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This paper provides p-adic generalizations of some volume results from lat-
tice convex geometry using the principal value integrals of Langlands and
Shelstad. We prove a volume formula in the case of rational cones and
conjecture that it extends to rational polyhedra.

1. Introduction

Pick’s theorem [1899] expresses the area of a plane polygon P having lattice points
for vertices in terms of the numbers of lattice points contained in it and its bound-
ary:

area = #(P ∩ Z2) −
#(∂ P ∩ Z2)

2
− 1.

Given such a polygon, the two polynomials∑
(i, j)∈P∩Z2

x i y j and
∑

(i, j)∈∂ P∩Z2

x i y j

hold all the information necessary to calculate the area of P , for we can evaluate
the polynomials at x = y = 1 to recover the number of lattice points.

If instead of a polygon we have an unbounded rational polyhedron K ⊆ Rn , we
can form the generating function ∑

(m1,...,mn)∈K∩Zn

xm1
1 · · · xmn

n

and ask what information it contains. In this case, the series diverges when the
xi are each replaced by 1, which tells us that there are infinitely many lattice
points in this polyhedron. However, such a series converges on a nonempty open
subset of Cn to a rational function, which we denote f (K ; x1, . . . , xn) for our K
(see [Barvinok 2002]).

In each of the p-adic spaces Qn
p, there is an analogue K p of our polyhedron

K ⊆ Rn (see Section 2.1). Our main result, Theorem 4, asserts that the rational
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function f (K ; x1, . . . , xn) holds information about a generalized volume (using
the principal value integrals of Landlands and Shelstad) of all but finitely many of
the K p ⊆ Qn

p. More precisely, we prove that if K is a rational cone, then

P. V. vol(K p) =

( p − 1
p

)n
f (K ; p−1, . . . , p−1)

for all but finitely many primes p.
If the region of convergence for

∑
(m1,...,mn)∈K∩Zn xm1

1 · · · xmn
n happens to con-

tain (p−1, . . . , p−1), then the associated p-adic rational polyhedron has finite vol-
ume, and this volume can be found by evaluating the associated rational function
f (K ; x1, . . . , xn) at (p−1, . . . , p−1), according to the formula above. More im-
portantly, if the series diverges at (p−1, . . . , p−1), then the ordinary volume of the
p-adic rational polyhedron does not exist (that is, it is infinite), but the principal
value volume (usually) does. We prove that ((p − 1)/p)n f (K ; p−1, . . . , p−1)

is the principal value volume of the p-adic rational cone if the rational function
f (K ; x1, . . . , xn) is defined at (p−1, . . . , p−1).

We outline the path that we take to the main theorem. We first prove that if a full-
dimensional simple rational cone is the conic hull of vectors having “determinant
1”, then the principal value volume of the corresponding p-adic simple rational
cone is given by evaluating the rational function at (p−1, . . . , p−1) for any prime.
We then extend this result to the case when the determinant is any integer, and the
formula is then true for all but finitely many primes. Having done this, we treat
the case when the simple rational cone is not full-dimensional. A triangulation
argument and the principle of inclusion/exclusion then establishes the formula for
all rational cones.

If a rational polyhedron is a translate of a rational cone, then the rational func-
tion still gives the principal value volume of the corresponding p-adic rational
polyhedron, but the result is unknown in other cases. The difficulty seems to lie
in expressing the p-adic rational polyhedron in terms of the p-adic absolute value.
We conjecture that the principal value volume of any p-adic rational polyhedra is
given by the rational function.

Langlands and Shelstad [1984] proved that the principal value volume of Pn(Qp)

is 0. Provided that the above conjecture is true, another vanishing result holds for
p-adic rational polyhedra containing straight lines.

Proposition 1. If the conjecture is true then: Provided that a p-adic rational
polyhedron contains a straight line whose direction vector is not perpendicular to
(1, . . . , 1), its principal value volume, when it exists, is zero.

Other theorems from convex geometry will have analogues in the p-adic setting.
Brion’s theorem is one such example; to state it, we first need a definition.
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Definition 1. If P is a rational polyhedron in Rn and v ∈ P , then the support cone
of P at v, denoted cone(P, v) is the set{

x ∈ Rn
: εx + (1 − ε)v ∈ P for some 0 < ε < 1

}
.

Brion’s theorem. If P is a rational polyhedron in Rn , then

f (P; x) =

∑
v a vertex of P

f (cone(P, v); x).

If the conjecture is true, then Brion’s theorem holds for p-adic rational polyhedra
as well (Section 8.1).

p-adic Brion. If the rational polyhedron conjecture is true, then: The principal
value volume of a p-adic rational polyhedron is the sum of the principal value
volumes of its p-adic support cones, provided the principal value volumes all exist.

2. Real and p-adic rational polyhedra

We begin by recalling several definitions from convex geometry. A good reference
for convexity in general is [Barvinok 2002].

Definition 2. A rational polyhedron P in Rn is a subset of the form

P =
{
v ∈ Rn

: 〈v, ai 〉 ≤ αi , for all i = 1, . . . , k
}
,

where k ∈ N, ai ∈ Zn , and αi ∈ Z.

Some special rational polyhedra are rational cones and simple rational cones:

Definition 3. A rational cone is a rational polyhedron where each αi is 0.

