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The Bergman kernel is written in terms of a Poincaré series for every circu-
lar multiply connected domain in the plane. The proposed exact formula is
based on the Green’s function constructed by Mityushev and S. V. Rogosin
for multiply connected domains. First we verify the relation between the
Green’s function and the Bergman kernel for unbounded domains. Then
we apply it to construct the Bergman kernel.

1. Introduction

The Bergman kernel plays an important role in studies of the boundary behavior of
biholomorphic mappings, and of the potential theory in one complex variable. It is
related to the Green’s function and to other domain functions such as the Neumann
function, harmonic measures, canonical mapping functions, and extremal problems
[Bergman 1950; Bell 1992; Aharonov et al. 2005]. Therefore, explicit expressions
of the Bergman kernels yield profound progress in the theory of functions.

The Bergman kernel represents the Bergman projection, which reproduces all
holomorphic square integrable functions. In the unit disc U in C with area measure
dx ∧ dy = i/2dz ∧ dz̄, the Bergman kernel is given by

(1-1) KU (z, ζ )=
1
π

1
(1 − zζ )2

, z, ζ ∈ U.

The Bergman kernel K�(z, ζ ) associated with a simply connected planar domain
� is expressed by the Riemann mapping f :�→ U

(1-2) K�(z, ζ )=
1
π

f ′(z) f ′(ζ )(
1 − f (z) f (ζ )

)2 z, ζ ∈�.

MSC2000: primary 30C20, 30C40; secondary 20C35, 30E25.
Keywords: Bergman kernel, Green’s function, harmonic measure, multiply connected domain.
Jeong was supported by the Korea Research Foundation Grant R04-2003-000-10045-0 funded by the
Korean Government.

145

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2007.233-1


146 MOONJA JEONG AND VLADIMIR MITYUSHEV

Conversely, the derivative of f (z) is determined through the Bergman kernel by
the formula

(1-3) f ′(z)= K�(z, ζ )
√

π

K�(ζ, ζ )
,

where the point ζ is transformed onto zero by the mapping f with f ′(ζ ) > 0.
The Bergman kernel for a circular annulus Aρ = {z ∈ C : ρ < |z| < 1} was

calculated in [Bergman 1950, p. 10]

(1-4) K Aρ (z, ζ )=
1
π zζ

(
P(ln zζ )+

η1

π i
−

1
2 ln ρ

)
,

where P is the Weierstrass function with the periods ω1 = π i , ω2 = ln ρ, and η1

is the half-increment of the Weierstrass ζ -function related to the period ω1. Ball
and Clancey [1996] gave a formula for the Bergman kernel for multiply connected
domains in terms of theta functions defined on the Jacobian variety of the Schottky
double of domain. However, this formula involves the principal functionals of the
Schottky double of domain for which only theorems of existence are known.

Note that in the several dimensional complex space, the Bergman kernel was
calculated explicitly for the following domains: the unit ball, the polydisc, the
Thullen domain [D’Angelo 1994], convex domains [Boas et al. 1999], the Lie ball
[Hua 1963], the minimal ball [Oeljeklaus et al. 1997], and so on. For example,
the Bergman kernel associated with the Thullen domain {(z1, z2) ∈ C2

: |z1|
2p

+

|z2|
2 < 1}, with any positive integer p is

2∑
k=1

ck
(1 − z2ζ 2)

−2+(k/p)

((1 − z2ζ 2)
1/p − z1ζ 1)k+1

where c1 = (p − 1)/(π2 p) and c2 = 2/(π2 p).
Let M be a 1-dimensional complex manifold and H 2(M) the Hilbert space of

holomorphic 1-forms h on M such that

(1-5)
i
2

∫
M

h ∧ h <∞.

Let h1, h2, · · · be an orthonormal basis for H 2(M). The Bergman kernel KM

associated with M can be defined as follows:

(1-6) KM =
i
2

∞∑
k=1

hk ∧ h̄k .

In this paper, we consider domains with C∞ smooth boundary. The relation
between the Bergman kernel and the Green’s function is given by the following
proposition:
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Proposition 1.1 [Schiffer 1946; Bell 1992, p. 131]. Suppose � is a bounded do-
main with C∞ smooth boundary. The Green’s function G�(z, w) and the Bergman
kernel K�(z, w) associated with � are related via

(1-7) K�(z, ζ )= −
2
π

∂2G�(z, ζ )
∂z ∂ζ

.

