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Volume 233 No. 2 December 2007



PACIFIC JOURNAL OF MATHEMATICS
Vol. 233, No. 2, 2007
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CARLOS ARTURO ESCUDERO, AGUSTÍ REVENTÓS AND GIL SOLANES

We relate the area of a convex set in a 2-dimensional space of constant cur-
vature with some integrals over the curvature radius at its boundary.

1. Introduction

Let M = ∂K be the boundary of a compact convex domain K in R2 of area F .
Then we have the inequality ∫

M

1
k(s)

ds > 2F,(1)

where ds is the arclength measure on M and k = k(s) > 0 is the curvature of M
at the point of parameter s. Equality holds if and only if M is a circle. See for
instance [Escudero and Rodrı́guez 1996] or [Zhou 2007].

Formula (1) is the 2-dimensional analogue of Heintze and Karcher’s inequality:∫
S

1
H

d A > 3V,

where H is the mean curvature of a compact embedded surface S in R3 bounding
a domain of volume V . The inequality assumes H > 0, and equality holds if and
only if S is a standard sphere; see [Ros 1988; Osserman 1990].

Escudero and Reventós [2007] improved equality (1), showing∫
M

1
k(s)

ds = 2(F − Fe),

where Fe ≤ 0 is the (algebraic) area of the domain bounded by the evolute of M .
Equivalently, ∫

M

ρ(s)
2

ds = F − Fe,(2)

where ρ(s)= 1/k(s) is the curvature radius of M at the point of parameter s.
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In this paper we generalize this equality to X2
c , the 2-dimensional complete and

simply connected riemannian manifold of constant curvature c, that is, for c > 0,
the sphere S2

c of radius R = 1/
√

c for c> 0 or, for c< 0, the hyperbolic plane H2
c

(the sphere of imaginary radius R = −i/
√

c). We assume X2
c is oriented.

Using the same techniques as in [Gallego et al. 2005], we obtain a result that
coincides, for c = 0, with formula (2). First, define

Assumption 1.1. Let K be a set in X2
c with smooth regular boundary M . Assume

K is strongly convex if c ≥ 0. If c < 0, assume it is strongly h-convex.

Theorem 1.2. Under Assumption 1.1,∫
M

tanc

(
ρ(s)

2

)
ds = F − Fe,

where ds is the arclength measure on M , F is the area of K , and Fe is the (alge-
braic) area enclosed by the focal set F(M) of M.

The convexity notions used above as well as the generalized tangent function
tanc will be defined next.

2. Preliminaries

Definition 2.1. A domain K ⊂ X2
c is regular if its boundary M admits a regular

parametrization. That is, there is an injective smooth map γ : S1(L)→ M such that
|γ ′(s)| = 1, where L is a constant, S1(L) is the euclidean circle of radius L/2π ,
and s is its arclength parameter.

Note that L is the perimeter of K . By choosing a regular parametrization γ , we
make s the arclength parameter for M as well.

Definition 2.2. A regular domain K ⊂ X2
c is convex if the curvature at every point

of M = ∂K is nonnegative; if the curvature on M is always positive, K is strongly
convex.

The sign of the curvature can be defined using the intrinsic covariant derivative
∇ of X2

c by the condition
∇T T = k N ,

where N is the inward normal vector field and T is a unit tangent vector.
Note that, if c > 0, then K lies in some half sphere of S2

c . If c < 0, we need a
stronger convexity notion.

Definition 2.3. A regular domain K ⊂ H2
c with smooth boundary M is said to be

h-convex if the curvature at every point of M is greater than or equal to
√

−c. If
the same curvature is always greater than

√
−c, the domain is strongly h-convex.
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The hyperbolic disc is strongly h-convex because the curvature k of the boundary
of a disc of radius r in H2

c is given by

k =
√

−c coth(
√

−c r),

and coth(t)≥ 1 for all t ∈ R.
The notion of convexity we give here is equivalent to the usual one of geodesic

convexity. The h-convex sets are also called horocyclically convex sets, because
in this case the arcs of horocycles joining points in K are contained in K .

To deal simultaneously with the euclidean plane, the sphere, and the hyperbolic
plane, we use the functions

snc(t) :=


1

√
−c

sinh(
√

−c t) for c < 0,

t for c = 0,
1

√
c

sin(
√

c t) for c > 0,

and

cnc(t) :=


cosh(

√
−c t) for c < 0,

1 for c = 0,
cos(

√
c t) for c > 0.