Definition 4. If u1, . . . , uk ∈ Zn are linearly independent, then their conic hull
co(u1, . . . , uk) is the set

co(u1, . . . , uk) =

{
x ∈ Rn

: x =

k∑
i=1

λi ui , λi ≥ 0, i = 1, . . . k
}
.

A simple rational cone is the conic hull of vectors ui as above.

2.1. The p-adic analogues. Let p be a prime number. We denote by “ord” the
usual valuation map from Qp to Z that sends ai pi

+ ai+1 pi+1
+ · · · (with ai 6= 0)

to i . (Here i could be positive or negative.) If n ∈ N, we use the same notation for
the map Qn

p → Zn obtained by applying ord component by component:

ord(x1, . . . , xn) = (ord(x1), . . . , ord(xn)) ∈ Zn.
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Definition 5. We call a subset of Qn
p a p-adic rational polyhedron if it is of the

form ord−1(P) for some rational polyhedron P in Rn . Similarly, we define p-adic
rational cones and p-adic simple rational cones to be the inverse images of the
corresponding real rational cones or simple rational cones under the ord map.

We take the additive Haar measure on Qp, normalized so that the measure of
Zp is 1, and use the product measure on Qn

p. Then the measure of the set

{(x1, . . . , xn) ∈ Qn
p : ord(x1) = m1, . . . , ord(xn) = mn}

is ( p − 1
p

)n
p−m1 · · · p−mn =

( p − 1
p

)n
xm1

1 · · · xmn

∣∣∣∣
(p−1,...,p−1)

.

2.2. The valuation on rational polyhedra. For any subset S of Rn , let [S] denote
the characteristic function of S. Let

P(Qn) = spanR {[P] : P is a rational polyhedron in Rn} .

This is a vector space over R. A linear transformation F : P(Qn) → W (with W
some real vector space) is called a valuation on P(Qn).

Lawrence [1991] (see also [Barvinok 2002]) showed there is a valuation F from
P(Qn) to the space of rational functions in n complex variables x1, . . . , xn with
the properties:

(i) If P does not contain any straight lines and if there is an open subset U of Cn

such that
∑

v∈P∩Zn xv converges absolutely for each x ∈ U , then F[P] agrees
with the function x 7→

∑
v∈P∩Zn xv on U . Call this function f (P; x).

(ii) If m + P is the translate of P by m ∈ Zn , then F[m + P] = xmF[P].

(iii) F[P] ≡ 0 if P contains a straight line.

For an interesting article about valuations on rational polyhedra, see [Barvinok
and Pommersheim 1999].

3. Principal value volumes

The following appears in [Langlands and Shelstad 1984]. We include it here for
completeness and adapt the definitions to the p-adic setting. Since we are not
working in projective space, we use dx1 ∧ · · · ∧ dxn rather than their x−1

1 dx1 ∧

· · · ∧ x−1
n dxn .

First we define the principal value integral over a box. Let x1, . . . , xn be the
usual coordinates on Qn

p. Let

N = N (m1, . . . , mn) =
{
(x1, . . . , xn) ∈ Qn

p :
∣∣x j

∣∣ ≤ q−m j , 1 ≤ j ≤ n
}
.



PRINCIPAL VALUE VOLUMES OF P-ADIC RATIONAL POLYHEDRA 75

For rational numbers c1, . . . , cn consider the multivalued form

ν(c1,...,cn) =

( n∏
j=1

xc j
j

)
dx1 ∧ · · · ∧ dxn.

Let θ1, . . . , θn be quasicharacters on Q×
p . For each j we can write θ j = ϑ j |·|

t j for
some real number t j , where ϑ j is unitary (that is, maps into S1). (See [Weil 1973,
VII §3] for more details.) In this paper, all quasicharacters will be unramified,
meaning that they are trivial on the group of units Z×

p . (Otherwise the integral to
be defined is zero for trivial reasons.) Assume that c j + t j 6= 1 whenever ϑ j ≡ 1.
Define

h(θ1,...,θn)(x1, . . . , xn) =

n∏
j=1

θ j (x j ).

Then we define

P. V.

∫
N

h(θ1,...,θn)

∣∣ν(c1,...,cn)

∣∣ =

( p − 1
p

)n n∏
j=1

(ϑ j (p)p−(t j +c j +1))m j

1 − ϑ j (p)p−(t j +c j +1)
.

The definition comes about by picking s1, . . . , sn ∈ C with Re s j � 0 and consid-
ering the ordinary integral∫

N

n∏
j=1

∣∣x j
∣∣s j h(θ1,...,θn)

∣∣ν(c1,...,cn)

∣∣ .
It follows from the assumptions on the t j and c j that the analytic continuation of
the function defined by this integral is analytic at s1 = · · · = sn = 0; the principal
value integral is by definition the value at s1 = · · · = sn = 0.

Next we turn to the definition of the principal value integral over a manifold. Let
X be an Qn

p-manifold, ν be an n-form on X , and h be a complex-valued function
on X with compact support. Assume that the support of h can be written as a
disjoint union of open sets Ũ satisfying:

(i) There are local coordinates x1, . . . , xn on X for which Ũ is given by {p ∈

X :
∣∣x j (p)

∣∣ ≤ p−m j , 1 ≤ j ≤ n} for some m j ∈ Z.

