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We consider congruences between Eisenstein series and cusp forms — of
weight k, level N and character χ of conductor N — modulo large prime
divisors of L(1 − k, χ−1). We show that such primes occur in the order of
a “global torsion” group attached to the cusp form f , and (under a certain
hypothesis) also in the denominator of the algebraic part of the rightmost
critical value L f (k − 1). These occurrences are linked by the Bloch–Kato
conjecture.

1. Introduction

We set κ(k) := (−1)k throughout. Let f be a normalised newform in Sk(01(N ), χ).
Here k ≥ 2 and N ≥ 1 are integers, χ : (Z/NZ)× → C× is a character, and

01(N )=

{[
a b
c d

]
∈ SL2(Z)

∣∣ c ≡ 0 (mod N ), d ≡ 1 (mod N )
}
.

If

00(N )=

{[
a b
c d

]
∈ SL2(Z)

∣∣ c ≡ 0 (mod N )
}

then the holomorphic function f on the complex upper half plane satisfies

f
(aτ+b

cτ+d

)
= χ(d)(cτ + d)k f (τ ) for all

[
a b
c d

]
∈ 00(N ).

Since
[

−1
0

0
−1

]
∈ 00(N ) and f 6= 0, necessarily χ(−1) = (−1)k . The Fourier

expansion of f is of the form f (τ ) =
∑

∞

n=1 anqn with a1 = 1, where q = e2π iτ .
The an lie in the ring of integers of some finite extension of Q, and each Hecke
operator Tn satisfies Tn f = an f .

The L-series L f (s) =
∑

∞

n=1 ann−s converges for <(s) > (k + 1)/2 and has an
Euler product. It defines a function with an analytic continuation to the whole
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complex plane, with

(2π)−s0(s)L f (s)=

∫
∞

0
f (iy)ys dy

y
.

In fact L f (s) is the L-function attached to a premotivic structure; see [Diamond
et al. 2004, 1.1.1] for precise definitions. At precisely the points s =1, . . . , k − 1, it
is critical in the sense of [Deligne 1979]. As in [Section 7] there, the above integral
expression for L f (s) enables one to verify the relevant case of Deligne’s conjecture,
which interprets the critical values, up to algebraic multiples, as certain periods.
The relevant case of the Bloch–Kato conjecture [1990] removes the ambiguity
about the algebraic multiple, up to a unit. It predicts that, for 1 ≤ j ≤ k − 1,

(1)
L f ( j)

(2π i) j�κ( j) =

∏
p≤∞

cp( j) # X( j)

#H 0(Q, A( j))#H 0(Q, Ǎ(1 − j))
.

The various terms will be defined in Section 3, but this should be viewed as anal-
ogous to the rank 0 case of the formula of Birch and Swinnerton-Dyer.

For a character χ of conductor N , consider the Eisenstein series Eχ,1k . (We must
exclude the case k = 2, N = 1.) This noncusp form belongs to Mk(01(N ), χ),
and Tp(E

χ,1
k )= (χ(p)+ pk−1)Eχ,1k for every prime p. If λ - 6Nk! divides the

Dirichlet L-value L(1 − k, χ−1), we show, in Section 2, that there is a newform
f ∈ Sk(01(N ), χ) with f ≡ Eχ,1k (mod λ) (as Fourier expansions). Here λ is a
prime divisor for a number field K large enough to contain the values of χ and the
Fourier coefficients of f . (Actually, Proposition 2.1 deals with a somewhat more
general type of Eisenstein series.) Congruences of this type are well known. The
case k = 12, N = 1 is Ramanujan’s congruence τ(n) ≡ σ11(n) (mod 691). The
case k = 2, N = p, λ | p (not satisfying our condition λ - N ) was used by Ribet
[1976].

The various terms in (1) depend on a choice of “S-integral premotivic structure”,
though the ratio of the two sides is independent of the choice. We make a natural
choice as in [Diamond et al. 2004]. Having done this, there is a 2-dimensional
Fλ-vector space A[λ] with Gal(Q/Q)-action, which may be viewed as analogous
to (a twist of) the group of `-torsion points on an elliptic curve. It follows from
the fact that (for all primes p) ap ≡ χ(p)+ pk−1 (mod λ) that A[λ] is reducible,
with composition factors Fλ(χ

−1) and Fλ(1 − k). If the latter is a submodule,
then A[λ](k − 1) has a trivial submodule. This would contribute to the λ-part of
#H 0(Q, A(k −1)) in the denominator of (1) (in the case j = k −1). In [Dummigan
2000], I speculated that this is the case, and, following the proof of [Faltings and
Jordan 1995, Theorem 4.6], I proved it [Dummigan 2005, Theorem 7.3] in the case
N =1, K =Q, which probably means just k =12, `=691; k =16, `=3617; k =18,
`= 43867; k = 20, `= 283 or 617; k = 22, `= 131 or 593; and k = 26, `= 657931.
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In Section 4, we see that the proof carries across easily to the more general case
considered here. Moreover, we show that the λ-parts of the Tamagawa factors
cp(k −1), which appear in the numerator, are trivial, even for p | N . Hence, unless
there is nontrivial λ-torsion in X(k − 1), we expect to see λ in the denominator
of L f (k − 1)/((2π i)k−1�κ(k−1)).

In [Dummigan 2005, Section 8] we noted that this can be observed in Stein’s
[≥ 2008] numerical data in the case N = 1, K = Q. In [Dummigan 2000], we
saw the related (but weaker) fact that (again in the case N = 1, K = Q) λ = `

appears in various “period ratios”, which are essentially ratios of critical values
of L f (s). This was observed numerically, using data of Manin [1973], and also
proved theoretically, using a formula of Kohnen and Zagier [1984]. In Sections 5,
6, and 7, we give a proper proof and explanation, in the general case, of why λ
appears in the denominator of L f (k − 1)/((2π i)k−1�κ(k−1)). We have to impose
the condition that λ is not a congruence prime for f in Sk(01(N ), χ); see before
Lemma 6.2.

The proof uses the well-established principle that modular symbols provide a
bridge between the cohomology of modular curves (with coefficients in appropriate
local systems) and critical values of modular L-functions. To relate congruences
of modular forms to congruences of cohomology classes, we make essential use,
largely via [Diamond et al. 2004], of the Fontaine–Lafaille integral theory of crys-
talline representations, and of Faltings’s comparison theorem.

