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Let F be a local nonarchimedean field. We prove the uniqueness of the
Whittaker model for irreducible admissible representations of Sp2n(F), the
metaplectic double cover of Sp2n(F). An ingredient of the proof is an ex-
plicit extension of Rao’s normalized cocycle from Sp2n(F) to GSp2n(F).

1. Introduction

Let F be a p-adic field. Let Sp2n(F) be the metaplectic double cover of Sp2n(F).
The uniqueness of Whittaker models for irreducible admissible representations of
Sp2n(F) is well known to experts. Although it has been used many times, there
is no general written proof, although a uniqueness theorem for principal series
representations can be found in [Bump et al. 1991]. In this paper, we correct the
situation and prove this uniqueness as Theorem 3.4. It turns out that one may
use similar methods to those used in [Shalika 1974; Gel’fand and Kazhdan 1975;
Bernstein and Zelevinskii 1976] for quasisplit groups over F . A central role is
played by τ , a certain involution on Sp2n(F)which is an extension of the involution
g 7→

τg = σ0
tgσ−1

0 defined on Sp2n(F), where σ0 is a certain Weyl element.
Here, we realize Sp2n(F) using Rao’s cocycle [1993]. In Section 2, we extend

it explicitly to GSp2n(F)×GSp2n(F) and then use this extension to define τ . The
unexpected fact, at least to us, is that τ extends to Sp2n(F) in the simplest possible
way, namely τ(g, ε)= ( τg, ε).

2. Rao’s cocycle

Let F be a local nonarchimedean field. Let X = F2n be a vector space of even
dimension over F equipped with 〈 · , ·〉 : X × X → F , a non degenerate symplec-
tic form, and let Sp(X) = Sp2n(F) be the subgroup of GL(X) of symplectomor-
phisms of X onto itself. We shall write the action of GL(X) on X from the right.
R. Rao [1993] constructs an explicit nontrivial 2-cocycle c( · , · ) on Sp(X). The
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set Sp(X)= Sp(X)×{±1} is then made a group, called the metaplectic group, via

(2-1) (g1, ε1)(g2, ε2)=
(
g1g2, ε1ε2c(g1, g2)

)
.

In Section 2A, we describe this cocycle.
Let GSp(X) be the group of similitudes of the symplectic form above. It is

the subgroup of GL(X) of elements g such that 〈v1g, v2g〉 = λg〈v1, v2〉 for all
v1, v2 ∈ X , where λg ∈ F∗. The similitude factor λg defines a homomorphism
from GSp(X) to F∗ whose kernel is Sp(X). In Section 2B, we will extend c( · , · )
from Sp(X)×Sp(X) to GSp(X)×GSp(X). The result of this extension is that the
set GSp(X)= GSp(X)× {±1} is given a group structure by (2-1).

2A. Description of Rao’s cocycle. We start with recalling some of the notations
and facts that appear in Rao’s formula. Detailed proofs can be found in [Rao 1993].

Let E ={e1, e2, . . . , en, e∗

1, e∗

2, . . . , e∗
n} be a symplectic basis of X : For 1≤ i, j ≤

n, we have 〈ei , e j 〉= 〈e∗

i , e∗

j 〉= 0 and 〈ei , e∗

j 〉= δi, j . In this basis, Sp(X) is realized
as the set {A ∈ Mat2n×2n(F) | AJ tA = J }, where J = ((0, In), (−In, 0)). Define
V = span{e1, e2, . . . , en}, V ∗

= span{e∗

1, e∗

2, . . . , e∗
n}. These are two transverse

Lagrangian subspaces. Let P be the Siegel parabolic subgroup of Sp(X) consisting
of the elements that preserve V ∗. In coordinates,

P =

{(
A B
0 tA−1

) ∣∣∣∣ A ∈ GLn(F), B ∈ Matn×n(F), tB = A−1 B tA
}
.

Let S be a subset of {1, 2, . . . , n}. We define τS, aS to be the following elements
of Sp(X):

ei · τS =

{
−e∗

i , i ∈ S,
ei , otherwise,

e∗

i · τS =

{
ei , i ∈ S,
e∗

i , otherwise,

ei · aS =

{
−ei , i ∈ S,

ei , otherwise,
e∗

i · aS =

{
−e∗

i , i ∈ S,
e∗

i , otherwise.

The elements τS , aS , τS′ , aS′ commute. Note that aS ∈ P , a2
S = I2n , and that

τS1τS2 = τS14S2aS1∩S2 , where S14S2 = S1 ∪ S2\S1 ∩ S2. In particular, τ 2
S = aS . For

S = {1, 2, . . . , n}, we define τ = τS; in this case aS = −I2n .
Define now � j = {σ ∈ Sp(X) | dim(V ∗

∩ V ∗σ) = n − j}. Note that P = �0,
τS ∈�|S|, and, more generally, if α, β, γ, δ ∈ Matn×n(F) and σ = ((α, β), (γ, δ))∈

Sp(X), then σ ∈�rank γ . The Bruhat decomposition states that each � j is a single
double coset in P�Sp(X)�P , that �−1

j = � j , and that
⋃n

j=1� j = Sp(X). In
particular, every element of Sp(X) has the form pτS p′, where p, p′

∈ P, S ⊆

{1, 2, . . . , n}.
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Let p1, p2 ∈ P . Rao defines

x(p1τS p2)≡ det(p1 p2 |V ∗) (mod (F∗)2)

and proves that it is a well defined map from Sp(X) to F∗/(F∗)2. Note that x(aS)≡

(−1)|S|, and, more generally, if p = ((A, B), (0, tA−1)) ∈ P , then x(p) ≡ det A.
Also note that x(τS)≡ 1 and that for g ∈� j , and p1, p2 ∈ P ,

x(g−1)≡ x(g)(−1) j , x(p1gp2)≡ x(p1)x(g)x(p2).

