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BOUNDARY REGULARITY OF HARMONIC MAPS
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INTO NONPOSITIVELY CURVED MANIFOLDS

HAO YIN

This paper studies the boundary regularity of harmonic maps from hyper-
bolic space into manifolds with nonpositive curvature. Optimal results are
obtained.

1. Introduction

Given two Riemannian manifolds (M, g) and (N , h) and a map f from M to N ,
the energy of f , if finite, is defined as

E( f ) =

∫
M

1
2

|∇ f |
2 dV =

∫
M

1
2

trg( f ∗h)dV .

A map f is said to be harmonic if it is an extremum of this energy functional. If {xi }

and {yα} are respectively local coordinates on M and N , then the Euler–Lagrange
equation of the energy functional E( f ) becomes

(1) 4 f α
+ 0α

βγ ( f )
∂ f β

∂xi

∂ f γ

∂x j
gi j

= 0, α = 1, . . . , dim N ,

where the sum’s right members are the components of the tension field.
Eells and Sampson [1964] famously proved existence by the heat flow method

for compact M and N when the sectional curvature of N is nonpositive. Later,
Liao and Tam [1992] generalized their work to complete noncompact M , with
the condition that the total energy is finite. Li and Tam [1991] removed the finite
energy condition; instead, they required the manifold satisfy some other geometric
condition and that there exists some “approximate” harmonic map in that the L p

norm of the square of the tension field is finite for p > 1. In particular, without
much effort, their results imply that if M is hyperbolic space and N has nonpositive
sectional curvature, then, given any smooth f : Sm−1

→ N , we can find a harmonic
map u from M to N with f as the boundary value. For the precise statement, see
Section 2.
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If we take the hyperbolic space as the interior of the unit disk, there is the
problem of boundary regularity, that is, how smooth could this u be up to the
boundary? This is essentially a problem of the boundary regularity of a uniformly
degenerate elliptic system. For harmonic functions, complete results have been
obtained in [Graham 1983]. Recently, Chruściel et al. [2005] applied the earlier
work of Andersson and Chruściel [1996] to study the boundary regularity of an
asymptotically hyperbolic Einstein metric and obtained optimal results. Common
to all these results is that even if the boundary data is smooth, the solution may or
may not be smooth, depending on whether the dimension of the domain is even
or odd. In both cases, the solution has an expansion as a function of the defining
function of the boundary. For even-dimensional hyperbolic space M , the formal
calculation shows the expansion involves only power series, whose coefficients
are determined by the given Dirichlet data and some Neumann data implicitly
determined by the global properties. If the dimension of the hyperbolic space
is odd, then the expansion involves terms like ρk(log ρ)l . Chruściel et al. [2005]
showed, for a conformally Einstein metric, that this is the only obstruction to the
boundary regularity, that is, the solutions are polyhomogeneous (see [Andersson
and Chruściel 1996] and Section 3). The main result here shows the same phe-
nomenon occurs for harmonic maps from hyperbolic space into a nonpositively
curved manifold.

Theorem 1.1. Let M = Hm be a hyperbolic space and N a complete manifold with
nonpositive sectional curvature. For any smooth map f : ∂ M → N , the harmonic
map u with boundary value f is polyhomogeneous up to the boundary. Moreover,
u has an expansion near the boundary whose coefficients can be determined by f
and some Neumann data. In particular, if m is even, u is smooth up to the bound-
ary; if m is odd, u is Cm−2 up to the boundary and C∞ in the tangent direction of
∂ M.

As remarked earlier, the existence and uniqueness of such boundary value problem
follows trivially from the result of Li and Tam [1991]. A lemma in [Li and Tam
1993a] can be applied here to prove some partial regularity, that is, Cβ up to the
boundary. To get the optimal results, we need the regularity theorem proved in
[Andersson and Chruściel 1996]. Excepting those trivial conditions, there are two
essential requirements: a good approximate solution and a regularity interval for
the linearized operator. For the first, we need to construct the approximate solu-
tion and prove certain estimates. Since f is now a map into a curved manifold
instead of a section of a bundle, we have to do the construction locally and patch
results together. The second requirement, in the case of [Chruściel et al. 2005], is
discussed in great detail in [Lee 2006]. That discussion focused on a geometric
operator, since the main application would be the Einstein metric. In our case, the
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linearization of the harmonic map equation is not a geometric operator. However,
the main part of this linearization will be the Laplacian on hyperbolic space, which
is discussed in [Lee 2006] and whose regularity interval is known [Andersson and
Chruściel 1996; Lee 2006].

Following the idea of the proof of the main regularity theorem in [Andersson
and Chruściel 1996], we will show the remaining terms in the linearization do not
matter. We will rewrite their proof here, for these reasons: First, their regularity
theorem is not in the exact form we need here, because the linearized operator is
not a geometric one and because we will not directly study its regularity interval.
Second, our proof will be simplified because our approximate solution is much
better than they assumed, and we can do without many of their technical details.

The paper is organized as follows: In Section 2, we recall a result of Li and Tam
to show existence and uniqueness. In Section 3, we will introduce the concept of
polyhomogeneous and the Borel lemma. In Section 4, following the exposition
of [Kichenassamy 2004] and using the Borel lemma, we show the existence of an
approximating solution. In Section 5, some partial regularity is proved. In the final
section, we prove Theorem 1.1.