It is natural to ask whether the condition that λ should not be a congruence prime
for f in Sk(01(N ), χ) is purely a technical convenience or whether it is natural
in that, should it fail, there is a reason why λ might not occur in the denominator
of L f (k − 1)/((2π i)k−1�κ(k−1)). In Section 8 we look into this and see how the
failure of the condition might lead to nontrivial λ-torsion in X(k − 1).

I am grateful to the referee for several helpful remarks, including the obser-
vation that more generally, if there is a newform f ∈ Sk(01(N ), χ) with f ≡

Eχ,1k (mod λn), then λn divides both #H 0(Q, A(k − 1)) and the denominator of
L f (k−1)/((2π i)k−1�κ(k−1)), if λ is not a congruence prime for f in Sk(01(N ), χ).
The existence of such an f may be deduced from λn

| L(1 − k, χ−1) if λ is not a
congruence prime for Sk(01(N )). For simplicity we only consider the case n = 1.

2. Eisenstein series and congruences with cusp forms

Choose a weight k ≥ 3, a level N ≥ 1, and a Dirichlet character χ whose conductor
divides N . Let ψ and φ be primitive Dirichlet characters of conductors u and v,
respectively, with ψφ=χ , uv | N , and χ(−1)= κ(k). Then there is an Eisenstein
series Eψ,φk belonging to Mk(01(N ), χ). In fact, for all ψ, φ as above and positive
t such that t | N/(uv), the Eψ,φk (tτ) form a basis for Mk(01(N ), χ)/Sk(01(N ), χ).
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If uv= N then Eψ,φk is said to be new at N . If k =2, a slight modification is needed:
for N = 1 the (only) triple ψ = φ = 1, t = 1 must be excluded, and for N > 1,
t | N , one uses E1,1

2 (τ )− t E1,1
2 (tτ) in place of E1,1

2 (tτ).
At infinity, the q-expansion is

Eψ,φk (τ )= δ(ψ)L(1 − k, ψ−1φ)+ 2
∞∑

n=1

σ
ψ,φ

k−1 (n)q
n,

where

δ(ψ) :=

{
1 if ψ = 1,
0 otherwise,

and σ
ψ,φ

k−1 (n) :=

∑
m|n,m>0

ψ(n/m)φ(m)mk−1.

For all this, see [Diamond and Shurman 2005, Theorems 4.5.1 and 4.6.2]. Recall
that L(1 − k, ψ−1φ) ∈ Q(ψ−1φ), which is the extension of Q generated by the
values of that character.

Proposition 2.1. Suppose that Eψ,φk is new at level N ≥ 1, with k ≥ 2. Let λ′ - 6N
be a prime of Z[ψ, φ] such that ordλ′(L(1 − k, ψ−1φ)) > 0. Then there exists
a normalised Hecke eigenform f =

∑
∞

n=1 anqn
∈ Sk(01(N ), χ) such that an ≡

σ
ψ,φ

k−1 (n) (mod λ) for all n ≥ 1, where λ | λ′ is a prime of the ring of integers of the
extension of Q(ψ, φ) generated by the an .

Proof. For any Z[1/N ]-algebra R, let Mk(01(N ), R) be the R-module of Katz
modular forms, and let Sk(01(N ), R) be the submodule of cusp forms. See [Edix-
hoven 1997, Section 1] for the definitions and basic properties. Consider Eψ,φk as
an element of Mk(01(N ), R), where R =Z[ζN , ψ, φ](λ′′), λ′′ is any prime divisor of
λ′ and ζN is a primitive N th-root of unity. That we may do this follows from the q-
expansion principle [Katz 1973, 1.6] since X1(N ) is connected and the coefficients
in the q-expansion of Eψ,φk at the cusp ∞ lie in R. According to [Faltings and
Jordan 1995, Theorem 3.20], the constant term of Eψ,φk at each (oriented) cusp is
of the form u L(1 − k, ψ−1φ), with u a unit in Z[1/(2N ), ζN , ψ, φ]. Therefore,
since ordλ′(L(1 − k, ψ−1φ)) > 0, we have Ek

ψ,φ
∈ Sk(01(N ), Fλ′′), where E ψ,φ

denotes the base-change of Eψ,φk to Mk(01(N ), Fλ′′), and Fλ′′ is the residue field.
For each prime p let Tp be the Hecke operator for 01(N ), and for (d, N )= 1 let

〈d〉 be the diamond operator. Then by [Diamond and Shurman 2005, Proposition
5.2.3], Eψ,φk is an eigenfunction for all the Tp and 〈d〉, in fact,

Tp Eψ,φk = (ψ(p)+φ(p)pk−1)Eψ,φk

〈d〉Eψ,φk = χ(d)Eψ,φk .

For p | N this uses the fact that Eψ,φk is new. The same equations hold for E ψ,φ

in Sk(01(N ), Fλ′′). By [Edixhoven 1997, Lemma 1.9], the base-change map from
Sk(01(N ),Z`) to Sk(01(N ), F`) is surjective, where λ | `. (Note that if N 6= 1



EISENSTEIN PRIMES, CRITICAL VALUES AND GLOBAL TORSION 295

or k 6≡ 2 (mod 12), we could allow ` = 3.) The existence of an eigenform f ∈

Sk(01(N )) with eigenvalues satisfying the desired congruences now follows easily
(if not quite directly) from [Deligne and Serre 1974, Lemme 6.11]. That we may
take f ∈ Sk(01(N ), χ) is a consequence of Carayol’s lemma [Edixhoven 1997,
1.10]. �

Note that, since the character χ has maximal conductor N , f is a newform for
01(N ). (Recall that ψφ = χ , and we assumed that Eψ,φk is new.)