Note the identities

c sn2
c(t)+ cn2

c(t)= 1,
cn′

c(t)= − c snc(t),

sn′

c(t)= cnc(t),

cnc(2t)= cn2
c(t)− c sn2

c(t),

snc(2t)= 2 snc(t) cnc(t).

We shall use that the area and the perimeter of a disc in X2
c of radius t are given

respectively by

A(t)=
2π
c
(1 − cnc(t)) and L(t)= 2π snc(t).

Definition 2.4. Let M be the boundary of a convex domain K ⊂ X2
c (make it h-

convex if c < 0). For each point x ∈ M we denote by ρ(x) the curvature radius of
M at x and define it through

k(x)= cotc ρ(x),

where k(x) is the curvature of M at x .

Since coth(t)≥ 1 for all t ∈ R, the curvature radius when c < 0 is only defined
if k(x)≥

√
−c, that is, if K is h-convex.

Definition 2.5. Let M be the boundary of a convex domain K ⊂ X2
c (make it

h-convex if c < 0). The focal set F(M) of M is the set

F(M)= {expx(ρ(x)N (x)); x ∈ M} ⊂ X2
c ,
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where N (x) is the inward unit normal vector to M at x ∈ M .

Recall that y = expx(tv) with |v| = 1 means y = σ(t) where σ(s) is the unique
geodesic such that σ(0)= x and σ ′(0)= v.

The focal set of M is also called the evolute of M . Note that F(M) is locally
smooth and that the normal geodesics to M are tangent to F(M).

We will see that F(M) is the set of critical values of φ(x, t)= expx(t N (x)) for
x ∈ M and t ∈ R.

Definition 2.6. The winding number wind(γ, y) of a curve γ : S1(L)→ X2
c with

respect to a point y ∈ X2
c\γ (S

1(L)) is the mapping degree of the map ϕ : S1(L)→
Ty X2

c defined by the condition ‖ϕ(s)‖ = 1 and expy λ(s)ϕ(s) = γ (s) for some
function λ= λ(s) > 0.

That is, to each point γ (s)we associate the unit tangent vector at y that is tangent
to the unique geodesic joining y and γ (s). We say that ϕ is the winding map with
respect to y associated to γ . Note that ϕ may be thought of as a map of S1(L) into
S1.

It can be seen that wind(γ, y) is equal to the algebraic intersection number of
γ (S1(L)) with an arbitrary geodesic ray emanating from y; see [Guillemin and
Pollack 1974],

By moving y along an arc that does not meet γ (S1(L)), we do not change the
winding number. Hence, the winding number of γ with respect to y is constant
when y stays in a connected component of X2

c\γ (S
1(L)). See [do Carmo 1976,

p. 392].

Definition 2.7. Let M be the boundary of a convex domain K ⊂ X2
c (make it

h-convex if c < 0) and let y /∈ M . We define

wind(M, y)= wind(γ, y),

where γ is a regular parametrization of M such that the basis {γ ′, N } is positive.
We define the winding number of the focal set F(M) by

wind(F(M), y)= wind(γ̃ , y),

where γ̃ (s) = expγ (s)(ρ(s)N (s)) is the parametrization of F(M) induced by the
parametrization γ of M .

Once we fix the parametrization γ , we shall write ρ(s) and N (s) instead of
ρ(γ (s)) and N (γ (s)).

The algebraic area of F(M) is the area enclosed by F(M), counted with sign
and multiplicity. To be precise, we define the area Fe enclosed by F(M) as

Fe =

∫
X2

c

wind(F(M), y)dy.
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Remark 2.8. Let γ be a regular parametrization of the boundary M of a regular
domain, and let ϕ be the winding map associated to γ with respect to y /∈ M . Let
ψ = ϕ ◦ γ−1. Since deg ψ = deg ϕ, and because the degree theorem gives∫

M
ψ∗ dO1 = deg ψ

∫
S1

dO1,

where dO1 is the arclength measure of S1, we have

wind(M, y)=
1

2π

∫
M
ψ∗ dO1.

3. An integral involving the curvature radius

Let M be the boundary of a regular domain K ⊂ X2
c . Consider the set

Mρ = ∪x∈M ({x} × [0, ρ(x)])⊂ M × R,

and the map φ : Mρ → X2
c defined by φ(x, t)= expx(t N (x)). We say that φ is the

focal map of M . Note that φ is a (possibly) noninjective local diffeomorphism in
the interior of Mρ .