Finally, we remark on [Li and Tam 1993a]. There, they discussed the existence,
uniqueness and regularity of proper harmonic maps between hyperbolic spaces.
Let Hm and Hn be hyperbolic spaces of dimension m and n. The hyperbolic space
Hm is identified with Dm

= {x ∈ Rm
| |x | < 1} with the Poincaré metric

ds2
M = 4(1 − ρ2)−2(dρ2

+ ρ2
m∑

i, j=2

gi j dηiη j ),

where ρ2
=

∑m
i=1(x i )2 and

∑m
i, j=2 gi j dηi dη j is the standard metric on the unit

sphere Sm−1. (In this paper, the hyperbolic metric is expressed in a different way.)
Similarly, we identify Hn with Dn in Rn with the Poincaré metric

ds2
N = 4(1 − r2)−2(dr2

+ r2
n∑

p,q=2

h pqdθ pdθq),

where r2
=

∑n
p=1(u

p)2 and
∑n

p,q=2 h pqdθ pdθq is the standard metric on the unit
sphere Sn−1. A map u from Hm to Hn is now given by r(ρ, ηi ) and θ p(ρ, ηi ).
Calculations show [Li and Tam 1993a, Section 1] the tension field is now

τ(u)1
=

(1 − ρ2)2

4
40r +

1
4

(
2(m − 2)(1 − ρ2)ρ

∂r
∂ρ

+
r(1 − ρ2)2(2 |∇0r |

2
− (1 + r2)

∑n
p,q=2 h pq〈∇0θ

p, ∇0θ
q
〉)

1 − r2

)
,
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and

τ(u)s
=

(1 − ρ2)2

4

(
40θ

s
+

m∑
p,q=2

0̃s
pq〈∇0θ

p, ∇0θ
q
〉

)
+

1 − ρ2

2

(
(m − 2)ρ

∂θ s

∂ρ
+

(1 + r2)(1 − ρ2)〈∇0r, ∇0θ
2
〉

r(1 − r2)

)
,

for s ≥ 2. Here, 40 is the Euclidean Laplacian, ∇0 is the Euclidean gradient, and
0̃s

pq are the Christoffel symbols for the standard metric on Sn−1.
Compared to Equation (1), the 1−r2 in the denominator causes more difficulty

since limρ→1 r = 1. In this case, uniqueness of the boundary value problem is
not true without further assumptions. There are known examples, see [Li and
Tam 1993a], showing that one can’t expect the harmonic map to be C1 even if
the boundary map is analytic. Li and Tam showed that if we further assume the
harmonic map is C1 up to the boundary, then the uniqueness is true. Moreover,
under this assumption, if the boundary map is Ck,α for 1 ≤ k ≤ m − 1, 0 < α ≤ 1
and has nowhere vanishing energy density, then the harmonic map will be Ck,γ for
0 < γ < α up to the boundary.

Their result should be compared with Section 5, where we use a lemma of
theirs. A further question is: if we assume that the boundary map is smooth with
nowhere vanishing energy density and the harmonic map is C1 up to the boundary,
what’s the optimal regularity? (See problems in [Li and Tam 1993b].) In particular,
will the harmonic map be smooth in the tangential direction? To answer this, we
tried the method in this paper. We can show, under the above assumptions, that
there is an approximate solution whose expansion coefficients are determined by
boundary values and Neumann data. However, it’s not known how to show the
(unique) harmonic map is plurihomogeneous and has such an expansion.

2. Existence and uniqueness

The results in this section are all known.

Theorem 2.1 [Li and Tam 1991, Theorem 5.2]. Let Mm be a complete manifold
with Ricci curvature bounded below by −K ≤0, and infx∈M Vx(1)=b >0. Assume
that the lower bound of the spectrum λ(M) of M is positive. Let N n be a complete
manifold with nonpositive curvature. Let w ∈ C1(M, N ) such that the energy
density of w is bounded and the square of the norm of the tension field of w is
bounded and in L p(M) for some p > 1. Then there exists a unique solution of the
harmonic map flow u : M × (0, ∞) → N such that

(i) u(0) = w.

(ii) u∞(x) = limt→∞ u(·, t) is a harmonic map.
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(iii) supM e(u∞) < ∞.

(iv) supx∈M dist (u∞(x), w(x)) < ∞.

(v) If , in addition, the norm of the tension field of w tends to 0 as x → ∞, then
limx→∞ dist (u∞(x), w(x)) = 0.

From now on, M will be Hm with the metric

gM = dr2
+ sinh2 rdθ2

=
1
ρ2 (dρ2

+
(1 − ρ2)2

4
h0),

where ρ = e−r , r is the distance to some point in M , and h0 is the standard metric
on the unit sphere. It’s well known that M satisfies all geometric conditions of the
above theorem. From time to time, we will take (M, ∂M, ρ2gM) as a Riemannian
manifold with boundary. This is known as the conformal compactification. Assume
we have a smooth map f : ∂ M → N . To use the above theorem, we need to
construct w : M̄ → N satisfying all the assumptions. Assume that f is homotopic
to the trivial map, which is always true if dim M ≥ 3. Let w : M̄ → N be a smooth
extension of f . Combining ρ with a coordinate system {θi }

m−1
i=1 on an open set of

∂ M gives a coordinate system near the boundary. Collectively, we write them as
xi , where x1 = ρ. Then the energy density of w is

e(w) =
1
2

gi j
M

∂wα

∂xi

∂wβ

∂x j
hαβ .