(ii) On Ũ , the form ν can be written as αν(c1,...,cn) with |α| constant, and h can be
written as γ h(θ1,...,θn) with γ constant, where c1, . . . , cn and θ1, . . . , θn satisfy
the requirements mentioned above.

Then we define the manifold principal value integral by

M. P. V.

∫
X

h |ν| =

∑
Ũ

γ |α| P. V.

∫
N (m1,...,mn)

h(θ1,...,θn)

∣∣ν(c1,...,cn)

∣∣ .
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The “M” reminds us that this is a principal value integral over a manifold. Each
integral in the sum on the right hand side has been defined above.

In the special case in which θ j = |·|
t j for each j and all c j = 0, we have

P. V.

∫
N (m1,...,mn)

|x1|
t1 · · · |xn|

tn |dx1 ∧ · · · ∧ dxn| =

( p − 1
p

)n n∏
j=1

p−(t j +1)m j

1 − p−(t j +1)
,

as long as no t j = −1. Note that the integral is still defined even when a t j is
negative; in this case the integral is still regarded as an integral over the whole box.

Definition 6. The principal value volume of a p-adic rational polyhedron X is
defined by

M. P. V.

∫
X

|dx1 ∧ · · · ∧ dxn| ,

where x1, . . . , xn are the standard coordinates on Qn
p. While evaluating the integral,

we include all hyperplanes of the form X j = 0 that the coordinate change may
forbid, as long as the corresponding box principal value integral does not have
any t j = −1 in its integrand. We denote the principal value volume of X by
P. V. vol(X).

We next illustrate the definitions.

Example 1. Let X = {(a1, a2) ∈ Q2
p : |a1a−1

2 | ≤ 1, |a2| ≤ 1}. Then X is a Qp-
manifold, because it is an open subset of Q2

p. Define local coordinates X1, X2 on
Ũ = X by X1(a1, a2) = a1a−1

2 , X2(a1, a2) = a2. Then

Ũ = {(a1, a2) ∈ X : |X1(a1, a2)| ≤ 1, |X2(a1, a2)| ≤ 1, a2 6= 0} .

Denote the standard coordinates on Q2
p by x1, x2. It is easy to verify that the

relations inverse to X1 = x1x−1
2 , X2 = x2 are given by x1 = X1 X2, x2 = X2. If

ν = ν(0,0) = dx1 ∧ dx2 in the standard coordinates, then on Ũ , ν is given by
X2d X1 ∧ d X2. By our definition, we have the principal value volume of X is

P. V.

∫
N (0,0)

|X2| |d X1 ∧ d X2| ,

which by definition is equal to( p − 1
p

)2 1
1 − p−1

1
1 − p−2 .

We have X = ord−1(co((1, 0), (1, 1))), and the rational function belonging to
co((1, 0), (1, 1)) is

f (co((1, 0), (1, 1)); x, y) =
1

1 − x
1

1 − xy
.
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Hence the principal value integral above agrees with( p − 1
p

)2
f (co((1, 0), (1, 1)); x, y)

∣∣
(p−1,p−1)

,

as guaranteed by Theorem 1.

Example 2. Let X = {a ∈ Qp : |a| > 1}. Then X is a Qp -manifold. If x is the
standard coordinate on Qp, then X can be described by |u| < p−1, where u = x−1.
Thus dx = −u−2du on X . In this case, P. V.

∫
X |dx | is well defined; we have

M. P. V.

∫
X

|dx | = P. V.

∫
N (1)

|u|
−2

|du| =
p − 1

p
p

1 − p
= − 1.

The subset X is ord−1((−∞, −1]). The series corresponding to X is
∑

i<0 zi ,
which converges for all complex z with modulus greater than 1. The series diverges
for z = p−1, but on the open set on which it does converge, it converges to the
rational function f ((−∞, −1]; z) = 1/(z − 1). Thus

p − 1
p

f ((−∞, −1]; z)|p−1 =
p − 1

p
1

p−1 − 1
= − 1,

in agreement with the principal value volume of X .

4. Unimodular simple rational cones

If K = co(a1, . . . , ak) is a simple rational cone in Rn , then the subset

5 =

{
x ∈ Rn

: x =

k∑
i=1

λi ai , 0 ≤ λi < 1
}

of K is called the fundamental parallelepiped of K . The rational function associ-
ated to K is (see [Barvinok 2002, page 327])

f (K ; z) =

∑
u∈5

zu
k∏

i=1

1
1 − zai

.

When 5∩Zn
={0}, we say that K is unimodular. If the vectors defining K form

a basis for Rn , then K is unimodular if and only if det(a1 · · · an) = ±1. We say
that a p-adic simple rational cone is unimodular if and only if the corresponding
real simple rational cone is unimodular.