Lemma 3.1. Let M be the boundary of a regular domain K ⊂ X2
c , and let φ :

Mρ → X2
c be the focal map. Then

φ∗dy = (cnc(t)− k(s) snc(t)) ds ∧ dt,

where dy is the area element of X2
c , s is the arclength on M , and k(s) is the

curvature of M at γ (s).

Proof. Recall that,

X2
c =


S2

( 1
√

c

)
=

{
(x, y, z) ∈ R3

: x2
+ y2

+ z2
=

1
c
}

if c > 0,

H2
( 1
√

c

)
=

{
(x, y, z) ∈ R(2,1) : x2

+ y2
− z2

=
1
c
, z > 0

}
if c < 0,

where R(2,1) is the Lorentz–Minkowski space.
Using these models, the focal map φ : Mρ → X2

c is given in coordinates by

φ(s, t)= cnc(t)γ (s)+ snc(t)N (s) for all c ∈ R,

where γ : S1(L)→ X2
c is a regular parametrization of M ; see [Ratcliffe 1994].

On the other hand, since dy is a 2-form in X2
c , there is a function p = p(s, t)

such that φ∗dy = p(s, t)ds ∧ dt .
Let us compute p(s, t). Recall

∇γ ′γ ′
= k N and ∇γ ′ N = − kγ ′,
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where ∇ is the intrinsic covariant derivative of X2
c and N is the inward normal

vector field.
We have

p(s, t)= φ∗dy
(
∂

∂s
,
∂

∂t

)
= dy

(
φ∗

(
∂

∂s

)
φ∗

(
∂

∂t

))
= dy

(
(cnc(t)− k(s) snc(t))γ ′(s),−c snc(t)γ (s)+ cnc(t)N (s)

)
.

Let η be the volume element of R3 if c > 0 or of R2,1 if c < 0. Then dy
is the contraction of η with the normal vector field to S2(1/

√
c) or H2(1/

√
c),

respectively. In both cases, the outward normal to X2
c at the point φ(s, t) is the

vector φ(s, t). Hence dyφ(s,t) =
√

c iφ(s,t)η. Note that η(γ, γ ′, N )= 1/
√

c. Hence

p(s, t)=
√

c η(cnc(t)γ (s)+ snc(t)N (s), (cnc(t)− k(s) snc(t))γ ′(s),

−c snc(t)γ (s)+ cnc(t)N (s))

=
√

c η
(
cnc(t)γ (s), (cnc(t)− k(s) snc(t))γ ′(s), cnc(t)N (s)

)
+

√
c η

(
snc(t)N (s), (cnc(t)− k(s) snc(t))γ ′(s),−c snc(t)γ (s)

)
=

√
c (cnc(t)− k(s) snc(t))(cn2

c(t)+ c sn2
c(t))η(γ (s), γ

′(s), N (s))

= (cnc(t)− k(s) snc(t)).

Finally, if c = 0, we have p(s, t)= dy((1 − tk(s))γ ′, N )= (1 − tk(s)). �

Remark 3.2. Observe that p(s, t) = cnc(t) − k(s) snc(t) ≥ 0 if and only if
cotc ρ(s) = k(s) ≤ cotc(t), that is, if and only if t ≤ ρ(s). This is the situation
in the hypothesis of Lemma 3.1.

Definition 3.3. Let K be a convex set in X2
c with smooth regular boundary M , and

let y ∈ X2
c . Let h y : M → R be the distance function to y, that is, h y(x)= d(x, y).

Let x ∈ M be a critical point of h y . We say that x is a ρ-critical point of h y if
d(x, y)≤ ρ(x), where ρ(x) is the curvature radius of M at x .

Note that if x is a ρ-critical point of h y , then y = expx(t N (x)) with 0 ≤ t ≤ ρ(x).

Theorem 3.4. Under Assumption 1.1,∫
X2

c

νρ(y) dy =

∫
M

tanc

(ρ(s)
2

)
ds,

where νρ(y) is the number of ρ-critical points of the distance function h y , s is the
arclength of M , and ρ(s) is the curvature radius of M at γ (s).

Proof. Applying the coarea formula to the focal map φ, we have∫
φ(Mρ)

#(φ−1(y))dy =

∫
Mρ

|φ∗dy|.
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Because of its construction, φ catches each point y ∈φ(Mρ) exactly νρ(y) times.
Moreover, since #(φ−1(y))= 0 for y /∈ φ(Mρ), we have

(3)
∫

X2
c

νρ(y)dy =

∫
Mρ

|φ∗dy|.

