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Let G be the unitary group of the hyperbolic hermitian space with rank
two over a quaternion division algebra over a totally real number field. We
determine the irreducible decomposition of the residual discrete spectrum
of G. Finally we give expected description of Arthur parameters associated
to these representations.

1. Introduction

Let k be a number field and A its adele ring. Let G be a semisimple group de-
fined over k. We write L2(G(k)\G(A)) for the Hilbert space of square-integrable
functions on G(k)\G(A). The space L2

0(G(k)\G(A)) of cuspidal elements of
L2(G(k)\G(A)) is contained in the discrete spectrum of L2(G(k)\G(A)), and
the orthogonal complement of L2

0(G(k)\G(A)) in the discrete spectrum is called
the residual spectrum. In this paper we take as G the unitary group of the two-
dimensional hyperbolic hermitian space over a quaternion division algebra D over
k. It is an inner form of Sp(2). We determine the irreducible decomposition of its
residual spectrum, as a first example of a nonquasisplit group.

For G = Sp(2), the irreducible decomposition of its residual spectrum has been
determined by Kim [1995]. Kon-no [1994] described it using theta correspondence
in the case that k is totally real. We have a decomposition:

L2(Sp(2, k)\ Sp(2, A))= L2(Sp(2))⊕ L2(P0)⊕ L2(P1)⊕ L2(P2),

along constant terms [Mœglin and Waldspurger 1995, Prop. II.2.4]. Here P0 is a
Borel subgroup, P1 and P2 are Siegel and non-Siegel maximal parabolic subgroups,
respectively. Then the residual spectrum can be described as

L2
d(P0)⊕ L2

d(P1)⊕ L2
d(P2).

Here L2
d( · ) denotes the discrete spectrum of L2( · ). Similarly, the residual spec-

trum of our G coincides with L2
d(P), where P is a proper parabolic subgroup of

G. P corresponds to P1 via the inner twist. Therefore we can make considerable
use of the technique of decomposition of L2

d(P1). Generally, the residual spectrum
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is spanned by residues of the Eisenstein series associated with the cuspidal repre-
sentations of the Levi factors of parabolic subgroups. A calculation of the poles of
such Eisenstein series reduces to a calculation of normalization factors of certain
intertwining operators. In the case of Sp(2) the Langlands–Shahidi normalization
was used, where its normalization factors are written by automorphic L-functions.
Therefore we can define the normalization factors for P as an analogy of the case
of P1.

The residual spectrum for G has a further decomposition,

L2
d(P)∞ ⊕ L2

d(P)1,

where L2
d(P)∞ (resp. L2

d(P)1) is the space spanned by the residues of the Eisen-
stein series of infinite dimensional (resp. one-dimensional) cuspidal representations
of a Levi factor M of P . The irreducible decomposition of L2

d(P)∞ is obtained
by the Langlands classification (Theorem 4.1(2)); it is written in the form of the
unique irreducible quotient of IndG(A)

P(A)π with an infinite dimensional cuspidal rep-
resentation π of M satisfying some conditions. Then the representation replacing
π with the Jacquet–Langlands correspondence of π appears in L2

d(P1) [Kim 1995,
Th. 3.3]. L2

d(P)1 contains the trivial representation (Theorem 4.1(1)). Every other
irreducible constituent is described by the theta lift of the trivial representation
of the unitary group of a (−1)-hermitian space over D (Theorem 4.1(3)). This
representation has a local component contained in IndG(kv)

P(kv)(χv| · |
−1/2)◦ ν for any

place v of k, where χv is a quadratic character of k×
v and ν is the reduced norm of

D. On the other hand, any irreducible constituent of L2
d(P0) except for the trivial

representation is the theta lift of the trivial representation of an orthogonal group;
see [Kon-no 1994]. And this representation has a local component contained in
IndSp(2,kv)

P1(kv) (χv| · |
−1/2) ◦ det for any v. It is interesting that the representations of

Theorem 4.1(3) do not have a multiplicity of one, unlike the case of Sp(2).
By Arthur’s conjecture, an irreducible constituent of the residual spectrum should

give the corresponding Arthur parameter. I expect that the Arthur parameters for
the residual spectrum of G are contained in those for the residual spectrum of
Sp(2). It seems that the Arthur parameters for L2

d(P)∞ appear for L2
d(P1), and

those for L2
d(P)1 appear for L2

d(P0). I give the expected description of the Arthur
parameters in Section 5.

2. Preliminaries

Let k be a number field with adele ring A = Ak . We write A∞, A f for the infinite
and finite components of A, while | |A denotes the idele norm of A×. For any
place v of k we write kv for the completion of k at v, and | |v for the v-adic norm.
If v is finite, Ov denotes the maximal compact subring of kv. If ψ is a nontrivial
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character of A, trivial on k, and v is a place of k, ψv denotes the v-component of
ψ .

Let D be a quaternion division algebra over k. We write ν, τ , and ι for the
reduced norm, the reduced trace, and the main involution of D, respectively. We
write D− = {x ∈ D | τ(x) = 0}. Also we write SD for the set of places v of k at
which D is ramified, and sD for the number of its elements, which is finite and
even. We denote by M(n, R) the algebra of all n × n-matrices over a ring R. Let
W = D⊕2 be the free left module over D with rank two, and we equip it with the
hermitian form 〈 , 〉 given by

〈(x1, y1), (x2, y2)〉 = x1
ιy2 + y1

ιx2 ( x1, x2, y1, y2 ∈ D ).

Writing X := {(∗, 0) ∈ D⊕2
}, Y := {(0, ∗) ∈ D⊕2

} we obtain a polarization of W .
Let G be the unitary group of this form, so that

G(R)=

{
g ∈ GL(2, D ⊗k R)

∣∣∣ g
( 0 1

1 0

)
∗g =

( 0 1
1 0

)}
for any commutative k-algebra R. Here we write ∗(ai, j ) = (ιa j,i ) for (ai, j ) ∈

M(2, D ⊗k R). G is nonquasisplit and is an inner form of Sp(2) with respect to
a quadratic extension k ′ of k such that all v ∈ SD do not split fully in k ′/k. Fix a
k-parabolic subgroup P and its Levi factor M as

P =

{(
∗ ∗

∗

)
∈ G

}
, M =

{
m(x) :=

( x 0
0 (ιx)−1

) ∣∣∣∣ x ∈ D×

}
,

where D× is regarded as an algebraic group over k in the natural way. P is the
unique proper parabolic subgroup of G up to G(k)-conjugate. We write again ν
for the character of M corresponding to the reduced norm via m. U denotes the
unipotent radical of P , so that

U =

{
u(y) :=

( 1 y
0 1

) ∣∣∣∣ y ∈ D−

}
.