Theorem 1. The principal value volume of an n-dimensional p-adic unimodu-
lar simple rational cone in Qn

p is the same as ((p − 1)/p)n times the value of
the corresponding rational function at (p−1, . . . , p−1). Moreover, the principal
value volume fails to exist precisely when (p−1, . . . , p−1) is a pole of the rational
function.
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Proof. Let K = co(a1, . . . , an) ⊆ Rn, where a j is a vector with integer entries
for each j . Call the i-th entry of a j ai j . The unimodularity hypothesis means that
det(A)=1 where A is the matrix whose j th column is a j (possibly after reordering
the vectors to change the determinant from −1 to 1). The rational function associ-
ated to K is

∏n
j=1(1−za1 j

1 · · · zanj
n )−1. Let U = ord−1(K ) denote the corresponding

p-adic unimodular simple rational cone in Qn
p. We must describe U in terms of

the p-adic absolute value. We will show later that

U =
{
(x1, . . . , xn) ∈ Qn

p : |x A1 j
1 . . . x Anj

n | ≤ 1, 1 ≤ j ≤ n
}
,

where Ai j = (−1)i+ j det(A | i, j) is the i, j cofactor of A. Define local coordinates
on U by setting

X j =

n∏
i=1

x Ai j
i , j = 1, . . . , n.

Assume that the inverse relations are given by

xi =

n∏
j=1

X p j i
j , i = 1, . . . , n,

where the p j i are integers to be specified. Substituting the latter expression into
the former, we find that

X j =

n∏
i=1

x Ai j
i =

n∏
i=1

( n∏
k=1

X pki
k

)Ai j
=

n∏
i=1

( n∏
k=1

X pki Ai j
k

)
=

n∏
k=1

( n∏
i=1

X pki Ai j
k

)
=

n∏
k=1

X
∑n

i=1 pki Ai j
k .

Comparing exponents on both sides, we see that

n∑
i=1

pki Ai j =

{
1 if k = j
0 if k 6= j .

Recall that Ai j = (A−1) j i , and notice that therefore P(A−1)T
= I and so P = AT .

Hence

xi =

n∏
j=1

X p j i
j =

n∏
j=1

Xai j
j .

The product rule gives

dxi =

n∑
j=1

ai j

∏n
k=1 Xaik

k

X j
d X j .
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Now we calculate dx1 ∧ · · · ∧ dxn in the coordinates X j :

dx1 ∧ · · · ∧ dxn =

( n∑
j1=1

a1 j1

∏n
k=1 Xa1k

k

X j1
d X j1

)
∧ · · · ∧

( n∑
jn=1

anjn

∏n
jn=1 Xank

k

X jn
d X jn

)

=

∑
j∈Sn

( n∏
i=1

ai ji

∏n
k=1 Xaik

k

X ji

)
d X j1 ∧ · · · ∧ d X jn

=

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

∏n
k=1 Xaik

k

X ji

)
d X1 ∧ · · · ∧ d Xn

=

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

)( n∏
i=1

∏n
k=1 Xaik

k

X ji

)
d X1 ∧ · · · ∧ d Xn

=

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

)(∏n
i=1

(∏n
k=1 Xaik

k

)∏n
i=1 X ji

)
d X1 ∧ · · · ∧ d Xn

=

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

)(∏n
k=1

(∏n
i=1 Xaik

k

)∏n
i=1 X ji

)
d X1 ∧ · · · ∧ d Xn

=

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

∏n
k=1 X

∑n
i=1 aik

k∏n
i=1 X ji

)
d X1 ∧ · · · ∧ d Xn.

Since ji ranges over 1, . . . , n as i ranges over 1, . . . , n, we can reindex the
product in the denominator with k to get

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

∏n
k=1 X

∑n
l=1 alk

k∏n
i=1 X i j

)
=

∑
j∈Sn

sgn( j)
( n∏

i=1

ai ji

∏n
k=1 X

∑n
l=1 alk

k∏n
k=1 Xk

)

=

(∑
j∈Sn

sgn( j)
n∏

i=1

ai ji

) n∏
k=1

X(
∑n

l=1 alk)−1
k

= det(A)

n∏
k=1

X(
∑n

l=1 alk)−1
k .

So we have

dx1 ∧ · · · ∧ dxn =

n∏
k=1

X(
∑n

l=1 alk)−1
k d X1 ∧ · · · ∧ d Xn
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on U , because det(A) = 1. If none of the quantities
∑n

i=1 aik is 0, then by the
definition of the principal value volume, we have

P. V. vol(U ) = P. V.

∫
N (0,...,0)

n∏
k=1

|Xk |
(
∑n

i=1 aik)−1
|d X1 ∧ · · · ∧ d Xn|

=

( p − 1
p

)n n∏
k=1

1

1 − p−
∑n

i=1 aik
,

which is the same as( p − 1
p

)n n∏
k=1

1
1 − za1k

1 · · · zank
n

∣∣∣∣
(p−1,...,p−1)

,

as was to be shown. It is now clear that the principal value volume exists if and
only if (p−1, . . . , p−1) is not a pole of the rational function.

The only loose end to tie up is describing U in terms of the p-adic absolute value.
Suppose that we have column vectors a1, . . . , an ∈Zn satisfying det(a1 · · · an)>0,

(which is a strong enough requirement for us). Then, for a given x ∈ Rn , we have

x ∈ co(a1, . . . , an) iff det(a1 · · · x · · · an) ≥ 0, for all i, 1 ≤ i ≤ n.

(The i-th column of (a1 · · · an) is replaced by x in the above.) Indeed, if x ∈

co(a1, . . . , an), then x =
∑n

i=1 λi ai for some nonnegative λi . By subtracting λ j

times column j from column i of (a1 · · · x · · · an) for each j 6= i we find

det(a1 · · · x · · · an) = det(a1 · · · λi ai · · · an) = λi det(a1 · · · ai · · · an).

