_h}(p(g))c(p(g)^{\lambda_h}, p(h))$$

serves as a nontrivial 2-cocycle on GSp(X). We remark here that Kubota [1969] (see also [Gelbart 1976]) used a similar construction to extend a nontrivial double cover of $SL_2(F)$ to a nontrivial double cover of $GL_2(F)$. For n = 1, our construction agrees with Kubota's.

Computation of $v_{\lambda}(g)$. Barthel [1991] extended Rao's unnormalized cocycle to GSp(X). One may compute $v_{\lambda}(g)$ using Barthel's work and Rao's normalizing factors. Instead, we compute $v_{\lambda}(g)$ using Rao's (normalized) cocycle. Fix $\lambda \in F^*$.

Since $(g, \epsilon) \mapsto (g, \epsilon)^{\lambda}$ is an automorphism, v_{λ} satisfies

(2-8)
$$v_{\lambda}(g)v_{\lambda}(h)v_{\lambda}(gh) = \frac{c(g^{\lambda}, h^{\lambda})}{c(g, h)}.$$

We shall show that this property determines v_{λ} .

We first note that

$$(2-9) \qquad \begin{pmatrix} A & B \\ 0 & {}^t\!A^{-1} \end{pmatrix}^{\lambda} = \begin{pmatrix} A & \lambda B \\ 0 & {}^t\!A^{-1} \end{pmatrix}, \quad x \begin{pmatrix} \begin{pmatrix} A & B \\ 0 & {}^t\!A^{-1} \end{pmatrix}^{\lambda} \end{pmatrix} \equiv x \begin{pmatrix} \begin{pmatrix} A & B \\ 0 & {}^t\!A^{-1} \end{pmatrix} \end{pmatrix}.$$

For $S \subseteq \{1, 2, ..., n\}$ define $a_S(\lambda) \in P$ by

$$e_i \cdot a_S(\lambda) = \begin{cases} \lambda^{-1} e_i, & i \in S, \\ e_i, & \text{otherwise,} \end{cases} \qquad e_i^* \cdot a_S(\lambda) = \begin{cases} \lambda e_i^*, & i \in S, \\ e_i^*, & \text{otherwise.} \end{cases}$$

Note that $a_S = a_S(-1)$. One can verify that

(2-10)
$$\tau_S^{\lambda} = a_S(\lambda)\tau_S = \tau_S a_S(\lambda^{-1}).$$

Since $x(a_S(\lambda)) \equiv \lambda^{|S|}$, we obtain, using (2-9) and (2-10), the Bruhat decomposition, and the properties of x presented earlier, that $\Omega_j^{\lambda} = \Omega_j$ and that, for $g \in \Omega_j$,

(2-11)
$$x(g^{\lambda}) \equiv \lambda^{j} x(g).$$

Lemma 2.1. For $p \in P$, $g \in \Omega_i$ we have

(2-12)
$$v_{\lambda}(p)v_{\lambda}(g)v_{\lambda}(pg) = (x(p), \lambda^{j})_{F}$$

and

(2-13)
$$v_{\lambda}(g) v_{\lambda}(p) v_{\lambda}(gp) = (x(p), \lambda^{j})_{F}.$$

Proof. We prove (2-12) only. (2-13) follows in the same way. We use (2-8), (2-5), (2-11) and (2-3):

$$v_{\lambda}(p)v_{\lambda}(g)v_{\lambda}(pg) = \frac{c(p^{\lambda}, g^{\lambda})}{c(p, g)} = \frac{\left(x(p^{\lambda}), x(g^{\lambda})\right)_{F}}{\left(x(p), x(g)\right)_{F}}$$
$$= \frac{\left(x(p), x(g)\lambda^{j}\right)_{F}}{\left(x(p), x(g)\right)_{F}} = \left(x(p), \lambda^{j}\right)_{F}.$$

Lemma 2.2. There exists a unique $t_{\lambda} \in F^*/F^{*2}$ such that $v_{\lambda}(p) = (x(p), t_{\lambda})_F$ for all $p \in P$.

Proof. Substituting $p' \in P$ for g in (2-12) we see that $v_{\lambda}|_{P}$ is a quadratic character. Since N, the unipotent radical of P, is isomorphic to a vector space over F, it follows that $N^2 = N$. Thus, $v_{\lambda}|_{N}$ is trivial. We conclude that $v_{\lambda}|_{P}$ is a quadratic character of $GL_n(F)$ extended to P. Every quadratic character of $GL_n(F)$ is of the form $g \mapsto \chi(\det g)$, where χ is a quadratic character of F^* . The nondegeneracy of the Hilbert symbol implies every such character of F^* has the form $\chi(a) = (a, t_{\chi})_F$, where $t_{\chi} \in F^*$ uniquely determined by χ up to multiplication by squares. \square

Lemma 2.3. For $\sigma \in \Omega_j$ we have $v_{\lambda}(\sigma) = (x(\sigma), t_{\lambda}\lambda^j)_F v_{\lambda}(\tau_S)$, where $S \subseteq \{1, 2, ..., n\}$ is such that |S| = j. In particular, if |S| = |S'| then $v_{\lambda}(\tau_S) = v_{\lambda}(\tau_{S'})$.

Proof. An element $\sigma \in \Omega_j$ has the form $\sigma = p\tau_S p'$, where $p, p' \in P$ and |S| = j. Substituting $g = \tau_S p'$ in (2-12) yields $v_{\lambda}(p\tau_S p') = v_{\lambda}(p)v_{\lambda}(\tau_S p')(x(p), \lambda^j)_F$, while substituting $g = \tau_S$ and p = p' in (2-13) yields $v_{\lambda}(\tau_S p') = v_{\lambda}(\tau_S)v_{\lambda}(p') \cdot (x(p'), \lambda^j)_F$. Using these two equalities together with (2-3) and Lemma 2.2, we obtain $v_{\lambda}(p\tau_S p') = (x(pp'), t_{\lambda}\lambda^j)_F v_{\lambda}(\tau_S)$. Since |S| = |S'| implies $p\tau_S p^{-1} = \tau_{S'}$, for some $p \in P$, the last argument shows that $v_{\lambda}(\tau_S) = v_{\lambda}(\tau_{S'})$.

It is clear now that, once we compute t_{λ} and $v_{\lambda}(\tau_S)$ for all $S \subseteq \{1, 2, ..., n\}$, we will find the explicit formula for v_{λ} .

Lemma 2.4.
$$t_{\lambda} = \lambda$$
 and $v_{\lambda}(\tau_S) = (\lambda, \lambda)_F^{|S|(|S|-1)/2}$.