Here D− is also regarded as an algebraic group over k in the natural way. The
k-split component of the center of M is

A =

{
a(t) :=

( t 0
0 t−1

) ∣∣∣∣ t ∈ Gm

}
.

The element α of the character group X∗(A) of A is defined by α(a(t))= t2. It is
the unique positive root of A with respect to P , and α∨

= a is the attached coroot.
The Weyl group WG of A in G is equal to {1, w0}, where

w0 =

( 0 1
1 0

)
.
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We fix a maximal compact subgroup K =
∏
v K v of G(A) such that

K v =


G(Ov) if v 6∈ SD and v is nonarchimedean,
O(4)∩ G(R) if v 6∈ SD and v is real,
U (4)∩ G(C) if v is complex,
O(ν⊕2)∩ G(R) if v ∈ SD and v is real,

and K v is an A-good maximal compact subgroup if v ∈ SD and v is nonar-
chimedean. Here O(ν⊕2) is the orthogonal group of a quadratic form W ⊗ R 3

(x1, x2) 7→ ν(x1) + ν(x2). Then we have the Iwasawa decomposition G(A) =

P(A)K . We write K∞ for
∏
v|∞ K v ⊂ G(A∞).

3. Decomposition of the L2-inner product

We will make use of the results of [Mœglin and Waldspurger 1995], henceforth
abbreviated [MW]. Let (M,P1) and (M,P2) be two cuspidal pairs [MW, II.1.1].
For their Paley–Wiener sections φ1 ∈ P(M,P1) and φ2 ∈ P(M,P2) [MW, II.1.2], θφ1

and θφ2 denote the pseudo-Eisenstein series, respectively [MW, II.1.10]. They are
elements of L2(G(k)\G(A)) and if (M,P1) and (M,P2) are not G(k)-conjugate,
they are orthogonal. If (M,P1) and (M,P2) are G(k)-conjugate then the L2-inner
product between them is described as follows [MW, Theorem II.2.1].

(3-1) 〈θφ1, θφ2〉 =

∫
π∈P1

Re(π)=λ0

A(φ1, φ2)(π) dπ,

where

A(φ1, φ2)(π)=

∑
w∈W ((M,P1),(M,P2))

〈M(w, π)φ1(π), φ2(−w(π))〉.

Here all notation follows [MW]. W ((M,P1), (M,P2)) is a subset of WG and
M(1, π) is the identity, and

(M(w0, π)φ1(π))(g)=

∫
U (A)

φ1(π)(w
−1
0 ug) du (g ∈ G(A)).

This integral converges absolutely at π ∈ P1 such that 〈Re(π), α∨
〉 � 0 and λ0 is

chosen in this area. We have to extend M(w0, π) to 〈Re(π), α∨
〉 ≥ 0 analytically

and rewrite Equation (3-1).
For a cuspidal pair (M,P), π ∈ P, and φ ∈ P(M,P), φ(π) belongs to the space

A(U (A)M(k)\G(A))π (defined in [MW, II.1.1]). Here π is decomposed into a
restricted tensor product

⊗
v πv as a (Lie M(A∞)⊗R C,M(A∞)∩K∞)× M(A f )-

module. If π is infinite dimensional then it has a multiplicity of one in the space
A0(M(k)\M(A)) of cuspidal forms on M(k)\M(A) by Jacquet–Langlands theory.
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Also if π is one-dimensional it has a multiplicity of one clearly. Thus we have

A(U (A)M(k)\G(A))π = IndK
K∩M(A)π =

⊗
v

IndG(kv)
P(kv)πv

as (Lie G(A∞)⊗R C, K∞)× G(A f )-modules. We have a decomposition:

M(w0, π)= ⊗vM(w0, πv),

where M(w0, πv) is defined by

[M(w0, πv)φv](g)=

∫
U (kv)

φv(w
−1
0 ug) du (g ∈ G(kv), φv ∈ IndG(kv)

P(kv)πv).

Their elementary properties are found in [Knapp and Stein 1980] for the archi-
medean case and [Silberger 1979] for the nonarchimedean case. This allows us
to deduce analytic properties of M(w0, π) from those of the local components
M(w0, πv). We define the normalization factor for M(w0, πv) by

r(w0, πv, ψv)=
Lw0(0, πv)

Lw0(1, πv)εw0(0, πv, ψv)
,(3-2)

Lw0(s, πv)= L(s, πv)Lkv (2s, ωπv ),

εw0(s, πv, ψv)= ε(s, πv, ψv)εkv (2s, ωπv , ψv),

where L(s, πv), ε(s, πv, ψv) denote the L and ε-factor defined by Godement and
Jacquet [1972], and Lkv (s, ωπv ) and εkv (s, ωπv , ψv) denote the Hecke L and ε-
factor. For any v 6∈ SD , this normalization factor coincides with the Langlands–
Shahidi normalization factor which is considered in [Shahidi 1990]. Let Re(πv)
denote the local analogue of Re(π).

Lemma 3.1. For any v, the normalized intertwining operator

N (w0, πv, ψv)= r(w0, πv, ψv)
−1 M(w0, πv)

is holomorphic for 〈Re(πv), α∨
〉 ≥ 0.