3. The Bloch–Kato conjecture

For k ≥2, N ≥1 and a character χ whose conductor divides N , let f =
∑

∞

n=1 anqn
∈

Sk(01(N ), χ) be a normalised newform. Attached to f is its L-function L f (s),
which is defined by the Dirichlet series

∑
∞

n=1 ann−s for <(s) > (k + 1)/2 but
has an analytic continuation to the whole complex plane. Also attached to f is a
“premotivic structure” Mf over Q with coefficients in K , the extension of Q(χ)

generated by the an . Thus there are 2-dimensional K -vector spaces M f,B and
M f,dR (the Betti and de Rham realisations) and, for each finite prime λ of OK ,
a 2-dimensional Kλ-vector space M f,λ, the λ-adic realisation. These come with
various structures and comparison isomorphisms, such as M f,B ⊗K Kλ' M f,λ. See
[Diamond et al. 2004, 1.1.1] for the precise definition of a premotivic structure, and
see [Diamond et al. 2004, 1.6.2] for the construction of Mf . The λ-adic realisation
M f,λ comes with a continuous linear action of Gal(Q/Q). For each prime number
p, the restriction to Gal(Qp/Qp) may be used to define a local L-factor, and the
Euler product is precisely L f (s) [Carayol 1986]. As the L-function attached to
a premotivic structure, its orders of vanishing and leading terms at integer points
may be interpreted via the Bloch–Kato conjecture.

On M f,B there is an action of Gal(C/R), and the eigenspaces M±

f,B are 1-
dimensional. On M f,dR there is a decreasing filtration, with F j a 1-dimensional
space precisely for 1 ≤ j ≤ k − 1. The de Rham isomorphism M f,B ⊗K C '

M f,dR ⊗K C induces isomorphisms between M±

f,B ⊗C and (M f,dR/F)⊗C, where
F := F1

= · · · = Fk−1. Define �± to be the determinants of these isomorphisms.
These depend on the choice of K -bases for M±

f,B and M f,dR/F , so they should be
viewed as elements of C×/K ×. For 1≤ j ≤k−1, the Tate-twisted premotivic struc-
ture Mf ( j) is critical (that is, the above map is an isomorphism, with F = F j ), and
its Deligne period c+ (see [Deligne 1979]) is (2π i) j�κ( j). Deligne’s conjecture
for Mf ( j), known in this case, asserts then that L f ( j)/(2π i) j�κ( j) is an element
of K .

If we choose K -bases for M f,B and M f,dR to pin down �±, then the Bloch–
Kato conjecture predicts the prime factorisation of the element L f ( j)/(2π i) j�κ( j)

of K . In fact, we shall choose an OK -submodule M f,B that generates M f,B over
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K but is not necessarily free, and likewise choose an OK [1/S]-submodule M f,dR

that generates M f,dR over K , where S is the set of primes dividing Nk!. We take
these as in [Diamond et al. 2004, 1.6.2]. They are part of the “S-integral premotivic
structure” associated to f . With these choices, it is still natural to talk of an element
“L f ( j)/(2π i) j�κ( j)” of the group of fractional ideals of OK [1/S], and the Bloch–
Kato conjecture predicts its prime factorisation.

To define the various terms appearing in the conjecture, we shall need the ele-
ments M f,λ of the S-integral premotivic structure, for each prime λ of OK , and
also the crystalline realisation M f,λ-crys for each λ /∈ S. We choose these as in
[Diamond et al. 2004, 1.6.2]. For each λ, M f,λ is a Gal(Q/Q)-stable Oλ-lattice in
M f,λ. Let Aλ := M f,λ/M f,λ. Define Ǎλ := M̌ f,λ/M̌ f,λ, where M̌ f,λ is the vector
space dual to M f,λ, where M̌ f,λ is Oλ-lattice dual to M f,λ, and where both are
acted upon naturally by Gal(Q/Q). Let A := ⊕λAλ, et cetera.

Following [Bloch and Kato 1990, Section 3] for p 6= ` (including p = ∞), let

H 1
f (Qp,M f,λ( j))= ker

(
H 1(Dp,M f,λ( j))→ H 1(Ip,M f,λ( j))

)
.

Here Dp is a decomposition subgroup at a prime above p, Ip is the inertia sub-
group, and M f,λ( j) is a Tate twist of M f,λ, et cetera. The cohomology is for
continuous cocycles and coboundaries. For p = `, let

H 1
f (Q`,M f,λ( j))= ker

(
H 1(D`,M f,λ( j))→ H 1(D`,M f,λ( j)⊗Q`

Bcrys)
)
.

(See [Bloch and Kato 1990, Section 1] for the definition of Fontaine’s ring Bcrys.)
Let H 1

f (Q,M f,λ( j)) be the subspace of those elements of H 1(Q,M f,λ( j)) whose
local restrictions lie in H 1

f (Qp,M f,λ( j)) for all primes p. There is a natural exact
sequence

0 −−−→ M f,λ( j) −−−→ M f,λ( j)
π

−−−→ Aλ( j) −−−→ 0.

Define H 1
f (Qp, Aλ( j)) = π∗H 1

f (Qp,M f,λ( j)), and define the λ-Selmer group
H 1

f (Q, Aλ( j)) to be the subgroup of elements of H 1(Q, Aλ( j)) whose local re-
strictions lie in H 1

f (Qp, Aλ( j)) for all primes p. Note that the condition at p = ∞

is superfluous unless `= 2. Define the Shafarevich–Tate group

X( j)=

⊕
λ

H 1
f (Q, Aλ( j))

π∗H 1
f (Q,M f,λ( j))

.

For a finite prime p, let H 1
f (Qp,M f,λ( j)) be the inverse image of H 1

f (Qp,M f,λ( j))
under the natural map. Suppose now that p 6= `. If k is odd, suppose also that
j 6= (k−1)/2. Then H 0(Qp,M f,λ( j)) is trivial (because the eigenvalues of Frob−1

p
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acting on M f,λ are algebraic integers of absolute value p(k−1)/2). By inflation-
restriction, H 1

f (Qp,M f,λ( j))' (M f,λ( j)Ip)/(1 − Frobp)(M f,λ( j)Ip). This is triv-
ial, since H 0(Qp,M f,λ( j)) is. Hence, using the exact sequence above, we see
H 1

f (Qp,M f,λ( j)) is the torsion part of H 1(Qp,M f,λ( j)). Reusing the triviality
of H 0(Qp,M f,λ( j)), we may identify H 1

f (Qp,M f,λ( j)) with H 0(Qp, Aλ( j)).
This has an Oλ-submodule that is given by (M f,λ( j)Ip/M f,λ( j)Ip)Frobp=id and

whose “order” — that is, λ raised to its length — is the λ-part of Pp(p− j ), where
Pp(p−s)= det(1 − Frob−1

p p−s
| (M f,λ)

Ip) is the Euler factor at p in L f (s) (strictly
speaking, its reciprocal). When p - N , so that M f,λ( j)Ip = M f,λ( j) maps surjec-
tively to Aλ( j), the submodule is the whole of H 0(Qp, Aλ( j)), but in general we
define the λ-part of the Tamagawa factor cp( j) to be the index of the submodule.