Proof. Let k be a symmetric matrix in $GL_n(F)$. Put

$$p_k = \begin{pmatrix} k & -I_n \\ 0 & k^{-1} \end{pmatrix} \in P, \qquad n_k = \begin{pmatrix} I_n & k \\ 0 & I_n \end{pmatrix} \in N,$$

and note that $x(n_k) \equiv 1$, $x(p_k) \equiv \det k$, and that

We are going to compute $v_{\lambda}(\tau)v_{\lambda}(n_k\tau)v_{\lambda}(\tau n_k\tau)$ in two ways: First, by Lemma 2.3 and by (2-14), we have $v_{\lambda}(\tau)v_{\lambda}(n_k\tau)v_{\lambda}(\tau n_k\tau) = v_{\lambda}(\tau)v_{\lambda}(\tau)v_{\lambda}(n_{-k^{-1}}\tau p_k) = v_{\lambda}(n_{-k^{-1}}\tau p_k)$. Since

$$(2-15) x(\tau n_k \tau) \equiv x(n_{-k-1}\tau p_k) \equiv \det(k),$$

we obtain, using Lemma 2.3 again,

(2-16)
$$v_{\lambda}(\tau) v_{\lambda}(n_k \tau) v_{\lambda}(\tau n_k \tau) = \left(\det k, t_{\lambda} \lambda^n\right)_F v_{\lambda}(\tau).$$

Second, by (2-8) we have

(2-17)
$$v_{\lambda}(\tau) v_{\lambda}(n_k \tau) v_{\lambda}(\tau n_k \tau) = \frac{c(\tau, n_k \tau)}{c(\tau^{\lambda}, (n_k \tau)^{\lambda})}.$$

We shall compute the two terms on the right side of (2-17), starting with $c(\tau, n_k \tau)$. Let ρ and l be the factors in (2-2), where $\sigma_1 = \tau$, $\sigma_2 = n_k \tau$. Recall that the Leray invariant is stable under the action of Sp(X) on Lagrangian triplets, see [Rao 1993, Theorem 2.11]. Hence,

$$q(V^*, V^*\tau, V^*(n_k\tau)^{-1}) = q(V^*, V, V^*(-I_{2n}\tau n_{-k})) = q(V^*, V, V n_{-k}).$$

We conclude that $\rho = k$, l = 0. Using (2-2), and (2-15) we observe that

$$(2-18) c(\tau, n_k \tau) = (-1, \det k)_F h_F(k).$$

We now turn to $c(\tau^{\lambda}, (n_k \tau)^{\lambda})$. Let ρ and l be the factors in (2-2), where $\sigma_1 = \tau^{\lambda}$ and $\sigma_2 = (n_k \tau)^{\lambda}$. Note that (2-9) and (2-10) imply $(n_k \tau)^{\lambda} = n_{\lambda k} \lambda I_{2n} \tau$, and hence

$$q((V^*, V^*\tau^{\lambda}, V^*((n_k\tau)^{\lambda})^{-1}) = q(V^*, V, Vn_{-\lambda k}).$$

Therefore $\rho = mk$ and l = 0, and so we get

$$c(\tau^{\lambda}, (n_k \tau)^{\lambda}) = (x(\lambda I_{2n}), x(\lambda I_{2n}))_F (-1, x(\tau^{\lambda}(n_k \tau)^{\lambda}))_F h_F(\lambda k).$$

We recall (2-14) and note now that

$$\tau^{\lambda}(n_k\tau)^{\lambda} = (\tau n_k\tau)^{\lambda} = (n_{-k^{-1}}\tau p_k)^{\lambda} = n_{-\lambda k^{-1}}\lambda I_{2n}\tau \begin{pmatrix} k & \lambda k \\ 0 & k^{-1} \end{pmatrix}.$$

Hence, $c(\tau^{\lambda}, (n_k \tau)^{\lambda}) = (\lambda^n, \lambda^n)_F(-1, \lambda^n \det k)_F h_F(\lambda k)$, or, using (2-3):

(2-19)
$$c(\tau^{\lambda}, (n_k \tau)^{\lambda}) = (-1, \det k)_F h_F(\lambda k).$$

Using (2-16), (2-17), (2-18) and (2-19) we finally get

$$v_{\lambda}(\tau) \left(\det k, t_{\lambda} \lambda^{n} \right)_{F} = \frac{h_{F}(\lambda k)}{h_{F}(k)}.$$

By substituting $k = I_n$ in the above, we get $v_{\lambda}(\tau) = (\lambda, \lambda)_F^{n(n-1)/2}$, and we can rewrite it as

(2-20)
$$\left(\det k, t_{\lambda} \lambda^{n}\right)_{F} = \frac{h_{F}(\lambda k)}{h_{F}(k)} (\lambda, \lambda)_{F}^{n(n-1)/2}.$$

To find t_{λ} , we note that for any $y \in F^*$ we can put $k_y = \text{diag}(1, 1, ..., y)$ in (2-20) and obtain $(y, t_{\lambda}\lambda^n)_F = (\lambda, \lambda)_F^{(n-1)(n-2)/2}(\lambda, \lambda y)_F^{n-1}(\lambda, \lambda)_F^{n(n-1)/2}$. For both even and odd n, this is equivalent to $(y, \lambda)_F = (y, t_{\lambda})_F$. That the last equality holds for all $y \in F^*$ implies that $t_{\lambda} \equiv \lambda \pmod{(F^*)^2}$.

We are left to compute $v_{\lambda}(\tau_S)$ for $S \subseteq \{1, 2, ..., n\}$. For such S, define $S \tau \in \operatorname{Sp}(X_S)$ by analogy with $\tau \in \operatorname{Sp}(X)$. We can embed $\operatorname{Sp}(X_S)$ in $\operatorname{Sp}(X)$ in a way that maps $S \tau$ to $T \in S$. We may now use (2-7) and repeat the computation of $V \in S$.

Joining Lemma 2.3, and Lemma 2.4, we write the explicit formula for v_{λ} . For $g \in \Omega_i$ we have

(2-21)
$$v_{\lambda}(g) = (x(g), \lambda^{j+1})_{E}(\lambda, \lambda)^{j(j-1)/2}.$$

One can easily check now that $v_{\lambda}(g)v_{\eta}(g^{\lambda}) = v_{\lambda\eta}(g)$ and conclude that the map $(\lambda, (g, \epsilon)) \mapsto (g, \epsilon)^{\lambda}$ defines an action of F^* on $\overline{\mathrm{Sp}(X)}$, namely $((g, \epsilon)^{\lambda})^{\eta} = (g, \epsilon)^{\lambda\eta}$. Lastly, comparing (2-21) and (2-4), keeping (2-3) in mind, we note that

(2-22)
$$v_{-1}(g) = v_{-1}(g^{-1}) = c(g, g^{-1}).$$

This fact will play an important role in the proof of the uniqueness of Whittaker models for $\overline{Sp(X)}$.