Theorem 5.3 in [Rao 1993] states that a nontrivial 2-cocycle on Sp(X) can be
defined by

(2-2) c(σ1, σ2)=
(
x(σ1), x(σ2)

)
F

(
−x(σ1)x(σ2), x(σ1σ2)

)
F

·
(
(−1)l, dF (ρ)

)
F

(
−1,−1

)l(l−1)/2
F hF (ρ),

where ρ is the Leray invariant −q(V ∗, V ∗σ1, V ∗σ−1
2 ), dF (ρ) and hF (ρ) are its

discriminant and Hasse invariant, ( · , · )F is the quadratic Hilbert symbol of F ,
and 2l = j1 + j2 − j − dim ρ, where σ1 ∈� j1 , σ2 ∈� j2 , σ1σ2 ∈� j . We use Rao’s
normalization of the Hasse invariant. (Note that the cocycle formula just given
differs slightly from the one appearing in Rao’s paper, as there is a small mistake
in its Theorem 5.3. A correction by Adams can be found in [Kudla 1994], Theorem
3.1). For future reference, we recall some of the properties of the Hilbert symbol:

(2-3) (a,−a)F = 1, (aa′, b)F = (a, b)F (a′, b)F , (a, b)F = (a,−ab)F .

From (2-2) and from previous remarks we obtain the following properties of
c( · , · ). For σ ∈� j , p ∈ P we have

c(σ, σ−1)=
(
x(σ ), (−1) j x(σ )

)
F (−1,−1) j ( j−1)/2

F ,(2-4)

c(p, σ )= c(σ, p)=
(
x(p), x(σ )

)
F .(2-5)

As a consequence of (2-5) and (2-3), we see that

(2-6) (p, ε1)(σ, ε)(p, ε1)
−1

= (pσ p−1, ε),

for all σ ∈ Sp(X), p ∈ P , and ε1, ε ∈ {±1}.
Finally, we recall Corollary 5.6 in Rao’s paper. For S ⊂ {1, 2, . . . , n}, define

X S = span{ei , e∗

i | i ∈ S}. We may now consider xS and cX S ( · , · ) defined by
analogy with x and c( · , · ). Let S1 and S2 be a partition of {1, 2, . . . , n}. Suppose
σ1, σ

′

1 ∈ Sp(X S1) and σ2, σ
′

2 ∈ Sp(X S2). Put σ = diag(σ1, σ2), σ ′
= diag(σ ′

1, σ
′

2).
Rao proves that

(2-7) c(σ, σ ′)= cS1(σ1, σ
′

1)cS2(σ2, σ
′

2)
(
xS1(σ1), xS2(σ2)

)
F

·
(
xS1(σ

′

1), xS2(σ
′

2)
)

F

(
xS1(σ1σ

′

1), xS2(σ2σ
′

2)
)

F .
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2B. Extension of Rao’s cocycle to GSp(X). F∗ is embedded in GSp(X) via

λ 7→ i(λ)=

(
In 0
0 λIn

)
.

Using this embedding we define an action of F∗ on Sp(X): (g, λ) 7→ gλ =

i(λ−1)g i(λ). Let F∗ n Sp(X) be the semidirect product corresponding to this
action. For α, β, γ, δ ∈ Matn×n(F) and g =

(
α
γ
β
δ

)
∈ GSp(X), define

p(g)=

(
α β

λ−1
g γ λ−1

g δ

)
∈ Sp(X),

and note that g = i(λg)p(g). The map g 7→ ι(g) = (λg, p(g)) is an isomorphism
between GSp(X) and F∗ n Sp(X).

From the theory of the Weil representation (see [Mœglin et al. 1987, page 36]),
we know that for any λ ∈ F∗, we can define a map vλ : Sp(X)→ {±1} such that
(g, ε) 7→ (g, ε)λ =

(
gλ, εvλ(g)

)
is an automorphism of Sp(X). In 2B, we compute

vλ. We shall also show there that
(
λ, (g, ε)

)
7→ (g, ε)λ defines an action of F∗

on Sp(X). Here we just want to show how this computation enables us to extend
c( · , · ) to a 2-cocycle c̃( · , · ) on GSp(X) and hence write an explicit multiplication
formula of GSp(X), the metaplectic double cover of GSp(X). We define the group
F∗ n Sp(X) using the multiplication(

a, (g, ε1)
)(

b, (h, ε2)
)
=
(
ab, (g, ε1)

b(h, ε2)
)
.

We also define a bijection from GSp(X) × {±1} to F∗
× Sp(X) by ι(g, ε) =(

λg, (p(g), ε)
)
, whose inverse is given by ι−1(λ, (h, ε)) =

(
i(λ)h, ε

)
. We use ι

to define a group structure on GSp(X)×{±1}. A straightforward computation will
show that the multiplication in GSp(X) is given by

(g, ε1)(h, ε2)=
(
gh, vλh (p(g))c(p(g)

λh , p(h)ε1ε2)
)
.

Thus,

c̃(g, h)= vλh

(
p(g)

)
c
(

p(g)λh , p(h)
)

serves as a nontrivial 2-cocycle on GSp(X). We remark here that Kubota [1969]
(see also [Gelbart 1976]) used a similar construction to extend a nontrivial double
cover of SL2(F) to a nontrivial double cover of GL2(F). For n = 1, our construc-
tion agrees with Kubota’s.

Computation of vλ(g). Barthel [1991] extended Rao’s unnormalized cocycle to
GSp(X). One may compute vλ(g) using Barthel’s work and Rao’s normalizing
factors. Instead, we compute vλ(g) using Rao’s (normalized) cocycle. Fix λ ∈ F∗.
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Since (g, ε) 7→ (g, ε)λ is an automorphism, vλ satisfies

(2-8) vλ(g)vλ(h)vλ(gh)=
c(gλ, hλ)
c(g, h)

.

