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DACHENG CUI AND HUICHENG YIN

We establish the global existence and stability of a steady symmetric conic
shock wave for the perturbed supersonic isothermal flow past an infinitely
long circular cone with an arbitrary vertex angle. The flow is assumed to
be described by a steady potential equation. By establishing the uniform
weighted energy estimate on the linearized problem, we show that the sym-
metric conic shock attached at the vertex of the cone exists globally in the
whole space when the speed of the supersonic incoming flow is appropriately
large.

1. Introduction

We study the steady conic shock wave problem for the symmetrically perturbed
supersonic gas past an infinitely long circular cone. Such a problem has been
extensively studied both computationally and theoretically under some suitable
conditions. See [Bertin 1994; Chen et al. 2003; Chen et al. 2002; Courant and
Friedrichs 1948; Cox and Crabtree 1965; Cui and Yin 2006; Keyfitz and Warnecke
1991; Li and Yu 1985; Lien and Liu 1999; Tsien 1946; Xin and Yin 2006; Yin
2006; 2002; Zheng 2001] and the references therein. As noted by Courant and
Friedrichs [1948], if there is a uniform supersonic flow (0, 0, q0) with constant
density ρ0 > 0 coming from minus infinity, and the flow hits the circular cone
(x2

1 +x2
2)1/2

= b0x3 in the direction of the x3-axis, a conic shock (x2
1 +x2

2)1/2
= s0x3

for s0 > b0 will arise and attach to the cone’s apex when b0 is less than a critical
value b∗ (b∗ is determined by the parameters of the incoming flow).

When the supersonic incoming flow is perturbed, a natural problem arises: is the
conic shock globally stable? Our goal is to establish the global existence and sta-
bility of a conic shock for the perturbed hypersonic isothermal gas past an infinitely
long conic body (x2

1 +x2
2)1/2

= b0x3 with any fixed constant b0 (this means that the
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critical value b∗ can be arbitrarily large for the isothermal gas with an appropriately
hypersonic flow). The so-called isothermal gas means that the pressure P and the
density ρ of the gas are described by the state equation P = Aρ for some constant
A > 0. In this case, the sound speed is a constant independent of the density ρ.

We will use the potential equation to describe the motion of the supersonic
isothermal gas; this model is also recommended, for example, in [Majda 1991;
1984; Majda and Thomann 1987]. Let 8(x) be the potential of velocity u =

(u1, u2, u3), that is, ui = ∂i8. Then it follows from Bernoulli’s law that

(1-1) 1
2 |∇8|

2
+ h(ρ) = C0,

where h(ρ)= A ln ρ is the specific enthalpy, ∇ = (∂1, ∂2, ∂3), and C0 =
1
2q2

0 +h(ρ0)

is Bernoulli’s constant, which is determined by the uniform supersonic flow coming
from negative infinity with velocity (0, 0, q0) and density ρ0 > 0.

By using (1-1), we can express the density function ρ(x) as

(1-2) ρ = exp
(

C0 −
1
2 |∇8|

2

A

)
≡ H(∇8).

Substituting (1-2) into the mass conservation equation
∑3

i=1 ∂i (ρui ) = 0 yields

(1-3) ((∂18)2
− A)∂2

118 + ((∂28)2
− A)∂2

228 + ((∂38)2
− A)∂2

338

+ 2∂18∂28∂2
128 + 2∂18∂38∂2

138 + 2∂28∂38∂2
238 = 0.

Due to the geometric property of the cone surface (x2
1 + x2

2)1/2
= b0x3 and the

symmetric property of the perturbed incoming flow which we will discuss later,
as in [Chen et al. 2002], we may assume 8(x) = 8(x3, r). It is convenient to
introduce cylindrical coordinates (x3, r) as

(1-4) r =

√
x2

1 + x2
2 and x3 = x3.

Set 8 = q0x3 + ϕ with ϕ(x) = ϕ(x3, r). Then, in the new coordinates (1-4),
Equation (1-3) can be rewritten as

(1-5) ((q0+∂3ϕ)2
− A)∂2

3ϕ+((∂rϕ)2
− A)∂2

r ϕ+2∂rϕ(q0+∂3ϕ)∂2
r3ϕ−

A
r

∂rϕ = 0.

Denote by ϕ−(x3, r) the flow field before the possible shock front r = χ(x3)

with χ(0) = 0, and let ϕ+ denote the corresponding flow field behind the front.
Then the system (1-5) can be split into two equations. The equation for ϕ−(x3, r)
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is

(1-6) ((q0 + ∂3ϕ
−)2

− A)∂2
3ϕ−

+ ((∂rϕ
−)2

− A)∂2
r ϕ−

+ 2∂rϕ
−(q0 + ∂3ϕ

−)∂2
r3ϕ

−
−

A
r

∂rϕ
−

= 0

and holds for r > χ(x3) and x3 > 0, or x3 ≤ 0. The equation for ϕ+(x3, r) is

(1-7) ((q0 + ∂3ϕ
+)2

− A)∂2
3ϕ+

+ ((∂rϕ
+)2

− A)∂2
r ϕ+

+ 2∂rϕ
+(q0 + ∂3ϕ

+)∂2
r3ϕ

+
−

A
r

∂rϕ
+

= 0

and holds for r < χ(x3).
It is easy to verify that (1-6) and (1-7) are strictly hyperbolic with respect to x3

for ∂38
± >

√
A, where

√
A is the sound speed.

On the cone surface r = b0x3, the flow field ϕ+ satisfies

(1-8) − (q0 + ∂3ϕ
+)b0 + ∂rϕ

+
= 0 for r = b0x3.

Meanwhile, on the possible conic shock r = χ(x3), we apply Equation (1-3)
and the symmetric form of ϕ(x3, r) to the Rankine–Hugoniot condition to obtain

(1-9) − ((q0 + ∂3ϕ)H)χ ′(x3) + ∂rϕH = 0 for r = χ(x3).

Also, the potential ϕ+(x3, r) is continuous across the shock:

(1-10) ϕ+(x3, χ(x3)) = ϕ−(x3, χ(x3)).

In addition, we impose initial conditions on ϕ−(x3, r) as

(1-11) ϕ−(0, r) = εϕ−

0 (r) and ∂3ϕ
−(0, r) = q0 + εϕ−

1 (r),

where ε >0 a small constant and ϕ−

0 (r), ϕ−

1 (r)∈C∞

0 (0, l) with some fixed positive
number l > 0.

Our main result is this:

Theorem 1.1. Under the above assumptions, for any given b0 > 0 and appro-
priately large constant q0, there exists a small constant ε0 such that the problem
(1-6)–(1-7) with (1-8)–(1-11) has a global C∞ shock solution (ϕ±(x3, r), χ(x3))

for ε < ε0. Also, the quantities (∇x3,rϕ
+(x3, r), χ(x3)) tend to the corresponding

ones for the uniform supersonic incoming flow (0, 0, q0; ρ0) past the circular cone
r = b0x3 with the rate (1+ x3)

µ/2−1, where µ is any fixed constant with 0 < µ < 2.

Remark 1.2. By Remark 2.2, for any fixed b0 > 0, we know that there appears
a unique supersonic conic shock r = s0x3 when the uniform supersonic incoming
flow (0, 0, q0; ρ0) hits the cone r = b0x3 and q0 is appropriately large. This im-
plies that the critical value b∗ can be large for the isothermal gas and hypersonic
incoming flow (the main reason is that the sound speed is a constant independent
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of the density). However, for the polytropic gas described by the state equation
P(ρ) = Aργ with 1 < γ < 3, there exists a critical value

b∗ =

√
1
2

(√
γ +7
γ −1

− 1
)

such that the attached supersonic shock r = s0x3 with u3 > c(ρ) only appears for
the potential equation and hypersonic flow when b0 becomes less than b∗. See [Cui
and Yin 2006] for details.

Remark 1.3. As in [Chen et al. 2002; Cui and Yin 2006; Godin 1997; Xin and
Yin 2006; Yin 2006], we emphasize that there are no other discontinuities in the
solution other than the main conic shock front. This means that the conic shock is
structurally stable in the whole space for the isothermal gas. This coincides with
the phenomena observed in physical experiments and numerical computations.

Remark 1.4. If there is no main shock for the Equation (1-7), then its classical
solution will blow up; see for example [Godin 2005; Sideris 1985]. This means
that the main shock can absorb possible compressions of the flow and prevent the
formation of new shocks between the main shock and the fixed boundary.

Now we cite work directly related to this paper. Chen et al. [2002], assuming
a uniform supersonic incoming flow and a sharp angle for the curved conic body,
showed that a curved conic shock exists globally when the supersonic polytropic
flow passes a symmetrically curved cone. On the other hand, Z. Xin and H. Yin
[2006] established the global existence of a multidimensional conic shock for the
uniform supersonic incoming flow past a generally curved sharp cone under a
certain boundary condition on the conic surface (physically, that boundary con-
dition meant that the body is perforated or porous). In addition, by using Glimm’s
scheme, W. C. Lien and T. P. Liu [1999] obtained the global existence of a weak
solution and the long distance asymptotic behavior in the symmetric case under the
suitable conditions on the large Mach number, the sharp vertex angle and the shock
strength. Our main interest here is to establish the global existence of a shock for
the perturbed supersonic isothermal gas past an infinitely long conic body with an
arbitrarily large angle when the speed of the incoming flow is large; especially,
we remove the smallness assumption on the sharp cone. This assumption, used in
[Chen et al. 2002; Lien and Liu 1999; Xin and Yin 2006; Yin 2002], was essential
to the proofs there.

Next, we comment on the proof of Theorem 1.1. To prove it, we intend to
use the continuity method to establish a priori estimates for the solution and its
derivatives. To achieve this as in [Chen et al. 2002], [Cui and Yin 2006; Godin
1997] and [Xin and Yin 2006; Yin 2006], we need to derive some global uniform
weighted energy estimates for the linearized problem of (1-7)–(1-10). Based on
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such estimates we can obtain the existence and the asymptotic behavior of the
solution to the perturbed nonlinear problem. The main method for obtaining the
weighted energy estimates is to search for appropriate multipliers. As in [Chen
et al. 2002; Xin and Yin 2006], finding such a multiplier is complicated by our
self-similar background solution which strongly depends on the vertex angle of
the cone, the Mach number of incoming flow, and the state equation of the gas.