3. Uniqueness of the Whittaker model

3A. Statement of the main results. Let ψ be a nontrivial character of F. Let Z' be the group of upper triangular unipotent matrices in $GL_n(F)$. Let Z be the subgroup of $Sp_{2n}(F)$ that consists of elements of the form $((z,b),(0, {}^tz^{-1}))$ in which $z \in Z'$ and $b \in Mat_{n \times n}(F)$ satisfy ${}^tb = z^{-1}b{}^tz$. We shall continue to denote by ψ the character of Z given by $\psi(z) = \psi(b_{(n,n)} + \sum_{i=1}^{n-1} z_{(i,i+1)})$. Let \overline{Z} be the inverse image of Z in $\overline{Sp_{2n}(F)}$. From (2-5) it follows that $\overline{Z} \simeq Z \times \{\pm 1\}$. We define a character of \overline{Z} by $(z, \epsilon) \mapsto \epsilon \psi(z)$ and continue to denote it by ψ .

Let (π, V_{π}) be a smooth representation of $\overline{\mathrm{Sp}_{2n}(F)}$. By a Whittaker functional on π with respect to ψ , we mean a linear functional w on V_{π} satisfying $w\big(\pi(z)v\big)=\psi(z)w(v)$ for all $v\in V_{\pi},\,z\in\overline{Z}$. Define $W_{\pi,\psi}$ to be the space of Whittaker functionals on π with respect to ψ . We define $\hat{\pi}$ as the (smooth) dual representation to π .

Theorem 3.1. If (π, V_{π}) is an irreducible admissible representation of $\overline{\mathrm{Sp}_{2n}(F)}$, then

$$\dim(W_{\pi,\psi})\cdot\dim(W_{\hat{\pi},\psi^{-1}})\leq 1.$$

The proof of this theorem will show:

Theorem 3.2. Suppose (π, V_{π}) is an irreducible admissible representation of $\overline{\mathrm{Sp}_{2n}(F)}$. If, from the existence of a nontrivial Whittaker functional on π with respect to ψ , one can deduce the existence of a nontrivial Whittaker functional on $\hat{\pi}$ with respect to ψ^{-1} , then $\dim(W_{\pi,\psi}) \leq 1$.

Corollary 3.3. If (π, V_{π}) is an irreducible admissible unitary representation of $\overline{\mathrm{Sp}_{2n}(F)}$, then $\dim(W_{\pi,\psi}) \leq 1$.

Proof of the corollary. We show that the conditions of Theorem 3.2 hold in this case. Indeed, if (π, V_{π}) is an irreducible admissible unitary representation of $\overline{\mathrm{Sp}_{2n}(F)}$, one can realize the dual representation in the space $\widetilde{V_{\pi}}$, which is identical

to V_{π} as a commutative group. The scalars act on $\widetilde{V_{\pi}}$ by $\lambda \cdot v = \overline{\lambda}v$. The action of $\widehat{\pi}$ in this realization is given by $\widehat{\pi}(g) = \pi(g)$. It is clear now that if L is a nontrivial Whittaker functional on π with respect to ψ then L, acting on $\widetilde{V_{\pi}}$, is a nontrivial Whittaker functional on $\widehat{\pi}$ with respect to ψ^{-1} .

Since every cuspidal representation π is unitary, it follows from Corollary 3.3 that $\dim(W_{\pi,\psi}) \leq 1$. Furthermore, assume now that π is an irreducible admissible representation of $\overline{\mathrm{Sp}_{2n}(F)}$. Then π is a subquotient of a representation induced from a cuspidal representation of a parabolic subgroup. Let H be a parabolic subgroup of $\mathrm{Sp}_{2n}(F)$. It is known [Mæglin et al. 1987, page 39] that if g and h commute in $\mathrm{Sp}_{2n}(F)$ then (g, ϵ_1) and (h, ϵ_2) commute in $\overline{\mathrm{Sp}_{2n}(F)}$. Therefore, \overline{M}_H , the inverse image of the Levy part of H, is isomorphic to

$$GL_{n_1}(F) \times GL_{n_2}(F) \times \cdots \times GL_{n_r}(F) \times \overline{Sp_{2k}(F)}$$
.

Suppose that for $1 \le i \le r$, the representation σ_i of $\mathrm{GL}_{n_i}(F)$ is cuspidal, and that π' is a cuspidal representation of $\overline{\mathrm{Sp}}_{2k}(F)$. Denote by ψ_i and ψ' the restrictions of ψ to the unipotent radicals of GL_{n_i} and $\overline{\mathrm{Sp}}_{2k}(F)$, respectively, embedded in \overline{M}_H . Note that $\dim(W_{\sigma_i,\psi_i}) \le 1$ and $\dim(W_{\pi',\psi'}) \le 1$. Let τ be the representation of \overline{M}_H defined by

$$\left(\operatorname{diag}(g_1, g_2, \dots, g_r, h, {}^{t}g_r^{-1}, {}^{t}g_{r-1}^{-1}, \dots, {}^{t}g_1^{-1}), \epsilon \right) \mapsto \\ \bigotimes_{i=1}^{i=r} \sigma_i(g_i) \gamma_{\psi}(\det g_i) \otimes \pi(h, \epsilon),$$

where γ_{ψ} is the Weil index of ψ (for details on γ_{ψ} see [Rao 1993, appendix]). We extend τ from M_H to \overline{H} , letting the unipotent radical act trivially. Define $\operatorname{Ind}(\overline{H}, \overline{\operatorname{Sp}_{2n}(F)}, \tau)$ to be the corresponding induced representation. One may use the methods of [Rodier 1973], extended in [Banks 1998] to a nonalgebraic setting, and conclude that

$$\dim(W_{\operatorname{Ind}(\overline{H},\overline{\operatorname{Sp}_{2n}(F)},\tau),\psi}) = \dim(W_{\pi',\psi'}) \prod_{i=1}^{i=r} \dim(W_{\sigma_i,\psi_i}).$$

Now, if $V_2 \subseteq V_1 \subseteq \operatorname{Ind}(\overline{H}, \overline{\operatorname{Sp}_{2n}(F)}, \tau)$, are two $\overline{\operatorname{Sp}_{2n}(F)}$ modules then clearly the dimension of the Whittaker functionals on V_1 and V_2 with respect to ψ is not greater then $\dim(W_{\operatorname{Ind}(\overline{H}, \overline{\operatorname{Sp}_{2n}(F)}, \tau), \psi})$. It follows now that $\dim(W_{\pi, \psi}) \leq 1$. Thus, we proved

Theorem 3.4. Let π be an irreducible, admissible representation of $\overline{\mathrm{Sp}_{2n}(F)}$. Then $\dim(W_{\pi,\psi}) \leq 1$.