It is also possible to define a λ-part of cp( j) for λ | p, using a measure of
H 1

f (Qp,M f,λ( j)) arising from the Bloch–Kato exponential map. See [Bloch and
Kato 1990] for details.

Conjecture 3.1. Suppose that 1 ≤ j ≤ k − 1. Then the Bloch–Kato conjecture
predicts the following equality of fractional ideals of OK [1/S]:

L f ( j)
(2π i) j�κ( j) =

∏
p≤∞

cp( j) # X( j)

#H 0(Q, A( j))#H 0(Q, Ǎ(1 − j))
.

The Tamagawa factor c∞( j) is at worst a power of 2. We shall ignore # X( j),
except to note that it is integral. By [Dummigan et al. 2003, Lemmas 4.3 and 4.6],
for λ - S the λ-part of cp( j) can only possibly be nontrivial if p | N . (The proof
of [Lemma 4.6], that is, the case λ | p, uses V(M f,λ-crys) = M f,λ, where V is the
version of the Fontaine–Lafaille functor used in [Diamond et al. 2004].)

In Section 7 we shall show, under a certain condition, that for f and λ as in
Proposition 2.1 with ψ = χ and φ = 1 (and also λ - k!), we have

ordλ

(
L f (k − 1)

(2π i)k−1�κ(k−1)

)
< 0.

(The condition is that λ is not a “congruence prime” for f in Sk(01, χ).) Given
that ordλ(# X(k −1))≥ 0 and ordλ(cp(k −1))≥ 0 (for p - N it is actually 0), the
Bloch–Kato conjecture predicts that H 0(Q, Aλ(k −1)) or H 0(Q, Ǎλ(2−k)) must
be nonzero. Now Ǎ[λ](2 − k) has composition factors Fλ(χ)(2 − k) and Fλ(1)—
see the first paragraph of Section 4 — neither of which is trivial. Note that Fλ(χ)

denotes a 1-dimensional Fλ-vector space on which Gal(Q/Q) acts via the reduction
of the character χ . The nontriviality of Fλ(χ)(2 − k) follows from ` > k and the
fact that χ is unramified, but nontrivial if k = 2. Hence H 0(Q, Ǎλ(2 − k)) is zero.
We shall confirm in the next section that H 0(Q, Aλ(k − 1)) is nonzero.

In fact, we shall show also that ordλ(cp(k − 1)) = 0 even for p | N , so that the
contribution of H 0(Q, Aλ(k−1)) to the denominator is not cancelled by Tamagawa
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factors. This depends on χ having conductor exactly N , as will the proof that

ordλ

(
L f (k − 1)

(2π i)k−1�κ(k−1)

)
< 0.

We mention that the functional equation relates L f (s) to L fχ−1(k − s). The
form fχ−1 , the twist of f by the character χ−1, lives in Sk(01(N ), χ−1), and it is
congruent to E1,χ−1

k (mod λ).

4. Global torsion and Tamagawa factors

Recall that we have chosen a weight k ≥2, a level N ≥1, a character χ of conductor
precisely N with χ(−1) = κ(k), and a cusp form f ≡ Eχ,1k (mod λ), where λ -
6Nk! is a prime of OK (K being the extension of Q(χ) generated by the Fourier
coefficients an of f at ∞) such that ordλ(L(1−k, χ−1)) > 0. For all primes p - N ,
ap ≡ χ(p) + pk−1 (mod λ). In fact this holds even for p | N , with χ(p) = 0
for such p. Since ap is the trace of Frob−1

p on M f,λ, it follows that A[λ] (that is,
the λ-torsion in Aλ) is reducible as an Fλ[Gal(Q/Q)]-module, with composition
factors Fλ(χ

−1) and Fλ(1 − k). Here we identify χ with a character of Gal(Q/Q)
via an Artin map that sends p to Frobp.

Theorem 4.1. In the situation of the preceding paragraph, A[λ] has Fλ(1 − k) as
a submodule.

Corollary 4.2. H 0(Q, Aλ(k − 1)) is nontrivial.

Before proving this we need a few preliminaries. Diamond, Flach and Guo, in [Di-
amond et al. 2004, 1.4.2], construct “premotivic structures” M(N , χ), M(N , χ)c,
and M(N , χ)! for the space of modular forms of level N and character χ . Fixing
choices of N and χ , we call these M,Mc and M!. (There is a map from Mc to M
with image M!.) Each has Betti, de Rham, and (for each prime λ of OK ) λ-adic
realisations, denoted MB , MdR, Mλ, and so on. The Betti and de Rham realisations
are K -vector spaces and the λ-adic realisations are Kλ-vector spaces. Here we
choose K as above, though the construction works for any number field containing
Q(χ). Temporarily λ denotes any prime of OK . There are various additional
structures and comparison maps, discussed in detail in [Diamond et al. 2004]. For
example, Mλ supports a continuous representation of Gal(Q/Q). There are also S-
integral premotivic structures M,Mc and M!, where S is the set of primes dividing
Nk!. These have realisations MB (an OK -lattice in MB), MdR (an OK [1/S]-lattice
in MdR), and Mλ (a Gal(Q/Q)-stable Oλ-lattice in Mλ) for all primes λ, et cetera.
There are canonical isomorphisms such as MB ⊗OK Oλ ' Mλ. For λ /∈ S there is
also a crystalline realisation Mλ-crys.

Let T′ be the ring generated over OK by all the Hecke operators Tn acting
on Mk(01(N ), χ). There are compatible actions of T′ on all of the above, by
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[Diamond et al. 2004, Proposition 1.3]. Let I be the ideal of T′ generated by
Tp − (χ(p)+ pk−1) for all primes p, and let m be the maximal ideal generated by
I and λ.