Although some strategies for proving Theorem 1.1 are similar to those of [Chen
et al. 2002; Xin and Yin 2006], many new difficulties appear in the isothermal
case, and the possible largeness of b0 must be overcome; in contrast, the small-
ness of b0 plays an essential role in those works. Also, it seems difficult to find
the “dissipative” property — needed for deriving uniform a priori estimates on the
solutions — on the boundary conditions (1-8)–(1-10) as in the polytropic case of
[Cui and Yin 2006], because, in our case, the higher-order asymptotic expansions
of the background solutions are of exponent-type. The polynomial properties of
higher order asymptotic expansions on the polytropic gas play the key role in the
analysis of [Cui and Yin 2006].

The paper is organized as follows. In Section 2, we show for large q0 that there
exists an attached shock r =s0x3 for any fixed b0 >0, and we then derive some basic
estimates for the background self-similar solution, which will help subsequently
find the appropriate multiplier. In Section 3, we reformulate the problem (1-7)–
(1-10) and derive some useful estimates on the coefficients of the resulted nonlinear
equation and its boundary conditions. In Section 4, we establish the weighted
energy estimate for the linearized problem, where the appropriate multiplier is
given. Also, we will explain in detail the sometimes subtle search for the multiplier.
Using the energy estimate in Section 4, we prove Theorem 1.1 in Section 5. Some
complicated and tedious computations are given in the Appendix.

We will use the following notations: O(q−ν
0 )(ν > 0) and O(e−µq2

0 )(µ > 0)

denote the bounded quantities, which admit the bound |O(q−ν
0 )| ≤ M1q−ν

0 and
|O(e−µq2

0 )| ≤ M2e−µq2
0 , where the generic constants M1 and M2 depend only on

b0 and A. O(ε) means there exists a generic constant M3, such that |O(ε)| ≤ M3ε,
where M3 depends on b0, q0, and A.

2. The self-similar solution and some of its properties

Here, we will discuss for large q0 the existence of a self-similar shock solution
for the supersonic isothermal flow past the circular cone (x2

1 + x2
2)1/2

= b0x3 with
fixed constant b0. Meanwhile, we will give some precise estimates and detailed
properties of the background solution by using the expressions for q0 and b0. These
estimates will play an important role in obtaining a priori estimates in the subse-
quent sections.
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Suppose that a uniform supersonic isothermal flow with velocity (0, 0, q0) and
density ρ0 > 0 comes from minus infinity, and suppose the flow hits the circular
cone (x2

1 + x2
2)1/2

= b0x3 along its axis. From Lemma 2.1, we can show that there
will appear a conic shock r = s0x3 (for s0 > b0) attached at the tip of the cone for
large q0. Also the corresponding density and velocity functions (ρ, u1, u2, u3) are
self-similar, that is, in the cylindrical coordinates (x3, r), these functions between
the shock front and the surface of cone have the form ρ =ρ(s), u1 =U (s)x1/r , u2 =

U (s)x2/r , and u3 =u3(s), where s =r/x3. It follows the steady compressible Euler
equation that (ρ(s), U (s), u3(s)) satisfies for b0 ≤ s ≤ s0 the nonlinear ordinary
differential system

(2-1)

ρ ′(s) = −
ρU (su3−U )

s
(

A(1+s2)−(su3−U )2
) ,

U ′(s) = −
AU

s
(

A(1+s2)−(su3−U )2
) ,

u′

3(s) =
AU

A(1+s2)−(su3−U )2 .

From Lemma 2.1, it can be shown that the denominator satisfies A(1 + s2) −

(su3 − U )2 > 0 for b0 ≤ s ≤ s0. This means that the system (2-1) makes sense.
On the shock front r = s0x3, it follows from the Rankine–Hugoniot conditions

and Lax’s geometric entropy conditions on the 2-shock that

(2-2) ρU − s0ρu3 = 0 and u3 + s0U = 0

and

(2-3) λ1(s0) < s0 < λ2(s0) and

√
A√

q2
0 − A

< s0,

where λ1,2(s) = (U (s)u3(s) ∓
√

A(U 2(s) + u2
3(s) − A)1/2)/(u2

3(s) − A).
Additionally, the flow satisfies on s = b0 the fixed boundary condition

(2-4) U (s) = b0u3(s).

For large q0 and fixed b0, now we show the existence of the solution to system
(2-1) with (2-2)–(2-4) and give some needed estimates.

Lemma 2.1. . If u3(b0) >
√

A, then the free boundary problem (2-1)–(2-4) has a
smooth supersonic shock solution for b0 ≤ s ≤ s0. Also, one has

(i) U ′(s) < 0, u′

3(s) > 0, ρ ′(s) < 0, and u3(s) >
√

A;

(ii) U (s) > 0 and A(1 + s2) − (su3(s) − U (s))2 > 0.
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Remark 2.2. For any fixed b0 > 0, if q0 is appropriately large, then we can verify
that u3(b0)>

√
A and u3(s)>

√
A; see Remark 2.4. Thus, the problem (2-1)–(2-4)

has a smooth supersonic shock solution in this case.

Proof of Lemma 2.1. Set U+ = lims→s0−0 U (s) and u3+ = lims→s0−0 u3(s). Also
set ρ+ = lims→s0−0 ρ(s). Then from the Rankine–Hugoniot conditions (2-2) and
Bernoulli’s law (1-1), we arrive at

(2-5)

U+ =
s0q0(ρ+−ρ0)

(1+s2
0)ρ+

,

u3+ = q0 −
s2

0q0(ρ+−ρ0)

(1+s2
0)ρ+

,

h(ρ+) − h(ρ0) =
s2

0q2
0 (ρ2

+
−ρ2

0)

2(1+s2
0)ρ2

+

.

By the entropy condition (2-3) (which leads to ρ0 < ρ+), we find U+ > 0. Also,
from (2-5) and a direct computation, we can derive that

s0u3+ − U+ =
s0ρ0q0

ρ+

> 0.

Since (s0u3+ − U+)/(1 + s2
0)1/2 is the normal velocity on the shock front, the

entropy condition also implies

(2-6)
s0u3+ − U+

(1 + s2
0)1/2

<
√

A.

The physical explanation to (2-6) is that across the shock front the normal velocity
of the supersonic flow becomes subsonic.

By the continuity of ρ(s), U (s), and u3(s), (2-6) is also valid in s0 −δ0 ≤ s ≤ s0

with small δ0 > 0, and then (2-1) makes sense in this interval. Also, by (2-1), we
obtain ρ ′(s) < 0, U ′(s) < 0, and u′

3(s) > 0 in s0 −δ0 ≤ s ≤ s0. Hence the function
√

A−(s0u3(s)−U (s))/(1+s2)1/2 is a decreasing function of s in s0 −δ0 ≤ s ≤ s0.
From this and (2-6), we find

A(1 + s2) − (su3(s) − U (s))2

= (1 + s2)
(√

A −
su3(s) − U (s)

√
1 + s2

)(√
A +

su3(s) − U (s)
√

1 + s2

)
≥

√
A(1 + b2

0)
(√

A −
su3+ − U+
√

1 + s2

)
> 0.

This result means that the denominator in (2-1) is bounded away from zero as
long as the solution of (2-1) exists. Therefore, by the continuity extension method
we know that this result holds in the whole interval [b0, s0], and the solution of
(2-1) exists and satisfies

U ′(s) < 0, u′

3(s) > 0, ρ ′(s) < 0.
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By a direct computation, we have(
u3(s) −

√
A
)′

=
AU

A(1 + s2) − (su3 − U )2 > 0,

and this yields
u3(s) −

√
A > u3(b0) −

√
A > 0.

Thus (2-1)–(2-4) has a supersonic shock solution. �

For the isothermal gas and large q0, the following estimates on the background
solution are fundamental to our subsequent analysis.

Lemma 2.3. If q0 is large and b0 ≤ s ≤ s0, then, with m0 = b2
0/(4A(1 + b2

0)),

(i) s0 = b0 + O(e−m0q2
0 ));

(ii) U (s) =
b0q0

1 + b2
0

(
1 + O(e−m0q2

0 )
)
;

(iii) u3(s) =
q0

1 + b2
0

(
1 + O(e−m0q2

0 )
)
.

Remark 2.4. It follows from (iii) of Lemma 2.3 that the assumption u3(b0) >
√

A
in Lemma 2.1 holds when q0 is large.

Proof of Lemma 2.3. It follows the third equation in (2-5) that

ln ρ+ − ln ρ0 =
s2

0q2
0

2A(1 + s2
0)

(
1 −

ρ2
0

ρ2
+

)
.

Setting 3 = ρ+/ρ0, we get

32

32 − 1
ln 3 =

s2
0q2

0

2A(1 + s2
0)

,

which implies

3 = exp
( s2

0

2A(1 + s2
0)

q2
0
(
1 + O(e−2m0q2

0 )
))

and 1
3

= O(e−m0q2
0 ),

where m0 is as assumed.
This, together with (2-5), yields

(2-7)

U+ =
s0q0

1 + s2
0

(
1 −

1
3

)
=

s0q0

1 + s2
0

+ q0O(e−m0q2
0 ),

u3+ =
q0

1 + s2
0

(
1 +

s2
0

3

)
=

q0

1 + s2
0

+ q0O(e−m0q2
0 ).
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Following from the monotone property of U (s) in Lemma 2.1, we have

(2-8) U+ ≤ U (s) ≤ U (b0) = b0u3(b0) ≤ b0u3+.

By using (2-7) and (2-8), we get

s0 = b0 + O(e−m0q2
0 ).