We shall show that this property determines vλ.
We first note that

(2-9)
(

A B
0 tA−1

)
λ

=

(
A λB
0 tA−1

)
, x

((
A B
0 tA−1

)
λ
)

≡ x
((

A B
0 tA−1

))
.

For S ⊆ {1, 2, . . . , n} define aS(λ) ∈ P by

ei · aS(λ)=

{
λ−1ei , i ∈ S,

ei , otherwise,
e∗

i · aS(λ)=

{
λe∗

i , i ∈ S,
e∗

i , otherwise.

Note that aS = aS(−1). One can verify that

(2-10) τ λS = aS(λ)τS = τSaS(λ
−1).

Since x
(
aS(λ)

)
≡λ|S|, we obtain, using (2-9) and (2-10), the Bruhat decomposition,

and the properties of x presented earlier, that �λj =� j and that, for g ∈� j ,

(2-11) x(gλ)≡ λ j x(g).

Lemma 2.1. For p ∈ P , g ∈� j we have

(2-12) vλ(p)vλ(g)vλ(pg)=
(
x(p), λ j)

F

and

(2-13) vλ(g)vλ(p)vλ(gp)=
(
x(p), λ j)

F .

Proof. We prove (2-12) only. (2-13) follows in the same way. We use (2-8), (2-5),
(2-11) and (2-3):

vλ(p)vλ(g)vλ(pg)=
c(pλ, gλ)
c(p, g)

=

(
x(pλ), x(gλ)

)
F(

x(p), x(g)
)

F

=

(
x(p), x(g)λ j

)
F(

x(p), x(g)
)

F

=
(
x(p), λ j)

F . �

Lemma 2.2. There exists a unique tλ ∈ F∗/F∗2 such that vλ(p)=
(
x(p), tλ

)
F for

all p ∈ P.
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Proof. Substituting p′
∈ P for g in (2-12) we see that vλ|P is a quadratic character.

Since N , the unipotent radical of P , is isomorphic to a vector space over F , it
follows that N 2

= N . Thus, vλ|N is trivial. We conclude that vλ|P is a quadratic
character of GLn(F) extended to P . Every quadratic character of GLn(F) is of the
form g 7→ χ(det g), where χ is a quadratic character of F∗. The nondegeneracy of
the Hilbert symbol implies every such character of F∗ has the form χ(a)= (a, tχ )F ,
where tχ ∈ F∗ uniquely determined by χ up to multiplication by squares. �

Lemma 2.3. For σ ∈ � j we have vλ(σ ) =
(
x(σ ), tλλ j

)
Fvλ(τS), where S ⊆

{1, 2, . . . , n} is such that |S| = j . In particular, if |S| = |S′
| then vλ(τS)= vλ(τS′).

Proof. An element σ ∈� j has the form σ = pτS p′, where p, p′
∈ P and |S| = j .

Substituting g = τS p′ in (2-12) yields vλ(pτS p′) = vλ(p)vλ(τS p′)(x(p), λ j )F ,
while substituting g = τS and p = p′ in (2-13) yields vλ(τS p′) = vλ(τS)vλ(p′) ·

(x(p′), λ j )F . Using these two equalities together with (2-3) and Lemma 2.2, we
obtain vλ(pτS p′)=

(
x(pp′), tλλ j

)
Fvλ(τS). Since |S| = |S′

| implies pτS p−1
= τs′ ,

for some p ∈ P , the last argument shows that vλ(τS)= vλ(τS′). �

It is clear now that, once we compute tλ and vλ(τS) for all S ⊆ {1, 2, . . . , n}, we
will find the explicit formula for vλ.

Lemma 2.4. tλ = λ and vλ(τS)= (λ, λ)
|S|(|S|−1)/2
F .

Proof. Let k be a symmetric matrix in GLn(F). Put

pk =

(
k −In

0 k−1

)
∈ P, nk =

(
In k
0 In

)
∈ N ,

and note that x(nk)≡ 1, x(pk)≡ det k, and that

(2-14) τnkτ = n−k−1τpk .

We are going to compute vλ(τ )vλ(nkτ)vλ(τnkτ) in two ways: First, by Lemma
2.3 and by (2-14), we have vλ(τ )vλ(nkτ)vλ(τnkτ)= vλ(τ )vλ(τ )vλ(n−k−1τpk)=

vλ(n−k−1τpk). Since

(2-15) x(τnkτ)≡ x(n−k−1τpk)≡ det(k),

we obtain, using Lemma 2.3 again,

(2-16) vλ(τ )vλ(nkτ)vλ(τnkτ)=
(
det k, tλλn)

Fvλ(τ ).

Second, by (2-8) we have

(2-17) vλ(τ )vλ(nkτ)vλ(τnkτ)=
c
(
τ, nkτ

)
c
(
τ λ, (nkτ)λ

) .
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We shall compute the two terms on the right side of (2-17), starting with c(τ, nkτ).
Let ρ and l be the factors in (2-2), where σ1 = τ , σ2 = nkτ . Recall that the Leray
invariant is stable under the action of Sp(X) on Lagrangian triplets, see [Rao 1993,
Theorem 2.11]. Hence,

q
(
V ∗, V ∗τ, V ∗(nkτ)

−1)
= q

(
V ∗, V, V ∗(−I2nτn−k)

)
= q(V ∗, V, V n−k).

We conclude that ρ = k, l = 0. Using (2-2), and (2-15) we observe that

(2-18) c(τ, nkτ)=
(
−1, det k

)
F hF (k).