Proof of Theorem 3.1. Define on $Sp_{2n}(F)$ the map

$$g \mapsto {}^{\tau}g = \sigma_0({}^{t}g)\sigma_0^{-1},$$

where

$$\sigma_0 = \begin{pmatrix} 0 & \epsilon_n \\ \epsilon_n & 0 \end{pmatrix}, \qquad \epsilon_n = \operatorname{diag}(1, -1, 1, \dots, (-1)^{n+1}) \in \operatorname{GL}_n(F).$$

We note that $\sigma_0^{-1} = {}^t\sigma_0 = \sigma_0$, and that $\sigma_0 \in \operatorname{GSp}_{2n}(F)$ with similitude factor -1. Hence, $g \mapsto {}^\tau g$ is an antiautomorphism of $\operatorname{Sp}_{2n}(F)$ of order 2 of. We now extend τ to $\overline{\operatorname{Sp}_{2n}(F)}$. A similar lifting was used in [Gelbart et al. 1979] for $\overline{\operatorname{GL}_2(F)}$.

Lemma 3.5. The map $(g, \epsilon) \mapsto \overline{}(g, \epsilon) = ({}^{\tau}g, \epsilon)$ is an antiautomorphism of $\overline{\mathrm{Sp}}_{2n}(F)$ of order 2. It preserves both \overline{Z} and ψ and satisfies $\overline{}(\mathrm{Sp}_{2n}(F), \epsilon) = (\mathrm{Sp}_{2n}(F), \epsilon)$.

Proof. We note that if $g \in \operatorname{Sp}_{2n}(F)$ then ${}^{\operatorname{t}}g = -Jg^{-1}J$. Hence,

$${}^{\tau}g = \begin{pmatrix} \epsilon_n & 0 \\ 0 & \epsilon_n \end{pmatrix} \begin{pmatrix} -I_n & 0 \\ 0 & I_n \end{pmatrix} g^{-1} \begin{pmatrix} -I_n & 0 \\ 0 & I_n \end{pmatrix} \begin{pmatrix} \epsilon_n & 0 \\ 0 & \epsilon_n \end{pmatrix}^{-1}.$$

Thus, the map

$$(g,\epsilon) \mapsto ({}^{\tau}g,\epsilon c(g,g^{-1})v_{-1}(g^{-1})c(p_{\epsilon},\tilde{g})c(p_{\epsilon}\tilde{g},p_{\epsilon}^{-1})c(p_{\epsilon},p_{\epsilon}^{-1})),$$

where

$$p_{\epsilon} = \begin{pmatrix} \epsilon_n & 0 \\ 0 & \epsilon_n \end{pmatrix} \in P$$
 and $\tilde{g} = \begin{pmatrix} -I_n & 0 \\ 0 & I_n \end{pmatrix} g^{-1} \begin{pmatrix} -I_n & 0 \\ 0 & I_n \end{pmatrix}$,

is an antiautomorphism of $\overline{\mathrm{Sp}_{2n}(F)}$. We now show that

$$c(g, g^{-1})v_{-1}(g^{-1})c(p_{\epsilon}, \tilde{g})c(p_{\epsilon}\tilde{g}, p_{\epsilon}^{-1})c(p_{\epsilon}, p_{\epsilon}^{-1}) = 1.$$

Indeed, $c(p_{\epsilon}, \tilde{g}) c(p_{\epsilon} \tilde{g}, p_{\epsilon}^{-1}) c(p_{\epsilon}, p_{\epsilon}^{-1}) = 1$ is a property of Rao's cocycle noted in (2-6). The fact that $c(g, g^{-1}) v_{-1}(g^{-1}) = 1$ is a consequence of the calculation of $v_{\lambda}(g)$ and is noted in (2-22). The remaining assertions of this lemma are clear. \square

Let $S(\overline{\operatorname{Sp}_{2n}(F)})$ be the space of Schwartz functions on $\overline{\operatorname{Sp}_{2n}(F)}$. For $h \in \overline{\operatorname{Sp}_{2n}(F)}$ and $\phi \in S(\overline{\operatorname{Sp}_{2n}(F)})$, we define $\lambda(h)\phi$, $\rho(h)\phi$, and $\overline{}\phi$ by

$$(\rho(h)\phi)(g) = \phi(gh), \quad (\lambda(h)\phi)(g) = \phi(h^{-1}g), \quad {}^{\overline{\tau}}\phi(g) = \phi({}^{\overline{\tau}}g).$$

These maps are elements of $S(\overline{\mathrm{Sp}_{2n}(F)})$. We give $S(\overline{\mathrm{Sp}_{2n}(F)})$ an algebra structure, called the Hecke algebra, by the convolution. Given (π, V_{π}) , a representation of $\overline{\mathrm{Sp}_{2n}(F)}$, we define as usual a representation of this algebra in the space V_{π} by

$$\pi(\phi) v = \int_{\overline{\mathrm{Sp}_{2n}(F)}} \phi(g) \pi(g) v \, dg.$$

The following theorem, known as the Gelfand–Kazhdan Theorem in the context of $GL_n(F)$ (see [Gel'fand and Kazhdan 1975; Bernstein and Zelevinskii 1976]), will be used in the proof of Theorem 3.1.

Theorem 3.6. Suppose D is a functional on $S(\overline{\mathrm{Sp}_{2n}(F)})$ with $D(\lambda(z_1)\rho(z_2)\phi) = \psi(z_2z_1^{-1})D(\phi)$ for all $\phi \in S(\overline{\mathrm{Sp}_{2n}(F)})$ and $z_1, z_1 \in \overline{Z}$. Then D is $\overline{\tau}$ invariant, that is, $D(\overline{\tau}\phi) = D(\phi)$ for all $\phi \in S(\overline{\mathrm{Sp}_{2n}(F)})$.

We will prove this theorem in Section 3B. Here we use it for:

Proof of Theorem 3.1. Since any irreducible admissible representation of $\overline{\mathrm{Sp}_{2n}(F)}$ may be realized as a dual representation, the proof amounts to showing that if $W_{\pi,\psi} \neq 0$ then $\dim W_{\hat{\pi},\psi^{-1}} \leq 1$. We shall use an argument similar to the one in [Soudry 1987, Theorem 2.1]. Let w be a nontrivial Whittaker functional on (π,V_π) with respect to ψ . Suppose \widehat{w}_1 and \widehat{w}_2 are two nontrivial Whittaker functionals on $\widehat{\pi}$ with respect to ψ^{-1} . The proof will be achieved once we show that \widehat{w}_1 and \widehat{w}_2 are proportional.