By Remark 3.2 we have |φ∗dy| = φ∗dy, and hence∫
X2

c

νρ(y)dy =

∫
Mρ

φ∗dy =

∫
M

∫ ρ(s)

0
p(s, t)dt ds

=

∫
M

∫ ρ(s)

0
(cnc(t)− k(s) snc(t))dt ds

= −
1
c

∫
M
(−c snc(ρ(s))+ k(s)(1 − cnc(ρ(s))))ds

= −
1
c

∫
M
(−c snc(ρ(s))+ cotc(ρ(s))(1 − cnc(ρ(s)))) ds

= −
1
c

∫
M

cnc(ρ(s))− 1
snc(ρ(s))

ds =

∫
M

tanc
ρ(s)

2
ds. �

Remark 3.5. Note that A(ρ(s))/L(ρ(s)) = tanc(ρ(s)/2), where A(ρ(s)) and
L(ρ(s)) are respectively the area and the length of the disc of radius ρ(s) in X2

c .
Thus, we have proved∫

X2
c

νρ(y) dy =

∫
M

A(ρ(s))
L(ρ(s))

ds.

Lemma 3.6. Adopt Assumption 1.1. Let y ∈ K , and let x ∈ M be a minimum of the
function h y . Then x is a ρ-critical point of h y .

Proof. Let γ (s) be an arclength parametrization of M . Consider f (s)= h y(γ (s)).
If s0 is such that γ (s0) = x , we have f ′(s0) = 0 and f ′′(s0) > 0. Now f ′(s) =

g(X, γ ′(s)), where g is the metric on X2
c , and X = grad(d(·, y)) is the gradient

field (over X2
c ) of the distance function to y. Then

0< f ′′(s0)= γ ′(g(X, γ ′(s))(s0)

= g(∇γ ′ X, γ ′(s))(s0)+ g(X,∇γ ′γ ′)(s0)= k f − k(s0),

where k f = cotc( f (s0)) is the geodesic curvature of the circle through x with center
y. Thus, we have cotc(ρ(x)) < cotc(h y(x)), which implies ρ(x) > d(x, y); thus x
is a ρ-critical point. �

Lemma 3.7. Under Assumption 1.1, we have

νρ(y)= wind(M, y)− wind(F(M), y) for y /∈ M ∪ F(M).

Proof. Let φ : Mρ → X2
c be the focal map of M , that is, φ(x, t) = expx(t N (x)).
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Following [White 1970], we put

I = {n ∈ Mρ; y = φ(n)} = φ−1(y),

for a fixed generic point y ∈ X2
c\(M ∪F(M)); the last ensures I is finite. We define

e : Mρ − I → T 1
y X2

c

by the condition ||e(n)||= 1 and by expy λ(n)e(n)=φ(n), for some function λ(n).
Let Iε =

⋃
i∈I Ci , where Ci are small, disjoint discs surrounding the points i ∈ I .

Applying Stokes’ theorem to the punctured manifold Mρ − Iε , we obtain

0 =

∫
Mρ−Iε

e∗d(dO1)=

∫
∂(Mρ−Iε)

e∗ dO1.

Note that ∂(Mρ− Iε)= M ∪Me ∪
⋃

i ∂(Ci ), where Me = {(x, ρ(x)); x ∈ M}. Note
also that φ(Me)= F(M).

Because e is an orientation-preserving local diffeomorphism, all the integrals∫
∂(Ci )

e∗ dO1 are equal to 2π . Hence, taking into account the orientations induced
at the boundary, we have∫

M
e∗

∣∣
M dO1 −

∫
Me

e∗
∣∣

Me
dO1 − 2π#(I )= 0.

But #I = νρ(y), so

(4) 1
2π

∫
M

e∗
∣∣

M dO1 −
1

2π

∫
Me

e∗
∣∣

Me
dO1 = νρ(y).

Now we fix a regular parametrization γ : S1(L)→ M . It is clear that e∗
∣∣

M ◦ γ is
the winding map with respect to y associated to γ . It follows from Remark 2.8
that

wind(M, y)=
1

2π

∫
M

e∗
∣∣

M dO1.

Analogously, let j : S1(L)→ Mρ be the map j (s)= (s, ρ(s)), and let γ̃ be the
parametrization of F(M) induced by the parametrization of M . Then ϕ̃= e∗

∣∣
Me

◦ j
is the winding map with respect to y associated to γ̃ . Note that j (S1(L)) = Me.
Thus

wind(F(M), y)= wind(γ̃ , y)= deg ϕ̃ = deg e∗
∣∣

Me
=

1
2π

∫
Me

e∗
∣∣

Me
dO1.