For λ /∈ S, Mλ-crys is a filtered Oλ module with graded pieces of degrees 0 and k−

1. There is a Hecke-equivariant isomorphism Filk−1Mλ-crys ' Mk(01(N ), χ, Oλ).
It has an injective Frobenius endomorphism φ and is strongly divisible in the sense
that Mλ-crys = φMλ-crys +φk−1(Filk−1Mλ-crys), where `k−1φk−1 : Filk−1Mλ-crys →

Mλ-crys is the restriction of φ; see the end of [Diamond et al. 2004, 1.4.2]. Similar
statements apply to Mc and M! when the submodule Mk(01(N ), χ, Oλ) is re-
placed by Sk(01(N ), χ, Oλ). When Mλ, Mc,λ, and M!,λ are viewed as Z`-modules
with the Gal(Q`/Q`)-action, they may be identified respectively with V(Mλ-crys),
V(Mc,λ-crys), and V(M!,λ-crys), where V is the covariant version of Fontaine and
Lafaille’s functor used in [Diamond et al. 2004].

Lemma 4.3. Suppose that λ /∈ S, λ - 6, and ordλ(L(1 − k, χ−1)) > 0. The
Fλ[Gal(Q/Q)]-module (M!,λ/λM!,λ)[m] has a submodule that becomes isomor-
phic to Fλ(1−k) upon restriction to Gal(Q/Q(ζN )), and it is the unique subquotient
with this property.

Proof. This is based on the proof of [Faltings and Jordan 1995, Proposition 4.6].
The rank-one Oλ-submodule E of Mk(01(N ), χ, Oλ) generated by the Eisenstein
series Eχ,1k is the kernel of I on Mλ-crys, and so it is stable under φk−1, since φ
commutes with the Hecke operators. Since φ is injective and Mλ-crys is strongly
divisible, we must have φk−1(E)= E, so E is a strongly divisible filtered φ-module.
The functor V takes E to a rank-one Oλ-submodule E of Mλ, which is stable under
Gal(Q`/Q`). In fact, since V respects Hecke operators, we have E = Mλ[I], and
so it is stable under Gal(Q/Q). In fact, E ' Oλ(1−k) as a Gal(Q/Q(ζN ))-module
since M!,λ[I]= 0, and by [Scholl 1990, 1.2.0] the cokernel of the inclusion of M!,λ

in Mλ becomes, upon restriction to Gal(Q/Q(ζN )), isomorphic to a direct sum of
copies of Kλ(1 − k).

Let Mk = Mk(01(N ), χ, Oλ) and Sk = Sk(01(N ), χ, Oλ). The image of E in
Mk/λMk actually lies in Sk/λSk , as noted in the proof of Proposition 2.1. This
gives a φk−1-stable, one-dimensional Fλ-subspace E of the finite-length filtered
Oλ-module M!,λ-crys/λM!,λ-crys. This subspace lies inside Filk−1, and since E is
killed by I, we have E ⊂ (M!,λ-crys/λM!,λ-crys)[m].

We may apply a finite-length version of the functor V (see [Diamond et al.
2004, 1.1.2]) to get a one-dimensional subspace W of (M!,λ/λM!,λ)[m]. Inside
(Mλ/λMλ)[m], W is just the reduction of E and so is isomorphic to Fλ(1 − k)
as a module for Gal(Q/Q(ζN )). Let L be the finite unramified extension of Q`

corresponding to Q(ζN ), and let ψ be any (Oλ-valued) character of Gal(L/Q`).
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By the q-expansion principle, dimFλ(Sk(01(N ), χ, Fλ)[m])= 1, and hence

Filk−1(((M!,λ-crys/λM!,λ-crys)[m])/E)= 0.

But
V(((M!,λ-crys/λM!,λ-crys)[m])/E)= ((M!,λ/λM!,λ)[m])/W,

and the filtered module Fλ{ψ}{1 − k} such that V(Fλ{ψ}{1 − k}) = Fλ(ψ)(1 − k)
has Filk−1Fλ{ψ}{1−k} = Fλ{ψ}{1−k}, and so (M!,λ/λM!,λ)[m] cannot have any
more composition factors isomorphic to Fλ(1 − k) upon restriction to Gal(Q`/L).

�

Proof of Theorem 4.1. By construction, M f,λ is a submodule of M!,λ, and hence
A[λ] is a submodule of (M!,λ/λM!,λ)[m]. In the latter, as above, Fλ(1 − k) has
multiplicity at most one and appears as a submodule, if at all. It remains to observe
that the subquotients of A[λ] are Fλ(χ

−1) and Fλ(1 − k); so the latter must be a
submodule. Note that since χ is unramified at ` and k < `, these factors remain
distinct upon restriction to Gal(Q`/L), the latter being ramified. �

Write χ =
∏

p|N χp, where the conductor of χp is the power of p in N .

Proposition 4.4. In the same situation as above, ordλ(cp( j))= 0 for any integer j
and any prime p | N such that the order of χp is not a power of ` (for example, if
` - p − 1).

Proof. Since ap ≡ χ(p)+ pk−1
= pk−1

6≡ 0 (mod λ), the Euler factor (1−ap p−s)

must have degree 1. Recalling that this Euler factor is the reciprocal of

det(1 − Frob−1
p p−s

| (M f,λ)
Ip),

we see that dim (M f,λ)
Ip = 1. Now ordλ(cp( j)) could be nonzero only if the map

from (M f,λ)
Ip to (Aλ)Ip is not surjective. This would force dim A[λ]Ip > 1, so

A[λ]Ip = A[λ]. This cannot be the case, since the composition factors of A[λ] are
Fλ(1 − k) and Fλ(χ

−1), and χ , having exact conductor N , is ramified at p. The
condition on the order of χp ensures that the reduction (mod λ) of χ (which we
also call χ , by abuse of notation) is still ramified at p. �

5. The Hecke action on boundary symbols

Let R be a commutative ring in which 6 is invertible. Let A be a right R[6]-module,
where 6 = M2(Z)∩GL2(Q). Let D be the group of divisors supported on P1(Q),
with D0 the subgroup of divisors of degree zero. There is a natural left action
of GL2(Q) on D. If 0 is any congruence subgroup of SL2(Z), let Symb0(A) (the
group of A-valued modular symbols for 0) be the set of homomorphisms8 : D0 →

A such that8 | g =8 for all g ∈0, where (8 | g)(D) := (8(gD)) | g. Replacing D0

by D, we likewise define Bound0(A), the group of A-valued boundary symbols for
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0. Restriction from D to D0 provides a natural homomorphism from Bound0(A)
to Symb0(A). A useful reference for modular symbols is [Greenberg and Stevens
1993, Section 4].