This proves (i). Then (ii) and (iii) follow from (i) and (2-7)–(2-8). �

In contrast to the situation in [Chen et al. 2002] and [Xin and Yin 2006; Yin
2006], the proofs of Lemmas 2.1 and 2.3 do not require the smallness of b0 for
the isothermal hypersonic gas.

Lemma 2.5. Under the assumptions of Lemma 2.3, we have

(i) U ′(s) = −
q0

(1 + b2
0)

2

(
1 + O(e−m0q2

0 )
)
;

(ii) u′

3(s) =
b0q0

(1 + b2
0)

2

(
1 + O(e−m0q2

0 )
)
.

Proof. According to the system (2-1) and Lemma 2.3, we obtain (i) as

U ′(s) = −

Ab0q0
1+b2

0

(
1 + O(e−m0q2

0 )
)

Ab0(1 + b2
0) + q2

0 O(e−2m0q2
0 ) + q0O(e−m0q2

0 )

= −
q0

(1 + b2
0)

2

(
1 + O(e−m0q2

0 )
)
.

By (2-1), we have u′

3(s) = − sU ′(s), and then (ii) follows from (i). �

We next estimate the eigenvalues λ1(s) and λ2(s) in (2-3) when q0 is large.

Lemma 2.6. For large q0 and fixed b0, we obtain

λ1(s) = b0 −

√
A(1 + b2

0)
3/2

q0
+ O(q−2

0 ) + O(e−m0q2
0 ),

λ2(s) = b0 +

√
A(1 + b2

0)
3/2

q0
+ O(q−2

0 ) + O(e−m0q2
0 ).

Hence, λ2(s) > s0 and λ1(s) < s for large q0.
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Proof. By using the expression for λ1(s), Lemma 2.3 and Taylor’s formula, we
arrive at

λ1(s) =

(
b0q2

0

(1 + b2
0)

2
−

√
A

√
q2

0

1 + b2
0

− A
) / ( q2

0

(1 + b2
0)

2
− A

)
+ O(e−m0q2

0 )

=

b0
(1+b2

0)
2 −

√
A

q0

√
1

1+b2
0

√
1 −

A(1+b2
0)

q2
0

1
(1+b2

0)
2

(
1 −

A(1+b2
0)

2

q2
0

) + O(e−m0q2
0 )

= b0 −

√
A(1 + b2

0)
3/2

q0
+ O(q−2

0 ) + O(e−m0q2
0 ).

We estimate λ2(s) similarly. �

3. Reformulating problem (1-6)–(1-11)

Here, we first prove the global existence of a smooth solution to Equation (1-6) with
conditions (1-11). Next, we reformulate the problem (1-7)–(1-10) by decomposing
its solution as a sum of the background solution with a small perturbation. Finally,
using the analysis of the background solution from Section 2, we estimate the
coefficients that in the reformulated problem when q0 is large.

We have this global existence result for (1-6) and (1-11) on the left hand side of
the shock:

Lemma 3.1. Equation (1-6) with initial data (1-11) has a C∞ solution ϕ−(x3, r)

in the domain �− = {(x3, r) : x3 ≥ 0, r ≥ χ(x3)}. Also ϕ−(x3, r) ∈ C∞

0 (�−), and
there exists a positive constant Ck independent of ε such that

‖ϕ−(x3, r)‖Ck(�−) ≤ Ckε for any fixed k ∈ N.

Proof. The system (1-6) is quasilinear strictly hyperbolic in the x3-direction for the
supersonic flow u−

3 >
√

A. The initial condition (1-11) is of a small perturbation
with compact support. The lemma then follows for large q0 from the entropy
condition (2-3), the finite propagation property of hyperbolic equations, and the
Picard iteration (or see [Li and Yu 1985; Smoller 1983]). �

We now start reformulating the nonlinear problem (1-7)–(1-10). For conve-
nience, we henceforth omit all the “+” superscripts in (1-7)–(1-10).

Because the denominator of the system (2-1) is positive in [b0, s0], we can use
(2-1) to extend ρ, U , u3, and ϕ to [s0, s0 + η0] for small η0 satisfying 0 < η0 ≤

e−m0q2
0 (s0 − b0). We shall denote the extensions of ρ, U , u3, and ϕ in the domain

{(x3, r) : x3 > 0, b0x3 ≤ r ≤ (s0 + η0)x3} by ρ̂, Û , û3, and ϕ̂, respectively.
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Let ϕ be the solution of (1-7)–(1-10), and let ϕ̇ be the perturbation of the back-
ground solution, that is, ϕ̇ = ϕ − ϕ̂. Then by a direct computation similar to [Chen
et al. 2002], Equation (1-6) can be reduced to

(3-1) Lϕ̇ = f11
( r

x3
, ∇x3,r ϕ̇

)
∂2

3 ϕ̇ + f12
( r

x3
, ∇x3,r ϕ̇

)
∂2

r3ϕ̇

+ f22
( r

x3
, ∇x3,r ϕ̇

)
∂2

r ϕ̇ +
1
r

f0
( r

x3
, ∇x3,r ϕ̇

)
,

for b0x3 ≤ r ≤ χ(x3), where

Lϕ̇ = ∂2
3 ϕ̇ + 2P1

( r
x3

)
∂2

r3ϕ̇ + P2
( r

x3

)
∂2

r ϕ̇ + P3(x3, r)∂3ϕ̇ + P4(x3, r)∂r ϕ̇,

P1(s) =
û3(s)Û (s)

(û3(s))2 − A
,

P2(s) =
Û 2(s) − A

(û3(s))2 − A
,

P3(x3, r) = −
2s2û3(s)û′

3(s) + 2s2Û (s)Û ′(s)

r
(
(û3(s))2 − A

) ≡
P̃3(s)

r
,

P4(x3, r) =
2sÛ (s)Û ′(s) − A − 2s2û3(s)Û ′(s)

r
(
(û3(s))2 − A

) ≡
1
r

P̃4(s).

Also fi j (s, 0, 0) = 0, and f0(s, 0, 0) = ∇q f0(s, q1, q2)|q=0 = 0.
Meanwhile, on r = b0x3, we have

(3-2) ∂r ϕ̇ = b0∂3ϕ̇.

On the free boundary r = χ(x3), we can use the continuity condition (1-10) to
rewrite (1-9) as

(3-3) H(∇ϕ)
(
(∂rϕ)2

+ (∂3ϕ)2
+ q0∂3ϕ

)
− ρ0q0∂3ϕ = 0 for r = χ(x3).

As in [Chen et al. 2002; Godin 1997], we introduce the notation

ξ(x3) =
χ(x3) − s0x3

x3
.

Then we can rewrite (3-3) as

(3-4) B1∂r ϕ̇ + B2∂3ϕ̇ + B3ξ = κ(ξ, ∇x3,r ϕ̇) for r = χ(x3),
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where

B1 = −
ρ+

A

(
U 2

+
+ u3+(u3+ − q0)

)
U+ + 2ρ+U+,

B2 = −
ρ+

A

(
U 2

+
+ u3+(u3+ − q0)

)
u3+ + 2ρ+(u3+ − q0) + (ρ+ − ρ0)q0,

B3 = ρ+

(
2U+Û ′(s0) + 2(u3+ − q0)û3

′
(s0) + q0û3

′
(s0)

)
+ ρ̂ ′(s0)

(
U 2

+
+ u3+(u3+ − q0)

)
− ρ0q0û3

′
(s0),

and the generic function κ(ξ, ∇x3,r ϕ̇) will be used to denote the quantity dominated
by C |(ξ, ∇x3,r ϕ̇)|2, where the generic constant C doesn’t depend on ε.

By Lemma 3.2 below, we know that B1 6= 0 in (3-4) for large q0. Thus Equation
(3-4) can be reduced to

(3-5) Bϕ̇ + µ2ξ = κ(ξ, ∇x3,r ϕ̇) for r = χ(x3),

where Bϕ̇ = ∂r ϕ̇ + µ1∂3ϕ̇ with µ1 = B2/B1 and µ2 = B3/B1.
Besides, (1-10) implies χ ′(x3) = − ∂3ϕ/∂rϕ for r = χ(x3). By an analogous

computation in [Chen et al. 2002], we have

(3-6) ∂3
(
x3ξ +

1
U+

ϕ̇(x3, χ(x3))
)
= κ(ξ, ∇x3,r ϕ̇).

In addition, it follows from Lemma 3.1 for the solution ϕ−(x3, r) ∈ C∞

0 (�−)

in (1-6) that, near the vertex of the cone r = b0x3, by the hyperbolicity of (1-7)
with respect to x3 and the finite propagation property of hyperbolic equations, the
solution ϕ+(x3, r) is actually the background solution ϕ̂(x3, r). To prove Theorem
1.1, we use that the local existence and stability result for the shock solution from
the appendices of [Godin 1997] or [Godin 2005] imply that we need only solve
the problem (3-1) with the boundary conditions (3-2), (3-5)–(3-6), and the small
initial data of ϕ̇(x3, r)|x3=1, ∂3ϕ̇(x3, r)|x3=1, and ξ(x3)|x3=1 in the domain {(x3, r) :

x3 ≥ 1, b0x3 ≤ r ≤ χ(x3)}. Here the smallness means that

(3-7)
∑
l≤k0

|∇
l
x3,r ϕ̇| and

∑
l≤k0

∣∣∣ dlξ

dx l
3

∣∣∣ ≤ Cε for x3 = 1,

where k0 ∈ N with k0 ≥ 5.
For later use, now we give detailed estimates of the coefficients in (3-1), (3-4),

and (3-5).



GLOBAL SHOCK WAVE FOR THE STEADY SUPERSONIC FLOW PAST A CONE 269

Lemma 3.2. If q0 is large and b0 ≤ s ≤ s0 + η0, then

P1(s) = b0 +
Ab0(1 + b2

0)
2

q2
0

+ O(q−4
0 ),

P ′

1(s) = −1 −
A(1 + b2

0)(1 + 3b2
0)

q2
0

+ O(q−4
0 ),

P2(s) = b2
0 −

A(1 − b2
0)(1 + b2

0)
2

q2
0

+ O(q−4
0 ),

P ′

2(s) = −2b0 −
4Ab3

0(1 + b2
0)

q2
0

+ O(q−4
0 ),

P̃3(s) =
1
q2

0
O(e−m0q2

0 ),

P̃4(s) = −
A(1 + b2

0)
2

q2
0

+ O(q−4
0 ).