Since det(a1, . . . , an) > 0 and λi ≥ 0, we have det(a1 · · · x · · · an) ≥ 0. Con-
versely, assume that det(a1 · · · x · · · an) ≥ 0 for each i . We must show that x ∈

co(a1, . . . , an). The ai form a basis, so x =
∑n

i=1 λi ai for some λi ∈ R. Substitut-
ing x into the determinant and proceeding as before, we have λi det(a1 · · · an) ≥ 0.
Since det(a1 · · · an) > 0, we have λi ≥ 0 as claimed. �

5. Simple rational cones of any determinant

What if the determinant is not 1? This is an important question, because the vectors
chosen to represent a simple rational cone are not unique. If one of the vectors is
replaced with a nonnegative integer scalar multiple of itself, then the determinant
will scale with this multiple even though the cone remains unchanged. Also, if
we are given a simple rational cone with k < n vectors, our description of the
simple rational cone is obtained by adding n − k integer vectors to the ones we
have to obtain an ordered basis (with positive determinant, by switching the or-
der of two vectors if necessary). The simple rational cone is then described by
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det(u1 · · · x · · · un) R 0, where x is in the i-th spot and “R” is “≥” for 1 ≤ i ≤ k
and “R” is “=” for k < i ≤ n. We need to know that principal value volume is
independent of the choice of vectors.

Example 3. In the one-dimensional case we identify a 1 × 1 matrix with its entry.
Consider co(m) ⊆ R, where m is a natural number greater than 1. This is just the
simple rational cone [0, ∞), but we have represented it in a different way. With
this representation, the associated p-adic simple rational cone U = Zp is described
by |xm

| ≤ 1.
We can write co(m) ∩ Z as

⋃m−1
i=0 (i + mZ≥0). From this,

ord−1(co(m)) =

m−1⋃
i=0

Ui , where Ui = ord−1(i + mZ≥0) for 0 ≤ i ≤ m − 1.

The sets in this union are disjoint and open, and so, provided that we can cal-
culate the principal value volume of each, we can add them to find the principal
value volume of ord−1(co(m)). We begin with U0 = ord−1(mZ≥0).

For each j ∈ {1, . . . , m}, define an unramified character of Q×
p by sending p to

ζ j , where ζ1, . . . , ζm are the m-th roots of 1 in C; call these characters ϑ1, . . . , ϑm .
We claim that 1

m

∑m
j=1 ϑ j is the characteristic function of

U0 = {x ∈ Q×

p : m | ord(x)}.

Indeed, if ζ is a primitive m-th root of unity and 1 ≤ r ≤ m−1, then
∑m−1

j=0 ζ jr
=

0, as we now show. When gcd(m, r) = 1, the result follows because we are just
reordering the terms in the sum. Suppose that r divides m nontrivially. Then under
the r -th power map, the m-th roots of unity are mapped to the (m/r)-th roots of
unity and the map is r -to-one. Thus the above sum is r times the sum of (m/r)-th
roots of unity and hence zero. The general case reduces to an application of each
of the above cases.

If m does not divide ord(x), then x = pmk+r u for some u ∈ Z×
p and some k, r ∈ Z

with 0 < r ≤ m − 1. Thus

1
m

m∑
j=1

ϑ j (x) =
1
m

m∑
j=1

ϑ j (pmk+r u) =
1
m

m∑
j=1

ζ r
j = 0.

It is clear that if x ∈ U0, then
∑m

j=1 ϑ j (x) = 1. So we have a useful expression
for the characteristic function of U0. In light of the definition of the principal value
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integral, we can integrate the sum of these characters term by term. Hence we have

P. V. vol(U0) = M. P. V.

∫
U0

|dx | = P. V.

∫
N (0)

1
m

m∑
i=1

ϑi (x)|dx |

=
1
m

m∑
i=1

∫
N (0)

ϑi (x)|dx | =
1
m

m∑
i=1

p − 1
p

1
1 − ϑi (p)p−1

=
1
m

p − 1
p

m∑
i=1

1
1 − ζi p−1 .

Putting these terms over a common denominator, the above sum becomes

1
m

p − 1
p

m∑
i=1

∏
j 6=i (1 − ζ j p−1)∏m
j=1(1 − ζ j p−1)

=
1
m

p − 1
p

∑m
i=1

∏
j 6=i (1 − ζ j p−1)∏m

j=1(1 − ζ j p−1)
.

To calculate the numerator, note that the polynomial f (X) =
∑m

i=1
∏

j 6=i (1−ζ j X)

has degree m − 1 and f (ζ−1
j ) = m for 1 ≤ j ≤ m. Thus f (X) is constant, and the

numerator is m. The denominator is 1 − p−m . So we have

P. V. vol(U0) =
1
m

p − 1
p

m
1 − p−m =

p − 1
p

1
1 − p−m .

We now consider Ui , where 1 ≤ i ≤ m − 1. The image of U0 under the map
Q×

p → Q×
p given by multiplication by p−i is Ui . Define a local coordinate on Ui

by X = p−i x . We have

P. V. vol(Ui ) = M. P. V.

∫
Ui

|dx | = M. P. V.

∫
U0

p−i
|d X |

= p−i M. P. V.