Since gi j
= O(ρ2) and all other terms are bounded, we know w has finite energy

density. The tension field in these coordinates is

τ(w)α = ρ2 ∂2wα

∂ρ2 − (m − 2)ρ
∂wα

∂ρ
− 2(m − 1)

ρ3

1 − ρ2

∂wα

∂ρ

+
4ρ2

(1 − ρ2)2 40w
α
+ 0α

βγ

∂wβ

∂xi

∂wγ

∂x j
gi j ,

where 40 is the Laplacian for h0. Therefore |τ(w)|2 = O(ρ2); it is in L p for p
sufficiently large and decays to zero at infinity. Theorem 2.1 gives us a harmonic
map u : M → N with f as the boundary value.

Proposition 2.2. This u is uniquely determined by f .

The proof is the maximum principle plus a well-known calculation of Schoen and
Yau [1979]. See also [Li and Tam 1991]. Because of this uniqueness theorem, it
suffices to prove regularity for one harmonic map satisfying the boundary condi-
tion, in particular, the one constructed in Section 4.
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3. Polyhomogeous maps and the Borel lemma

The lemmas in this section will help construct the approximate solution in the next
section. Andersson and Chruściel [1996] define the polyhomogeous function. It
will suffice for our problem to use a simpler definition that is a special case of theirs.
Let f be a function defined on U × [0, ε), where U is an open subset of ∂ M . We
will use (θ, ρ) as coordinates in U × [0, ε), where θ stands for the collective θi .

Definition 3.1. A smooth function u on U × (0, ε) is said to be polyhomogeous if
there exist smooth functions ai j (θ) such that, for any integers p > 0 and q > 0,
there exists N > 0 for which∣∣∣Dα(u −

N∑
i=0

i∑
j=0

ai jρ
i (log ρ) j )

∣∣∣ ≤ C(p, q)ρq ,

where α is a multiindex of order |α| ≤ p and Dα means partial differential (gov-
erned by α) in the θi and ρ. We call ai j (θ) the coefficients of the expansion of u.

According to the definition, u is C∞ in θ when ρ = 0. If there is no log term
for i = 1, . . . , k, then u is Ck up to the boundary. If u : U × [0, ε) → N is a
map, we assume that the image lies in a neighborhood with coordinates {yα

}. If
uα is polyhomogeous, we would like to say that the map u is polyhomogenous. To
justify the definition, we need the following lemma, whose form is more general
than what we need here but will be useful in Section 4. For simplicity, we consider
only the composition of scalar functions.

Lemma 3.2. Let u be a polyhomogeneous function defined on U ×[0, ε). Suppose
F(t, θ) defined on R×U is a smooth function such that ∂α F(t, θ) is bounded. Then
F(u(ρ, θ), θ) is also polyhomogeneous, and the coefficients of expansion can be
calculated formally by plugging the expansion of u into the Taylor series of F with
respect to t .

Proof. We can assume without loss of generality that u(0, θ) = 0 for all θ . If
otherwise, we consider F ′(u, θ) = F(u −u(0, θ), θ) instead of F . Recall Taylor’s
formula for F with integral remainder R:

F(u, θ)− F(0, θ)− · · · −
1
N !

uN F (N )(0, θ) =∫ u

0

∫ x1

0
· · ·

∫ xN

0
F (N+1)(xN+1, θ)dxN+1 · · · dx1 =: R.

For multiindex |α| < m, we need to estimate ∂α R. Let αi and α′ be multiindices
such that α1 +α2 +· · ·+αs +α′

= α and α′ involves only θ derivatives. A typical
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term in ∂α R looks like

∂α1u · · · ∂αs u
∫ u

0
· · ·

∫
∂α′

F (N+1)(xN+1, θ)dxN+1 · · · dx1+s .

Since u is polyhomogeneous, |∂αi u| ≤ Cρ−|αi |. If N > m+n, using the assumption
that ∂α′

F (N+1) is bounded, ∣∣∂α R
∣∣ ≤ Cρn,

where we have also used that u(0, θ) = 0. According to the definition of polyho-
mogeneous, we can choose N such that

u(ρ, θ) =

N∑
i=1

i∑
j=0

ai j (θ)ρi (log ρ) j
+ o(m, n + m),

where o(m, n + m) satisfies∣∣∂αo(m, n)
∣∣ ≤ Cρn+m, for |α| < m

The summation starts from i = 1 because we assumed u(0, θ) = 0. Plug this into
the left hand side of the Taylor formula. Collect those terms ρi (log ρ) j with i ≤ N
and with no o(m, m + n) factor. This is we expect from a formal calculation, and
we will make this the first N levels in the expansion of F(u(ρ, θ), θ). The lemma
follows because the remaining terms have partial derivatives that decay like ρn . �

The next lemma, [Andersson and Chruściel 1996, Lemma 3.1.2], is a general-
ization of the Borel lemma as given in [Hörmander 1983, Chapter 1]. It serves
as a bridge from the formal solution to an approximate solution. In other words,
the Borel lemma and the definition of a polyhomogeneous function make formal
calculations approximately true.

Lemma 3.3. Given a family of smooth functions ai j (θ) defined on U , we have a
polyhomogeneous function u defined on U ×[0, ε) with expansion coefficients ai j .