Proof. If v 6∈ SD and πv is infinite dimensional then the lemma has already been
shown by Kim [1995, p. 133–134]. If v ∈ SD , then πv is square-integrable modulo
the center, and therefore M(w0, πv) is holomorphic and nonzero for 〈Re(πv), α∨

〉≥

0. Since r(w0, πv, ψv) does not vanish for 〈Re(πv), α∨
〉 ≥ 0, the lemma follows.

Assume that v 6∈ SD and πv = χv ◦ ν, where χv is a quasi-character of k×
v . We

write B for the Borel subgroup of GL(2) consisting of upper triangular matrices.
Identifying M(kv) with GL(2, kv), πv is the unique irreducible subrepresentation
of IndM(kv)

B(kv) (χv| · |
−1/2
v ⊗ χv| · |

1/2
v ) [Jacquet and Langlands 1970]. We fix a set of

positive roots of the root data for Sp(2). r1 and r2 denote the reflection attached
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to the short and long simple roots, respectively. We may assume that w0 = r2r1r2.
By the functional equation we have

M(w0, ρ[s])= M(r2, r1r2ρ[s]) ◦ M(r1, r2ρ[s]) ◦ M(r2, ρ[s]),

where ρ[s] := χv| · |
−1/2+s
v ⊗χv| · |

1/2+s
v . It is known that

Lkv (s + 1, χv| · |
−1/2
v )εkv (s, χv| · |

−1/2
v , ψv)

Lkv (s, χv| · |
−1/2
v )

M(r2, r1r2ρ[s]),

Lkv (2s + 1, χ2
v )εkv (2s, χ2

v , ψv)

Lkv (2s, χ2
v )

M(r1, r2ρ[s]),

and
Lkv (s + 1, χv| · |

1/2
v )εkv (s, χv| · |

1/2
v , ψv)

Lkv (s, χv| · |
1/2
v )

M(r2, ρ[s]),

are holomorphic in the region Re(s)≥ 0. Since N (w0, ρ[s], ψv) is the composition
of these three maps we obtain the lemma. �

Take a φ(π) =
⊗

v φ(π)v ∈ P(M,P). Let S be a finite set of places of k including
all the archimedean places such that at every v 6∈ S, D,π , and ψ are unramified
and φ(π)v is the Kv-fixed vector with φ(π)v(1) = 1. For any v 6∈ S we have the
Gindikin–Karpelevich formula [Langlands 1971, p.45]:

M(w, πv)φ(π)v = r(w, πv, ψv)φ(π)v.

Therefore

M(w0,π)φ(π)=
⊗
v∈S

r(w0,πv,ψv)N (w0,πv,ψv)φ(π)v ⊗
⊗
v 6∈S

r(w0,πv,ψv)φ(π)v

= r(w0,π)N (w0,π)φ(π),

where

r(w0, π) : =
∏
v

r(w0, πv, ψv),

N (w0, π)φ(π) : =
⊗
v∈S

N (w0, πv, ψv)φ(π)v ⊗
⊗
v 6∈S

φ(π)v.

From Lemma 3.1, M(w0, π) is continued for 〈Re(π), α∨
〉 ≥ 0 and the poles of

M(w0, π) coincide with those of r(w0, π) in this region.

Proposition 3.2. Suppose that M(w0, π) has a pole π ′ for 〈Re(π), α∨
〉 ≥ 0.

(i) If P consists of infinite dimensional representations, π ′ is equal to π0|ν|
1/2
A ,

where π0 is an irreducible self-dual cuspidal representation of M(A) whose
standard L-function L(s, π0) does not vanish at s = 1/2. It is simple.
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(ii) If P consists of one-dimensional representations then π ′ is equal to |ν|
3/2
A or

(ωk′/k | · |
1/2
A ) ◦ ν where k ′/k is a quadratic extension such that all v ∈ SD do

not split fully in k ′/k. It is simple.

Proof. (i) From Shahidi’s nonvanishing theorem [1981, Theorem 5.1] and the
Jacquet–Langlands theory, the only pole of r(w0, π) for 〈Re(π), α∨

〉≥ 0 is π0|ν|
1/2
A

where ωπ0 is trivial and L(s, π0) does not vanish at s =1/2. Note that ωπ0 =1D×(A)
implies π0 is self-dual.

(ii) Let π = χ ◦ ν. L(s, πv) is described as follows [Jacquet and Langlands 1970].

L(s, πv)=


Lkv (s + 1/2, χv)Lkv (s − 1/2, χv) if v 6∈ SD ,
Lkv (s + 1/2, χv) if v ∈ SD and v is finite,
2(2π)−(s+1/2)0(s + 1/2) if v ∈ SD and v is real.

Thus a factor of r(w0, π) related to the poles is( ∏
v∈SD

Lkv (−1/2, χv)
)−1

· Lk(1/2, χ) · Lk(0, χ2) · Lk(1, χ2)−1.

Here Lk( · , · ) denotes the Hecke L-function. We can calculate its poles easily. �

Write S(π0)= π0|ν|
1/2
A for π0 satisfying the condition of Proposition 3.2(i). Sim-

ilarly write S1 = |ν|
3/2
A and S2(k ′)= (ωk′/k | · |

1/2
A )◦ν for ωk′/k satisfying the con-

dition of Proposition 3.2(ii). From [Harish-Chandra 1968, Lemma 101], M(w0, π)

is bounded on any region of the form

{π ∈ P | 0 ≤ 〈Re(π), α∨
〉 ≤ R}, 0< R ∈ R.

Thus we can apply the residue theorem to (3-1). From Proposition 3.2 we have the
following.

Theorem 3.3. Let (M,P1) and (M,P2) be cuspidal pairs, and θφ1 (φ1 ∈ P(M,P1))

and θφ2 (φ2 ∈ P(M,P2)) pseudo-Eisenstein series.

(i) If P2 =w0(P1) and one of S(π0), S1 and S2(k ′) is contained in P1, which
is denoted by S, then

〈θφ1, θφ2〉 =

∫
π∈P1|Re(π)=0

A(φ1, φ2)(π) dπ + c〈N (w0,S)φ1(S), φ2(S)〉(3-3)

for some nonzero constant c.

(ii) Otherwise,

〈θφ1, θφ2〉 =

∫
π∈P1|Re(π)=0

A(φ1, φ2)(π) dπ.
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4. The residual spectrum of G

We are now ready to determine the irreducible decomposition of the residual dis-
crete spectrum of G.

For a (−1)-hermitian right D-space (V, h), G(V ) denotes the unitary group of
(V, h) and G(VA) the group of its adelic points. Set W = V ⊗D W and 〈〈 , 〉〉 =
1
2τ(hv ⊗

ι

〈 , 〉). Then (W, 〈〈 , 〉〉) is a symplectic space over k. We will define the
Weil representation ωψ,V of G(VA)× G(A) in Section 4.1.