∫
U0

|d X | = p−i P. V. vol(U0) = p−i p − 1
p

1
1 − p−m .

Summing over 0 ≤ i ≤ m − 1 gives

P. V. vol(ord−1(co(m))) =

m−1∑
i=0

P. V. vol(Ui ) =
p − 1

p

m−1∑
i=0

p−i 1
1 − p−m

=
p − 1

p
1

1 − p−1 = 1,

which is indeed the principal value volume of Zp.

Example 4. Let

K = co
((

a
c

)
,

(
b
d

))
⊆ R2,
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where

det
(

a b
c d

)
= m.

(Here a, b, c, and d are integers.) Call the above matrix A. We know that K ∩Z2
=⋃

v∈5∩Z2(v + AZ2
≥0). So

ord−1(K ) =

⋃
v∈5∩Z2

Uv, where Uv = ord−1(v + AZ2
≥0).

Recall that ord−1(K ) = {(x, y) ∈ Q2
p : |xd y−b

| ≤ 1, |x−c ya
| ≤ 1}, and a p-adic

number has absolute value ≤ 1 if and only if its order is nonnegative.
We show that

U0 = {(x, y) ∈ Q2
p : ord(xd y−b) ≥ 0, ord(x−c ya) ≥ 0;

m divides ord(xd y−b), ord(x−c ya)}.

Indeed, assume that ord(xd y−b) ≥ 0, ord(x−c ya) ≥ 0, and both of these numbers
are divisible by m. Then if we set l =

1
m ord(xd y−b) and k =

1
m ord(x−c ya), then

l and k are in Z≥0, and (
ord(x)

ord(y)

)
= l

(
a
c

)
+ k

(
b
d

)
,

so (x, y) is in U0 = AZ2
≥0. Conversely, if (x, y) is in U0, then(

ord(x)

ord(y)

)
=

(
a b
c d

) (
l ′

k ′

)
for some

(
l ′

k ′

)
∈ Z2

≥0,

which implies that
1
m

(
d −b

−c a

) (
ord(x)

ord(y)

)
∈ Z2

≥0.

So ord(xd y−b) ≥ 0, ord(x−c ya) ≥ 0, and both are divisible by m.
We compute the principal value volumes of each of the sets in this union and

add the results. We consider U0 = ord−1(AZ2
≥0) first. By definition,

P. V. vol(U0) = M. P. V.

∫
U0

|dx ∧ dy|.

Set X = xd y−b and Y = x−c ya . Then U0 is described by |X | ≤ 1, |Y | ≤ 1, and m
divides the orders of both X and Y . At least formally, we have

dx ∧ dy =
1

m2 X
a+c

m −1Y
b+d

m −1d X ∧ dY.
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Once this is justified, we are done, because we would then have

M. P. V.

∫
U0

|dx ∧ dy|

=

∣∣∣ 1
m

∣∣∣2
P. V.

∫
N (0,0)

1
m

m∑
i=1

ϑi (X)
1
m

m∑
j=1

ϑ j (Y )|X |
a+c

m −1
|Y |

b+d
m −1

|d X ∧ dY |

=

∣∣∣ 1
m

∣∣∣2 1
m2

m∑
i, j=1

P. V.

∫
N (0,0)

ϑi (X)ϑ j (Y )|X |
a+c

m −1
|Y |

b+d
m −1

|d X ∧ dY |

=

∣∣∣ 1
m

∣∣∣2 1
m2

( p − 1
p

)2 m∑
i, j=1

1

1 − ϑi (p)p−
a+c

m

1

1 − ϑ j (p)p−
b+d

m

=

∣∣∣ 1
m

∣∣∣2 1
m2

( p − 1
p

)2 m∑
i=1

1

1 − ϑi (p)p−
a+c

m

m∑
j=1

1

1 − ϑ j (p)p−
b+d

m

=

∣∣∣ 1
m

∣∣∣2( p − 1
p

)2 1
1 − p−(a+c)

1
1 − p−(b+d)

,

and the principal value volumes of the other Uv are each scaled by p−v, where v

is the sum of the components of v. Note that although we are stuck with the factor
|1/m|

2, this quantity is 1 for all large enough primes p.
The map (x, y) 7→ (xd y−b, x−c ya) sends {(X, Y ) ∈ Z2

p : m | ord(X), ord(Y )}

onto U0. It is not invertible because it is not 1 : 1, so this is not a change of
coordinates. The following argument (suggested by Professor Tom Hales) clarifies
the situation and justifies our calculation above.

We would like to integrate over the set U0:

U0 = {(x, y) ∈ Q2
p : |xd y−b

| ≤ 1, |x−c ya
| ≤ 1, m | ord(xd y−b), ord(x−c ya)}.

Let 8 be the map Q×2
p −→ Q×2

p that sends (x, y) to (xd y−b, x−c ya). Then 8 maps
U0 into

Sm := {(X, Y ) ∈ Z2
p : m | ord(X), ord(Y )}.