4. Formal solution and approximate solution

The derivation of the formal solution follows [Kichenassamy 2004]. We start lo-
cally. For p ∈ ∂ M , let (θ, ρ) be a coordinate system near p as before. Let {yα

} be
a coordinate system around f (p). Setting D = ρ∂/∂ρ, the harmonic map equation
τ(u) = 0 can be written as

(2) D(D − m + 1)uα
+ ρ20α

βγ (u)
∂uβ

∂ρ

∂uγ

∂ρ
+ ρ2 F

(
ρ

∂u
∂ρ

,
∂u
∂θ

,
∂2u
∂θ2 , u

)
= 0,
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where F is a smooth function of its arguments. We confine ourselves to the formal
solution of the form (we drop the superscript α for simplicity)

(3) u(θ, ρ) =

∞∑
i=0

i∑
j=0

ai j (θ)ρi (log ρ) j .

The log term appears frequently in Fuchsian type equations and has a long history.
The coefficients ai j (θ) are smooth functions defined on a subset of ∂ M or ∂ M
itself. We call

i∑
j=0

ai j (θ)ρi (log ρ) j

the i-level part of the formal series. It’s easy to check that for some integer a, the
operator D − a acts on the i-level part and satisfies:

(i) D − a maps the i-level part to i-level part.

(ii) If a 6= i , for any i-level part g, the equation (D − a)u = g determines u.
Moreover, if g has no log term, neither has u.

(iii) If a = i , for any i-level part g, the equation (D−a)u = g determines u except
for the coefficient ai0(θ) of u. Moreover, if g has no log term, u will have a
ρi (log ρ) term, whose coefficient is determined by g.

With these basic properties of D − a, we can examine Equation (2) level-by-
level. Assume m > 2. For the 0-level, we have a00(θ) given by the boundary
value f . For the 1-level, we know the 1-level of u is zero. For higher level k, we
would like to show the k-level of the last two terms in Equation (2) is determined
by lower levels of u. Since F is smooth, F(ρ∂u/∂ρ, ∂u/∂θ, ∂2u/∂θ2, u) has a
formal expansion, the (k − 2)-level coefficients are determined by those of l-level
of u for l ≤ k − 2. It is easy to see that ρ20α

βγ (u) ∂uβ

∂ρ
∂uγ

∂ρ
involves at most the

(k − 1)-level of u.
By induction, we can obtain a formal series u. All coefficients below level

m − 1 are determined by the boundary value only. Those above the (m − 1)-level
are determined by the boundary value and an arbitrary choice of am−1,0(θ). This
arbitrariness can be regarded as the Neumann boundary condition and plays a subtle
role in the theory of the regularity. For a solution, these Neumann boundary data
are determined by global information.

More information can be obtained from the induction process. In fact, parity
tells us that all odd levels below m −1 are zero. If m is even, that is, m −1 is odd,
there is no log term introduced when computing the (m −1)-level. Since this is the
only chance of introducing a log term, the formal series will be a power series. If
m is odd, that is, m − 1 is even, whether there is a log term depends on the initial
value. A similar phenomenon is called a compatibility condition by Li and Tam.
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For m = 2, it’s easy to check the above discussion is also true.

Theorem 4.1. For a given smooth map f : U → N such that f (U ) lies in a
coordinate neighborhood, there is a formal solution u in the form of (3) to (2). All
the coefficients are determined by boundary value a00 and arbitrary Neumann data
am−1,0. If m is even, the series contains no log term.

By the Borel lemma, we have a polyhomogeneous map u defined on a neigh-
borhood of p.

Lemma 4.2. The map u defined above is an approximate solution of (2) in that

|τ(u)| ≤ C(k)ρk for any k.

Proof. From the definition, ρ∂u/∂ρ, ∂u/∂θ and ∂2u/∂θ2 are all polyhomogeneous
functions, whose expansion coefficients can be calculated formally. The proof
follows from combining this fact with Lemma 3.2. �

Remark 4.3. Although this approximate solution depends on a choice of coordi-
nates around f (p), |τ(u)| ≤ Cρk is coordinate free. Therefore, if were to choose
another coordinate system {zα

} around f (p) and express u in the zα, then the ex-
pansion coefficients of uα would agree with formal calculations in this coordinate
system. The Dirichlet data remain the same; however, the Neumann data, that is,
the coefficients of ρm−1, are transformed in a complicated way.

To prove our main theorem, we need a global approximate solution defined on
∂ M ×[0, ε). Assume that we have defined an approximate solution u on K ×[0, ε)

for some open subset K ⊂ ∂ M . We will show that we can make K larger. For any
p ∈ ∂K , take a small neighborhood U of p so that f (U ) lies in a coordinate
neighborhood of N , and let {yα

} be the coordinates. The size of this U (p) could
be bounded from below by a positive constant depending on N and f .

By the above discussion, we have an approximate solution v on U ×[0, ε) with
the prescribed Dirichlet boundary value on U . To have any chance of glueing u
and v together, we must require the Neumann data of u and v agree on K ∩ U .