We now turn to c
(
τ λ, (nkτ)

λ
)
. Let ρ and l be the factors in (2-2), where σ1 = τ λ

and σ2 = (nkτ)
λ. Note that (2-9) and (2-10) imply (nkτ)

λ
= nλkλI2nτ , and hence

q
(
(V ∗, V ∗τ λ, V ∗((nkτ)

λ)
−1)

= q(V ∗, V, V n−λk).

Therefore ρ = mk and l = 0, and so we get

c
(
τ λ, (nkτ)

λ
)
=
(
x(λI2n), x(λI2n)

)
F

(
−1, x(τ λ(nkτ)

λ)
)

F hF (λk).

We recall (2-14) and note now that

τ λ(nkτ)
λ

= (τnkτ)
λ

= (n−k−1τpk)
λ

= n−λk−1λI2nτ

(
k λk
0 k−1

)
.

Hence, c
(
τ λ, (nkτ)

λ
)
= (λn, λn)F

(
−1, λn det k

)
F hF (λk), or, using (2-3):

(2-19) c
(
τ λ, (nkτ)

λ
)
= (−1, det k)F hF (λk).

Using (2-16), (2-17), (2-18) and (2-19) we finally get

vλ(τ )
(
det k, tλλn)

F =
hF (λk)
hF (k)

.

By substituting k = In in the above, we get vλ(τ ) = (λ, λ)
n(n−1)/2
F , and we can

rewrite it as

(2-20)
(
det k, tλλn)

F =
hF (λk)
hF (k)

(λ, λ)
n(n−1)/2
F .

To find tλ, we note that for any y ∈ F∗ we can put ky = diag(1, 1, . . . , y) in (2-20)
and obtain (y, tλλn)F = (λ, λ)

(n−1)(n−2)/2
F (λ, λy)n−1

F (λ, λ)
n(n−1)/2
F . For both even

and odd n, this is equivalent to (y, λ)F = (y, tλ)F . That the last equality holds for
all y ∈ F∗ implies that tλ ≡ λ (mod (F∗)2).

We are left to compute vλ(τS) for S ( {1, 2, . . . , n}. For such S, define Sτ ∈

Sp(X S) by analogy with τ ∈ Sp(X). We can embed Sp(X S) in Sp(X) in a way that
maps Sτ to τS . We may now use (2-7) and repeat the computation of vλ(τ ). �
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Joining Lemma 2.3, and Lemma 2.4, we write the explicit formula for vλ. For
g ∈� j we have

(2-21) vλ(g)=
(
x(g), λ j+1)

F (λ, λ)
j ( j−1)/2.

One can easily check now that vλ(g)vη(gλ) = vλη(g) and conclude that the map(
λ, (g, ε)

)
7→ (g, ε)λ defines an action of F∗ on Sp(X), namely

(
(g, ε)λ

)η
=

(g, ε)λη. Lastly, comparing (2-21) and (2-4), keeping (2-3) in mind, we note that

(2-22) v−1(g)= v−1(g−1)= c(g, g−1).

This fact will play an important role in the proof of the uniqueness of Whittaker
models for Sp(X).

3. Uniqueness of the Whittaker model

3A. Statement of the main results. Letψ be a nontrivial character of F . Let Z ′ be
the group of upper triangular unipotent matrices in GLn(F). Let Z be the subgroup
of Sp2n(F) that consists of elements of the form ((z, b), (0, tz−1)) in which z ∈ Z ′

and b ∈ Matn×n(F) satisfy tb = z−1b tz. We shall continue to denote by ψ the
character of Z given by ψ(z) = ψ(b(n,n) +

∑n−1
i=1 z(i,i+1)). Let Z be the inverse

image of Z in Sp2n(F). From (2-5) it follows that Z ' Z × {±1}. We define a
character of Z by (z, ε) 7→ εψ(z) and continue to denote it by ψ .

Let (π, Vπ ) be a smooth representation of Sp2n(F). By a Whittaker func-
tional on π with respect to ψ , we mean a linear functional w on Vπ satisfying
w
(
π(z)v

)
= ψ(z)w(v) for all v ∈ Vπ , z ∈ Z . Define Wπ,ψ to be the space of

Whittaker functionals on π with respect to ψ . We define π̂ as the (smooth) dual
representation to π .

Theorem 3.1. If (π, Vπ ) is an irreducible admissible representation of Sp2n(F),
then

dim(Wπ,ψ) · dim(Wπ̂ ,ψ−1)≤ 1.

The proof of this theorem will show:

Theorem 3.2. Suppose (π, Vπ ) is an irreducible admissible representation of
Sp2n(F). If , from the existence of a nontrivial Whittaker functional on π with
respect to ψ , one can deduce the existence of a nontrivial Whittaker functional on
π̂ with respect to ψ−1, then dim(Wπ,ψ)≤ 1.

Corollary 3.3. If (π, Vπ ) is an irreducible admissible unitary representation of
Sp2n(F), then dim(Wπ,ψ)≤ 1.

Proof of the corollary. We show that the conditions of Theorem 3.2 hold in this
case. Indeed, if (π, Vπ ) is an irreducible admissible unitary representation of
Sp2n(F), one can realize the dual representation in the space Ṽπ , which is identical



UNIQUENESS OF WHITTAKER MODEL FOR THE METAPLECTIC GROUP 461

to Vπ as a commutative group. The scalars act on Ṽπ by λ·v=λv. The action of π̂
in this realization is given by π̂(g)= π(g). It is clear now that if L is a nontrivial
Whittaker functional on π with respect to ψ then L , acting on Ṽπ , is a nontrivial
Whittaker functional on π̂ with respect to ψ−1. �

Since every cuspidal representation π is unitary, it follows from Corollary 3.3
that dim(Wπ,ψ)≤ 1. Furthermore, assume now that π is an irreducible admissible
representation of Sp2n(F). Then π is a subquotient of a representation induced
from a cuspidal representation of a parabolic subgroup. Let H be a parabolic
subgroup of Sp2n(F). It is known [Mœglin et al. 1987, page 39] that if g and
h commute in Sp2n(F) then (g, ε1) and (h, ε2) commute in Sp2n(F). Therefore,
MH , the inverse image of the Levy part of H , is isomorphic to

GLn1(F)× GLn2(F)× · · · × GLnr (F)× Sp2k(F).