For $\phi \in S(\overline{\mathrm{Sp}_{2n}(F)})$, let $\pi^*(\phi)w$ be a functional on V_π defined by

$$\left(\pi^*(\phi)w\right)v = \int_{\overline{\operatorname{Sp}_{2n}(F)}} \phi(g)w\left(\pi(g^{-1})v\right)dg.$$

Note that $\phi \in S(\overline{\operatorname{Sp}_{2n}(F)})$ implies $\pi^*(\phi)w$ is smooth even if w is not. Thus, $\pi^*(\phi)w$ lies in $\in V_{\hat{\pi}}$. By a change of variables we have

(3-1)
$$\hat{\pi}(h)(\pi^*(\phi)w) = \pi^*(\lambda(h)\phi)w.$$

Now define R_1 and R_2 , two functionals on $S(\overline{\operatorname{Sp}_{2n}(F)})$, through

$$R_i(\phi) = \widehat{w}_i(\pi^*(\phi)w).$$

Using (3-1), the facts that w, \widehat{w}_1 , \widehat{w}_2 are Whittaker functionals, and by changing variables, we observe for all $z \in \overline{Z}$ that

$$R_i(\lambda(z)\phi) = \psi^{-1}(z)R_i(\phi), \qquad R_i(\rho(z)\phi) = \psi(z)R_i(\phi).$$

From Theorem 3.6 it follows that $R_i(\phi) = R_i(\bar{\tau}\phi)$. Hence,

$$\widehat{w}_i(\widehat{\pi}(h)\pi^*(\phi)w) = \widehat{w}_i(\pi^*(\overline{\tau}(\lambda(h)\phi)w)).$$

Using a change of variables again, we also have

(3-3)
$$\pi^*(\overline{}(\lambda(h)\phi))w = \pi^*(\overline{}\phi)\left(\pi^*(\overline{}h)w\right).$$

Joining (3-2) and (3-3) we obtain

$$\widehat{w}_i\left(\widehat{\pi}(h)\pi^*(\phi)w\right) = \widehat{w}_i\left(\pi^*(\overline{\tau}\phi)\left(\pi^*(\overline{\tau}h)w\right)\right).$$

In particular, if $\pi^*(\phi) w$ is the zero functional for some $\phi \in S(\overline{\mathrm{Sp}_{2n}(F)})$, then, for all $h \in \overline{\mathrm{Sp}_{2n}(F)}$, $\widehat{w}_i(\pi^*(\overline{{}^{\tau}}\phi)(\pi^*(\overline{{}^{\tau}}h)w)) = 0$. Here, for all $f \in S(\overline{\mathrm{Sp}_{2n}(F)})$, we have

$$0 = \widehat{w}_i \bigg(\int_{\overline{\operatorname{Sp}}_{2n}(F)} f(h) \widehat{w}_i \big(\pi^*(\overline{\,}^{\overline{\tau}} \phi) (\pi^*(\overline{\,}^{\overline{\tau}} h) \, w) \big) \, dh \bigg).$$

By the definition of $\pi^*(\phi) w$ and by changing the order of integration, we have, for all $v \in V_{\pi}$,

$$\int_{\overline{\mathrm{Sp}_{2n}(F)}} f(h) \widehat{w}_i \left(\pi^* (\overline{\tau}\phi) (\pi^* (\overline{\tau}h) w) \right) (v) dh = \widehat{\pi} (\overline{\tau}\phi) (\pi^* (f) w) (v).$$

The last two equalities yield that if $\pi^*(\phi)w = 0$, then, for all $v \in V_{\pi}$ and $f \in S(\overline{\mathrm{Sp}_{2n}(F)})$,

$$\widehat{w}_i(\widehat{\pi}(\overline{\tau}\phi)(\pi^*(f)w))(v) = 0.$$

Because π is irreducible one can conclude that

$$\pi^* \left(S(\overline{\operatorname{Sp}_{2n}(F)}) w \right) = V_{\hat{\pi}}.$$

Indeed, since $\pi^*(S(\overline{\operatorname{Sp}_{2n}(F)})w)$ is an $\overline{\operatorname{Sp}_{2n}(F)}$, invariant subspace we only have to show that $\pi^*(S(\overline{\operatorname{Sp}_{2n}(F)})w) \neq \{0\}$, which is clear.

Hence, changing variables once more, we see that for all $\xi \in V_{\hat{\pi}}$ we have

$$0 = \widehat{w}_i \left(\widehat{\pi} (\overline{\tau} \phi) \xi \right) = \int_{\overline{\operatorname{Sp}}_{2r}(F)} \overline{\tau} \phi(g^{-1}) \widehat{w}_i \left(\widehat{\pi} (g^{-1}) \xi \right) dg.$$

For $g \in \overline{\operatorname{Sp}_{2n}(F)}$, define ${}^{\omega}g = {}^{\overline{\tau}}g^{-1}$, and for $\phi \in S(\overline{\operatorname{Sp}_{2n}(F)})$, define ${}^{\omega}\phi(g) = \phi({}^{\omega}g)$. We have just seen that if $\pi^*(\phi)w = 0$ then

$$((\widehat{\pi})^*({}^{\omega}\phi))\widehat{w}_i = 0.$$

This and the equality $\pi^*(S(\overline{\operatorname{Sp}_{2n}(F)})w) = V_{\hat{\pi}}$ show the following linear maps are well defined. For i=1,2, define $S_i:V_{\hat{\pi}}\to V_{\hat{\pi}}$ by $S_i\big(\pi^*(\phi)w\big)=\big((\hat{\pi})^*({}^\omega\phi)\big)\widehat{w}_i$. One can easily check that S_1 and S_2 are two intertwining maps from $\hat{\pi}$ to $h\mapsto \widehat{\pi}(\sigma_0{}^th^{-1}\sigma_0)$. The last representation is clearly isomorphic to $h\mapsto \pi(\sigma_0{}^th^{-1}\sigma_0)$, which, due to the irreducibility of π , is itself irreducible. Schur's Lemma guarantees now the existence of a complex number c such that $S_2=cS_1$. Thus, for all $\phi\in S(\overline{\operatorname{Sp}_{2n}(F)})$ and for all $\xi\in V_{\hat{\pi}}$, we have

$$\int_{\overline{\operatorname{Sp}_{2n}(F)}} \phi(g)(\widehat{w}_2 - c\widehat{w}_1) (\widehat{\pi}(g^{-1})\xi) dg = 0.$$

We can now conclude that \widehat{w}_1 and \widehat{w}_2 are proportional.