In this paper we write the Bergman kernel explicitly for every circular multi-
ply connected domain. Our work is based on the Green function constructed in
[Mityushev and Rogosin 2000] for multiply connected domains. In Section 2 we
verify the relation (1-7) for unbounded domains. In Section 3 we apply it to the
construction of the Bergman kernel.

2. Green’s function and the Bergman kernel

On the first page of his book, B. Epstein [Epstein 1965] writes “Let D denote
any bounded∗ domain. . . ”, and in the footnote: “The restriction of boundedness is
made for the sake of simplicity; all arguments to be presented in the present chapter
and in the following chapters are valid, with at most minor modifications, for an
unbounded domain whose boundary contains at least one component consisting
of more than a single point.” Since the present paper directly concerns such un-
bounded domains, we include in this section the formal derivation of the statements
that we will need, as they seem not to be explicitly available elsewhere.

First, the definition of a biholomorphic mapping for unbounded domains is
given. Let C denote the extended complex plane C ∪ {∞}. Following [Shabat
1985] we define a subset U of C to be open if

(1) U ∩ C is open in C, and

(2) if ∞ ∈ U , then for some R > 0, the set {z ∈ C : |z|> R} is contained in U .

Hence, the mapping of C to C given by z 7→1/z is continuous. With the topology
in C and with the associated idea of continuity, we may think of meromorphic
functions as holomorphic functions with values in C. According to [Greene and
Krantz 2002, p. 143], we define a continuous function F : U → C on an open
subset U of C to be holomorphic if

(1) F |F−1(C) is holomorphic and

(2) F−1({∞}) is a discrete set in U , and 1/F is holomorphic on some open neigh-
borhood of F−1({∞}).

Let� be a bounded domain with C∞ smooth boundary. For a fixed point ζ ∈�,
the Green’s function G�(z, ζ ) associated with � is defined by

G�(z, ζ )= − ln |z − ζ | + gζ (z),
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where gζ (z) is the harmonic function of z on� which solves the Dirichlet problem

gζ (z)|∂� = ln |z − ζ |.

Now we consider unbounded circular multiply connected domains. Introduce
mutually disjoint discs

(2-1) Dk = {z ∈ C : |z − ak |< rk}, k = 1, 2, . . . , n,

and the complement of these discs to the extended complex plane

(2-2) D = C −

n⋃
k=1
(Dk ∪ ∂Dk).

The domain D is called a circular multiply connected domain.
The transformation formula for the Bergman kernels holds under biholomorphic

mappings between two bounded domains. It is proved by a change of variable pro-
duced by a biholomorphic mapping between two bounded domains; see [Greene
and Krantz 2002, p. 434]. The same arguments can be applied to a biholomorphic
mapping between an unbounded multiply connected domain and a bounded mul-
tiply connected domain. For convenience, we present this result in the following
lemma and sketch the proof below.

Lemma 2.1. Suppose that f : D → � is a biholomorphic mapping where D is
defined by (2-1)–(2-2) and � is a bounded domain. The Bergman kernels K D and
K� associated with D and � respectively, are related via

(2-3) K D(z, ζ )= f ′(z)K�( f (z), f (ζ )) f ′(ζ ) z, ζ ∈ D.

Proof. Introduce the function K̃ (z, ζ ) = f ′(z)K�( f (z), f (ζ )) f ′(ζ ) for z, ζ ∈ D.
Then

(2-4)
∫

D
|K̃ (z, ζ )|2d Az =

∫
D

| f ′(z)|2 |K�( f (z), f (ζ ))|2 | f ′(ζ )|2d Az.

By a change of variable, this becomes

(2-5)
∫
�

| f ′( f −1(w))|2 |K�(w, f (ζ ))|2 | f ′(ζ )|2 |( f −1)′(w)|2 d Aw

= | f ′(ζ )|2
∫
�

|K�(w, f (ζ ))|2 d Aw <∞.

Now for any holomorphic function ϕ ∈ L2(D),

(2-6)
∫

D
K̃ (z, ζ )ϕ(ζ )d Aζ =

∫
D

f ′(z) K�( f (z), f (ζ )) f ′(ζ )ϕ(ζ )d Aζ
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=

∫
�

f ′(z) K�( f (z), η) f ′( f −1(η))ϕ( f −1(η))|( f −1)′(η)|2 d Aη

= f ′(z)
∫
�

K�( f (z), η) {(ϕ ◦ f −1)(η)( f −1)′(η)} d Aη

= f ′(z){(ϕ ◦ f −1)( f (z))( f −1)′( f (z))},

since (ϕ ◦ f −1)(η)( f −1)′(η) is holomorphic in � and belongs to L2(�). Hence,∫
D

K̃ (z, ζ )ϕ(ζ )d Aζ = ϕ(z).