Theorem 4.1. Let k be a totally real number field. The irreducible constituents of
the residual spectrum of G consist of the following representations.

(i) The trivial representation 1G(A).

(ii) The unique irreducible quotient J G
P (π) of IndG(A)

P(A)(π |ν|
1/2
A ). Here π runs over

infinite dimensional irreducible self-dual cuspidal representations of M(A)
whose standard L-functions L(s, π) do not vanish at s = 1/2.

(iii) The theta lift R(V ) from the trivial representation of G(V ) under the Weil rep-
resentation ωψ,V . Here V runs over local isometry classes of (−1)-hermitian
right D-spaces with dimension one.

In the cases (1) and (2), the multiplicity of each representation is one. In the case
(3), the multiplicity of each representation is 2sD−2.

The proof of the theorem occupies the rest of this section. It is known that the
discrete term, which is the second term on the right hand of (3-3), expresses the
inner product for the residual spectrum [Mœglin and Waldspurger 1995, VI]. In
other words, the residual spectrum of G is isomorphic to the direct sum of the
images of intertwining operators for all S = S1,S(π0) and S2(k ′) appearing in
Proposition 3.2.

First assume that S=S1. We have that at each v, ImN (w0,Sv) is isomorphic to
1G(kv) by the Langlands classification. Thus the representation of Theorem 4.1(1)
is obtained. Next assume that S = S(π0). For v 6∈ SD , the proof of Proposition
3.2 in [Kim 1995] shows that IndG(kv)

P(kv)Sv has a unique irreducible quotient and
ImN (w0,Sv) is isomorphic to this quotient. If v ∈ SD , Sv is tempered so that
ImN (w0,Sv) is also isomorphic to the unique irreducible quotient of IndG(kv)

P(kv)Sv.
Therefore, all images of N (w0,S) are given by the representations of Theorem
4.1(2). We remark that the above results for S = S1 and S(π0) do not need the
fact that k is totally real.

4.1. Construction by theta correspondence. Finally assume that S = S2(k ′). At
each place v write I (s, χv)= IndG(kv)

P(kv)((χv| · |
s
v)◦ν), where χv is a character of k×

v

and s ∈C. Writing ωk′
v/kv for the v-component of ωk′/k , ImN (w0,S2(k ′)v, ψv) is a



THE RESIDUAL SPECTRUM OF INNER FORMS OF Sp(2) 479

subrepresentation of I (−1/2, ωk′
v/kv ). We will describe the irreducible constituents

of I (−1/2, ωk′
v/kv ) by using the theta correspondence.

(-1)-Hermitian spaces over quaternion algebras. We will review some basic facts
about (−1)-hermitian spaces. The main involution ι of D is of the first kind and
of symplectic type [Scharlau 1985, p. 304]. For any place v we again write ι for
the involution of Dv := D ⊗k Kv induced by the main involution of D, which
also becomes of the first kind and of symplectic type. Therefore, from Remarks
(iii) in the same location we can identify the local involution ι with the local main
involution.

Let F be a local field and R be a quaternion algebra over F with the main
involution ι. For 0 = (γi, j ) ∈ M(m, R) such that (ιγ j,i ) = −0 (resp. (ιγ j,i ) = 0),
a (−1)-hermitian (resp. hermitian) form on a right (resp. left) R-module R⊕m

(the set of column (resp. row) vectors) is defined by ((vi ), (v
′

j )) 7→
t(ιvi )0(v

′

j )

(resp. ((wi ), (w
′

j )) 7→ (wi )0
t (ιw′

j )). We denote this form by 〈0〉. Similarly
for B ∈ M(m, F) such that t A = A (resp. t A = −A) we can define a quadratic
(resp. symplectic) form 〈B〉 on F⊕m (the set of column (resp. row) vectors).

• The case R = M(2, F). To observe (−1)-hermitian modules over M(2, F) we
make use of an available theory which is called hermitian Morita theory. This
implies an equivalence between the category of (−1)-hermitian (right) R-modules
and the category of quadratic F-spaces. We will describe the correspondence in
this theory ([Knus 1991] § I.9, [Scharlau 1985] p.361,362).

Let (V, h) be a (−1)-hermitian right R-module. Set

e =

(
1 0
0 0

)
, e′

=

(
0 1
1 0

)
∈ M(2, F)= R,

and TV = T(V,h) := V e. A bilinear form bV = b(V,h) on TV over F is defined by

h(ve, v′e)=

(
0 0

b(V,h)(ve, v′e) 0

)
∈ M(2, F) for v, v′

∈ V .

Then (TV , bV ) is the quadratic space corresponding to (V, h) in hermitian Morita
theory. We define det V as the determinant of (TV , bV ). For two (−1)-hermitian
modules (V1, h1), (V2, h2) and an isometry σ : (V1, h1)→ (V2, h2), the restriction
σ |TV1

: TV1 → TV2 becomes an isometry from (TV1, bV1) to (TV2, bV2) as quadratic
F-spaces. Therefore, the unitary group of (V, h) is isomorphic to the orthogonal
group of (TV , bV ).

In particular, consider the case of (−1)-hermitian free module with rank one.
For a

0 =

(
α β

γ −α

)
∈ M(2, F)−,
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we define M(0) ∈ Sym2(F)= {X ∈ M(2, F) | tX = X} as

M(0)=

(
γ −α

−α −β

)
= J0.

For a (−1)-hermitian right R-module, (V, h)= (R, 〈0〉), one has that a quadratic
space (F⊕2, 〈M(0)〉) is isometric to (TV , bV ). Note that det V = det M(0)= det0.

Hermitian Morita theory also implies the equivalence between the category
of hermitian left R-modules and the category of symplectic F-spaces. Writing
(WF , hF ) for the hermitian left R-module

(R⊕2, 〈

(
0 12

12 0

)
〉),

the Morita correspondence of (WF , hF ) is isometric to (eWF , sWF ) where sWF is
defined by

hF (ew, ew′)=

(
0 sWF (ew, ew′)

0 0

)
∈ M(2, F) for w,w′

∈ WF .