To achieve this goal, note that u is also an approximate solution when restricted
to K ∩ U . Therefore, we can write the expansion in the coordinates yα. Now the
Neumann data are just n smooth functions aα

m−1,0(θ) defined on K ∩ U . Extend
them arbitrarily to U , still denoting them by aα

m−1,0. With this set of Neumann
data and the prescribed Dirichlet boundary data, we obtain as above a formal so-
lution in the coordinates yα. Finally, the Borel lemma and Lemma 4.2 give an
approximate solution v on U × [0, ε). u and v are not necessarily the same even
on the intersection (K ∩ U ) × [0, ε). However, they do have the same expansion
on (K ∩ U ) × [0, ε) in the coordinates yα. In fact, Lemma 3.2 shows this is true
for any other coordinate system.
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To glue them together, we use an averaging argument. Before we can do that,
we need to transform the map into a linear object. So consider the bundle f ∗(T N ).
Let ξ(θ, ρ) be a smooth family of sections of f ∗(T N ) parametrized by ρ. Define

F(ξ(θ, ρ)) = exp f (θ) ξ(θ, ρ),

where exp is the exponential map on N . Conversely, we have

F∗(q, θ) = exp−1
f (θ) q ∈ f ∗(T N )θ ,

where q ∈ N is a point near f (θ).
Let {ei } be a locally frame of f ∗(T N ) and {yα

} a coordinate system of N , and
express everything in components. F and F∗ are smooth maps from Rn

×U → Rn .
Lemma 3.2 says that if u is a polyhomogeneous map, then F∗(u(θ, ρ), θ) is a
polyhomogeneous section.

Recall that p ∈ ∂K . Take open sets V1 and V2 such that p ∈ V1 ⊂ V̄1 ⊂ V2 ⊂

V̄2 ⊂ U and the size of V1 can be bounded uniformly from below. Let a, b be
nonnegative smooth functions defined on K ∩ U ∪ V1 such that

(i) a = 1 on K ∩ U \ V2;

(ii) b = 1 on V1;

(iii) a + b = 1 on K ∩ U ∪ V1.

Let ξu be the section F∗(u, θ) on K ∩ U and ξv be the section F∗(v, θ) on U .
Their expansions are the same on K ∩U . On K ∩U ∪ V1, define ξ = aξu +bξv. It
follows from the definition of a and b that

(i) ξ agrees with ξu on K ∩ U \ V2;

(ii) ξ agrees with ξv on V1;

(iii) the expansion of ξ agrees with ξu on K ∩U and agrees with ξv on K ∩U ∪V1.

Now set w = F(ξ, θ). Lemma 3.2 ensures that w is a polyhomogenous map
and w is an approximate solution, since its expansion agrees with u or v. w can
be set to u on K \ U . Now w is an approximate solution defined on K ∪ V1. Set
K = K ∪V1 and repeat the above construction for other points on ∂K until K =∂ M .
Therefore, we have proved:

Theorem 4.4. Let f be any smooth map from ∂ M to N , and assume that f is
homotopically trivial (which is always true for m > 2). Then we can construct a
map u from M to N such that

|τ(u)| ≤ C(k)ρk for any k.

Proof. The above construction defines u on ∂ M × [0, ε). Extend it arbitrarily to
the interior. �
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5. Lower order regularity

From now on, denote the approximate solution by u0. It follows from the con-
struction and the definition of polyhomogeneous functions that u0 is at least C1 up
to the boundary. A calculation similar that in to Section 2 shows u0 has bounded
energy density. Theorem 2.1 shows that we have a solution u(t) to the heat flow
equation and u(t) converges to a harmonic map u∞ from M to N such that u∞

has finite energy density and limρ→0 dist(u∞(θ, ρ)− u0(θ, ρ)) = 0.
The main result of this section will improve the last statement. Precisely, if we

embed N into some RK , u0, u(t), and u∞ can be taken as vector-valued functions.
Denote by A the second fundamental form of N as a submanifold in RK . It’s well
known that the harmonic map equation can be written

4u + A(u)(du, du) = 0.

Theorem 5.1. There exists some β > 0 such that∣∣(ρ∂)α(u∞ − u0)
∣∣ ≤ C(k)ρβ,

where α is a multiindex with order |α| = k and ∂ means partial derivatives in the
θi and ρ.

The proof takes two steps. First, we establish the decay in the C0 norm. Fix any
point o ∈ M . Recall:

Lemma 5.2 [Li and Tam 1993a, Lemma 3.1]. For 0 < s ≤ m −1, (2ρ/(1+ρ))s is
a superharmonic function when ρ 6= 1.

Remark 5.3. Li and Tam write the hyperbolic metric as 4(dρ2
+ρ2h0)/(1 − ρ2)2.

Therefore their ρ is our (1 − ρ)/(1 + ρ).

We present a modified and weaker version of [Li and Tam 1993a, Lemma 3.2]:

Lemma 5.4. There exists some positive β > 0 such that the distance between u0

and u∞ satisfies
dist(u0(θ, ρ), u∞(θ, ρ)) ≤ Cρβ,

that is, as a vector valued function,

|u0(θ, ρ)− u∞(θ, ρ)| ≤ Cρβ .

Proof. Li and Tam [1991] proved

‖ut‖
2
≤ Ce−αt .

Since the sectional curvature of N is nonpositive, a result of Hartman [1967] shows

(∂t − 4) ‖ut‖
2
≤ 0.
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The initial value satisfies

‖ut‖
2∣∣

t=0 = ‖τ(u0)‖
2
≤ Cρk for any k.