Suppose that for 1 ≤ i ≤ r , the representation σi of GLni (F) is cuspidal, and that
π ′ is a cuspidal representation of Sp2k(F). Denote by ψi and ψ ′ the restrictions of
ψ to the unipotent radicals of GLni and Sp2k(F), respectively, embedded in MH .
Note that dim(Wσi ,ψi )≤ 1 and dim(Wπ ′,ψ ′)≤ 1. Let τ be the representation of MH

defined by(
diag(g1, g2, . . . , gr , h, tg−1

r , tg−1
r−1, . . . ,

tg−1
1 ), ε

)
7→⊗i=r
i=1 σi (gi )γψ(det gi )⊗π(h, ε),

where γψ is the Weil index of ψ (for details on γψ see [Rao 1993, appendix]).
We extend τ from MH to H , letting the unipotent radical act trivially. Define
Ind(H ,Sp2n(F), τ ) to be the corresponding induced representation. One may use
the methods of [Rodier 1973], extended in [Banks 1998] to a nonalgebraic setting,
and conclude that

dim(WInd(H ,Sp2n(F),τ ),ψ
)= dim(Wπ ′,ψ ′)5i=r

i=1 dim(Wσi ,ψi ).

Now, if V2 ⊆ V1 ⊆ Ind(H ,Sp2n(F), τ ), are two Sp2n(F) modules then clearly
the dimension of the Whittaker functionals on V1 and V2 with respect to ψ is not
greater then dim(WInd(H ,Sp2n(F),τ ),ψ

). It follows now that dim(Wπ,ψ) ≤ 1. Thus,
we proved

Theorem 3.4. Let π be an irreducible, admissible representation of Sp2n(F). Then
dim(Wπ,ψ)≤ 1.

Proof of Theorem 3.1. Define on Sp2n(F) the map

g 7→
τg = σ0(

tg)σ−1
0 ,
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where

σ0 =

(
0 εn

εn 0

)
, εn = diag

(
1,−1, 1 . . . , (−1)n+1)

∈ GLn(F).

We note that σ−1
0 =

tσ0 = σ0, and that σ0 ∈ GSp2n(F) with similitude factor −1.
Hence, g 7→

τg is an antiautomorphism of Sp2n(F) of order 2 of. We now extend
τ to Sp2n(F). A similar lifting was used in [Gelbart et al. 1979] for GL2(F).

Lemma 3.5. The map (g, ε) 7→
τ(g, ε) = ( τg, ε) is an antiautomorphism of

Sp2n(F) of order 2. It preserves both Z and ψ and satisfies τ
(
Sp2n(F), ε

)
=(

Sp2n(F), ε
)
.

Proof. We note that if g ∈ Sp2n(F) then tg = −Jg−1 J . Hence,

τg =

(
εn 0
0 εn

)(
−In 0

0 In

)
g−1

(
−In 0

0 In

)(
εn 0
0 εn

)−1

.

Thus, the map

(g, ε) 7→
(
τg, εc(g, g−1)v−1(g−1)c(pε, g̃)c(pε g̃, p−1

ε )c(pε, p−1
ε )
)
,

where

pε =

(
εn 0
0 εn

)
∈ P and g̃ =

(
−In 0

0 In

)
g−1

(
−In 0

0 In

)
,

is an antiautomorphism of Sp2n(F). We now show that

c(g, g−1)v−1(g−1)c(pε, g̃)c(pε g̃, p−1
ε )c(pε, p−1

ε )= 1.

Indeed, c(pε, g̃)c(pε g̃, p−1
ε )c(pε, p−1

ε )= 1 is a property of Rao’s cocycle noted in
(2-6). The fact that c(g, g−1)v−1(g−1)= 1 is a consequence of the calculation of
vλ(g) and is noted in (2-22). The remaining assertions of this lemma are clear. �

Let S
(
Sp2n(F)

)
be the space of Schwartz functions on Sp2n(F). For h ∈Sp2n(F)

and φ ∈ S
(
Sp2n(F)

)
, we define λ(h)φ, ρ(h)φ, and τφ by(

ρ(h)φ
)
(g)= φ(gh),

(
λ(h)φ

)
(g)= φ(h−1g), τφ(g)= φ( τg).

These maps are elements of S(Sp2n(F)). We give S(Sp2n(F)) an algebra structure,
called the Hecke algebra, by the convolution. Given (π, Vπ ), a representation of
Sp2n(F), we define as usual a representation of this algebra in the space Vπ by

π(φ)v =

∫
Sp2n(F)

φ(g)π(g)v dg.

The following theorem, known as the Gelfand–Kazhdan Theorem in the context
of GLn(F) (see [Gel’fand and Kazhdan 1975; Bernstein and Zelevinskii 1976]),
will be used in the proof of Theorem 3.1.
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Theorem 3.6. Suppose D is a functional on S(Sp2n(F)) with D
(
λ(z1)ρ(z2)φ

)
=

ψ(z2z−1
1 )D(φ) for all φ ∈ S(Sp2n(F)) and z1, z1 ∈ Z. Then D is τ invariant, that

is, D(τφ)= D(φ) for all φ ∈ S(Sp2n(F)).