Also, we have an isomorphism between the unitary group G(WF ) of (WF , hF ) and
Sp(eWF ) by restriction to eWF .

• The case that R is the quaternion division algebra over F. For a (−1)-hermitian
right R-space (V, h), the determinant det V ∈ F×/(F×)2 is defined as the reduced
norm of a matrix expression of h.

Proposition 4.2 [Scharlau 1985, Theorem 3.6, 3.7].

(a) Let F be nonarchimedean.
(i) The isometry class of any regular (−1)-hermitian right R-space is deter-
mined by its dimension and determinant.
(ii) There exists a regular (−1)-hermitian right R-space with any dimension
and determinant except for dimension 1 and determinant −1.

(b) Let F be real and archimedean.
(i) The isometry class of any regular (−1)-hermitian right R-space is deter-
mined by its dimension.
(ii) There exists a regular (−1)-hermitian right R-space with any dimension.

The next proposition is a statement about the local-global property with regard
to (−1)-hermitian spaces. For a (−1)-hermitian right D-space (V, h), the deter-
minant det V ∈ k×/(k×)2 is defined as the reduced norm of a matrix expression of
h. For γ ∈ D−\{0}, let k×

D,γ = {c ∈ k×
| (γ 2, c)v = 1 for all v 6∈ SD}, where ( , )v

is the Hilbert symbol at v. A group homomorphism λ is defined by

k×

D,γ 3 c 7→ {(γ 2, c)v}v∈SD ∈ {±1}
sD .
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Let {±1} be regarded as the subgroup of {±1}
sD via the diagonal embedding. Note

that the number of elements of k×

D,γ /λ
−1({±1}) is 2sD−2.

Proposition 4.3 [Scharlau 1985, Theorem 10.4.6, Remark 10.4.6]. Let (V, h) be a
(−1)-hermitian right D-space.

(i) If dimD V = 1 and h = 〈γ 〉 for some γ ∈ D−\{0}, then for any c ∈ k×

D,γ , 〈cγ 〉

is locally isometric to 〈γ 〉. For any a ∈ λ−1({±1}), 〈aγ 〉 is globally isometric
to 〈γ 〉. Moreover

{〈aγ 〉 | a ∈ k×

D,γ /λ
−1({±1})}

is the set of classes locally isometric to 〈γ 〉, so this set contains 2sD−2 ele-
ments.

(ii) In general, for every dimension there exists exactly 2sD−2 classes locally iso-
metric to (V, h).

Local theta correspondence. Let (V, h) be a (−1)-hermitian right D-module with
dimension m. We denote by G(V ) the unitary group of V and, if R is a k-algebra,
by G(VR) the group of R-valued points of G(V ). For a place v, let (Vv, hv) be a
(−1)-hermitian space over Dv. We define G(Vv) similarly, but we often use G(Vv)
for the group of kv-valued points of G(Vv) by an abuse of notation. Let (Wv, 〈 , 〉v)

denote the completion of the hermitian space (W, 〈 , 〉) over D at v. We define the
Weil representation of G(Vv)× G(kv) as follows.

Let Wv := Vv ⊗Dv
Wv and 〈〈 , 〉〉v :=

1
2τ(hv ⊗

ι
〈 , 〉v). Then (Wv, 〈〈 , 〉〉v) is a

symplectic space over kv of dimension 8m.

• The case v 6∈ SD . A homomorphism

Wv = Vv ⊗ Wv 3 v⊗w 7→ ve′e ⊗ ee′w+ ve ⊗ ew ∈ Vve ⊗kv eWv

becomes an isometry between (Wv, 〈〈 , 〉〉v) and (Vve ⊗kv eWv,
1
2 bVv ⊗ (−sWv

)).
On the other hand, a homomorphism

O(V2e, 1
2 bVv )× Sp(eWv,−sWv

)→ Mp(Vve ⊗ eWv)

is given in [Kudla 1994], where Mp(Vve ⊗ eWv) denotes the metaplectic group.
From this and Section 4.1 we have a homomorphism G(Vv)× G(kv)→ Mp(Wv).
Therefore the Weil representation ωψv of Mp(Wv) induces a representation ωVv =

ωψv,Vv of G(Vv)×G(kv), which is realized on the space S(Vv) of Schwartz–Bruhat
functions on Vv = Vv ⊗ Xv.

• The case v ∈ SD . A homomorphism G(Vv)× G(kv) → Mp(Wv) is given in
[Kudla 1994]. The Weil representation ωψv of Mp(Wv) induces a representation
ωVv = ωψv,Vv of G(Vv)× G(kv), which is realized on S(Vv)= S(Vv ⊗ Xv).
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For all places v we have defined the Weil representation ωVv of G(Vv)×G(kv).
Some explicit formulae involving ωVv are as follows. Let φ ∈ S(Vv) and v ∈ Vv.

• ωVv (
( a 0

0 ιa−1

)
)φ(v)= ((−1)m det Vv, ν(a))v|a|

m
kvφ(va) (a ∈ D×(kv))

• ωVv (
( 1 b

0 1

)
)φ(v)= ψv(

1
4τ(bhv(v)))φ(v) (b ∈ Dv,−)

• ωVv (h)φ(v)= φ(h−1v) (h ∈ G(Vv))

We will describe constituents of I (−1/2, χv). Let (Vv, hv) be a (−1)-hermitian
(free) right module over Dv with rank m. χVv denotes the quadratic character
of k×

v defined by χVv (x) = ((−1)mdetVv, x)v. For v 6∈ SD the description of the
irreducible constituents of I (−1/2, χv) has been obtained by Kudla, Rallis, and
Soudry [Kudla et al. 1992]. Therefore we will restrict to v ∈ SD .

• The case of nonarchimedean v ∈ SD . Consider the reducible points of I (s, χv),
where χv is a quadratic character of k×

v .

Lemma 4.4. (i) If χv = 1 then I (±3/2, χv) is reducible. I (s, χv) is irreducible
for real s 6= ±3/2.

(ii) If χv 6= 1 then I (±1/2, χv) is reducible. I (s, χv) is irreducible for real s 6=

±1/2.