This map is neither onto nor 1-to-1. Given a point in the image of 8 there will be
points of U0 mapping down to it; we show that the number of such points is equal
to the index of 8(U0) in Sm . This justifies the above because we have the formulas∫

U0
= #points

∫
8(U0)

and
∫

Sm
=

[
Sm : 8(U0)

] ∫
8(U0)

, which when combined give∫
U0

=
#points[

Sm : 8(U0)
] ∫

Sm

=

∫
Sm

.
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Let F̃p denote an algebraic closure of the residue field. The mapping 8 defines a
group endomorphism 8̃ of F̃×2

p which is onto because F̃ is algebraically closed.
Letting K denote the kernel of 8̃, we have an exact sequence

1 −→ K −→ F̃×2
p

8̃
−→ F̃×2

p −→ 1.

The Galois group G = Gal(F̃p/Fp) acts coordinatewise on F̃p
×2

; taking Galois
cohomology yields a long exact sequence

1 −→ H 0(G, K ) −→ H 0(G, F̃×2
p )

8̃
−→ H 0(G, F̃×2

p ) −→ H 1(G, K ) −→ 1,

where we have used Hilbert’s theorem 90 to say H 1(G, F̃×2
p ) = 1. The 0-th coho-

mology groups are the points fixed by the Galois group, so we have

1 −→ K ∩ F×2
p −→ F×2

p
8̃

−→ F×2
p −→ H 1(G, K ) −→ 1.

The alternating product of the orders of the groups is 1, so it follows that

#(K ∩ F×2
p ) = #(H 1(G, K )).

The short exact sequence

1 −→ 8̃(F×2
p ) −→ F×2

p −→ H 1(G, K ) −→ 1

gives #(F×2
p )/#8̃(F×2

p ) = #(H 1(G, K )). Call this quantity κ; this is the num-
ber of points above a point in 8(U0). Passing from the residue field to Qp with
Hensel’s lemma, we have that 8 is κ-to-1 onto its image. We now show the index
of 8(U0) in Sm is κ . The set S0 := {(X, Y ) ∈ Q×2

p : ord(X) = ord(Y ) = 0} is
contained in Sm , so we get a map S0 → Sm/8(U0), which induces an injective
map S0/(S0 ∩ 8(U0)) → Sm/8(U0). The induced map is also surjective. This
bijection completes the proof because Hensel’s lemma identifies F×2

p /8(F×2
p ) and

S0/(S0 ∩ 8(U0)), giving κ = [Sm : 8(U0)].

We now extend our above results to any full-dimensional simple rational cone.

Theorem 2. An n-dimensional p-adic simple rational cone has principal value
volume given by ((p − 1)/p)n times the corresponding rational function evaluated
at (p−1, . . . , p−1), for all but finitely many primes p. (The excluded primes depend
on the simple rational cone.) The principal value integral is undefined exactly when
(p−1, . . . , p−1) is a pole of the rational function.

Proof. Proceeding as in Example 4, we find that our p-adic simple rational cone
is given by the disjoint union⋃

v∈5∩Zn

Uv, where Uv = ord−1(v + AZn
≥0).
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Consider U0 first. By an easy extension of the argument in Example 4, we have
that U0 is

{
(x1, . . . , xn) ∈ Qn

p : ord
( n∏

i=1

x Ai j
i

)
≥ 0 and is divisible by m, 1 ≤ j ≤ n

}
.

Taking X j =
∏n

i=1 x Ai j
i for j = 1, . . . , n and proceeding as before, we find that

xi =

n∏
j=1

Xai j /m
j ,

so the integral under consideration is∣∣∣ 1
m

∣∣∣n
∫

N (0,...,0)

n∑
k1,...,kn=1

n∏
r=1

ϑkr (Xkr )

n∏
k=1

|Xk |
((

∑n
l=1 alk)/m)−1

|dx1 ∧ · · · ∧ Xn| .

This integral can written as a product of integrals and evaluated as in Example 4.
Adding up the volumes of the other ord−1(v + AZn

≥0) gives the result. �

6. Degenerate simple rational cones

So far, all of our p-adic simple rational cones have come from simple rational cones
in Rn generated by n integer vectors. We can now dispense with this requirement
and extend our result to degenerate cones generated by fewer than n integer vectors.

Theorem 3. The principal value volume of any p-adic simple rational cone is given
by evaluating the rational function of the corresponding real simple rational cone
at (p−1, . . . , p−1) and multiplying the result by ((p − 1)/p)n , for all but finitely
many primes p.

Proof. Suppose that our p-adic simple rational cone is given by ord−1(K ), where
K = co(u1, . . . , uk) ⊆ Rn , k < n. (As usual, the ui are integer vectors linearly
independent over R.) Pick integer vectors uk+1, . . . , un so that all of the vectors
together form a linearly independent set. (This is possible because we can certainly
find real vectors to get a basis, and by density we can find rational ones. Scale the
rational ones by their common denominator to get integer vectors.) Letting A
denote the matrix whose columns are made from the vectors ui , we find that our
p-adic simple rational cone is∣∣∣ n∏

i=1

x Ai j
i

∣∣∣ ≤ 1, 1 ≤ j ≤ k,

∣∣∣ n∏
i=1

x Ai j
i

∣∣∣ = 1, k + 1 ≤ j ≤ n.

Setting

N (0, . . . , 0)′ = N (0, . . . , 0) ∩
{
(x1, . . . , xn) ∈ Qn

p : |xi | = 1, i = k + 1, . . . , n
}
,
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we find our integral is∣∣∣ 1
m

∣∣∣n
∫

N (0,...,0)′

n∏
r=1

|Xr |
((

∑n
l=1 alr )/m)−1

|d X1 ∧ · · · ∧ d Xn| .