By the uniqueness of the Bergman kernel, we establish that (2-3) is valid. �

More generally, Lemma 2.1 can be applied to a biholomorphic mapping between
two complex manifolds with the same dimensions. Suppose that f : M1 → M2 is a
biholomorphic mapping where M1 and M2 are 1-dimensional complex manifolds.
The Bergman kernels KM1 and KM2 associated with M1 and M2 respectively, are
related via

KM1 = ( f × f )∗KM2,(2-7)

where f × f is a biholomorphic mapping from M1 × M1 to M2 × M2.

Example 2.2. We apply (2-3) to get the Bergman kernel associated with the upper
half plane C+. Let f : C+

→ U be the bilinear transformation

f (z)=
A(z − z0)

z − z̄0
,

where Im z0 > 0 and |A| = 1. Then f ′(z)= A(z0 − z̄0)/(z − z̄0)
2 and

(2-8) KU ( f (z), f (ζ ))=
1

π(1 − f (z) f (ζ ))2
=

(z − z̄0)
2(ζ − z0)

2

π(ζ − z)2(z0 − z̄0)2
.

Therefore

(2-9) KC+(z, ζ )= f ′(z)KU ( f (z), f (ζ )) f ′(ζ )= −
1

π(z − ζ )2
.

The Bergman kernel function (2-9) does vanish at z = ∞, while the Bergman
kernel form −dz dζ/(π(z − ζ )2) is nonvanishing on the closure of C+

× C+.

The Green’s function is invariant under biholomorphic mappings between two
bounded domains with C∞ smooth boundaries; see [Conway 1978, p. 276; Bell
1992, p. 128]. We extend this result to the case of biholomorphic mappings be-
tween D and bounded domains with C∞ smooth boundaries.
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Lemma 2.3. Let the domain D be defined by (2-1)–(2-2) and � be a bounded
domain in the complex plane with C∞ smooth boundary. If f is a biholomorphic
mapping of D onto �, then the Green’s functions G D and G� associated with D
and � respectively, satisfy the identity

(2-10) G D(z, ζ )= G�( f (z), f (ζ )), z, ζ ∈ D.

Proof. It is enough to show that G�( f (z), f (ζ )) is the Green’s function for D
with singularity at z = ζ ∈ D. Note that f ∈ C∞(D) since D has C∞ smooth
boundary and D is compact. We can write f (z)− f (ζ ) = (z − ζ )Hζ (z) where
Hζ (z) is a nonvanishing holomorphic function in A∞(D)= C∞(D)∪H(D). Here
H(D) represents the set of holomorphic functions on D. Hence,

ln | f (z)− f (ζ )| = ln |z − ζ | + ln |Hζ (z)|

where ln |Hζ (z)| is a harmonic function in C∞(D). Hence G�( f (z), f (ζ )) +

ln |z − ζ | is a harmonic function of z on D with

G�( f (z), f (ζ ))|z∈∂D = 0.

Therefore, by the uniqueness of Green’s functions, G�( f (z), f (ζ )) is the Green’s
function associated with D; see [Conway 1978, p. 276]. �

Using Lemma 2.3 we obtain the following result.

Theorem 2.4. Let the domain D be defined by (2-1)–(2-2). The Bergman kernel
K D and the Green’s function G D(z, ζ ) associated with D are related via

(2-11) K D(z, ζ )= −
2
π

∂2G D(z, ζ )
∂z ∂ζ

.

Proof. Let f : D →� be a biholomorphic mapping of D onto a bounded domain
� with C∞ smooth boundary. By Proposition 1.1,

(2-12) K�(w, η)= −
2
π

∂2G�(w, η)

∂w∂η

for w, η ∈� where K�(w, η) is the Bergman kernel and G�(w, η) is the Green’s
function associated with �. Application of Lemma 2.1 and (2-12) yields

K D(z, ζ )= f ′(z)K�(w, η) f ′(ζ )= f ′(z)
(

−
2
π

∂2G�(w, η)

∂w∂η

)
f ′(ζ ),

where w = f (z), η = f (ζ ). By a change of variables, this becomes

−
2
π

f ′(z)
∂2G D(z, ζ )
∂z ∂ζ

( f −1)′(w)( f −1)′(η) f ′(ζ )= −
2
π

∂2G D(z, ζ )
∂z ∂ζ

. �
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3. Exact formula for the Bergman kernel

Let D be a circular multiply connected domain described by (2-1)–(2-2). Hereafter
we deal only with the domain D, hence for brevity we omit the corresponding
indexes in the Green and Bergman functions.