An application of maximum principle and Lemma 5.2 shows

‖ut‖
2
≤ Cρm−1

near the boundary. Therefore

‖ut‖ ≤ Ce−
α
4 tρ(m−1)/4

and

dist(u0, u∞) ≤

∫
∞

0
‖ut‖ dt ≤ Cρ(m−1)/4. �

To estimate higher order derivatives, we consider interior estimates on balls of
uniform size. Around p = (ρ ′, θ ′) ∈ M , define a coordinate system {xi } by

(x1, x2, . . . , xm) = (ρ ′
+

1
2ρ ′x1, θ

′

i +
1
2ρ ′xi ).

Let U (p) = {(x1, . . . , xm) |
∑

x2
i < 1}. In the {xi }, the hyperbolic metric is

(ρ ′)2

4ρ2 (dx2
1 +

(1−ρ2)2

4
ḡi j dxi dx j ),

where ḡi j dθi dθ j = h0. Similar coordinates are called Möbius coordinates in [Lee
2006]. Since ρ ∈ (1

2ρ ′, 3
2ρ ′), the coordinates have the advantage that, first, the

metric components are comparable to δi j and, second, all their partial derivatives
are bounded. This fact is essential for obtaining uniform estimates.

u∞ is a harmonic map; thus

(4) 4u∞ + A(u∞)(du∞, du∞) = 0.

u0 is an approximate solution, so

(5) 4u0 + A(u0)(du0, du0) = o((ρ ′)∞),

where o((ρ ′)∞) stands for some polyhomogeneous function with vanishing expan-
sion coefficients, that is, any derivative of o((ρ ′)∞) decays as fast as one needs.
Subtract (4) and (5) to get

(6) 4(u0 − u∞) + A(u0)(d(u0 − u∞), du0) + A(u0)(du∞, d(u0 − u∞))

= (A(u0) − A(u∞))(du∞, du∞) + o((ρ ′)∞).

We know that u0 and u∞ both have finite energy density, that is, their first order
derivatives are bounded (in these coordinates). Also A is smooth such that

|A(u0) − A(u∞)| ≤ C |u0 − u∞| .
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The interior L p estimate says, if V (p) = {
∑

x2
i ≤ 1/2},

‖u0 − u∞‖W 2,q (V (p)) ≤ C sup
U (p)

(|u0 − u∞| + |o((ρ ′)∞)|).

Lemma 5.4 and Sobolev embedding gives

‖u0 − u∞‖C1,γ (V (p)) ≤ C(ρ ′)β .

To apply the Schauder estimate for ‖u0 − u∞‖C l+2,γ , we need two lemmas.

Lemma 5.5.
‖u0‖C l,γ (U (p)) ≤ C for any l > 0.

Proof. By the definition of the xi , we know ∂/∂xi is equivalent to 1
2ρ ′∂/∂ρ or

1
2ρ ′∂/∂θ . Therefore

∂ |α|

∂α1 x1 · · · ∂αm xm
= (ρ ′/2)|α|∂α,

where ∂ means ∂/∂ρ and/or ∂θ . For q ∈ U (p), ρ ∈ ( 1
2ρ ′, 3

2ρ ′). Since u0 is poly-
homogeneous, |∂αu0| ≤ Cρ−|α|. Hence, (ρ ′)|α|∂αu0 is bounded inside U (p). �

Corollary 5.6.

If ‖A(u0)‖C l,γ (U (p)) ≤ C, for any l > 0, and

‖u0 − u∞‖C l,γ (U (p)) ≤ C, then

‖u∞‖C l,γ (U (p)) ≤ C.

Lemma 5.7.

‖A(u0) − A(u∞)‖C l,γ (U (p)) ≤ C ‖u0 − u∞‖C l,γ (U (p)) .

Proof. To see this, extend the definition of A smoothly to a neighborhood of N in
RK . When u0 and u∞ are sufficiently close, the line segment γ connecting them
remains in this neighborhood. So γ : [0, 1] → RK is given by

γ (t) = (1 − t)u0 + tu∞.

γ depends implicitly on q ∈ U (p).

A(u∞) − A(u0) =

∫ 1

0

d
dt

A(γ (t))dt

=

∫ 1

0
D A((1 − t)u0 + tu∞) · (−u0 + u∞)dt. �

These lemmas allow us to use Schauder estimates inductively, which concludes
the proof of Theorem 5.1. �
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Remark 5.8. Results in this section are interior estimates, that is, they hold on a
ball of fixed size inside the hyperbolic space. Theorem 5.1 roughly says that the
difference in any Ck norm measured in geodesic ball between u0 and u∞ decays
at order β as ρ goes to 0. This fact starts the next section.

6. Full regularity

Now we can prove the main Theorem 1.1. We need some more definitions. Fol-
lowing the convention of [Andersson and Chruściel 1996], we denote by Ck the
functions differentiable k times. Set Mδ = {(ρ, θ) | ρ < δ} for some 0 < δ < 1.

Definition 6.1. A Ck function on M is in Cα
k (M) if this norm is finite:

‖ f ‖Cα
k (M) = ‖ f ‖Ck(M\Mδ)

+ sup
0≤|γ |≤k, (ρ,θ)∈Mδ

ρ−α
|∂γ f |.