For g ∈6, if 0g0 =
⋃

i 0gi then, for 8 ∈ Bound0(A) or Symb0(A), let

8 | T (g) :=
∑

i
8 | gi .

When g =
[1

0
0
p

]
, we abbreviate T (g) to T (p).

From now on, we fix a choice of weight k ≥ 2 and level N , and let 0 = 01(N ).
We let A = Symk−2 R2 be the module of polynomials of degree k − 2 over R in
variables X and Y . The right 6-action is defined by (F | g)(X, Y )= F((X, Y )g∗),
where for

g =

[
a b
c d

]
, we define g∗

:=

[
d −b

−c a

]
.

Sometimes we may write Symbk(01(N ), R) instead of Symb01(N )(Symk−2 R2).
If ψ : (Z/NZ)× → R× is a character, we may view ψ as a character of 00(N )
in the usual way: ψ (

[a
c

b
d

]
) = ψ(d). Then let Symbk(01(N ), ψ, R) := {8 ∈

Symbk(01(N ), R) : 8 | g = ψ(g)8 for all g ∈ 00(N )}. Likewise for Bound. By
[Greenberg and Stevens 1993, Theorem 4.3], Boundk(01(N ), ψ, R)may be viewed
as a subgroup of Symbk(01(N ), ψ, R). In fact, using a theorem of Ash and Stevens
(see Section 6 below) to identify Symbk(01(N ), ψ, R) with a certain compactly
supported cohomology group, we see Boundk(01(N ), ψ, R) is the kernel of the
projection onto parabolic cohomology.

Proposition 5.1. Let χ be an R-valued character of conductor N. There is an
element 8χ of Boundk(01(N ), χ, R) that is supported on the 00(N )-orbit of ∞

and is such that 8χ (∞)= X k−2. For all primes p, it satisfies

8χ | T (p)= (pk−1
+χ(p))8χ .

It spans the submodule of Boundk(01(N ), χ, R) comprising all 8 on which the
T (p) act in this manner.

Proof. The stabiliser of ∞ in 01(N ) is the subgroup generated by
[ 1

0
1
1

]
. The

submodule of Symk−2 R2 fixed by this subgroup is spanned by X k−2. Therefore,
up to a scalar, we are forced to choose 8χ (∞)= X k−2. Now the values of 8χ on
the 00(N )-orbit of ∞ are determined by 8χ | g = χ(g)8χ , so that 8χ (g∞) =

χ(g)8χ (∞) |g−1 for all g ∈00(N ). We complete the definition of8χ by decreeing
that it take the value 0 outside the 00(N )-orbit of ∞.
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Next we calculate the action of T (p). According to [Diamond and Shurman
2005, Proposition 5.2.1], if p - N then

8χ | T (p)=

p−1∑
j=0

8χ

∣∣∣ [
1 j
0 p

]
+8χ

∣∣∣ [
m n
N p

] [
p 0
0 1

]
,

where mp − nN = 1. In the sum from 0 to p − 1, each gi fixes ∞, so each of
the p terms, evaluated at ∞, is (pX)k−2. If g =

[ m
N

n
p

]
then g ∈ 00(N ), and so

8χ | g = χ(p)8χ ; so (8χ | g)(∞) = χ(p)X k−2. Now
[ p

0
0
1

]
fixes both ∞ and

X k−2. So we find that

(8χ | T (p))(∞)= (pk−1
+χ(p))8χ (∞).

The fact that T (p) commutes with the diamond operators 〈d〉 (see the calculation
in [Diamond and Shurman 2005, p. 169]) allows us to extend this from ∞ to the
whole 00(N )-orbit of ∞.

It remains to sketch a proof of the uniqueness property of 8χ . If ψ and φ are
primitive Dirichlet characters of conductors u and v, respectively, with ψφ = χ

and uv = N , then we may apply the above construction to ψφ−1 and then apply a
twisting operator 8 | Rφ =

∑v−1
a=0 φ(a)8 |

[ 1
0

a
v

]
; see [Greenberg and Stevens 1993,

4.10]. Thus we get some 8 ∈ Boundk(01(N ), χ, R) such that, for all primes p,
8 | T (p)= (φ(p)pk−1

+ψ(p))8. If there were a 8 ∈ Boundk(01(N ), χ, R) that
satisfies 8 | T (p)= (pk−1

+χ(p))8 for all primes p and that is not a multiple of
8χ , then, together with what we have constructed,8 would span over C a space of
dimension greater than that of Mk(01(N ), χ)/Sk(01(N ), χ); recall the first para-
graph of Section 2. This would contradict that Boundk(01(N ), χ,C) has the same
dimension as Mk(01(N ), χ)/Sk(01(N ), χ). (This fact follows from comparing
the dimensions of the graded pieces of Mc,dR and M!,dR.) �

The spaces Symbk(01(N ), χ, R) and Boundk(01(N ), χ, R) are broken into ±

eigenspaces by the involution ι =
[ 1

0
0

−1

]
. It is easy to check that 8χ is in the

κ(k − 2)= κ(k)-eigenspace, that is, 8χ | ι= κ(k)8χ .

6. A congruence of modular symbols

Let R be a commutative ring in which 6 is invertible, A be a right R[6]-module,
and 0 be any congruence subgroup of SL2(Z). Then by a theorem of Ash and
Stevens [1986] [Greenberg and Stevens 1993, Theorem 4.2], there is a natural
isomorphism

Symb0(A)' H 1
c (0\H, A).