Schottky group. Consider inversions with respect to the circles |z − ak | = rk and
their compositions

(3-1) z∗

(k) :=
r2

k

z − ak
+ ak, z∗

(ksks−1...k1)
:=

(
z∗

(ks−1...k1)

)∗

(ks)
.

In the sequence k1, k2, . . . , ks no two neighboring numbers are equal. When s is
even, these are Möbius transformations in z. If s is odd, we have transformations
in z̄. Hence, the mappings can be written in the form

(3-2)
γj (z)=

(
e j z + b j

)
/
(
c j z + d j

)
, s ∈ 2Z,

γj (z̄)=
(
e j z̄ + b j

)
/
(
c j z̄ + d j

)
, s ∈ 2Z + 1,

where e j d j − b j c j = 1. Here γ0(z) := z (identity mapping), γ1(z̄) := z∗

(1), . . . ,
γn(z̄) := z∗

(n) (n simple inversions), γn+1(z) := z∗

(12), γn+2(z) := z∗

(13), . . . , γn2(z) :=
z∗

(n,n−1) (n2
−n pairs of inversions), γn2+1(z̄) := z∗

(121), . . . and so on. The number s
is called the level of the mapping γj . The indexes j of γj are ordered in such a way
that the level is not decreasing. The functions (3-1) or (3-2) generate a Schottky
group S. Thus, each element of S is presented in the form of the composition of
inversions (3-1) or in the form of linearly ordered functions (3-2). Let Sm be the
subset of S − {γ0} consisting of mappings whose last inversion is different from
z∗

(m), i.e., Sm = {z∗

(ksks−1...k1)
: ks 6= m}.

Harmonic measures. For a fixed point z0 ∈ D −{∞}, we introduce the functions

(3-3) ψm(z)= ln
( ∏
γj ∈Sm

ψ ( j)
m (z)

)
,

where we have, for even level of γj ∈ S

(3-4) ψ ( j)
m (z)=

γj (z)− am

γj (z0)− am
,

and for odd level of γj ∈ S

(3-5) ψ ( j)
m (z)=

γj (z̄0)− am

γj (z̄)− am
.
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The infinite product (3-3) converges uniformly in every compact subset of D; see
[Mityushev and Rogosin 2000, p. 153]. The multipliers in the infinite product (3-3)
are ordered according to increasing level.

Consider a fixed s from the set {1, 2, . . . , n}. The harmonic measure αs(ζ )

associated to D satisfies the boundary conditions

(3-6) αs(z)= δsk, |z − ak | = rk, k = 1, 2, . . . , n,

where δsk is the Kronecker symbol. αs(z) is explicitly written in [Mityushev and
Rogosin 2000, p. 153, Theorem 4.10] as follows:

(3-7) αs(z)=

n∑
m=1

Asm Re[ψm(z)+ ln(z − am)] + As,

where ψm(z) has the form (3-3), and the real constants Asm and As are described
in the theorem just cited.

Following Chapter 4 of [Mityushev and Rogosin 2000] we briefly describe how
to deduce (3-7). The harmonic measure αs(z) as a harmonic function in D can be
represented in the form

(3-8) αs(z)= Re ϕ(z)+
n∑

m=1

Asm ln |z − am | + As,

where ϕ(z) is analytic in D and continuously differentiable in its closure (ϕ ∈

A1(D)) and

(3-9) ϕ(z0)= 0.

Asm are real constants having zero sum. The real constant As is introduced for
convenience. It can be included into Re ϕ(z). Substitution of (3-8) into (3-6)
yields the boundary value problem

(3-10) Re ϕ(z)+
n∑

m=1

Asm ln |z −am |+ As = δsk, |z −ak | = rk, k = 1, 2, . . . , n.