Definition 6.2. A Cα
k (M) function is said to be in Cα

k+λ(M) if this norm is finite:

‖ f ‖Cα
k+λ(M) = ‖ f ‖Cα

k (M) + ‖ f ‖Ck+λ(M\Mδ)

+ sup
y∈Mδ, |γ |=k

sup
y′ 6=y, dH (x,y)≤1

ρ−α+k+λ |∂γ f (y) − ∂γ f (y′)|

|y − y′|
λ

,

where Ck+λ(M \ Mδ) is the ordinary Hölder norm on a compact set, y = (ρ, θ)

and y′ are points in Mδ, dH is the hyperbolic distance, and ∂ is as before.

The definition means the Ck+λ norm of f measured on a geodesic ball U (p)

decays like ρα as p moves towards the infinity. In these terms, Theorem 5.1 says

u0 − u∞ ∈ Cβ

k for any k > 0 and some β > 0.

Definition 6.3. For some µ ∈ (0, 1], a function f ∈ Cα
k+λ(M) is said to be in

Cα
k+λ,0+µ(M) if this norm is finite:

‖ f ‖Cα
k+λ,0+µ(M) = ‖ f ‖Cα

k+λ(M) + sup
|γ |=k, θ 6=θ ′

ρ−α |(ρ∂)γ ( f (ρ, θ)− f (ρ, θ ′))|

|θ − θ ′|
µ .

Definition 6.4. A function f ∈Cα
k+λ,0+µ is said to be in Cα

k+λ,l+µ if, for 0 ≤|γ |≤ l,
we have ∂

γ

θ f ∈ Cα
min(0,k+λ−|γ |),0+µ. Define the norm to be

‖ f ‖Cα
k+λ,l+µ(M) = ‖ f ‖Cα

k+λ,0+µ(M) +

∑
0≤|γ |≤l

∥∥∂
γ

θ f
∥∥

Cα
min(0,k+λ−|γ |),0+µ(Mδ)

.

Our starting point is a polyhomogeneous approximate solution u0 and a har-
monic map u (for simplicity, we will henceforth use u instead of u∞) such that, as
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given in Theorem 5.1, u0 − u ∈ Cβ
∞. The harmonic map equation is

4uα
+ Aα(u)

( ∂u
∂xi

,
∂u
∂x j

)
gi j

= 0.

Here (x1, . . . , xm) = (ρ, θ) and g = (dρ2
+ (1 − ρ2)2/4h0)/ρ

2.
More precisely,

4uα
+ Aα(u)

(
ρ

∂u
∂ρ

, ρ
∂u
∂ρ

)
+ Aα(u)

(
ρ

∂u
∂θi

, ρ
∂u
∂θ j

)
ḡi j

= 0,

where

4 f = ρ2 ∂2 f
∂ρ2 − (m − 2)ρ

∂ f
∂ρ

− 2(m − 1)
ρ3

1 − ρ2

∂ f
∂ρ

+
4ρ2

(1 − ρ2)2 40 f.

Therefore, the equation has the form F(ρ, u, ρ∂u, ρ2∂2u) = 0, or, for simplicity,
F[u] = 0.

Lemma 6.5. For any small ε > 0, we have u0 − u ∈ Cm−1−ε
∞,∞ .

Proof. Set v = u − u0 and consider

G[v] = F[u0 + v] − F[u0] − F ′
[u0]v.

To see the meaning of this, set φ(t)= F[u0+tv] and consider the Taylor expansion

φ(1) − φ(0) − φ′(0) =

∫ 1

0

∫ t

0
φ′′(s)dsdt.

Hence,

φ′(0) = F ′
[u0]v

= 4v + 2A(u0)
( ∂v

∂xi
,
∂u0

∂x j

)
gi j

+ D A(u0)
(∂u0

∂xi
,
∂u0

∂x j

)
gi jv.

Assume F = F(ρ, z, p, w), where p and w abbreviate pi and wi j . The partial
derivatives below should be understood as a sum of many terms. Therefore

φ′′(s) = ∂2
z Fv2

+ ∂2
p F(ρ∂v)2

+ ∂2
w F(ρ2∂2v)2

+ ∂2
zp Fv(ρ∂v) + ∂2

zw Fv(ρ2∂2v) + ∂2
wp F(ρ∂v)(ρ2∂2v).

All partial derivatives of F are bounded. Since v ∈ Cβ
∞, so is ρ∂v and ρ2∂2v.

Hence G[v] =
∫ 1

0

∫ t
0 φ′′(s)dsdt ∈ C2β

∞ .
u is a solution; so F[u0 + v] = 0, and u0 is an approximate solution, that is,

F[u0] ∈ C∞
∞,∞. Therefore F ′

[u0]v ∈ C2β
∞ . The linearized operator has the structure

F ′
[u0]v = 4v + ρB1(ρ∂v) + ρ2 B2v,
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where B1 and B2 are polyhomogeneous coefficients.
We have shown (see Lemma 5.5) that polyhomogeneous functions lie in C0

∞
,

that is, all derivatives measured in a geodesic unit ball are bounded. So

ρB1(ρ∂v) + ρ2 B2v ∈ C1+β
∞

.

Hence 4v ∈ Cmin(2β,1+β)
∞ .

According to [Lee 2006], (0, m − 1) is a regularity interval of the Laplacian
operator as defined in [Andersson and Chruściel 1996]. Precisely, if min(2β, 1 +

β) ∈ (0, m − 1), then

v ∈ Cmin(2β,1+β)
∞

.