Letting 0=0(N ) and A = Symk−2 R2 with R = Oλ, then taking the part on which
00(N ) acts via χ , we get Symbk(01(N ), χ, Oλ) from the left, while from the right,
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following the construction in [Diamond et al. 2004, 1.2–1.4], we get Mc,λ. In other
words:

Lemma 6.1. Symbk(01(N ), χ, Oλ)' Mc,λ.

The action of ι on the left matches the action of Gal(C/R) on the right.
Though it is not necessary for the truth of the lemma, we now put ourselves in

the situation described in the first paragraph of Section 4. Recall that T′ is the ring
generated over OK by all the Hecke operators Tn acting on Mk(01(N ), χ), and I

is the ideal of T′ generated by Tp − (χ(p)+ pk−1) for all primes p. Let If be the
ideal of T′ generated by Tp − ap for all primes p. Define 8f to be any generator
for the free rank-1 Oλ-module Symbk(01(N ), χ, Oλ)

κ(k)
[If ]. Let 8χ be as in

Proposition 5.1. We say that λ is a congruence prime for f in Sk(01(N ), χ) if there
exists g ∈ Sk(01(N ), χ, OK ′) that is orthogonal to f (with K ′ some sufficiently
large finite extension of K ) such that f ≡ g (mod λ′) (where λ′

| λ). By applying
the eigenspace-killing procedure described in the proof below, one may assume
that g is an eigenvector for T′.

Lemma 6.2. Suppose that λ is not a congruence prime for f in Sk(01(N ), χ). We
may choose 8f in such a way that 8f −8χ ∈ λSymbk(01(N ), χ, Oλ).

Proof. Define

M f,E := Mλ[I] ⊕ Mλ[If ],

Mc, f,E := Mc,λ[I] ⊕ Mc,λ[If ],

M f,E := M f,E ∩ Mλ

Mc, f,E := Mc, f,E ∩ Mc,λ.

Since ` > k − 2, the duality morphisms of [Diamond et al. 2004, 1.5] induce per-
fect Oλ-valued pairings between Mc,λ and Mλ, and between M

κ(k)
c,λ and M

κ(k−1)
λ .

Restriction gives a pairing between M
κ(k)
c, f,E and M

κ(k−1)
f,E . Let

vf be a generator for Mκ(k−1)
λ [If ] ∩M

κ(k−1)
f,E ;

vE be a generator for Mκ(k−1)
λ [I] ∩M

κ(k−1)
f,E ;

wf be a generator for Mκ(k)
c,λ [If ] ∩M

κ(k)
f,E ;

wE be a generator for Mκ(k)
c,λ [I] ∩M

κ(k)
f,E .

In fact we choose wf and wE to be the images of 8f and 8χ under the iso-
morphism of Lemma 6.1. We wish to show that wf −wE ∈ λM

κ(k)
c, f,E . Complex

conjugation in Gal(Q/Q) acts on Fλ(1 − k) as κ(k − 1) but on Fλ(χ
−1) as κ(k).

Therefore it must be the former that is spanned by the image of vf in Mλ/λM f,λ.
Applying Lemma 4.3 and choosing scalar multiples appropriately, we find without
losing generality that vf − vE ∈ λM

κ(k−1)
f,E . Let r be the largest integer such that

vf − vE ∈ λr M
κ(k−1)
f,E . Since the Hecke operators Tp (for p - N ) are self-adjoint
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for the pairing, we have 〈wf , vE 〉 = 〈wE , vf 〉 = 0. Now let λ denote also some
uniformiser in Oλ. If vf − vE = λrv, then we have

〈wf , vf 〉 = λr
〈wf , v〉 and 〈wE , vE 〉 = −λr

〈wE , v〉.

If wf and wE do not span M
κ(k)
c, f,E , then we may choose them in such a way that

wf −wE ∈λM
κ(k)
c, f,E , as required. So suppose thatwf andwE do span (Mc, f,E)

κ(k).
By perfectness of the pairing between M

κ(k)
c,λ and M

κ(k−1)
λ , there exists some

g ∈ M
κ(k−1)
λ such that

〈wf , g〉 = 1 and 〈wE , g〉 = 0.

Then g = (vf − h)/λr for some h ∈ M
κ(k−1)
λ , that is, h = vf − λr g. There

is a decomposition of Mκ(k−1)
λ ⊗ K ′

λ′ , when K ′

λ′ is some sufficiently large finite
extension of Kλ, into one-dimensional T′-eigenspaces, all “new” because χ has
conductor N . This parallels the decomposition of Mk(01(N ), χ). The element
h is a linear combination of eigenvectors, with vE and vf excluded, since by de-
sign 〈h, wf 〉 = 〈h, wE 〉 = 0. If there is a system of eigenvalues {bp} such that
ap 6≡ bp (mod λ′) for some p, then by applying (Tp − bp)/(ap − bp), we can kill
the eigenspace corresponding to {bp} in the expression g = (vf −h)/λr . Since h is
necessarily nontrivial, there must be a system of eigenvalues {bp} (corresponding
to some cusp form in Sk(01(N ), χ) different from f ) such that ap ≡ bp (mod λ′)

for every p. In other words, λ is a congruence prime for f in Sk(01(N ), χ). �

7. The denominator of the L-value

Throughout this section, we are in the situation described in the first paragraph
of Section 4. We need to consider the period �κ(k−1). Since we are looking just
at the λ-part of the Bloch–Kato conjecture, this period matters only up to a unit
in O(λ), the localisation at λ of OK . Recall that in Section 3, �± were defined
as determinants of isomorphisms from M±

f,B ⊗ C to (M f,dR/F)⊗ C, calculated
with respect to bases arising from M f,B and M f,dR. (We can choose bases for
M f,B ⊗ O(λ) and M f,dR ⊗ O(λ).) Let ω± be the determinants of isomorphisms
going the other way, that is, from F ⊗ C to M±

f,B ⊗ C, that arise from the inverse
of the comparison isomorphism I : M f,B ⊗ C → M f,dR ⊗ C, also calculated with
respect to bases coming from M f,B and M f,dR.

Lemma 7.1. Up to a unit in O(λ),

ω±
= (2π i)k−1�∓.