We will prove this theorem in Section 3B. Here we use it for:

Proof of Theorem 3.1. Since any irreducible admissible representation of Sp2n(F)
may be realized as a dual representation, the proof amounts to showing that if
Wπ,ψ 6= 0 then dim Wπ̂ ,ψ−1 ≤ 1. We shall use an argument similar to the one in
[Soudry 1987, Theorem 2.1]. Letw be a nontrivial Whittaker functional on (π, Vπ )
with respect to ψ . Suppose ŵ1 and ŵ2 are two nontrivial Whittaker functionals on
π̂ with respect to ψ−1. The proof will be achieved once we show that ŵ1 and ŵ2

are proportional.
For φ ∈ S(Sp2n(F)), let π∗(φ)w be a functional on Vπ defined by(

π∗(φ)w
)
v =

∫
Sp2n(F)

φ(g)w
(
π(g−1)v

)
dg.

Note that φ ∈ S(Sp2n(F)) implies π∗(φ)w is smooth even if w is not. Thus,
π∗(φ)w lies in ∈ Vπ̂ . By a change of variables we have

(3-1) π̂(h)
(
π∗(φ)w

)
= π∗

(
λ(h)φ

)
w.

Now define R1 and R2, two functionals on S(Sp2n(F)), through

Ri (φ)= ŵi
(
π∗(φ)w

)
.

Using (3-1), the facts thatw, ŵ1, ŵ2 are Whittaker functionals, and by changing
variables, we observe for all z ∈ Z that

Ri
(
λ(z)φ

)
= ψ−1(z)Ri (φ), Ri

(
ρ(z)φ

)
= ψ(z)Ri (φ).

From Theorem 3.6 it follows that Ri (φ)= Ri (
τφ). Hence,

(3-2) ŵi
(
π̂(h)π∗(φ)w

)
= ŵi

(
π∗( τ(λ(h)φ)w)

)
.

Using a change of variables again, we also have

(3-3) π∗( τ(λ(h)φ))w = π∗( τφ)
(
π∗( τh)w

)
.

Joining (3-2) and (3-3) we obtain

ŵi
(
π̂(h)π∗(φ)w

)
= ŵi

(
π∗( τφ)

(
π∗( τh)w

))
.

In particular, if π∗(φ)w is the zero functional for some φ ∈ S(Sp2n(F)), then, for
all h ∈ Sp2n(F), ŵi

(
π∗( τφ)(π∗( τh)w)

)
= 0. Here, for all f ∈ S(Sp2n(F)), we

have
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0 = ŵi

(∫
Sp2n(F)

f (h)ŵi
(
π∗( τφ)(π∗( τh)w)

)
dh
)
.

By the definition of π∗(φ)w and by changing the order of integration, we have,
for all v ∈ Vπ ,∫

Sp2n(F)
f (h)ŵi

(
π∗( τφ)(π∗

(
τh
)
w)
)
(v)dh = π̂( τφ)(π∗( f )w)(v).

The last two equalities yield that if π∗(φ)w = 0, then, for all v ∈ Vπ and f ∈

S(Sp2n(F)),
ŵi
(
π̂( τφ)(π∗( f )w)

)
(v)= 0.

Because π is irreducible one can conclude that

π∗
(
S(Sp2n(F))w

)
= Vπ̂ .

Indeed, since π∗
(
S(Sp2n(F))w

)
is an Sp2n(F), invariant subspace we only have

to show that π∗
(
S(Sp2n(F))w

)
6= {0}, which is clear.

Hence, changing variables once more, we see that for all ξ ∈ Vπ̂ we have

0 = ŵi
(
π̂( τφ)ξ

)
=

∫
Sp2n(F)

τφ(g−1)ŵi
(
π̂(g−1)ξ

)
dg.

For g ∈ Sp2n(F), define ωg =
τg−1, and for φ ∈ S(Sp2n(F)), define ωφ(g) =

φ( ωg). We have just seen that if π∗(φ)w = 0 then(
(π̂)∗( ωφ)

)
ŵi = 0.

This and the equality π∗(S(Sp2n(F))w)= Vπ̂ show the following linear maps are
well defined. For i = 1, 2, define Si : Vπ̂ → V̂̂π by Si

(
π∗(φ)w

)
=
(
(π̂)∗( ωφ)

)
ŵi .

One can easily check that S1 and S2 are two intertwining maps from π̂ to h 7→̂̂π(σ0
th−1σ0). The last representation is clearly isomorphic to h 7→ π(σ0

th−1σ0),
which, due to the irreducibility of π , is itself irreducible. Schur’s Lemma guaran-
tees now the existence of a complex number c such that S2 = cS1. Thus, for all
φ ∈ S(Sp2n(F)) and for all ξ ∈ Vπ̂ , we have∫

Sp2n(F)
φ(g)(ŵ2 − cŵ1)

(
π̂(g−1)ξ

)
dg = 0.

We can now conclude that ŵ1 and ŵ2 are proportional. �

3B. Proof of Theorem 3.6. Put G = Sp2n(F) and define H = Z × Z . Let ψ̃ be
the character of H defined by ψ̃(n1, n2) = ψ(n−1

1 n2). H acts on G by (n1, n2) ·

g = n1gn−1
2 . For g ∈ G, we denote by Hg the stabilizer of g in H . It is clearly

a unimodular group. Let Y be an H orbit, that is, a subset of G of the form
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H · g = ZgZ , where g is a fixed element in G. Let S(Y ) be the space of Schwartz
functions on Y . H acts on S(Y ) by

(h ·φ)(k)= φ(h−1
· k)ψ̃−1(h).

With this notation, the proof of Theorem 3.6 goes almost word for word as
[Soudry 1987, proof of Theorem 2.3]. The main ingredient of that proof was
[Bernstein and Zelevinskii 1976, Theorem 6.10], which asserts that the following
four conditions imply Theorem 3.6:

(i) The set {(g, h · g) | g ∈ G, h ∈ H} is a union of finitely many locally closed
subsets of G × G.