3B. Proof of Theorem 3.6. Put $G = \overline{\operatorname{Sp}_{2n}(F)}$ and define $H = \overline{Z} \times \overline{Z}$. Let $\widetilde{\psi}$ be the character of H defined by $\widetilde{\psi}(n_1, n_2) = \psi(n_1^{-1}n_2)$. H acts on G by $(n_1, n_2) \cdot g = n_1 g n_2^{-1}$. For $g \in G$, we denote by H_g the stabilizer of g in H. It is clearly a unimodular group. Let Y be an H orbit, that is, a subset of G of the form

 $H \cdot g = ZgZ$, where g is a fixed element in G. Let S(Y) be the space of Schwartz functions on Y. H acts on S(Y) by

$$(h \cdot \phi)(k) = \phi(h^{-1} \cdot k)\widetilde{\psi}^{-1}(h).$$

With this notation, the proof of Theorem 3.6 goes almost word for word as [Soudry 1987, proof of Theorem 2.3]. The main ingredient of that proof was [Bernstein and Zelevinskii 1976, Theorem 6.10], which asserts that the following four conditions imply Theorem 3.6:

- (i) The set $\{(g, h \cdot g) \mid g \in G, h \in H\}$ is a union of finitely many locally closed subsets of $G \times G$.
- (ii) For each $h \in H$, there exists $h_{\overline{\tau}} \in H$ such that $h \cdot \overline{\tau}g = \overline{\tau}(h_{\overline{\tau}} \cdot g)$ for all $g \in G$.
- (iii) $\overline{\tau}$ is of order 2.
- (iv) Let Y be an H orbit. Suppose that there exists a non zero functional on S(Y) satisfying $D(h \cdot \phi) = D(\phi)$ for all $\phi \in S(Y)$ and $h \in H$. Then $\overline{} Y = Y$ and $D(\overline{} \phi) = D(\phi)$ for all $\phi \in S(Y)$.

Of these four conditions, only the forth requires some work. To make Soudry's proof work in our context, we have only to change [Soudry 1987, Theorem 2.2] to

Theorem 3.7. Fix $g \in G$. If for all $h \in H_g$, we have $\widetilde{\psi}^{-1}(h) = 1$, then there exists an $h^g \in H$ such that $h^g \cdot g = \overline{{}^{\tau}g}$ and $\widetilde{\psi}^{-1}(h) = 1$.

Before we prove this theorem, we state and prove its analog for $Sp_{2n}(F)$. After the proof, we give a short argument which completes the proof of Theorem 3.7.

Lemma 3.8. For a fixed $g \in \operatorname{Sp}_{2n}(F)$ one of the following holds

- A. There exist $n_1, n_2 \in \mathbb{Z}$ such that $n_1 g n_2 = g$ and $\psi(n_1 n_2) \neq 1$
- B. There exist $n_1, n_2 \in Z$ such that $n_1gn_2 = {}^{\tau}g$ and $\psi(n_1n_2) = 1$.

Proof. Because τ preserves both Z and ψ , it is enough to prove this Lemma only for a complete set of representatives of $_Z \setminus ^{\operatorname{Sp}_{2n}(F)} /_Z$. We recall the Bruhat decomposition: $\operatorname{Sp}_{2n}(F) = \bigcup_{w \in W} ZTwZ$, where W is the Weyl group of $\operatorname{Sp}_{2n}(F)$ and T is the group of diagonal elements in $\operatorname{Sp}_{2n}(F)$. We realize the set of Weyl elements as $\{\overline{w}_{\sigma}\tau_S \mid \sigma \in S_n, S \subseteq \{1, 2, \dots, n\}\}$, where, for $\sigma \in S_n$, we define $w_{\sigma} \in \operatorname{GL}_n(F)$ by $(w_{\sigma})_{i,j} = \delta_{i,\sigma(j)}$ and $\overline{w}_{\sigma} \in \operatorname{Sp}_{2n}(F)$ by

$$\overline{w}_{\sigma} = \begin{pmatrix} w_{\sigma} & 0 \\ 0 & w_{\sigma} \end{pmatrix}.$$

Thus we may take $\{d^{-1}\overline{w}_{\sigma}^{-1}\varphi_S \mid d \in T, \ \sigma \in S_n, \ S \subseteq \{1, 2, ..., n\}\}$ as a complete set of representatives of $z \setminus \operatorname{Sp}_{2n}(F)/Z$, where

$$\varphi_S = \tau_{S^c} a_{S^c} = \begin{pmatrix} M_S & M_{S^c} \\ -M_{S^c} & M_S \end{pmatrix}$$

and where, for $S \subseteq \{1, 2, ..., n\}$, $M_S \in \operatorname{Mat}_{n \times n}(F)$ has $(M_S)_{i,j} = \delta_{i,j}\delta_{i \in S}$.

Denote by w_k the $k \times k$ invertible matrix with elements $(w_k)_{i,j} = \delta_{i+j,k+1}$. Suppose that k_1, k_2, \ldots, k_p, k are non negative integers such that $k + \sum_{i=1}^p k_i = n$. Suppose also that $a_1, a_2, \ldots, a_p \in F^*$ and $\eta \in \{\pm 1\}$. For

$$(3-4) \ \overline{w}_{\sigma} = \operatorname{diag}(w_{k_1}, w_{k_2}, \dots, w_{k_n}, I_k, w_{k_1}, w_{k_2}, \dots, w_{k_n}, I_k),$$

(3-5)
$$d = \operatorname{diag}(a_1 \epsilon_{k_1}, a_2 \epsilon_{k_2}, \dots, a_p \epsilon_{k_p}, \eta I_k, a_1^{-1} \epsilon_{k_1}, a_2^{-1} \epsilon_{k_2}, \dots, a_p^{-1} \epsilon_{k_p}, \eta I_k),$$

and $S = \{n - k + 1, n - k, \dots, n\}$, one checks that

$${}^{\tau}(d^{-1}\overline{w}_{\sigma}^{-1}\varphi_S) = d^{-1}\overline{w}_{\sigma}^{-1}\varphi_S.$$

Thus $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_{S}$ is of type B.

We shall show that all other representatives are of type A. We will prove that in all the other cases one can find $n_1, n_2 \in Z$ such that

(3-6)
$$\overline{w}_{\sigma} d n_1 d^{-1} \overline{w}_{\sigma}^{-1} = \varphi_S n_2^{-1} \varphi_S^{-1},$$

$$(3-7) \qquad \qquad \psi(n_1 n_2) \neq 1.$$

We shall use the following notations and facts: Denote by $E_{p,q}$ the $n \times n$ matrix defined by $(E_{p,q})_{i,j} = \delta_{p,i}\delta_{q,j}$. For $i, j \in \{1, 2, ..., n\}$, $i \neq j$ we define the root subgroups of $\operatorname{Sp}_{2n}(F)$ through

$$\begin{split} U_{i,j} &= \left\{ u_{i,j}(x) = \begin{pmatrix} I_n + x E_{i,j} & 0 \\ 0 & I_n - x E_{j,i} \end{pmatrix} \mid x \in F \right\} \simeq F, \\ V_{i,j} &= \left\{ v_{i,j}(x) = \begin{pmatrix} I_n & x E_{i,j} + x E_{j,i} \\ 0 & I_n \end{pmatrix} \mid x \in F \right\} \simeq F, \\ V_{i,i} &= \left\{ v_{i,i}(x) = \begin{pmatrix} I_n & x E_{i,i} \\ 0 & I_n \end{pmatrix} \mid x \in F \right\} \simeq F. \end{split}$$