By [Langlands and Shelstad 1984, Lemma 1.B], this integral is equal to the value
at s1 = · · · = sn = 0 of∣∣∣ 1

m

∣∣∣n
∫

N (0,...,0)′

n∏
r=1

|Xr |
(
∑n

l=1(sl+alr )/m)−1
|d X1 ∧ · · · ∧ d Xn| .

A quick calculation shows that this is equal to∣∣∣∣ 1
m

∣∣∣∣n ( p − 1
p

)n
f (K ; x1, . . . , xn)

∣∣∣
(p−1,...,p−1)

.

Since |1/m| = 1 for all but finitely many primes p, we are done. �

7. Rational cones in general

The case of a p-adic rational cone can be deduced from the corresponding theorem
for p-adic simple rational cones and arguments given in [Barvinok 2002]. Let X
be a p-adic rational cone which does not contain a straight line. Then X is the
inverse image under ord of a rational polyhedron P in Rn which does not contain a
straight line. Then by [Barvinok 2002, Lemma (2.2)], there exists a base of P; that
is, there exist finitely many vectors in Zn such that any vector in P is a nonnegative
real multiple of a vector in the convex hull of these vectors. It is a theorem that
a polytope can be triangulated, so it follows that P can be written as a union of
simple rational cones that intersect along common faces. Call these simple rational
cones S1, . . . , Sk and their inverse images under ord X1, . . . , Xk . We know that
the principal value volume of each X i is ((p − 1)/p)n times the corresponding
rational function evaluated at (p−1, . . . , p−1). The principal value volume of a
disjoint union of open sets is the sum of the principal value volumes of the open
sets, so it follows that

P. V. vol(X) =

k∑
i=1

P. V. vol(X i ) −
∑
i< j

P. V. vol(X i ∩ X j )

+
∑

i< j<l
P. V. vol(X i ∩ X j ∩ Xl) + · · · .

The terms on the right hand side are rational functions of p−1 by Theorem 3. Can-
celling the common ((p − 1)/p)n on both sides gives and replacing all p−1 with
indeterminates yields an identity of formal power series each of which converges
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on some nonempty open subset of Cn to the rational function associated with P .
Thus we have:

Theorem 4. The principal value volume of a p-adic rational cone is ((p − 1)/p)n

times the value of the corresponding rational function evaluated at (p−1, . . . , p−1),
for all but finitely many p.

8. Rational polyhedra

The cases of p-adic simple rational cones and p-adic rational cones suggest:

Conjecture 1. The principal value volume of a p-adic rational polyhedra is given
by the corresponding rational function.

Some rational polyhedra are just translates of rational cones. For such polyhe-
dra, it is easy to see that the conjecture is true using the translation property of
Lawrence’s valuation along with the definition of the principal value integral. For
example, the rational polyhedron in R2 defined by 1 ≤ y ≤ x is the translate of
co((1, 0), (1, 1)) by (1, 1). It has xy(1 − xy)−1(1 − x)−1 for its rational function.
The inverse image of this set under ord is given by the inequalities |xy−1

| ≤ p−1

and |y| ≤ p−1. So the principal value volume is

P. V.

∫
N (1,1)

|Y ||d X ∧ dY | =

( p − 1
p

)2 p−1

1 − p−1

p−1

1 − p−2 ,

the same value the rational function gives. This calculation carried out in general
shows that the above conjecture is true for a rational polyhedron that happens to
be a translate of rational cone by an integer vector.

8.1. Applications. Recall that Lawrence’s valuation on real rational polyhedra sat-
isfies the translation property: F[m + P] = xmF[P]. It follows that F[P] ≡ 0
whenever P contains a straight line because P = m + P for some nonzero integer
vector m if P contains a straight line. We have:

Proposition 1. If Conjecture 1 is true, then: If a p-adic rational polyhedron con-
tains a straight line whose direction vector is not perpendicular to (1, . . . , 1), then
its principal value volume, when it exists, is zero.

Proof. Suppose that X =ord−1(P∩Zn) where P ⊆Rn is a rational polyhedron con-
taining a straight line. Since P =m+P for some integer vector m, we have F[P]=

xmF[P]. Evaluating both sides of f (P; x) = xm f (P; x) at (p−1, . . . , p−1) and
multiplying by the usual factor, we find that P. V. vol(X)= p−

∑n
i=1 mi P. V. vol(X).

As m is not perpendicular to (1, . . . , 1), the principal value volume must vanish. �

We remind the reader of the p-adic analogue of Brion’s theorem.
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p-adic Brion. If Conjecture 1 is true, then: The principal value volume of a p-adic
rational polyhedron is the sum of the principal value volumes of its p-adic support
cones, provided that the principal value volumes all exist.

Proof. Suppose that P is a rational polyhedron in Rn . Evaluate both sides of

F[P] =

∑
v a vertex of P

F[cone(P, v)]

at (p−1, . . . , p−1) and multiply both sides by ((p − 1)/p)n . Assuming that Con-
jecture 1 is true and all of the principal value volumes exist, we obtain

P. V. vol(ord−1(P)) =

∑
v a vertex of P

P. V. vol(ord−1(cone(P, v))). �
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