Proof. We only compute P ′

1(s), as the other terms can be treated similarly. Since
(Û (s), û3(s)) is the extension of (U (s), u3(s)) in [b0, s0 + η0] and also η0 <

e−m0q2
0 (s0 − b0), it’s enough for our computations to use (U (s), u3(s)) instead of

(Û (s), û3(s)).
It follows a direct computation and Lemmas 2.3 and 2.5 that

P ′

1(s) =
u′

3(s)U (s) + u3(s)U ′(s)

u2
3(s) − A

−
2u2

3(s)U (s)u′

3(s)

(u2
3(s) − A)2

=
b2

0 − 1

(1 + b2
0)

(
1 −

A(1+b2
0)

2

q2
0

) −
2b2

0

(1 + b2
0)

(
1 −

A(1+b2
0)

2

q2
0

)2
+ O(e−m0q2

0 )

= − 1 −
A(1 + 4b2

0 + 3b4
0)

q2
0

+ O(q−4
0 ). �

With respect to Bi for i = 1, 2, 3) in (3-4) and µ j for j = 1, 2) in (3-5), we have
this:

Lemma 3.3. If q0 is large, then

B1 =
2b0ρ+q0

1 + b2
0

(
1 + O(e−m0q2

0 )
)
,

B2 =
(1 − b2

0)ρ+q0

1 + b2
0

(
1 + O(e−m0q2

0 )
)
,

B3 = −
b0ρ+q2

0

(1 + b2
0)

2

(
1 + O(e−m0q2

0 )
)
,

µ1 =
1 − b2

0

2b0

(
1 + O(e−m0q2

0 )
)
,

µ2 = −
q0

2(1 + b2
0)

(
1 + O(e−m0q2

0 )
)
.

Proof. The lemma follows from a direct computation, which we omit, using Lem-
mas 2.3 and 2.5. �
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4. Uniform estimate on problem (3-1) with conditions (3-2) and (3-5)–(3-7)

Here, as in [Chen et al. 2002] and [Xin and Yin 2006], we will choose the ap-
propriate multiplier to derive an energy estimate for the linearized problem, that
is the linear parts of problem (3-1) with conditions (3-2) and (3-5)–(3-7). Finding
such a multiplier is rather complicated for the following reasons. First, to verify
the global existence, we need to establish a global estimate independent of x3 for
the solution and its derivatives on the boundary and in the interior of its domain.
This yields several restrictions on the multiplier and makes the computation very
delicate. Second, because our background solution is self-similar on a fixed domain
and depends on the vertex angle of the cone and the speed of the incoming flow,
the coefficients of the linearized problem are variable. This implies that we should
search for the multiplier by solving a system of ordinary differential inequalities
with very complicated coefficients. Third, the boundary condition on the surface
of body is of Neumann type rather than Dirichlet type, and the coefficients of the
nonlinear problem depend on the incoming flow. These two facts induce some
essential differences with the treatment of [Godin 1997], (although the ideas there
will give us some heuristics). In particular, Godin could assume that the shock is
arbitrarily close to the fixed boundary, a fact essential to his analysis. In addition, he
could use the Poincare inequality because of the Dirichlet boundary value; however,
this is not the case in our problem. Finally, compared with the methods in [Chen
et al. 2002; Xin and Yin 2006], we need to choose the multiplier to overcome the
new difficulties induced by the possible largeness of b0 and the special asymptotic
expansion of the background solution in the isothermal case.

Theorem 4.1 (Energy estimate). Set DT = {1 ≤ x3 ≤ T, b0x3 ≤ r ≤ χ(x3)} for any
T > 1. Assume that ϕ̇ ∈ C2(DT ) satisfies the boundary conditions (3-2) and (3-5),
and |ξ(x3)|+ |x3ξ

′(x3)| ≤ Cε for some small ε > 0 and x3 ∈ [1, T ]. Then for fixed
µ ∈ R, we can choose a multiplier M ϕ̇ = ra( r

x3
)∂3ϕ̇ + x3b( r

x3
)∂r ϕ̇ such that

(4-1) C1T −µ+1
∫ χ(T )

b0T
|∇x3,r ϕ̇(T, r)|2dr + C2

∫ ∫
DT

x−µ

3 |∇x3,r ϕ̇|
2 dr dx3

+C3

∫
0T

x−µ+1
3 |∂3ϕ̇|

2dl + C4

∫
BT

x−µ+1
3 |∂3ϕ̇|

2dl

≤

∫ ∫
DT

x−µ

3 Lϕ̇M ϕ̇dr dx3 + C5

∫
0T

x−µ+1
3 |Bϕ̇|

2dl

+C6

∫ χ(1)

b0

(
|ϕ̇(1, r)|2 + |∂x3 ϕ̇(1, r)|2

)
dr,

where 0T ={1 ≤ x3 ≤ T, r =χ(x3)}, BT ={1 ≤ x3 ≤ T, r = b0x3}, and the positive
constants Ci for i = 1, . . . , 6 are independent of T and ε (but depend on b0, q0 and
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µ). Also,

C4 =

√
Ab0(1 + b2

0)
7/2

2q0
+ O(q−2

0 ) + O(e−m0q2
0 ),

C5 =
C(b0, µ)

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 ),

with C(b0, µ) > 0 a constant depending only on b0 and µ.

Remark 4.2. The values of constants C4 and C5 will play an important role in the
energy estimates for the nonlinear problem (3-1), (3-2), (3-5)–(3-7); see Section
5. By the choices of C4 and C5, together with the shock equations (3-5) and (3-6),
we can show that the term C5

∫
0T

x−µ+1
3 |Bϕ̇|

2dl can be absorbed by the left side
of (4-1).

Proof. Integrating by parts, we have

(4-2)
∫∫

DT

x−µ

3 Lϕ̇M ϕ̇dr dx3 = T −µ

∫ χ(T )

b0T
K3(T, r)dr −

∫ χ(1)

b0

K3(1, r)dr

+

∫
BT

x−µ

3 (b0K3 − K4)dl +

∫
0T

x−µ

3 (K4 − χ ′K3)dl.

+

∫∫
DT

x−µ

3

(
K0(∂3ϕ̇)2

+ K1(∂r ϕ̇)2
+ K2∂3ϕ̇∂r ϕ̇)

)
drdx3,

where

K0 = −
r∂3a

2
+

x3∂r b
2

− ∂r (r P1a) + r P3a +
µra
2x3

,

K1 = − ∂3(x3 P1b) +
r
2
∂3(P2a) −

x3
2

∂r (P2b) + x3 P4b +
µ

2x3
(2x3 P1b − r P2a),

K2 = − ∂3(x3b) − ∂r (r P2a) + x3 P3b + r P4a + µb,

K3 =
ra
2

(∂3ϕ̇)2
+ x3b∂3ϕ̇∂r ϕ̇ + (x3 P1b −

r P2a
2

)(∂r ϕ̇)2,

K4 = (r P1a −
x3b
2

)(∂3ϕ̇)2
+ r P2a∂3ϕ̇∂r ϕ̇ +

x3 P2b
2

(∂r ϕ̇)2.

We intend to find the positive functions a(r/x3) and b(r/x3) such that all inte-
grals on DT , BT , and t = T in the right hand side of (4-2) are definitely positive and
the integral on 0T gives a suitable control on ϕ̇. This will be done by following
the steps in [Chen et al. 2002]. However, as already mentioned, many concrete
computations will be different from those in [Chen et al. 2002] because of the
possible largeness of b0 and the special asymptotic expansion of the background
solution in Lemmas 2.3 and 2.6.

For the notational convenience, we set

λ̃(s) =
b(s)
sa(s)

.
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Step 1. Estimate of
∫

BT
x−µ

3 (b0K3 − K4)dl.
Using ∂r ϕ̇ = b0∂3ϕ̇ for r = b0x3, a direct computation yields

b0K3 − K4 = x3(∂3ϕ̇)2
((

b(b0) − b2
0a(b0)

)(1
2 + b2

0 + b3
0 P1(b0) −

1
2 P2(b0)b2

0
)

+b0a(b0)
(
b0 + b3

0 + b4
0 P1(b0) − b3

0 P2(b0) − P1(b0) − b0 P2(b0)
))

.

It then follows from Lemma 3.2 and a direct computation that

1
2 + b2

0 + b3
0 P1(b0) −

1
2 P2(b0)b2

0

=
(1 + b2

0)
2

2
+

Ab2
0(1 + b2

0)
3

2q2
0

+ O(q−4
0 ) + O(e−m0q2

0 ) > 0.

In addition, as in [Chen et al. 2002], we have

b0 + b3
0 + b4

0 P1(b0) − b3
0 P2(b0) − P1(b0) − b0 P2(b0) = 0.

Thus

b0K3 − K4 = x3(∂3ϕ̇)2b0a(b0)(λ̃(b0) − b0)
( 1

2 + b2
0 + b3

0 P1(b0) −
1
2 P2(b0)b2

0
)
> 0

provided that

(4-3) λ̃(b0) > b0,

which gives a constraint for a(s) and b(s) on s = b0.
In this case, for large q0, we have

(4-4)
∫

BT

x−µ

3 (b0K3 − K4)dl = a(b0)(λ̃(b0) − b0)

×

(
b0(1 + b2

0)
2

2
+

Ab3
0(1 + b2

0)
3

2q2
0

+ O(q−4
0 ) + O(e−m0q2

0 )

) ∫
BT

x−µ+1
3 |∂3ϕ̇|

2dl.