If i < j, we call $U_{i,j}$ a positive root subgroup; if j = i + 1, we call $U_{i,j}$ a simple root subgroup; and if j > i + 1, we call $U_{i,j}$ a nonsimple root subgroup. We call ${}^{t}U_{i,j} = U_{j,i}$ the negative of $U_{i,j}$. The group S_n acts on the set $\{U_{i,j} \mid i, j \in \{1, 2, ..., n\}, i \neq j\}$ by

(3-8)
$$\overline{w}_{\sigma}u_{i,j}(x)\overline{w}_{\sigma}^{-1} = u_{\sigma(i),\sigma(j)}(x)$$

and on the set $\{V_{i,j} | i, j \in \{1, 2, ..., n\}\}$ by

(3-9)
$$\overline{w}_{\sigma}v_{i,j}(x)\overline{w}_{\sigma}^{-1} = v_{\sigma(i),\sigma(j)}(x).$$

T acts on each root subgroup via rational characters:

(3-10)
$$du_{i,j}(x)d^{-1} = u_{i,j}(xd_id_j^{-1}),$$

(3-11)
$$dv_{i,j}(x)d^{-1} = v_{i,j}(xd_id_j),$$

where $d = \text{diag}(d_1, d_2, \dots, d_n, d_1^{-1}, d_2^{-1}, \dots, d_n^{-1})$. We also note that

(3-12)
$$\varphi_S v_{i,i}(x) \varphi_S^{-1} = v_{i,i}(x)$$
 if $i \in S$,

(3-13)
$$\varphi_S v_{i,j}(x) \varphi_S^{-1} = u_{i,j}(x)$$
 if $i \in S, j \notin S$,

(3-14)
$$\varphi_S u_{i,j}(x) \varphi_S^{-1} = u_{i,j}(x)$$
 if $i \in S, j \in S, i \neq j$,

(3-15)
$$\varphi_S u_{i,j}(x) \varphi_S^{-1} = u_{j,i}(-x) = {}^{t} u_{i,j}(x)^{-1} \quad \text{if } i \notin S, j \notin S, i \neq j.$$

Consider the representative $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_{S}$. Assume first that S is empty. If there exists a simple root subgroup $U_{k,k+1}$ taken by σ to the negative of a nonsimple root subgroup, we choose $n_1 = u_{k,k+1}(x)$ and $n_2 = {}^t u_{\sigma(k),\sigma(k+1)}(d_k d_{k+1}^{-1}x)$. For such a choice, by (3-8), (3-10) and (3-15), Equation (3-6) holds. Also, since $\psi(n_1n_2) =$ $\psi(n_1) = \psi(x)$, it is possible, by choosing x properly, to satisfy (3-7). Next, if there exists a nonsimple positive root subgroup $U_{i,j}$ taken by σ to the negative of a simple root subgroup, we choose $n_1 = u_{i,j}(x)$ and $n_2 = {}^{t}u_{\sigma(i),\sigma(j)}(d_id_i^{-1}x)$ and repeat the argument. Thus, $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_{\varnothing}$ is of type A unless σ has the following two properties: first, if σ takes a simple root to a negative root, then it is taken to the negative of a simple root; second, if σ takes a nonsimple positive root to a negative root, then it is taken to the negative of a nonsimple root. An easy argument shows that if σ has these two properties, \overline{w}_{σ} must be as in (3-4) with k=0. We assume now that \overline{w}_{σ} has this form. To finish the case $S = \emptyset$, we show that unless d has the form (3-5), with k=0 and k_1, k_2, \ldots, k_p corresponding to \overline{w}_{σ} , then $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_{\varnothing}$ is of type A. Indeed, suppose that there exist d_k and d_{k+1} that belong to the same block in \overline{w}_{σ} such that $d_k \neq -d_{k+1}$. Then we choose $n_1 = u_{k,k+1}(x)$ and $n_2 = {}^{t}u_{\sigma(k),\sigma(k+1)}(d_kd_{k+1}^{-1}x)$. For such a choice (3-6) holds as before, and $\psi(n_1n_2) = \psi(x(1+d_kd_{k+1}^{-1}))$. Hence it is possible to choose x so (3-7) holds.

We may now assume $|S| \ge 1$. We show that if $n \notin S$ then $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_{S}$ is of type A. Indeed, if $\sigma(n) \in S$ (so $\sigma(n) \ne n$), then, for all $x \in F$, if we choose $n_{1} = v_{n,n}(x)$ and $n_{2} = v_{\sigma(n),\sigma(n)}(-xd_{n}^{2})$, then (3-9), (3-10), and (3-12) imply Equation (3-6) holds. Clearly, there exists $x \in F$ such that $\psi(n_{1}n_{2}) = \psi(n_{1}) = \psi(x) \ne 1$. Suppose now that $n \notin S \ne \emptyset$ and $\sigma(n) \notin S$. In this case, we can find $1 \le k \le n-1$ such that

(3-16)
$$\sigma(k) \in S$$
 and $\sigma(k+1) \notin S$.

We choose

(3-17)
$$n_1 = u_{k,k+1}(x)$$
 and $n_2 = v_{\sigma(k),\sigma(k+1)}(-xd_kd_{k+1}^{-1}).$

By (3-8), (3-10) and (3-13), Equation (3-6) holds, and since $\psi(n_1n_2) = \psi(n_1) = \psi(x)$, we can satisfy (3-7) by properly choosing x. We assume now $n \in S$. We also assume $\sigma(n) \in S$, and otherwise we use the last argument. Fix $n_1 = v_{n,n}(x)$ and $n_2 = v_{\sigma(n),\sigma(n)}(-xd_n^2)$. One can check using (3-9), (3-11), and (3-12) that (3-6) holds. Note that

$$\psi(n_1 n_2) = \begin{cases} x, & \sigma(n) \neq n, \\ x(d_n^2 - 1), & \sigma(n) = n. \end{cases}$$

Hence, $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_{S}$ is of type A unless $\sigma(n)=n$ and $d_{n}=\pm 1$, and so we now assume that of $\sigma(n)$ and d_{n} . If $S=\{n\}$, we use a similar argument to the one we used for $S=\varnothing$ but this time analyze the action of σ on $\{1,2,3,\ldots,n-1\}$.