It can be reduced, first, to the R-linear conjugation problem

(3-11) ϕ(z)= ϕk(z)−ϕk(z)+ f (z), |z − ak | = rk, k = 1, 2, . . . , n,

where ϕk ∈ A1(Dk), f (z)= δsk − As − Ask ln rk −
∑

m 6=k Asm ln(z − am), z ∈ Dk .
The problem (3-10) is equivalent to the problem (3-11), i.e., the problem (3-10)

is solvable if and only if (3-11) is solvable. If ϕ(z) is a solution of (3-10), it is
also a solution of (3-11) in D, and a solution of (3-11) in Dk can be found from
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the following simple problem for the disc Dk with respect to function 2 Imϕk(z)
harmonic in Dk

(3-12) 2 Im ϕk(z)= Im
(
ϕ(z)− f (z)

)
, |z − ak | = rk .

The problem (3-12) has a unique solution up to an arbitrary additive real constant.
We introduce the following function:

8(z) :=


ϕk(z)+

∑
m 6=k

(
ϕm

(
z∗

(m)

)
−ϕm

(
(z0)

∗

(m)

))
−ϕk

(
(z0)

∗

(k)

)
+ f

(
z
)
,

|z − ak | ≤ rk,

ϕ(z)+
n∑

m=1

(
ϕm

(
z∗

(m)

)
−ϕm

(
(z0)

∗

(m)

))
, z ∈ D.

The jump across the circle |t − ak | = rk can be calculated as

1k :=8+ (t)−8−(t),

where8+ (t) := limz→t z∈D 8(z) and8− (t) := limz→t z∈Dk 8(z). Using (3-11) we
get1k = 0. It follows from the analytic continuation principle that8(z) is analytic
in the extended complex plane. Then Liouville’s theorem implies that 8(z) is a
constant. Using (3-9) we calculate 8(z0) = 0, hence 8(z) ≡ 0. The definition of
8(z)≡ 0 in |z − ak | ≤ rk yields the following system of functional equations:

(3-13) ϕk(z)= −

∑
m 6=k

(
ϕ(z∗

(m))−ϕ((z0)
∗

(m))
)

+ g(z),

|z − ak | ≤ rk, k = 1, 2, . . . , n,

where g(z)= − f (z)+ϕ((z0)
∗

(k)). Equations (3-13) R-linearly relate the values of
ϕk at z ∈ Dk with the values of ϕm (m 6= k) at the symmetric points z∗

(m) ∈ Dm . If
ϕk(z) is known, ϕ(z) has the form

(3-14) ϕ(z)= −

∑
m 6=k

(
ϕ(z∗

(m))−ϕ((z0)
∗

(m))
)
, z ∈ D.

Lemma 3.1 [Mityushev and Rogosin 2000, p. 147]. The system of functional equa-
tions (3-13) for any g ∈ A1

(⋃n
m=1 Dm

)
has a unique solution. This solution can be

found by the method of successive approximations. The approximations converge
uniformly in

⋃n
m=1 Dm .

The straightforward application of successive approximations to (3-13), com-
bined with the use of (3-14), yield (3-7) with (3-3)–(3-5).

Green’s function. Consider the function ω(z, ζ ) defined by the formulas (4.4.27)
or (4.4.28) from [Mityushev and Rogosin 2000, p. 156]

(3-15) ω(z, ζ )= ln
∞∏
j=1

ωj (z, ζ ),
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where

(3-16) ω j (z, ζ )=


ζ−γj (z)
ζ−γj (z0)

, if level of γj is even,

ζ−γ j (z̄0)

ζ−γ j (z̄)
, if level of γj is odd.

The infinite product (3-15) converges uniformly on z in D for each fixed ζ ∈ D
(uniformly on each compact subset of D − {ζ } if ζ ∈ ∂D). Let G ⊂ S be the
subgroup consisting of γj of the even level, F ⊂ S be the set of γj of the odd level.

Lemma 3.2 [Mityushev and Rogosin 2000, p. 154]. The complex Green’s function
M(z, ζ ) associated with D is represented in the form

(3-17) M(z, ζ )=

n∑
k=1

αk(ζ )[ψk(z)+ ln(z − ak)] −ω(z, ζ )− ln(z − ζ )+ A(ζ ).

The proof of this lemma is based on the method of functional equations de-
scribed in the previous subsection.

Let G(z, ζ ) be the real Green’s function. Then

(3-18) G(z, ζ )=
1
2
[M(z, ζ )+ M(z, ζ )].

We want to calculate ∂2G
∂z ∂ζ

. The function M(z, ζ ) is analytic on z, i.e.,

(3-19)
∂M
∂z

= 0.