Step 2. Estimate of T −µ
∫ χ(T )

b0T K3(T, r)dl.
On the line x3 = T , we can write K (T, r) as

K3(T, r) = sa(s)T
(

1
2(∂3ϕ̇)2

+ λ̃(s)∂3ϕ̇∂r ϕ̇ +
(
P1λ̃(s) −

1
2 P2

)
(∂r ϕ̇)2

)
.

To ensure K (T, r) > 0, we require

4 = λ̃2(s) − 2(P1λ̃(s) −
1
2 P2) < 0.

This leads to

(4-5) λ1(s) < λ̃(s) < λ2(s).



GLOBAL SHOCK WAVE FOR THE STEADY SUPERSONIC FLOW PAST A CONE 273

Also,

(4-6) T −µ

∫ χ(T )

b0T
K3(T, r)dr ≥ C1T −µ+1

∫ χ(T )

b0T
|∇x3,r ϕ̇(T, r)|2dr,

where C1 > 0 is a constant depending on q0, b0, and µ.

Step 3. Positivity of the integral on DT .
We will choose a(s) and b(s) such that

K0(∂3ϕ̇)2
+ K1(∂r ϕ̇)2

+ K2∂3ϕ̇∂r ϕ̇ ≥ C2((∂3ϕ̇)2
+ ∂r ϕ̇)2),

where C2 > 0 is a constant depending on q0, b0, and µ.
The above estimate holds if K0, K1, and K2 satisfy

K0 > 0 and K 2
2 − 4K0K1 < 0.

Set

Q0 = a(s)(−P ′

1s − P1 + P̃3 +
1
2µs),

Q1 = a(s)
(
−

1
2 P ′

2s2
−

1
2µP2s

)
+ b(s)

(
P ′

1s −
1
2 P ′

2 + (µ − 1)P1 +
P̃4
s

)
,

Q2 = a(s)(−P2 − P ′

2s + P̃4) + b(s)
(
µ − 1 +

P̃3
s

)
.

Then a direct computation yields

K0 = ( 1
2 s2

− P1s)a′(s) +
1
2 b′(s) + Q0,

K1 = −
1
2 P2s2a′(s) + (P1s −

1
2 P2)b′(s) + Q1,

K2 = − P2sa′(s) + sb′(s) + Q2,

and

K 2
2 −4K0K1 =

(
−P2sa′(s)+ sb′(s)

)2
+2Q2

(
−P2sa′(s)+ sb′(s)

)
+ Q2

2 −4Q0 Q1

− 4
(
( 1

2 s2
− P1s)a′(s) +

1
2 b′(s)2

)(
−

1
2 P2s2a′(s) + (P1s −

1
2 P2)b′(s)

)
+ 4Q0

( 1
2 P2s2a′(s) − (P1s −

1
2 P2)b′(s)

)
− 4Q1

(
(1

2 s2
− P1s)a′(s) +

1
2 b′(s)

)
As in [Chen et al. 2002, Step 3], we introduce the notations

a1 = − P2 Q2s + P2 Q0s2
− Q1(s2

− 2P1s),

a2 = Q2s − Q0(2P1s − P2) − Q1,
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and

Y1 = a′(s) +
a1 + a2 P1s

Ãs2 D1
,

Y2 = − P1sa′(s) + b′(s) −
a2(s)

Ã
,

Y3 = −

(
Q0 +

a2(s)

2 Ã
−

(s − P1)(a1 + a2 P1s)

2 Ãs D1

)
,

where Ã = −(P2+s2
−2P1s) and D1 = P2

1 −P2. Then K0 >0 and K 2
2 −4K0K2 <0

are equivalent to

(4-7)
(s2

− P1s)Y1 + Y2 − 2Y3 > 0,

Ãs2 D1Y 2
1 − ÃY 2

2 + 4D1Y 2
3 < 0.

To solve the system (4-7) as in [Chen et al. 2002], we must to study the solv-
ability of the differential system

(4-8) a′(s) +
a1 + a2 P1s

Ãs2 D1
= −

s − P1

s D1

(
b′(s) − P1sa′(s) −

a2

Ã

)
+ k(s)a(s),

b′(s)−P1sa′(s)−
a2

Ã
=

D1

Ã

(√
δ0(s) + k2(s)s2a2(s)D1 + 4Y 2

3 −k(s)sa(s)(s−P1)
)
,

where the new functions δ0(s) > 0 and k(s) > 0 will be determined together with
a(s) and b(s).

In light of Lemma 2.6, if we assume

(4-9) s < λ̃(s) < λ2(s)

then (4-3) and (4-5) hold simultaneously.
We note that the first equation in (4-8) is equivalent to

(4-10)
(

1 +
(s − P1)(λ̃(s) − P1)

D1

)
a′(s)

= −
s − P1(s)

s D1

(
(λ̃(s) + sλ̃′(s))a(s) −

a2

Ã

)
+ k(s)a(s) −

a1 + a2 P1s

Ãs2 D1
.

Under the restrictions of (4-9), Lemma A.1 shows that for large q0

1 +
(s − P1)(λ̃(s) − P1)

D1
> 0.

Thus (4-10) can be written as

(4-11) a′(s) =

(
Q̃0(s) +

D1

D1 + (s − P1)(λ̃(s) − P1)
k(s)

)
a(s),
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where

Q̃0(s) =

−
s−P1

s

(
λ̃(s) + sλ̃′(s) −

a2(s)
Ãa(s)

)
−

a1(s)+a2(s)P1s
Ãs2a(s)

D1 + (s − P1)(λ̃(s) − P1)
.

If we set a(b0)=1, then (4-11) has a unique positive solution a(s) in [b0, s0+η0],
as follows:

a(s) = exp
{∫ s

b0

(
Q̃0(s) +

D1

D1 + (s − P1)(λ̃(s) − P1)
k(s)

)
ds

}
.

By the analogous treatment in [Chen et al. 2002], the second equation in (4-8)
can be changed to

(4-12) A0(s)k2(s) + A1(s)k(s) = A2(s).

where

A0(s) =

( s(λ̃(s) − P1)D1

D1 + (s − P1)(λ̃(s) − P1)
+

D1

Ã
s(s − P1)

)2
−

D3
1s2

Ã2
,

A1(s) = 2
( s(λ̃(s) − P1)D1

D1 + (s − P1)(λ̃(s) − P1)
+

D1

Ã
s(s − P1)

)
×

(
λ̃(s) + sλ̃′(s) −

a2(s)

a(s) Ã
+ s(λ̃(s) − P1)Q̃0(s)

)
,

A2(s) =
D2

1

Ã2

( δ0(s)
a2(s)

+
4Y 2

3 (s)
a2(s)

)
−

(
λ̃(s)+ sλ̃′(s)−

a2(s)

a(s) Ã
+ s(λ̃(s)− P1)Q̃0(s)

)2
.

The Equation (4-12) will have a positive solution k(s) if A0(s)<0 and A2(s)<0.

For the negativity of A0(s), refer to Lemma A.5, and see Lemma A.6 for the
estimate of A1(s). To ensure the negativity of A2(s), as in [Chen et al. 2002], we
will choose λ̃(s) such that

(4-13)
4D2

1Y 2
3 (s)

Ã2a2(s)
<

(
λ̃(s) + sλ̃′(s) + s(λ̃(s) − P1)Q̃0(s) −

a2(s)

a(s) Ã

)2
.

More concretely, we set A2(s) = − 1.
To assure (4-3), (4-5), (4-9), (4-13) and related properties hold, we choose λ̃(s)

as

(4-14) λ̃(s)=
s0 + η0 − s
s0 + η0 − b0

(
1−

1
q2

0

)
λ2(s0)+

s − b0

s0 + η0 − b0

(
s0+

1
q2

0
(λ2(s0)−s0)

)
,

where η0 is a constant given in Section 3.
In this case, Equation (4-12) has the algebraic solution

k(s) =

−A1(s) −

√
A2

1(s) − 4A0(s)

2A0(s)
> 0.
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The corresponding function δ0(s) can be chosen as

δ0(s)=
a2(s) Ã2

D2
1

((
λ̃(s)+sλ̃′(s)+s(λ̃(s)−P1)Q̃0(s)−

a2(s)

a(s) Ã

)2
−

4D2
1Y 2

3 (s)

Ã2a2(s)
−1

)
,

where

a(s) = exp
{∫ s

b0

(
Q̃0(s) +

D1

D1 + (s − P1)(λ̃(s) − P1)
k(s)

)
ds

}
,

b(s) = sλ̃(s)a(s).

Lemma A.4 shows that δ0(s) > 0. Finally, we arrive at

(4-15)
∫ ∫

DT

x−µ

3 (K0(∂3ϕ̇)2
+ K1(∂r ϕ̇)2

+ K2∂3ϕ̇∂r ϕ̇)dx3 dr

≥ C
∫ ∫

DT

x−µ

3 |∇x3,r ϕ̇|
2 dx3 dr.

The function λ̃(s) in (4-14) is chosen to be different from that in [Chen et al.
2002], because we must overcome the new difficulties incurred by the possible
largeness of b0 and working with an isothermal gas. Next we specify the form of
λ̃(s). First, we let its value be close to λ2(s0) on the boundary r = b0x3, so that the
coefficient of x3(∂3ϕ̇)2 in b0K3 − K4 of Step 1 is of O(1/q0). This eliminates the
influence of the possible largeness of b0. Second, we choose its value near s0 on
the shock r = χ(x3) so that the coefficient of

∫
0T

x−µ+1
3 |Bϕ̇|

2dl in the right side
of (4-1) is as “small” as O(1/q2

0 ). This will imply that the term
∫
0T

x−µ+1
3 |Bϕ̇|

2dl
can be absorbed by the left hand side of (4-1), together with the shock equations
(3-5) and (3-6); for details see Section 5. Third, we let the derivative of λ̃(s) be
large, so that (4-13) holds. Finally, the differences of O(1/q0) between λ̃(s0)− s0

and λ̃(b0)−b0 (see the second and third parts of Lemma A.2) will play a crucial role
for overcoming the difficulties induced by the possible largeness of b0; see Lemma
A.8, (4-4) and the expressions for C4 and C5 in (4-1). This will allow the right side
term

∫
0T

x−µ+1
3 |Bϕ̇|

2dl to be absorbed by the left side term
∫

BT
x−µ+1

3 |∂3ϕ̇|
2dl

together with Equation (3-6).