Proof. Applying [Deligne 1979, Lemma 5.1.6], we find ω±
= �∓/ det I , where

the determinant is calculated using bases coming from M f,B and M f,dR. Now
det(M f,B)= ηf Mχ (1 − k)B and det(M f,dR)= ηf Mχ (1 − k)dR, in the notation of
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[Diamond et al. 2004, 1.7.3] (ηf is a certain fractional ideal of K and Mχ (1−k) is
a Tate-twist of a Dirichlet motive). We may realise det I as the period of Mχ (1 −

k) with respect to the integral structure Mχ (1 − k), namely G(χ)(2π i)1−k ; see
[Diamond et al. 2004, 1.1.3]). The Gauss sum G(χ) is coprime to λ. �

Recall from Section 4 the premotivic structures Mc, M , and M! associated with
Mk(01(N ), χ), and recall that M! is the image of Mc in M . The premotivic struc-
ture Mf attached to f is M![If ]. Likewise Mf = M![If ]. There are natural
identifications of Filk−1 Mc,dR and Filk−1 M!,dR with Sk(01(N ), χ, K ), such that
Filk−1M f,dR = OK [1/S] f ; see [Diamond et al. 2004, 1.4.2 and 1.6.2].

To f we associate a modular symbol ψf ∈ Symbk(01(N ), χ,C) defined by

ψf ({b} − {a})= (2π i)k−1
∫ b

a
f (τ )(τ X + Y )k−2 dτ.

Via the Ash-Stevens isomorphism we may view it as an element of Mc,B ⊗ C,
which then maps to an element 9f of M!,B ⊗ C. In fact ψf and 9f are killed by
If . The next lemma was used implicitly in [Dummigan et al. 2003, Section 5].

Lemma 7.2. Under the comparison (de Rham) isomorphism M!,dR⊗C→ M!,B⊗C,
the image of f ∈ Filk−1 M f,dR is 9f .

We sketch the reason. As on the line preceding [Diamond et al. 2004, (4)], f cor-
responds to a differential (2π i)k−1 f (τ ) dz⊗k−2 dτ on 01(N )\H, with coefficients
in a certain local system with fibres Symk−2 H 1

dR(Eτ ), where Eτ = C/〈1, τ 〉Z. In
the cohomology of Eτ , the class of dz may be identified with τ X +Y , where X and
Y are certain generators for the integral cohomology of Eτ . Standard arguments
show that the comparison map defined in [Diamond et al. 2004, 1.2.4] (in terms
of resolving a locally constant sheaf) is effected via integration along chains in
01(N )\H.

Theorem 7.3. For f and λ as above, suppose that λ is not a congruence prime for
f in Sk(01(N ), χ). Then

ordλ

(
L f (k − 1)

(2π i)k−1�κ(k−1)

)
< 0.

Proof. Let 8f be a generator of Symbk(01(N ), χ, O(λ))
κ(k)

[If ]. (Tensoring with
Oλ, this can be viewed as the same 8f in Lemma 6.2.) Let θf be a generator
for M

κ(k)
f,B ⊗ O(λ). Say that 8f maps to bθf under the natural map. Say also that

9
κ(k)
f = c8f . Then, using Lemma 7.2, f ∈ Filk−1M f,dR maps to bcθf , and so by

definition, ωκ(k) = bc. By Lemma 7.1, (2π i)k−1�κ(k−1)
= bc up to a unit in O(λ).

The coefficient of X k−2 in 9κ(k)
f ({∞} − {0}) is (2π i)k−1

∫ i∞
0 f (τ )τ k−2 dτ =

0(k − 1)L f (k − 1). Since ` > k − 2, the factor of 0(k − 1) does not matter. By
Lemma 6.2, the coefficient of X k−2 in 8f ({∞} − {0}) is congruent to 1 (mod λ),
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since 8χ ({∞}) = X k−2 and 8χ ({0}) = 0. Hence L f (k − 1) = cu for some unit
u ∈ O(λ). We find now that

L f (k − 1)
(2π i)k−1�κ(k−1) =

cu
bc

=
u
b
,

so it suffices to prove that ordλ(b) > 0. But this is a direct consequence of Lemma
6.2, given that8χ ∈ Boundk(01(N ), χ, O(λ)), which is the kernel of the map from
Symbk(01(N ), χ, O(λ)) to M!,B ⊗ O(λ). �

8. Failure of the congruence prime condition

Suppose that λ is a congruence prime for f in Sk(01(N ), χ). Then (if we make K
big enough) there is another newform g such that f ≡ g (mod λ). Let ρf and ρg be
the λ-adic realisations of Mf and Mg, considered as representations of Gal(Q/Q).
The reductions ρ f and ρg are both extensions of Fλ(χ

−1) by Fλ(1−k). Unlike the
irreducible case, we cannot be sure that they are isomorphic, but it is conceivable
that it could sometimes happen, for example, if dim(M!,λ/λM!,λ)[m] = 2. Let us
consider the case ρ f ' ρg. Then ρf and ρg are both deformations of ρ f . Note
that the space of ρ f is A[λ]. Let r be minimal such that ρf and ρg are different
(mod λr+1). Then

ρg(σ )≡ ρf (σ )(I + λr (θ(σ ))) (mod λr+1)

defines a cocycle θ of Gal(Q/Q), representing a nonzero cohomology class [θ ] ∈

H 1(Q, ad0(ρ f )).
Bearing in mind the composition series for A[λ], we have an exact sequence of

Fλ[Gal(Q/Q)]-modules:

0 −−−→ Fλ(χ, 1 − k) −−−→ ad0(ρ f )
π

−−−→ A[λ](k − 1) −−−→ 0 .

The projection π is evaluation on a generator of the submodule Fλ(1 − k). This
gives us π∗[θ ] ∈ H 1(Q, A[λ](k − 1)). Without going into laborious detail, it is
plausible that sometimes this might give us a nonzero element of the Selmer group
H 1

f (Q, Aλ(k−1)). By finiteness of this Selmer group [Kato 2004], this would give
a nonzero element of λ-torsion in X(k − 1). In (1) (for j = k − 1), this could
cancel the contribution from #H 0(Q, A(k − 1)), making it unnecessary for λ to
occur in the denominator of L f (k − 1)/((2π i)k−1�κ(k−1)).
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