Proof. The local Jacquet–Langlands correspondence of χv◦ν is σ0 = χv◦det ⊗ δSt ,
where δSt denotes the Steinberg representation of GL(2, kv). By Proposition 2.1 in
[Muić and Savin 2000] the Plancherel measure of χv coincides with the Plancherel
measure of χv◦ det ⊗ δSt . Therefore, the poles and zeros of µ(s, χv◦ ν) coincide
with the poles and zeros of

L(1 − s, σ∨

0 )Lk(1 − 2s, ω−1
σ0
)L(1 + s, σ0)Lk(1 + 2s, ωσ0)

L(−s, σ∨

0 )Lk(−2s, ω−1
σ0 )L(s, σ0)Lk(2s, ωσ0)

,

respectively. Since µ(0, χv◦ ν)= 0, the reducible points of I (s, χv) coincide with
the poles of µ(s, χv◦ν) [Silberger 1979]. All the poles are s = ±3/2 if χv = 1 and
s = ±1/2 if χv 6= 1. �

In Proposition 3.2(ii), the local component ωk′
v/kv at v of ωk′/k is not trivial.

Therefore we want the description of constituents of I (−1/2, χv) with a nontrivial
chiv, using theta correspondence. We write S(Vv)G(Vv) for the G(Vv)-coinvariant
space of S(Vv). Let R(Vv) denote the image of the map

S(Vv) 3 φ 7→ [G(kv) 3 g 7→ ωVv (g)φ(0)] ∈ I (m − 3/2, χVv ).

This map induces an isomorphism S(Vv)G(Vv) ' R(Vv); see [Mœglin et al. 1987,
Chap. 3 IV Th. 7]. Let (V ′

v, h′
v) be a 1-dimensional (−1)-hermitian space with
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det V ′
v 6= −1. (V ′′

v , h′′
v) denotes the 2-dimensional (−1)-hermitian space given by

det V ′′
v = − det V ′

v. Proposition 4.2 guarantees the existence and uniqueness of
(V ′
v, h′

v) and (V ′′
v , h′′

v).

Proposition 4.5. (i) R(V ′
v) and R(V ′′

v ) are the unique irreducible subrepresenta-
tions of I (−1/2, χV ′

v
) and I (1/2, χV ′

v
), respectively.

(ii) N (w0, (χV ′
v
| · |

1/2
v ) ◦ ν, ψv) induces an isomorphism I (1/2, χV ′

v
)/R(V ′′

v ) '

R(V ′
v).

Proof. The Jacquet module I (−1/2, χV ′
v
)P of I (−1/2, χV ′

v
) along P is

(χV ′
v
| · |

1/2
v ) ◦ ν+ (χV ′

v
| · |

−1/2
v ) ◦ ν

in the Grothendieck group. On the other hand, R(V ′
v)P ' (χV ′

v
| · |

−1/2
v ) ◦ ν. Since

I (−1/2, χV ′
v
) has at most one proper G(kv)-invariant space, the former of (i) fol-

lows. Similarly the latter of (i) is proved. From the Langlands classification we
obtain (ii). �

• The case of real archimedean v ∈ SD . We have G(kv)'Sp(1, 1). The reducible
points of I (s, 1) have been obtained, as follows.

Lemma 4.6 [Johnson 1990, Corollary of Lemma 5.4]. If s = ±(2n +1)/2 (n ∈ N)

then I (s, 1) is reducible, otherwise I (s, 1) is irreducible. In particular I (±1/2, 1)
are irreducible.

Since ν(D×
v ) = R×

+, we need not take the signed character in this lemma. Let
S0(Vv) denote the subspace of S(Vv) of functions of the form e−πν(x)P(x) where
P is a polynomial on Vv(∼= k⊕4m

v ). This space is a (gv, K v)-module where gv =

Lie G(kv)⊗RC. Fix an isomorphism Vv ∼= D⊕m
v . We set hv =Lie O∗(2m)⊗RC and

a maximal compact subgroup Lv = O(ν⊕m)∩ O∗(2m) of O∗(2m) where O(ν⊕m)

is the orthogonal group of ν⊕m (m times direct sum of the norm form on Dv). We
write S0(Vv)(hv,Lv) for the (hv, Lv)-coinvariant space of S0(Vv). R(Vv) denotes
the image of the map

S0(Vv) 3 φ 7→ [G(kv) 3 g 7→ ωVv (g)φ(0)] ∈ I (m − 3/2, χVv ).

This map induces an isomorphism S0(Vv)(hv,Lv) ' R(Vv) as (gv, K v)-modules
[Zhu 1992, Theorem II]. Let (V ′

v, h′
v) be a (−1)-hermitian space with dimension

one. By Proposition 4.2 it is determined uniquely. From the above lemma and the
Langlands classification we have the following.

Proposition 4.7. N (w0, | · |
1/2
v , ψv) induces an isomorphism I (1/2, 1)' R(V ′

v)(=

I (−1/2, 1)).
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We go back to a general place v. Let (Vv, hv) be a (−1)-hermitian right Dv-
module with rank m. For β ∈ Dv,−, let �β = {v ∈ Vv | hv(v, v) = β}. Also we
write ψv,β for the character of U (kv) given by ψv,β(u(b))= ψv(

1
4τ(bβ)).

Suppose kv is nonarchimedean. Set

S(Vv)β = S(Vv)/Span{ωVv (u)ϕ−ψv,β(u)ϕ |ϕ ∈ S(Vv), u ∈ U (kv)}.

The next two lemmas are shown by an argument similar to the proof of [Rallis
1987, Lemma 4.2].

Lemma 4.8. If �β = φ then R(Vv)β = 0. If ν(β) 6= 0 and �β 6= φ then
dim R(Vv)β = 1.

Suppose that kv is real. I ∞(s, χVv ) denotes the smooth induced representation
including I (s, χVv ) with its Fréchet topology. Let the topology of S(Vv) be given
by the usual one. The map i : S0(Vv)→ R(Vv)⊂ I ((m − 3)/2, χVv ) extends to a
continuous map

i : S(Vv)→ R∞(Vv)⊂ I ∞((m − 3)/2, χVv ),

where R∞(Vv) is the image of S(Vv). For β ∈ Dv,−, let R∞(Vv)′β be the space of all
continuous linear functionals µ on R∞(Vv) such that µ(r(X)8)= dψv,β(X)µ(8)
for all X ∈u=Lie U (R) and all8∈ R∞(Vv). Here dψv,β :u→C is the differential
of ψv,β and r denotes the action on R∞(Vv).