Step 4. The estimate of
∫
0T

x−µ

3 (K4 − χ ′K3)dl.
By the assumption on ξ(x3) in Theorem 4.1, it follows from the expressions of

K3 and K4 that for r = χ(x3)

K4−χ ′K3 = x3b0a(s0)(I +I I ), with
I = β0(∂3ϕ̇)2

+ β1∂3ϕ̇∂r ϕ̇ + β2(∂r ϕ̇)2,

I I =
(
O(e−m0q2

0 ) + O(ε)
)
|∇x3,r ϕ̇|

2,
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where

β0 = P1(s0) − s0 +
1
2(s0 − λ̃(s0)),

β1 = P2(s0) − s2
0 + s0(s0 − λ̃(s0)),

β2 = s0 P2(s0) − s2
0 P1(s0) −

( 1
2 P2(s0) − s0 P1(s0)

)(
s0 − λ̃(s0)

)
.

Noting ∂r ϕ̇ = Bϕ̇ − µ1∂3ϕ̇, we have

I =
(
β0 − µ1β1 + µ2

1β2
)
(∂3ϕ̇)2

+
(
β1 − 2µ1β2

)
Bϕ̇∂3ϕ̇ + β2(Bϕ̇)2.

By Lemma A.8, we have

β0 − µ1β1 + µ2
1β2 = A(1 + b2

0)
4/(4b0q2

0 ) + O(q−3
0 ) + O(e−m0q2

0 ),

β1 − 2µ1β2 = −
√

Ab0(1 + b2
0)

5/2/(2q3
0 ) + O(q−4

0 ) + O(e−m0q2
0 ),

β2 = − Ab0(1 + b2
0)

2/(q2
0 ) + O(q−3

0 ) + O(e−m0q2
0 ).

Noting that inequalities ∂3ϕ̇Bϕ̇ ≤
1
2((Bϕ̇)2

+ (∂3ϕ̇)2) and β1 − 2µ1β2 < 0, we
arrive at

I ≥

( A(1 + b2
0)

4

4b0q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
)
(∂3ϕ̇)2

−

( Ab0(1 + b2
0)

2

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
)
(Bϕ̇)2.

Thus, for r = χ(x3), we have

(4-16)
∫

0T

x−µ

3 (K4 − χ ′K3)dl ≥
(
O(e−m0q2

0 ) + O(ε)
) ∫

0T

x−µ+1
3 |∇x3,r ϕ̇|

2dl

+ a(s0)

∫
0T

x−µ+1
3

(( A(1 + b2
0)

4

4q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
)
(∂3ϕ̇)2

−

( Ab2
0(1 + b2

0)
2

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
)
(Bϕ̇)2

)
dl

with 1 − C(b0, µ)/q0 ≤ a(s0) ≤ C(b0, µ); see Lemma A.7.
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Substituting (4-4), (4-6), (4-15) and (4-16) into (4-2), together with Lemma A.2,
yields

C1T −µ+1
∫ χ(T )

b0T
|∇x3,r ϕ̇(T, r)|2dr + C2

∫ ∫
DT

x−µ

3 |∇x3,r ϕ̇|
2dr dx3

+

( A(1 + b2
0)

4

4q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
) ∫

0T

x−µ+1
3 |∂3ϕ̇|

2dl

+

(√
Ab0(1 + b2

0)
7/2

2q0
+ O(q−2

0 ) + O(e−m0q2
0 )

) ∫
BT

x−µ+1
3 |∂3ϕ̇|

2dl

≤

∫ ∫
DT

x−µ

3 Lϕ̇M ϕ̇dr dx3 + C6

∫ χ(1)

b0

(|ϕ̇(1, r)|2 + |∂3ϕ̇(1, r)|2)dr

+

(C(b0, µ)

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
) ∫

0T

x−µ+1
3 |Bϕ̇|

2dl,

where the constants C1, C2 and C6 are independent of T and ε but depends on q0,
b0 and µ. Therefore, Theorem 4.1 is proved. �

5. Higher-order energy estimates and the proof of Theorem 1.1

To prove Theorem 1.1, we need to obtain higher-order energy estimates, so that
we can derive the decay properties of ∇x3,r ϕ̇ and ξ(x3) for large x3.

Theorem 5.1 (Higher-order energy estimates). Assume that ϕ̇ ∈ Ck0(DT ) and
ξ(x3) ∈ Ck0[1, T ] with k0 ≥ 5 is a solution of (3-1) with the initial boundary
conditions (3-2), (3-5)–(3-7). In addition, assume |ξ(x3)| + |x3ξ

′(x3)| ≤ Cε in
[1, T ], ∑

0≤l≤[k0/2]

x l
3|∇

l+1
x3,r ϕ̇(x3, r)| ≤ Cε,

and ε > 0 is sufficiently small. Then for µ > 0,∫ χ(T )

b0T

∑
0≤l≤k0−1

T 2l−µ+1
|∇

l+1
x3,r ϕ̇(T, r)|2dr +

∫ ∫
DT

∑
0≤l≤k0−1

x2l−µ

3 |∇
l+1
x3,r ϕ̇|

2dr dx3

+

∫
0T

∑
0≤l≤k0−1

x2l−µ+1
3 |∇

l+1
x3,r ϕ̇|

2dl +

∫
BT

∑
0≤l≤k0−1

x2l−µ+1
3 |∇

l+1
x3,r ϕ̇|

2dl

≤ C
(∫ χ(1)

b0

∑
0≤l≤k0

|∇
l
x3,r ϕ̇(1, r)|2dr + ϕ̇2(1, χ(1)) + ϕ̇2(1, b0) + ξ 2(1)

)
.

Here and below C > 0 denotes a generic constant depending on q0, b0, and µ.

Remark 5.2. As in [Chen et al. 2002; Godin 1997; Klainerman and Sideris 1996],
we will use the vector fields that are tangent to the surface of the cone and nearly
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tangential to the shock front. The higher-order energy estimate then follows by the
standard commutation argument.

Proof. Since the vector field S = x3∂3 + r∂r is tangent to the boundary r = b0x3,
then we have ∂r Sm ϕ̇ = b0∂3Sm ϕ̇ on r = b0x3 in view of the boundary condition
(3-2). So we can apply Theorem 4.1 to Sm ϕ̇(0 ≤ m ≤ k0 − 1) and derive

(5-1) T −µ+1
∫ χ(T )

b0T

∑
0≤m≤k0−1

|∇x3,r Sm ϕ̇(T, r)|2dr+

∫
BT

x−µ+1
3

∑
0≤m≤k0−1

|∇x3,r Sm ϕ̇|
2dl

+

∫∫
DT

x−µ

3

∑
0≤m≤k0−1

|∇x3,r Sm ϕ̇|
2drdx3 +

∫
0T

x−µ+1
3

∑
0≤m≤k0−1

|∇x3,r Sm ϕ̇|
2dl

≤ C(q0, b0, µ)

(∫∫
DT

x−µ

3

∑
0≤m≤k0−1

L Sm ϕ̇M Sm ϕ̇drdx3

+

∫
0T

x−µ+1
3

∑
0≤m≤k0−1

|BSm ϕ̇|
2dl +

∫ χ(1)

b0

∑
0≤m≤k0−1

|∇
m
x3,r ϕ̇(1, r)|2dr

)
.

Following the proof procedure in Theorem 5.1 of [Chen et al. 2002], we can
obtain

(5-2)
∫ χ(T )

b0T

∑
0≤l≤k0−1

T 2l−µ+1
|∇

l+1
x3,r ϕ̇(T, r)|2dr +

∫∫
DT

∑
0≤l≤k0−1

x2l−µ

3 |∇
l+1
x3,r ϕ̇|

2drdx3

+

∫
0T

∑
0≤l≤k0−1

x2l−µ+1
3 |∇

l+1
x3,r ϕ̇|

2dl +

∫
BT

∑
0≤l≤k0−1

x2l−µ+1
3 |∇

l+1
x3,r ϕ̇|

2dl

≤ C(q0, b0, µ)

( ∫
0T

∑
0≤l≤k0−2

x2l−µ+1
3 |∇

l+1
x3,r ϕ̇|

2dl +

∫
0T

x−µ+1
3 |ξ |

2dl

+

∫ χ(1)

b0

∑
0≤l≤k0

|∇
l
x3,r ϕ̇(1, r)|2dr

)
.

In particular for k0 = 1, the boundary condition (3-5) and Lemma 3.3 give

(5-3) |Bϕ̇(x3, r)|2 ≤
q2

0

4(1 + b2
0)

2
(1 + O(e−m0q2

0 ))|ξ(x3)|
2
+ Cε2

|∇x3,r ϕ̇|
2.
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Thus it follows from (4-1) and (5-3) that

(5-4) C1T −µ+1
∫ χ(T )

b0T
|∇x3,r ϕ̇(T, r)|2 + C2

∫ ∫
DT

x−µ

3 |∇x3,r ϕ̇|
2drdx3

+

(
A(1 + b2

0)
4

4q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )

) ∫
0T

x−µ+1
3 |∂3ϕ̇|

2dl

+

(√
Ab0(1 + b2

0)
7/2

2q0
+ O(q−2

0 ) + O(e−m0q2
0 )

) ∫
BT

x−µ+1
3 |∂3ϕ̇|

2dl

≤

(
C(b0, µ)+ O(q−1

0 ) + O(e−m0q2
0 )

) ∫
0T

x−µ+1
3 |ξ(x3)|

2dl

+ C6

∫ χ(1)

b0

(|ϕ̇(1, r)|2 + |∂3ϕ̇(1, r)|2)dr.