We are left with the case $\sigma(n) = n$, $d_n = \pm 1$, and $S \supseteq \{n\}$. If $\sigma(n-1) \notin S$ we repeat an argument we used already. We choose $1 \le k \le n-2$, n_1 , and n_2 as in (3-16) and (3-17). We now assume $\sigma(n-1) \in S$. We choose $n_1 = u_{n-1,n}(x)$ and $n_2 = u_{\sigma(n-1),n}(-xd_{n-1}d_n^{-1})$. Using (3-8), (3-10) and (3-14), we observe that (3-6) holds. Also

$$\psi(n_1 n_2) = \begin{cases} x, & \sigma(n-1) \neq n-1, \\ x(d_{n-1} d_n^{-1} - 1), & \sigma(n-1) = n-1. \end{cases}$$

Thus, unless $\sigma(n-1)=n-1$ and $d_{n-1}=d_n=\pm 1$, $d^{-1}\overline{w}_{\sigma}^{-1}\varphi_S$ is of type A. Therefore, we should only consider the case $\sigma(n)=n$, $\sigma(n-1)=n-1$, $d_{n-1}=d_n=\pm 1$, and $\{n-1,n\}\subseteq S$. We continue in the same course. If $S=\{n-1,n\}$, we use similar argument we used for $S=\varnothing$, analyzing the action of σ on $\{1,2,3,\ldots,n-2\}$. If $S\supseteq\{n-1,n\}$, we show that unless $\sigma(n-2)=n-2\in S$ and $d_{n-2}=d_{n-1}=d_n=\pm 1$ we are in type A etc.

We now complete the proof of Theorem 3.7. We define types \overline{A} and \overline{B} for $\overline{\operatorname{Sp}_{2n}(F)}$ by analogy with the definitions given in Lemma 3.8 and show that each element of $\overline{Z} \setminus \overline{\operatorname{Sp}_{2n}(F)} / \overline{Z}$ is either of type \overline{A} or of type \overline{B} . Given $\overline{g} = (g, \epsilon) \in \overline{\operatorname{Sp}_{2n}(F)}$, if g is of type \overline{A} , then there are $n_1, n_2 \in Z$ such that $n_1gn_2 = g$ and $\psi(n_1n_2) \neq 1$. Let $\overline{n}_i = (n_i, 1)$. Clearly $\overline{n}_1\overline{g}$ $\overline{n}_2 = \overline{g}$ and $\psi(\overline{n}_1\overline{n}_2) = \psi(n_1n_2) \neq 1$. If g is not of type A, then by Lemma 3.8 it is of type B. There are $n_1, n_2 \in Z$ such that $n_1gn_2 = {}^{\tau}g$ and $\psi(n_1n_2) = 1$. Define \overline{n}_i as before. Note that $\psi(\overline{n}_1\overline{n}_2) = \psi(n_1n_2) = 1$. From Lemma 3.5 it follows that $\overline{n}_1\overline{g}$ $\overline{n}_2 = {}^{\overline{\tau}}\overline{g}$. This proves Lemma 3.8 for $\overline{\operatorname{Sp}_{2n}(F)}$, which is Theorem 3.7.

Acknowledgment

I would like to thank David Soudry for endless hours of conversation. Without his devoted help this work would not have been done.

References

- [Banks 1998] W. D. Banks, "Heredity of Whittaker models on the metaplectic group", *Pacific J. Math.* **185**:1 (1998), 89–96. MR 99m:22016 Zbl 0980.22021
- [Barthel 1991] L. Barthel, "Local Howe correspondence for groups of similitudes", *J. Reine Angew. Math.* **414** (1991), 207–220. MR 92g:22037 Zbl 0708.22006
- [Bernstein and Zelevinskii 1976] I. Bernstein and A. Zelevinskii, "Representations of the group GL(n, F) where F is a non-archimedean local field", *Russian Math. Surv.* **31**:3 (1976), 1–68. Zbl 0348.43007
- [Bump et al. 1991] D. Bump, S. Friedberg, and J. Hoffstein, "p-adic Whittaker functions on the metaplectic group", Duke Math. J. 63:2 (1991), 379–397. MR 92d:22024 Zbl 0758.22009
- [Gelbart 1976] S. S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Springer, Berlin, 1976. Lecture Notes in Mathematics, Vol. 530. MR 54 #12654 Zbl 0365.22017
- [Gelbart et al. 1979] S. Gelbart, R. Howe, and I. Piatetski-Shapiro, "Uniqueness and existence of Whittaker models for the metaplectic group", *Israel J. Math.* **34**:1-2 (1979), 21–37. MR 81j:22021 Zbl 0441.22015
- [Gel'fand and Kazhdan 1975] I. M. Gel'fand and D. A. Kazhdan, "Representations of the group GL(*n*, *K*) where *K* is a local field", pp. 95–118 in *Lie groups and their representations* (Budapest, 1971), edited by I. M. Gel'fand, Halsted, New York, 1975. MR 53 #8334 Zbl 0348.22011
- [Kubota 1969] T. Kubota, *On automorphic functions and the reciprocity law in a number field*, Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2, Kinokuniya Book-Store Co. Ltd., Tokyo, 1969. MR 41 #152 Zbl 0231.10017
- [Kudla 1994] S. S. Kudla, "Splitting metaplectic covers of dual reductive pairs", *Israel J. Math.* **87**:1-3 (1994), 361–401. MR 95h:22019 Zbl 0840.22029
- [Mæglin et al. 1987] C. Mæglin, M.-F. Vignéras, and J.-L. Waldspurger, *Correspondances de Howe sur un corps p-adique*, Lecture Notes in Mathematics **1291**, Springer, Berlin, 1987. MR 91f:11040 Zbl 0642.22002
- [Rao 1993] R. R. Rao, "On some explicit formulas in the theory of Weil representation", *Pacific J. Math.* **157**:2 (1993), 335–371. MR 94a:22037 Zbl 0794.58017
- [Rodier 1973] F. Rodier, "Whittaker models for admissible representations of reductive *p*-adic split groups", pp. 425–430 in *Harmonic analysis on homogeneous spaces* (Williamstown, MA, 1972), vol. XXVI, edited by C. C. Moore, Amer. Math. Soc., Providence, R.I., 1973. MR 50 #7419 Zbl 0287.22016
- [Shalika 1974] J. A. Shalika, "The multiplicity one theorem for GL_n", Ann. of Math. (2) **100** (1974), 171–193. MR 50 #545 Zbl 0316.12010
- [Soudry 1987] D. Soudry, "A uniqueness theorem for representations of GSO(6) and the strong multiplicity one theorem for generic representations of GSp(4)", *Israel J. Math.* **58**:3 (1987), 257–287. MR 89f:22025 Zbl 0642.22003

Received May 22, 2006.

DANI SZPRUCH
SCHOOL OF MATHEMATICAL SCIENCES
THE RAYMOND AND BEVERLY SACKLER FACULTY OF EXACT SCIENCES
TEL AVIV UNIVERSITY
TEL AVIV 69978
ISRAEL
szpruchd@zahav.net.il