(ii) For each h ∈ H , there exists hτ ∈ H such that h ·
τg =

τ(hτ · g) for all g ∈ G.

(iii) τ is of order 2.

(iv) Let Y be an H orbit. Suppose that there exists a non zero functional on S(Y )
satisfying D(h · φ) = D(φ) for all φ ∈ S(Y ) and h ∈ H . Then τY = Y and
D( τφ)= D(φ) for all φ ∈ S(Y ).

Of these four conditions, only the forth requires some work. To make Soudry’s
proof work in our context, we have only to change [Soudry 1987, Theorem 2.2] to

Theorem 3.7. Fix g ∈ G. If for all h ∈ Hg, we have ψ̃−1(h)= 1, then there exists
an hg

∈ H such that hg
· g =

τg and ψ̃−1(h)= 1.

Before we prove this theorem, we state and prove its analog for Sp2n(F). After
the proof, we give a short argument which completes the proof of Theorem 3.7.

Lemma 3.8. For a fixed g ∈ Sp2n(F) one of the following holds

A. There exist n1, n2 ∈ Z such that n1gn2 = g and ψ(n1n2) 6= 1

B. There exist n1, n2 ∈ Z such that n1gn2 =
τg and ψ(n1n2)= 1.

Proof. Because τ preserves both Z and ψ , it is enough to prove this Lemma
only for a complete set of representatives of Z �Sp2n(F)�Z . We recall the Bruhat
decomposition: Sp2n(F)=

⋃
w∈W Z TwZ , where W is the Weyl group of Sp2n(F)

and T is the group of diagonal elements in Sp2n(F). We realize the set of Weyl
elements as

{
wσ τS | σ ∈ Sn, S ⊆ {1, 2, . . . , n}

}
, where, for σ ∈ Sn , we define

wσ ∈ GLn(F) by (wσ )i, j = δi,σ ( j) and wσ ∈ Sp2n(F) by

wσ =

(
wσ 0
0 wσ

)
.

Thus we may take
{
d−1w −1

σ ϕS | d ∈ T, σ ∈ Sn, S ⊆ {1, 2, . . . , n}
}

as a complete
set of representatives of Z �Sp2n(F)�Z , where

ϕS = τSc aSc =

(
MS MSc

−MSc MS

)
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and where, for S ⊆ {1, 2, . . . , n}, MS ∈ Matn×n(F) has (MS)i, j = δi, jδi∈S .
Denote by wk the k × k invertible matrix with elements (wk)i, j = δi+ j,k+1.

Suppose that k1, k2, . . . , kp, k are non negative integers such that k +
∑p

i=1 ki = n.
Suppose also that a1, a2, . . . , ap ∈ F∗ and η ∈ {±1}. For

wσ = diag(wk1, wk2, . . . , wkp , Ik, wk1, wk2, . . . , wkp , Ik),(3-4)

d = diag(a1εk1, a2εk2, . . . , apεkp , ηIk, a−1
1 εk1, a−1

2 εk2, . . . , a−1
p εkp , ηIk),(3-5)

and S = {n − k + 1, n − k, . . . , n}, one checks that

τ(d−1w −1
σ ϕS)= d−1w −1

σ ϕS.

Thus d−1w −1
σ ϕS is of type B.

We shall show that all other representatives are of type A. We will prove that in
all the other cases one can find n1, n2 ∈ Z such that

wσdn1d−1w −1
σ = ϕSn−1

2 ϕ−1
S ,(3-6)

ψ(n1n2) 6= 1.(3-7)

We shall use the following notations and facts: Denote by E p,q the n × n matrix
defined by (E p,q)i, j = δp,iδq, j . For i, j ∈ {1, 2, . . . , n}, i 6= j we define the root
subgroups of Sp2n(F) through

Ui, j =

{
ui, j (x)=

(
In + x Ei, j 0

0 In − x E j,i

)
| x ∈ F

}
' F,

Vi, j =

{
vi, j (x)=

(
In x Ei, j + x E j,i

0 In

)
| x ∈ F

}
' F,

Vi,i =

{
vi,i (x)=

(
In x Ei,i

0 In

)
| x ∈ F

}
' F.

If i < j , we call Ui, j a positive root subgroup; if j = i + 1, we call Ui, j a simple
root subgroup; and if j > i + 1, we call Ui, j a nonsimple root subgroup. We
call tUi, j = U j,i the negative of Ui, j . The group Sn acts on the set

{
Ui, j | i, j ∈

{1, 2, . . . , n}, i 6= j
}

by

(3-8) wσui, j (x)w −1
σ = uσ(i),σ ( j)(x)

and on the set
{

Vi, j | i, j ∈ {1, 2, . . . , n}
}

by

(3-9) wσvi, j (x)w −1
σ = vσ(i),σ ( j)(x).
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T acts on each root subgroup via rational characters:

dui, j (x)d−1
= ui, j (xdi d−1

j ),(3-10)

dvi, j (x)d−1
= vi, j (xdi d j ),(3-11)

where d = diag(d1, d2, . . . , dn, d−1
1 , d−1

2 , . . . , d−1
n ). We also note that

ϕSvi,i (x)ϕ−1
S = vi,i (x) if i ∈ S,(3-12)

ϕSvi, j (x)ϕ−1
S = ui, j (x) if i ∈ S, j /∈ S,(3-13)

ϕSui, j (x)ϕ−1
S = ui, j (x) if i ∈ S, j ∈ S, i 6= j ,(3-14)

ϕSui, j (x)ϕ−1
S = u j,i (−x)=

tui, j (x)−1 if i /∈ S, j /∈ S, i 6= j .(3-15)