Set β = min(2β, 1 + β), and repeat the argument until β > 1. Now assume 1 <

β < m − 1, and use the embedding

v ∈ Cβ
∞

⊂ Cβ−1
∞,1 .

Set β = β − 1, and repeat the above argument to get

F ′
[u0]v ∈ C2β

∞,1.

Now we claim that v ∈ C2β

∞,1. In fact, this is a direct consequence of [Andersson
and Chruściel 1996, Theorem 4.1.3]. In that theorem, they discuss L ∈ OPC0

k+λ,l+µ
.

Recall the definition of OPC0
k+λ,l+µ

: if

L =

∑
|α|≤2

aα(y)(ρ∂)α,

then L is said to be in class OPC0
k+λ,l+µ

if aα ∈ C0
k+λ,l+µ. It’s easy to see 4 is in

class OPC0
∞,∞

.
We can repeat the above argument to prove the lemma. �

Remark 6.6. In fact, the argument above will not work for m = 2. In this case,
min(2β, β + 1) cannot be larger than 1 because m − 1 = 1. The proof needs a
modification involving an interpolation inequality. See [Andersson and Chruściel
1996, Lemma 5.1.3].

The above process stops at v ∈ Cm−1−ε
∞,∞ . We can’t expect better results because

we have used arbitrary Neumann data for constructing u0. Now we take a closer
look at the structure of Laplacian operator

4v = ρ2 ∂2v

∂ρ2 − (m − 2)ρ
∂v

∂ρ
− 2(m − 1)

ρ3

1 − ρ2

∂v

∂ρ
+

4ρ2

(1 − ρ2)2 40v.
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Since v ∈ Cm−1−ε
∞,∞ , we know

ρ2 ∂2v

∂ρ2 − (m − 2)ρ
∂v

∂ρ
∈ Cm−ε

∞,∞.

This is a Fuchsian-type ordinary differential operator, with indicial roots

µ− = 0 and µ+ = m − 1.

Set

η = ρ2 ∂2v

∂ρ2 − (m − 2)ρ
∂v

∂ρ
.

Then we have an explicit formula for v:

v = Aρµ− + Bρµ+ + G0(η),

with

G0(η) =
1

µ+ − µ−

{
ρµ+

∫ ρ

0
s−1−µ+η(s)ds − ρµ−

∫ ρ

0
s−1−µ−η(s)ds

}
.

See [Andersson and Chruściel 1996, (4.2.8)]. (This formula for G0(η) is true
because η = O(ρα) with α > µ+.)

Now, since we know v ∈ Cm−1−ε
∞,∞ , A = 0. B is a function of θ . In other words,

v(θ, ρ) = B(θ)ρm−1
+ G0(η).

Taking any ρ small but nonzero, we find B is smooth.
This property of G0 is studied carefully in [Andersson and Chruściel 1996,

Proposition 3.4.3]. From (3.4.25) in the same reference, we know that G(η) ∈

Cm−ε
∞,∞.
From here we take a slightly different approach from Andersson and Chruściel.

We reconstruct the approximate solution, since we now have better knowledge of
the Neumann data. The construction is the same as in Section 4, the only difference
is that we can do the formal calculation globally. The reason is that u is now a map
from M to RK , that is, a vector-valued function. We use the prescribed boundary
data as the coefficient of ρ0 and use the ρm−1 coefficient of u plus B(θ) as the
Neumann data. Denote bu u1 the new approximate solution. Note that the image
of u1 may not lie on N . However, we will see that this is not a problem for the
proof below. The construction process gives

u1 = u0 + B(θ)ρm−1
+

∞∑
i=m

i∑
j=0

bi jρ
i (log ρ) j .
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Setting v1 = u − u1, we have

v1 = v − B(θ)ρm−1
−

∞∑
i=m

i∑
j=0

bi jρ
i (log ρ) j

= G0(η) −

∞∑
i=m

i∑
j=0

bi jρ
i (log ρ) j

∈ Cm−ε
∞,∞.

As before,

F[u1 + v1] − F[u1] − F ′
[u1]v1 = G[u1]v1 and G[u1]v1 ∈ C2(m−ε)

∞,∞ .

Since F[u1+v1]=0 and F[u1]∈C∞
∞,∞, we have F ′

[u1]v1 ∈C2(m−ε)
∞,∞ . The structure

of F ′
[u1] is the same as F ′

[u0] and u1 is polyhomogeneous as is u0. Hence

4v1 ∈ Cm+1−ε
∞,∞ .

m + 1 − ε is not in the regularity interval of 4, so we write the Laplacian to see

ρ2 ∂2v1

∂ρ2 − (m − 2)ρ
∂v1

∂ρ
∈ Cm+1−ε

∞,∞ .

Letting η1 = ρ2∂2v1/∂ρ
2
− (m − 2)ρ∂v1/∂ρ, v1 can be given explicitly by v1 =

A+Bρm−1
+G0(η1). Since we have v1 ∈Cm−ε

∞,∞, both A and B are zero. [Andersson
and Chruściel 1996, Proposition 3.4.3] says v1 ∈ Cm+1−ε

∞,∞ . Repeating the above
argument, we can show u − u1 = v1 ∈ C∞

∞,∞.

This finishes Theorem 1.1, since u is polyhomogenous and has the same expan-
sion coefficients as u1. The “moreover” part of the theorem follows from a formal
calculation. �
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