It then follows from (5-2) and the induction argument that the crucial step for
proving (5-1) is to estimate the first term on the right side of (5-4). We note that it
has a constant factor C(b0, µ) (not a small constant for large b0). We will manage
to show that this term can be absorbed into the left side of (5-4) by using Equation
(3-6).

By the assumptions on ξ(x3), we have

(5-5)
∫

0T

x−µ+1
3 |ξ(x3)|

2dl =

(√
1 + b2

0+O(ε)+O(e−m0q2
0 )

) ∫ T

1
x−µ+1

3 |ξ(x3)|
2dx3.

The term
∫ T

1 x−µ+1
3 |ξ(x3)|

2dx3 can be treated as follows:

∫ T

1
x−µ+1

3 |ξ(x3)|
2dx3 =

∫ T

1
x−µ−1

3 |x3ξ(x3)|
2dx3

≤ 2
∫ T

1
x−µ−1

3

∣∣x3ξ(x3) +
1

U+
ϕ̇(x3, χ(x3))

∣∣2dx3

+ 2
∫ T

1
x−µ−1

3

∣∣ 1
U+

ϕ̇(x3, χ(x3))
∣∣2dx3 ≡ I + II.

Here and below, we use the inequality (x + y)2
≤ 2x2

+ 2y2 repeatedly.
For I, as in [Chen et al. 2002; Godin 1997] for µ > 0, we use the Hardy type

inequality to obtain∫ T

1
z−µ−1u2(z)dz ≤

8
µ2

∫ T

1
z−µ+1

|u′(z)|2dz +
2
µ

u2(1).
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With the boundary condition (3-6) and the assumptions in Theorem 5.1, we have

(5-6) |I| ≤
16
µ2

∫ T

1
x−µ+1

3

∣∣∣∂3

(
x3ξ(x3) +

1
U+

ϕ̇(x3, χ(x3)
)∣∣∣2

dx3

+
2
µ

(
ξ 2(1) + ϕ̇2(1, χ(1))

)
≤ C(b0, µ)

(
ε2

∫ T

1
x−µ+1

3 (|ξ(x3)|
2
+ |∇x3,r ϕ̇(x3, χ(x3))|

2)dx3

+ ξ 2(1) + ϕ̇2(1, χ(1))
)
.

Now we split II into II1 +II2 so that we can estimate II by using the line integral
on r = b0x3 and the double integral in the interior of DT , where

II1 =
4

U 2
+

∫ T

1
x−µ−1

3 |ϕ̇(x3, χ(x3)) − ϕ̇(x3, b0x3)|
2dx3,

II2 =
4

U 2
+

∫ T

1
x−µ−1

3 |ϕ̇(x3, b0x3)|
2dx3.

II1 can be treated as follows:

(5-7) |II1| =
4(1 + b2

0)
2

b2
0q2

0
(1 + O(e−m0q2

0 ))

∫ T

1
x−µ−1

3

(∫ χ(x3)

b0x3

∂r ϕ̇(x3, r)dr
)2

dx3

≤
4(1 + b2

0)
2

b2
0q2

0
(1 + O(e−m0q2

0 ))

∫ T

1
x−µ

3

∫ χ(x3)

b0x3

|∂r ϕ̇(x3, r)|2dr
∣∣∣χ(x3) − b0x3

x3

∣∣∣dx3

≤
(
O(ε) + O(e−m0q2

0 )
) ∫∫

DT

x−µ

3 |∂r ϕ̇(x3, r)|2dr dx3.

Using again the Hardy type inequality and the boundary condition (3-2), we
have

(5-8) |II2| ≤
C(b0, µ)

µq2
0

ϕ̇2(1, b0) +
32(1 + b2

0)
2

µ2b2
0q2

0
(1 + O(e−m0q2

0 ))

×

∫ T

1
x−µ+1

3

∣∣b0∂r ϕ̇(x3, b0x3) + ∂3ϕ̇(x3, b0x3)
∣∣2dx3

=
C(b0, µ)

µq2
0

ϕ̇2(1, b0)+
32(1 + b2

0)
4

µ2b2
0q2

0
(1+O(e−m0q2

0 ))

∫ T

1
x−µ+1

3 |∂3ϕ̇(x3, b0x3)|
2dx3.
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Substituting (5-6), (5-7), and (5-8) into (5-5) and (5-1), we have

(5-9) C1T −µ+1
∫ χ(T )

b0T
|∇x3,r ϕ̇(T, r)|2 + C2

∫ ∫
DT

x−µ

3 |∇x3,r ϕ̇|
2dr dx3

+

( A(1 + b2
0)

4

4q2
0

+ O(q−3
0 ) + O(e−m0q2

0 )
) ∫

0T

x−µ+1
3 |∂3ϕ̇|

2dl

+

(√
Ab0(1 + b2

0)
7/2

2q0
+ O(q−2

0 ) + O(e−m0q2
0 )

) ∫
BT

x−µ+1
3 |∂3ϕ̇|

2dl

≤

(C(b0, µ)

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 ) + O(ε)
) ∫

BT

x−µ+1
3 |∂3ϕ̇|

2dl

+ C6

∫ χ(1)

b0

(|ϕ̇(1, r)|2 + |∂3ϕ̇(1, r)|2)dr.

In this inequality, the main coefficients of
∫

BT
x−µ+1

3 |∂3ϕ̇|
2dl on the left and right

side are respectively
√

Ab0(1 + b2
0)

7/2/(2q0) and C(b0, µ)/q2
0 . Then for large q0,

with fixed b0 and µ, one has

(5-10)

√
Ab0(1 + b2

0)
7/2

2q0
>

C(b0, µ)

q2
0

.

Thus Theorem 5.1 follows from (5-9) and (5-10). �

Proof of Theorem 1.1.
The local existence of the solution to (1-6)–(1-11) can be obtained as mentioned

in Section 3, provided the initial data is smooth and satisfies the compatibility
conditions. If we can show that the maximum norm of ϕ̇, ξ , and their derivatives
decays with a suitable rate in x3, then the solution can be extended continuously
to the whole domain.

It follows from the Sobolev imbedding theorem (see [Godin 1997, Lemma 14])
and the assumptions of Theorem 5.1 that for b0x3 ≤ r ≤ χ(x3) and 1 ≤ x3 ≤ T , we
have

(5-11)
∑

0≤l≤k0−2

|x l
3∇

l+1
x3,r ϕ̇|

2
≤ Cx−1

3

∫ χ(x3)

b0x3

∑
0≤l≤k0−1

|x l
3∇

l+1
x3,r ϕ̇(x3, r)|2dr.

In addition, Theorem 5.1 implies for µ > 0 that

(5-12)
∫ χ(x3)

b0x3

∑
0≤l≤k0−1

|x l
3∇

l+1
x3,r ϕ̇(x3, r)|2dr ≤ Cε2xµ−1

3 .

Hence, combining (5-11) with (5-12) yields
∑

0≤l≤k0−2|x
l
3∇

l+1
x3,r ϕ̇|

2
≤ Cε2xµ−2

3 for
b0x3 ≤ r ≤ χ(x3) and 1 ≤ x3 ≤ T . By using k0 − 2 ≥ [k0/2] + 1, we derive
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l≤[k0/2]+1|x

l
3∇

l+1
x3,r ϕ̇| ≤ Cεxµ/2−1

3 . This, together with the equations (3-5) and

(3-6), yields |ξ(x3)| + |x3ξ
′(x3)| ≤ Cεxµ/2−1

3 . Noting that the constant C is in-
dependent of T and choosing the constant µ with 0 < µ < 2, we obtain a global
C2 solution to the problem (1-6) and (1-7) with conditions (1-8)–(1-11). Since the
initial boundary values are C∞ in (1-8)–(1-11), the regularity of solution can be
improved to C∞, and the proof of Theorem 1.1 is completed. �

Appendix

Here we prove several results used earlier. For simplicity, we denote by C various
positive constants which are independent of q0 but may depend on b0 and µ.

Lemma A.1. Assume that λ̃(s) is given in (4-14), then for large q0, the coefficient
of a′(s) in (4-10) is positive. Specifically,

1 +
(s − P1)(λ̃(s) − P1)

D1
= 1 + O(q−1

0 ) > 0, where D1 = P2
1 − P2.

Proof. It follows from Lemma 3.2, the expression for λ̃(s), and a direct computa-
tion that for large q0

D1(s) =
A(1 + b2

0)
3

q2
0

+ O(q−4
0 ) + O(e−m0q2

0 ) > 0,

s − P1(s) = −
Ab0(1 + b2

0)
2

q2
0

+ O(q−4
0 ) + O(e−m0q2

0 ) < 0,

and λ̃(s) − P1 = O(q−1
0 ). The claim follows. �

Lemma A.2. If q0 is large and λ̃(s) is given in (4-14), then for b0 ≤ s ≤ s0 +η0 we
have

s < λ̃(s) < λ2(s),

λ̃(s0) − s0 =

√
A(1 + b2

0)
3/2

q3
0

+ O(q−4
0 ) + O(e−m0q2

0 ),

λ̃(b0) − b0 =

√
A(1 + b2

0)
3/2

q0
+ O(q−2

0 ) + O(e−m0q2
0 ),

λ̃′(s) = −
1

s0 + η0 − b0

(√
A(1 + b2

0)
3/2

q0
+ O(q−2

0 ) + O(e−m0q2
0 )

)
≤ −

C
q0

em0q2
0 .