Consider the representative d−1w −1
σ ϕS . Assume first that S is empty. If there

exists a simple root subgroup Uk,k+1 taken by σ to the negative of a nonsimple root
subgroup, we choose n1 = uk,k+1(x) and n2 =

tuσ(k),σ (k+1)(dkd−1
k+1x). For such a

choice, by (3-8), (3-10) and (3-15), Equation (3-6) holds. Also, since ψ(n1n2) =

ψ(n1) = ψ(x), it is possible, by choosing x properly, to satisfy (3-7). Next, if
there exists a nonsimple positive root subgroup Ui, j taken by σ to the negative of
a simple root subgroup, we choose n1 = ui, j (x) and n2 =

tuσ(i),σ ( j)(di d−1
j x) and

repeat the argument. Thus, d−1w −1
σ ϕ∅ is of type A unless σ has the following

two properties: first, if σ takes a simple root to a negative root, then it is taken
to the negative of a simple root; second, if σ takes a nonsimple positive root to a
negative root, then it is taken to the negative of a nonsimple root. An easy argument
shows that if σ has these two properties, wσ must be as in (3-4) with k = 0. We
assume now that wσ has this form. To finish the case S = ∅, we show that unless
d has the form (3-5), with k = 0 and k1, k2, . . . , kp corresponding to wσ , then
d−1w −1

σ ϕ∅ is of type A. Indeed, suppose that there exist dk and dk+1 that belong
to the same block in wσ such that dk 6= −dk+1. Then we choose n1 = uk,k+1(x)
and n2 =

tuσ(k),σ (k+1)(dkd−1
k+1x). For such a choice (3-6) holds as before, and

ψ(n1n2)= ψ
(
x(1 + dkd−1

k+1)
)
. Hence it is possible to choose x so (3-7) holds.

We may now assume |S|≥ 1. We show that if n /∈ S then d−1w−1
σ ϕS is of type A.

Indeed, if σ(n)∈ S (so σ(n) 6= n), then, for all x ∈ F , if we choose n1 = vn,n(x) and
n2 = vσ(n),σ (n)(−xd2

n ), then (3-9), (3-10), and (3-12) imply Equation (3-6) holds.
Clearly, there exists x ∈ F such that ψ(n1n2)= ψ(n1)= ψ(x) 6= 1. Suppose now
that n /∈ S 6= ∅ and σ(n) /∈ S. In this case, we can find 1 ≤ k ≤ n − 1 such that

(3-16) σ(k) ∈ S and σ(k + 1) /∈ S.

We choose

(3-17) n1 = uk,k+1(x) and n2 = vσ(k),σ (k+1)(−xdkd−1
k+1).
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By (3-8), (3-10) and (3-13), Equation (3-6) holds, and since ψ(n1n2) = ψ(n1) =

ψ(x), we can satisfy (3-7) by properly choosing x . We assume now n ∈ S. We also
assume σ(n) ∈ S, and otherwise we use the last argument. Fix n1 = vn,n(x) and
n2 = vσ(n),σ (n)(−xd2

n ). One can check using (3-9), (3-11), and (3-12) that (3-6)
holds. Note that

ψ(n1n2)=

{
x, σ (n) 6= n,
x(d2

n − 1), σ (n)= n.

Hence, d−1w −1
σ ϕS is of type A unless σ(n) = n and dn = ±1, and so we now

assume that of σ(n) and dn . If S = {n}, we use a similar argument to the one we
used for S = ∅ but this time analyze the action of σ on {1, 2, 3, . . . , n − 1}.

We are left with the case σ(n) = n, dn = ±1, and S ) {n}. If σ(n − 1) /∈ S we
repeat an argument we used already. We choose 1 ≤ k ≤ n − 2, n1, and n2 as in
(3-16) and (3-17). We now assume σ(n − 1) ∈ S. We choose n1 = un−1,n(x) and
n2 = uσ(n−1),n(−xdn−1d−1

n ). Using (3-8), (3-10) and (3-14), we observe that (3-6)
holds. Also

ψ(n1n2)=

{
x, σ (n − 1) 6= n − 1,
x(dn−1d−1

n − 1), σ (n − 1)= n − 1.

Thus, unless σ(n − 1) = n − 1 and dn−1 = dn = ±1, d−1w −1
σ ϕS is of type A.

Therefore, we should only consider the case σ(n) = n, σ(n − 1) = n − 1, dn−1 =

dn = ±1, and {n − 1, n} ⊆ S. We continue in the same course. If S = {n −

1, n}, we use similar argument we used for S = ∅, analyzing the action of σ on
{1, 2, 3, . . . , n − 2}. If S ) {n − 1, n}, we show that unless σ(n − 2) = n − 2 ∈ S
and dn−2 = dn−1 = dn = ±1 we are in type A etc. �

We now complete the proof of Theorem 3.7. We define types A and B for
Sp2n(F) by analogy with the definitions given in Lemma 3.8 and show that each
element of Z �Sp2n(F)�Z is either of type A or of type B. Given g = (g, ε) ∈

Sp2n(F), if g is of type A, then there are n1, n2 ∈ Z such that n1gn2 = g and
ψ(n1n2) 6= 1. Let ni = (ni , 1). Clearly n1g n2 = g and ψ(n1n2) = ψ(n1n2) 6= 1.
If g is not of type A, then by Lemma 3.8 it is of type B. There are n1, n2 ∈ Z such
that n1gn2 =

τg and ψ(n1n2) = 1. Define ni as before. Note that ψ(n1n2) =

ψ(n1n2) = 1. From Lemma 3.5 it follows that n1g n2 =
τ g. This proves Lemma

3.8 for Sp2n(F), which is Theorem 3.7. �
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