Lemma 4.9. If �β = φ then R∞(Vv)′β = 0. If ν(β) 6= 0 and �β 6= φ then
dim R∞(Vv)′β = 1.

Global theta correspondence. For a (−1)-hermitian right D-module (V, h) we
write ωV =ωψ,V for the Weil representation of G(VA)×G(A) on the space S(VA)

of Schwartz–Bruhat functions on VA. For any β ∈ D−, we define a character ψβ
of U (A) by

ψβ(u(b))=

∏
v

ψv,β(u(bv)) (u(b)= (u(bv)) ∈ U (A)) .

Let {(Vv, hv)} be a collection of (−1)-hermitian right Dv-modules with rank
one for all v, and let 5 =

⊗
v R(Vv) (if it can be defined). 5 is regarded as a

representation of (Lie G(A∞)⊗R C, K∞)× G(A f ), whose action is written by r .
We write Wβ(5) for the space of linear functionals µ on 5 which satisfy

(4-1)
µ(r(u) f )= ψβ(u)µ( f )

(
f ∈5, u ∈ U (A f )

)
,

µ(r(X) f )= dψβ(X)µ( f ) (X ∈ Lie U (A∞)) ,

where dψβ is the differential of the restriction of the character ψβ to U (A∞). For
each archimedean place v, R∞(Vv) denotes the closure of R(Vv) in I ∞(1/2, χVv )



THE RESIDUAL SPECTRUM OF INNER FORMS OF Sp(2) 485

as in the previous subsection. Let

5∞
=

( ⊗
v:arch

R∞(Vv)
)

⊗

( ⊗
v:nonarch

R(Vv)
)
,

which is a representation of G(A). Let W∞

β (5
∞) be the space of all linear func-

tionals µ on 5∞ which satisfy (4-1) and whose restrictions to R∞(Vv) lie in
R∞(Vv)′β . Let W∞

β (5) be the subspace of Wβ(5) spanned by the restrictions
of functionals in W∞

β (5
∞). We have the following proposition which is the same

as Proposition 2.1 in [Kudla et al. 1992].

Proposition 4.10. Suppose that {(Vv, hv)} is given by the completions at all v of
some (−1)-hermitian right D-module (V, h) with rank one and det V 6= 0. We
write 5(V ) =

⊗
v R(Vv). Let OV = {β ∈ D−\{0} | h(x, x) = cβ for some x ∈ V

and some c ∈ k×

D,β}.

(i) If β 6∈ OV and β 6= 0 then W∞

β (5(V ))= 0.

(ii) If β ∈ OV then dim W∞

β (5(V ))= 1.

A(G(k)\G(A)) denotes the space of automorphic forms on G(k)\G(A). For
f ∈ A(G(k)\G(A)), the β-th Fourier coefficient Wβ( f ) is defined by

Wβ( f )(g)=

∫
U (k)\U (A)

f (ug)ψβ(u−1) du.

Denote by W β the linear functional on A(G(k)\G(A)) defined by f 7→ Wβ( f )(1).
It satisfies

W β(r(u) f )= ψβ(u)W β( f ) (u ∈ U (A)).

Let (V, h) be a (−1)-hermitian space over D. We write A∞(G(k)\G(A)) for the
space of smooth automorphic forms without the K -finiteness condition. Let r again
denote the right regular action on A(G(k)\G(A)) or on A∞(G(k)\G(A)).

By a parallel argument to the first part of the proof of Theorem 2.2 in [Kudla
et al. 1992], we have that if A, B :5(V )→ A(G(k)\G(A)) are two intertwining
operators then A and B both extend to continuous G(A)-intertwining operators
A∞, B∞

: 5(V )∞ → A∞(G(k)\G(A)). Since W β can extend to a continuous
linear functional on A∞(G(k)\G(A)), we conclude that both Aβ = W β ◦ A and
Bβ = W β ◦ B lie in W∞

β (5(V )). As in the observation just before Lemma 2.5
in [Kudla et al. 1992], we have the following results. If β 6∈ OV and β 6= 0, then
Aβ = Bβ = 0 by Proposition 4.10(i). If β ∈ OV , there is a cβ ∈ C such that
Aβ = cβBβ by Proposition 4.10(ii). Moreover, if both β1 and β2 lie in the same
orbit in OV then cβ1 = cβ2 .

Proposition 4.11. Suppose that {(Vv, hv)} is as in the assumption of Proposition
4.10. Then dim Hom(5(V ), A(G(k)\G(A)))≤ 2sD−2.
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Proof. From the definition of OV and Proposition 4.3(i), OV has 2sD−2 orbits. By
the preceding observation and the next lemma, the proposition is proved. �

Lemma 4.12. (It is not necessary to impose the assumption of Proposition 4.10.)
If E :5→ A(G(k)\G(A)) is an intertwining operator satisfying W β ◦ E = 0 for
all β ∈ D−\{0} then E = 0.

This is shown by the same argument as [Kudla et al. 1992, Lemma 2.5].

Next consider the equality of the relation in Proposition 4.11. For φ ∈ S(VA) and
g ∈ G(A), we let

Iφ(g)=

∫
G(Vk)\G(VA)

θ(g, l;φ) dl,

with the usual theta kernel

θ(g, l;φ)=

∑
x∈V (k)

ωV (g)φ(l−1x).

Since G(V ) is anisotropic, Iφ(g) is well-defined and Iφ ∈ A(G(k)\G(A)). This
defines an intertwining operator IV from S(VA) to A(G(k)\G(A)). It is G(Vv)-
invariant for all nonarchimedean places and (hv, Lv)-invariant for archimedean
places. Therefore the image ImIV of the intertwining operator is isomorphic to
a quotient of 5(V ). Since 5(V ) is irreducible, ImIV is isomorphic to 5(V ).
Applying the square integrability criterion, and by Proposition 6.9 in [Kudla et al.
1992], we have that ImIV ⊂ L2(G(k)\G(A)). For β ∈ D−\{0},

Wβ(Iφ)(g)=

∫
U (k)\U (A)

Iφ(ug)ψβ(u−1) du

=

∫
U (k)\U (A)

du
∫

G(Vk)\G(VA)

∑
x∈V (k)

ωV (ug)φ(l−1x)ψβ(u−1) dl

=

∫
G(Vk)\G(VA)

∑
h(x,x)=β

ωV (g)φ(l−1x) dl.