Hence, for each y ∈ X2
c\(M ∪ F(M)), equality (4) becomes

wind(M, y)− wind(F(M), y)= νρ(y). �
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Theorem 3.8. Under Assumption 1.1, we have∫
M

tanc

(
ρ(s)

2

)
ds = F − Fe,

where s is the arclength of M, F is the area of K , and Fe is the (algebraic) area
of the focal set F(M) of M.

Proof. From Theorem 3.4 and Lemma 3.7 we have∫
M

tanc

(
ρ(s)

2

)
ds =

∫
X2

c

(wind(M, y)− wind(F(M), y)) dy.

But wind(M, y)= 1 if y ∈ K , and wind(M, y)= 0 if y /∈ K . The (algebraic) area
of F(M) is, by definition, the integral over X2

c of the winding number of F(M)
with respect to every y ∈ X2

c . �

We also obtain a generalization of formula (1).

Corollary 3.9. Under Assumption 1.1, we have∫
M

tanc

(
ρ(s)

2

)
ds ≥ F.(5)

Equality holds if and only if M is a circle.

Proof. The inequality (5) is a consequence of νρ(y)≥wind(M, y), which is evident
because y /∈ K implies wind(M, y) = 0, whereas y ∈ K implies νρ(y) ≥ 1. Note
that this proves wind(F(M), y) ≤ 0 and Fe ≤ 0. If M is a circle and F(M) is its
center, then Fe = 0, and we have equality in (5).

Finally, if equality holds in (5), we have∫
Y

wind(F(M), y)dy = 0.

Since wind(F(M), y)≤ 0, it must be that wind(F(M), y)= 0 almost everywhere.
If F(M) were not a point we could choose a small ball separated by F(M) in

two connected components. The winding number is a different integer in each of
these parts, which gives a contradiction. �

Remark 3.10. If c = 0 we have
∫

M ρ(s)ds ≥ 2F.

This, together with Theorem 3.8 for c=0, gives Fe ≤0, which is also a consequence
of the Wirtinger inequality. Indeed, that inequality states that if f : R → R is a
C2-function of period 2π , then

(6)
∫ 2π

0
| f ′

|
2dφ ≤

∫ 2π

0
| f ′′

|
2dφ.

Equality holds if and only if f (φ)= a cosφ+b sinφ+c for constants a, b, and c.
See, for instance, [Hopf 1983, p. 52].
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It was seen in [Escudero and Reventós 2007] that

Fe =
1
2

∫ 2π

0
(p′2

− p′′2)dφ,

where p(φ) is the support function of the convex set; hence (6) implies Fe ≤ 0.
Conversely, Fe ≤ 0 for an arbitrary convex set implies (6). Indeed, given f we

consider p = f + c with c constant so that p + p′′ > 0. Now we apply Fe ≤ 0 to
the convex set with support function p.

Thus we have a geometrical interpretation of the Wirtinger inequality: every
convex set K is covered by the geodesic segments joining each point of ∂K to the
corresponding curvature center.

4. The integral of tanc ρ(s)

Note that, in the case c = 0, Theorem 3.8 gives
∫

M ρ(s)/2 ds = F − Fe, which is
formula (2). It can also be written as

1
2

∫
M

1
k(s)

ds = F − Fe,

and, since in X2
c the relation between the curvature k(s) and the curvature radius

ρ(s) is given by k(s)= cotc ρ(s), it seems interesting to estimate∫
M

tanc ρ(s) ds.

For this, we recall the Gauss–Bonnet theorem [Santaló 1976, p. 303]∫
M

k(s) ds + cF = 2π

and the isoperimetric inequality [p. 324]

L2
+ cF2

− 4πF ≥ 0.

We apply these to the convex set K (M = ∂K ) of area F and perimeter L in X2
c :

4πF − cF2
≤ L2

=

(∫
M

√
cotc(ρ(s))

√
tanc(ρ(s)) ds

)2

≤

∫
M

cotc(ρ(s)) ds
∫

M
tanc(ρ(s)) ds

=

∫
M

k(s)ds
∫

M
tanc(ρ(s))ds = (2π − cF)

∫
M

tanc(ρ(s))ds.

Hence we have
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Theorem 4.1. Under Assumption 1.1,

(7)
∫

M
tanc ρ(s)ds ≥ F 4π− cF

2π− cF

Equality holds if and only if M is a circle.

Remark 4.2. Since
1< 4π− cF

2π− cF
≤ 2,

we have ∫
M

tanc ρ(s) ds > F.

This also follows directly from formula (5).
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