Proof. The claims follow directly from Lemmas 2.3–2.6. �
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Lemma A.3. If q0 is large, then

Ã =
A(1 + b2

0)
3

q2
0

+ O(q−4
0 ) + O(e−m0q2

0 ),

Q0 = a(s)
(µ

2
b0 +

2Ab3
0(1 + b2

0)

q2
0

+ O(q−4
0 ) + O(e−m0q2

0 )
)
,

Q1 = a(s)
(2 − µ

2
b3

0 +
Ab0(1 + b2

0)
(
µ − (µ − 4)b4

0

)
2q2

0
+ O(q−4

0 ) + O(e−m0q2
0 )

)
+ b(s)

(
(µ − 1)b0 −

A(1 + b2
0)

2(1 − (µ − 2)b2
0)

b0q2
0

+ O(q−4
0 ) + O(e−m0q2

0 )
)
,

Q2 = a(s)
(

b2
0 +

Ab2
0(−1 + 2b2

0 + 3b4
0)

q2
0

+ O(q−4
0 ) + O(e−m0q2

0 )
)

+ b(s)
(
µ − 1 +

1
q2

0
O(e−m0q2

0 )
)
,

Also, modulo additive terms of O(q−4
0 ) + O(e−m0q2

0 ),

a1(s) =
Ab0(1 + b2

0)
2
(
(µ − 2)b(s) + b2

0

(
a(s) + (2µ − 3)b(s)

)
− (µ − 2)b4

0a(s)
)

q2
0

,

a2(s) =
A(1 + b2

0)
2
(
b(s) − b2

0

(
a(s)µ + (µ − 2)b(s)

)
− b4

0a(s)
)

b0q2
0

.

Proof. Using the expressions for Ã, Qi for i = 0, 1, 2, and a j (s) for j = 1, 2, a
tedious but direct computation verifies the claims; here we also omit the details. �

Lemma A.4. If we choose λ̃(s) as in (4-14), then for fixed µ ∈ R

(A-1)
4D2

1Y 2
3 (s)

Ã2a2(s)
+ 1 <

(
λ̃(s) + sλ̃′(s) + s(λ̃(s) − P1)Q̃0(s) −

a2(s)
a(s) Ã

)2
.

Proof. By Lemmas 3.2 and A.2–A.3, we have the estimates

P1 − s ∼
C
q2

0
, Ã ∼

C
q2

0
,

∣∣∣ai (s)
a(s)

∣∣∣ ∼
C
q2

0
for i = 1, 2,

D1 + (s − P1)(λ̃(s) − P1) ∼
C
q2

0
, λ̃′(s) ≤ −

C
q0

em0q2
0 .

Since

Q̃0(s) =

(P1 − s)λ̃′(s) +
P1−s

s λ̃(s) −
(P1−s)a2(s)

a(s) Ãs
−

a1(s)+a2(s)P1s
a(s) Ãs2

D1 + (s − P1)(λ̃(s) − P1)
,
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we know that the coefficient of (λ̃′(s))2 in the right-hand side of (A.2) is( s D1

D1 + (s − P1)(λ̃(s) − P1)

)2
∼ b2

0.

This means for large q0 the right side of (A-1) is not less than (C/q2
0 )e2m0q2

0 .

In addition,∣∣∣∣ Y3

a(s)

∣∣∣∣ =

∣∣∣∣b(s)
a(s)

(
P ′

1s −
1
2 P ′

2 +
P̃4
s −

P1 P̃3
s

2D1

)
+

(
P1 P ′

2s − P2 P ′

1s + P2 P̃3 − P1 P̃4 −
1
2 P ′

2s2

2D1

)∣∣∣∣ =

∣∣∣∣ b(s)
2b0a(s)

+ O(e−m0q2
0 )

∣∣∣∣ ≤ C.

So the left side of (A-1) is less than C . Thus (A-1) holds for large q0. �

Lemma A.5. For large q0, A0(s) ∼ − C/q2
0 .

Proof. As in [Chen et al. 2002], we factorize A0(s) = A1
0(s)A2

0(s), where

A1
0(s) =

s(λ̃(s) − P1)D1

D1 + (s − P1)(λ̃(s) − P1)
+

D1

Ã
s(s − P1) +

D1

Ã
s
√

D1,

A2
0(s) =

s(λ̃(s) − P1)D1

D1 + (s − P1)(λ̃(s) − P1)
+

D1

Ã
s(s − P1) −

D1

Ã
s
√

D1.

Since Ã = (λ2(s) − s)(s − λ1(s)) and λ1(s) = P1 −
√

D1, we find

A1
0(s) =

s D1
(
(λ̃(s) − P1)(P1 − s +

√
D1) + (s − P1)(λ̃(s) − P1) + D1

)
(λ2(s) − s)(D1 + (s − P1)(λ̃(s) − P1))

=
s D3/2

1 (λ̃(s) − λ1(s))

(λ2(s) − s)
(
D1 + (s − P1)(λ̃(s) − P1)

) .

By Lemma 3.2 and Lemma A.1-Lemma A.3, we arrive at

D3/2
1 ∼

C
q3

0
, λ2(s) − s ∼

C
q0

, λ̃(s) − λ1(s) ∼
C
q0

.

This yields A1
0(s) ∼ C/q0.

In addition,

A2
0(s) =

s D3/2
1 (λ̃(s) − λ2(s))

(λ2(s) − s)(D1 + (s − P1)(λ̃(s) − P1))
,

then by a similar computation, one has A2
0(s) ∼ − C/q0. �

Lemma A.6. If q0 is large, we have |A1(s)| ≤ (C/q2
0 ) exp(m0q2

0 ).
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Proof. Set A1(s) = 2s D1 A1
1(s)A2

1(s) with

A1
1(s) =

λ̃(s) − P1

D1 + (s − P1)(λ̃(s) − P1)
+

s − P1

Ã
,

A2
1(s) = λ̃(s) + sλ̃′(s) −

a2(s)

a(s) Ã
+ s(λ̃(s) − P1)Q̃0(s).

It follows from Lemmas 3.2, 2.6 and A.1–A.3 that λ̃(s)− P1 = λ̃(s)−s +s − P1 =

O(q0
−1) and |A1

1(s)| ≤ Cq0.

We now treat the term A2
1(s). By Lemmas 3.2 and A.1–A.3, we directly observe

that s D1λ̃
′(s)/(D1 + (s − P1)(λ̃(s)− P1)) is the main term of A2

1(s). Moreover, it
follows from the fourth relation of Lemma A.2 that λ̃′(s) ≤ − (C/q0)em0q2

0 . This
means that for large q0 |A2

1(s)| ≤ (C/q0)em0q2
0 .

The claim now follows from Lemma A.1 and the expression for A1(s). �

Lemma A.7. For large q0, we have 1 − C/q0 ≤ a(s0) ≤ C.

Proof. After noting

a(s0) = exp
{∫ s0

b0

(
Q̃0(s) +

D1

D1 + (s − P1)(λ̃(s) − P1)
k(s)

)
ds

}
,

a direct computation yields

Q̃0(s) =
1

A(1+b2
0)

3

q2
0

+ O(q−3
0 )

×

{
−

1
s0 + η0 − b0

(
A3/2b0(1 + b2

0)
7/2

q3
0

+ O(q−4
0 )

)
+ O(q−2

0 ) + O(1)

}
,

then, together with (i) of Lemma 2.3, we have∫ s0

b0

Q̃0(s)ds = O(q−1
0 ).

In addition, by Lemmas A.3, A.5, and A.6, and from A2(s) = − 1, we have

0 < k(s) =
2√

A2
1(s) − 4A0(s) − A1(s)

≤ Cem0q2
0 .

Since
D1

D1 + (s − P1)(λ̃(s) − P1)
= 1 + O(q−1

0 ) + O(e−m0q2
0 ),

the lemma follows from∫ s0

b0

D1

D1 + (s − P1)(λ̃(s) − P1)
k(s)ds ≤ C. �
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Lemma A.8.

β0 − µ1β1 + µ2
1β2 =

A(1 + b2
0)

4

4b0q2
0

+ O(q−3
0 ) + O(e−m0q2

0 ),

β1 − 2µ1β2 = −

√
Ab0(1 + b2

0)
5/2

2q3
0

+ O(q−4
0 ) + O(e−m0q2

0 ),

β2 = −
Ab0(1 + b2

0)
2

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 ).

Proof. We note that µ1 = ((1 − b2
0)/(2b0))(1 + O(e−m0q2

0 )). Then by Lemma 3.2,
Lemma A.2, and a direct computation, we have

β0 − µ1β1 + µ2
1β2 =

(
P1(s0) − s0 − µ1(P2(s0) − s2

0) + µ2
1(s0 P2(s0) − s2

0 P1(s0))
)

+

(
s0 − λ̃(s0)

)( 1
2 − µ1s0 − µ2

1
( 1

2 P2(s0) − s0 P1(s0)
))

=

( A(1 + b2
0)

4

4b0q2
0

+ O(q−4
0 )

)
+

((1 + b2
0)

2

8
+ O(q−2

0 )
)

O(q−3
0 ) + O(e−m0q2

0 )

=
A(1 + b2

0)
4

4b0q2
0

+ O(q−3
0 ) + O(e−m0q2

0 ),

and

β2 = s0 P2(s0) − s2
0 P1(s0) −

(
1/2P2(s0) − s0 P1(s0)

)(
s0 − λ̃(s0)

)
=

(
−

Ab0(1 + b2
0)

2

q2
0

+ O(q−4
0 )

)
+

(b2
0

2
+ O(q−2

0 )
)

O(q−3
0 ) + O(e−m0q2

0 )

= −
Ab0(1 + b2

0)
2

q2
0

+ O(q−3
0 ) + O(e−m0q2

0 ).

Also, it follows from Lemmas 2.3 and 3.2 that

β1 − 2µ1β2 = P2(s0) − s2
0 − 2µ1

(
s0 P2(s0) − s2

0 P1(s0)
)

+
(
s0 + 2µ1(

1
2 P2(s0) − s0 P1(s0))

)(
s0 − λ̃(s0)

)
= O(e−m0q2

0 ) +

(b0(1 + b2
0)

2
+ O(q−2

0 )
)(

−

√
A(1 + b2

0)
3/2

q3
0

+ O(q−4
0 )

)
= −

√
Ab0(1 + b2

0)
5/2

2q3
0

+ O(q−4
0 ) + O(e−m0q2

0 ),

where we have used second relation from Lemma A.2 to derive the order of q−3
0

in β1 − 2µ1β2. This yields the constants C3 and C5 in (4-1). �
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