In particular, if β is not represented by h then Wβ(Iφ) = 0. If β = h(x0, x0) for
some x0 ∈ V \{0} then

Wβ(Iφ)(g)=

∫
G(VA)

ωV (g)φ(l−1x0) dl.

Choosing a suitable φ we have Wβ(Iφ) 6= 0. In particular, if V1, . . . , Vn are not
isometric to each other then IV1, . . . , IVn are linearly independent. Thus we have
obtained the following theorem.

Theorem 4.13. Suppose that {(Vv, hv)} is as in the assumption of Proposition 4.10.
Then dim Hom(5(V ), A(G(k)\G(A)))= 2sD−2.
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Proposition 4.14. Suppose that there are no global (−1)-hermitian space (V, h)
such that {(Vv, hv)}v is given by the completions of (V, h). Then

Hom(5, A(G(k)\G(A)))= 0.

Proof. Let E : 5 → A(G(k)\G(A)) be a nonzero intertwining operator. There
exists β ∈ D−\{0} such that Eβ = W β◦E is nonzero by Lemma 4.12. Therefore for
any v, the restriction of Eβ to R(Vv) is nonzero. By Lemma 4.8 and 4.9 〈β〉 ' Vv.
This contradicts the assumption for {(Vv, hv)}. �

Let {(Vv, hv)} be given by the completions at all v for some (−1)-hermitian right
D-module (V, h) with rank one and det V 6= 0. We define the quadratic character
χV of A×/k× by χV =

∏
v χVv . Since

−ν(D−\{0})= {α ∈ k×
|α 6∈ (k×

v )
2 for all v ∈ SD},

any ωk′/k appearing in Proposition 3.2(ii) can be written by the form χV for some
V . By the definition of R(Vv) we have⊗

v

R(Vv)⊂ IndG(A)
P(A)((χV | · |

−1/2) ◦ ν).

On the other hand, by Proposition 1.1, 1.2 in [Kudla et al. 1992] and Proposi-
tion 4.5, 4.7, any irreducible constituent of IndG(A)

P(A)((χV | · |
−1/2) ◦ ν) is written

by the form
⊗

v R(Ṽv) where {Ṽv}v is a collection of (−1)-hermitian right Dv-
modules with rank one and det Ṽv = det Vv for all v. Therefore Proposition 4.14
and Theorem 4.13 conclude that the representations obtained by the images of
N (w0, (χV | · |

1/2
A ) ◦ ν) are exhausted by the representations given by Theorem

4.1(3).

5. Arthur parameters for residual spectrum

Here we give an expectation about the Arthur parameters for the residual spectrum
of G. The dual group Ĝ of G equals SO(5,C), which we realize as

Ĝ =

g ∈ SL(5,C)

∣∣∣∣∣∣∣∣∣∣
g


1

−1
1

−1
1

 tg =


1

−1
1

−1
1


 .

For each v we denote by Wkv the Weil group of kv and write L Gv for the L-group
Ĝ × Wkv of Gv = G ⊗k kv. We write Lv for the Langlands group introduced in
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[Kottwitz 1984]:

Lv :=

{
Wkv if kv is archimedean,
Wkv × SU (2,R) if kv is nonarchimedean.

A local Arthur parameter for G is a continuous homomorphism

ψ : Lv × SL(2,C)→
L Gv

such that (i) ψ |Wkv
is semisimple and has bounded image, (ii) the composition

Wkv
ψ
−→

L Gv

pr2
−→ Wkv

is the identity, and (iii) ψ restricted to SL(2,C) or SU (2)× SL(2,C) is analytic.

Expectation 5.1. Let π =
⊗

v πv be a residual discrete representation appearing in
Theorem 4.1. The Arthur parameter ψπv associated to πv is given by the following.

(1) For 1G(A) we have ψ1G(A) |Lv
= 15 × prWkv

and

ψ1G(A)(

(
a x
y −a

)
)=


4a x
2y 2a x

2y 0 x
2y −2a x

2y −4a

 ∈ LieĜ.

(2) For J G
P (π) we have

ψJ G
P (π)

|Lv
=

 ϕπv
1

Ad(J )tϕ−1
πv

 × prWkv

and

ψJ G
P (π)

(

(
a x
y −a

)
)=


a x

a x
0

y −a
y −a

 ∈ LieĜ.

Here ϕπv is the Langlands parameter for πv. Since πv is self-dual the image
of ϕπv is contained in SL(2,C)× Wkv .

(3) For R(V ) we have

ψR(Vv)|Lv
=


χVv

c1 c2

χVv
c3 c4

χVv

 × prWkv



THE RESIDUAL SPECTRUM OF INNER FORMS OF Sp(2) 489

and

ψR(Vv)(

(
a x
y −a

)
)=


2a 0 x
0 0 0

2y 0 0 0 −x
0 0 0

−2y 0 −2a

 ∈ LieĜ,

where (
c1(w) c2(w)

c3(w) c4(w)

)
=

 12 if w ∈ Wk′
v
,(0 1

1 0

)
if w ∈ Wkv\Wk′

v
,

for the quadratic extension k ′ of k attached to χV .

Remark 5.2. The (global) Arthur parameter of 1G(A) should coincide with that of
1Sp(2,A). For J G

P (π) the unique irreducible quotient J Sp(2)
P1

(JL(π)) of

IndSp(2,A)
P1(A) (JL(π)| det |1/2A )

occurs in the residual spectrum of Sp(2) where P1 is the Siegel parabolic subgroup
of Sp(2) and JL(π) is the Jacquet–Langlands correspondence of π [Kim 1995].
The Arthur parameters of J G

P (π) and J Sp(2)
P1

(JL(π)) should coincide. For R(V ) the
theta lift of the trivial representation of the orthogonal group of a 2-dimensional
quadratic space with determinant det V occurs in the residual spectrum of Sp(2)
[Kon-no 1994] and its Arthur parameter should coincide with that of R(V ).
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