It follows from (3-18) and (3-19) that

(3-20)
∂2G
∂z ∂ζ

=
1
2
∂2 M
∂z ∂ζ

.

By using (3-17), we obtain

(3-21)
∂2 M
∂z ∂ζ

=

n∑
k=1

∂αk(ζ )

∂ζ

(
ψ ′

k(z)+
1

z − ak

)
−
∂2ω(z, ζ )
∂z∂ζ

.

Here we use the evident equalities

(3-22)
∂ ln(z − ζ )

∂ζ
= 0,

∂A(ζ )
∂z

= 0.

Differentiating (3-7) we obtain

(3-23)
∂αk

∂ζ
=

1
2

n∑
m=1

Am

(
ψ ′

m(ζ )+
1

ζ − am

)
,
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where the prime means the derivative on z or on ζ (but not on complex conjugated
variables). Then (3-21) becomes

(3-24)
∂2 M
∂z ∂ζ

=

n∑
k=1

n∑
m=1

Am

(
ψ ′

m(ζ )+
1

ζ − am

) (
ψ ′

k(z)+
1

z − ak

)
−
∂2ω(z, ζ )
∂z∂ζ

.

We calculate
∂2ω(z, ζ )
∂z∂ζ

using the formulas (3-15) and (3-16)

(3-25)
∂2ω(z, ζ )
∂z∂ζ

= −

∑
γj ∈F

γ′

j (z)

(ζ − γ j (z))2
.

We now proceed to calculate ψ ′
m(z), where ψm(z) has the form (3-3). Differen-

tiate the logarithms of (3-4)–(3-5)

(3-26) 9( j)
m (z) := (lnψ ( j)

m )′(z)=


γ ′

j (z)
γj (z)−am

for γj ∈ G,

−
γ′

j (z)
γ j (z)−am

for γj ∈ F.

Then (3-20) and (3-24) yield

(3-27)
∂2G
∂z ∂ζ

=
1
2

n∑
k=1

n∑
m=1

Am

∞∑
γj ∈Sm

9
( j)
m (ζ )

∑
γj ∈Sm

9( j)
m (z)+

1
2

∑
γj ∈F

γ′

j (z)

(ζ − γ j (z))2
,

where 9( j)
m (z) has the form (3-26).

Bergman kernel. Using (2-11) and (3-27) we obtain the following result.

Theorem 3.3. The Bergman kernel K (z, w) associated with D is given by
(3-28)

K (z, ζ )= −
1
π

n∑
k=1

n∑
m=1

Am

∞∑
γj ∈Sm

9
( j)
m (ζ )

∑
γj ∈Sm

9( j)
m (z)−

1
π

∑
γj ∈F

γ′

j (z)

(ζ − γ j (z))2
,

where 9( j)
m (z) has the form (3-26).

Example 3.4. Consider the simply connected domain D = {z ∈ C : |z|> 1}. Then
we have the two-element group of inversions γ0(z)= z, γ1(z̄)= 1/z̄. The constant
A1 is equal to zero (see (4.4.3) of [Mityushev and Rogosin 2000, p. 149]) and
(3-28) becomes

(3-29) K (z, ζ )= −
1
π

γ′

1(z)
(ζ − γ1(z))2

=
1
π

1
(1 − zζ )2

.
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We are not aware that any short demonstration exists which shows that Theorem
3.3 yields the well-known formula (1-4) for doubly connected domains under ap-
propriate conformal mappings.

Bell [1995] showed that the Bergman kernel is rational if and only if the asso-
ciated domain is simply connected and there is a rational biholomorphic mapping
of the given domain onto the unit disc. He proved [1999] that when the given
domain is a finitely connected planar domain such that no boundary component
is a point, the corresponding Bergman kernel is algebraic if and only if there is
a proper holomorphic mapping of the given domain onto the unit disc which is
algebraic.

Thus, for a circular domain D defined by (2-1)–(2-2), if n = 1, D is biholomor-
phic to the unit disc with a rational biholomorphic mapping f (z)= 1/(z−a1), and
hence the Bergman kernel is rational; see Example 3.4 above. We know that every
unbounded n-connected domain D is biholomorphic to a bounded n-connected
domain. Hence, if n > 1, the Bergman kernel for D is not rational, but is algebraic
if there is an algebraic proper holomorphic mapping from D onto the unit disc.
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