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We offer a new approach to the classical topological disk theorem of Reifen-
berg in the codimension-1 case. Our proof, using 1

2 -level sets of the smooth-
ing of the characteristic function of the domain � as approximating surfaces
of ∂�, is much simpler than Reifenberg’s original one (1960). We also ex-
tend the result to parabolic space.

1. Introduction

We start by recalling the remarkable topological disk theorem in Chapter 4 of
the celebrated paper [Reifenberg 1960], which investigated the higher-dimensional
Plateau problem.

Definition 1.1 (Reifenberg flat set). We say that a compact set K ⊆ Bn
1 ⊆ Rn is

a m-dimensional (δ, R)-Reifenberg flat set if for every a ∈ K and r ∈ (0, R] with
|a| + r ≤ 1, there exists an m-plane Ta,r ∈ GL(m, n) such that

HD(K ∩ Bn
r (a), Ta,r ∩ Bn

r (a))≤ δr,

where

HD(A, B)= sup{dist(a, B) : a ∈ A} + sup{dist(b, A) : b ∈ B}.

is the Hausdorff distance.

The definition is only significant for small δ > 0.

Theorem 1.2 (Reifenberg’s topological disc theorem). If K is Reifenberg flat, then
K ∩ Bn

θ is a Cα- topological m-dimensional disk for some θ(δ, R) > 0.

The statement just given is adopted from [Lin and Yang 2002, Chapter 2, p. 58].
Roughly speaking, the theorem shows that if in each ball Br (a) with a ∈ K K lie
in a narrow strip of width less than 2δr and moreover it is δr -dense in the narrow
strip, then the surface is locally Euclidean, more precisely, it is locally a bi-Hölder
image of the unit ball in Rm . It should be noted that the strip is allowed to vary
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both with a and r . A typical example of Reifenberg flat set is the well-known Von
Koch curve, which is a self-similar Jordan curve and a prototypical fractal set. In
the last decade, important works related to this kind of set have appeared: see, for
instance, [Capogna et al. 2005; David et al. 2001; David and Toro 1999; Kenig and
Toro 1997; 1999; Toro 1997].

A complete proof of Theorem 1.2 can be found in Reifenberg’s paper (a sketch is
given in the introduction) or in [Morrey 1966, Chapter 10, p. 439]. In Reifenberg’s
own words, the proof consists of constructing inductively a series of disks which
converge to a piece of the surface and are such that each disk is the image of
the previous one in such a manner that both the mapping function and its inverse
are Lipschit z with constant k where k is fixed throughout the series. Once this
series has been constructed the rest is easy. Simply speaking, he constructed
the approximate sets locally (mainly due to that the Reifenberg flat condition is
a local property), the process involves several averaging processes, each of which
introduces complicated estimations, so the proof is in parts unavoidably messy.
However, in the codimension-1 case, we can construct the approximate sets glob-
ally, and the estimations are also straightforward. This makes us capable of writing
down a direct proof to this theorem.

In the codimension-1 case, the surface can be seen as the boundary of some
domain which we called the Reifenberg flat domain. We will proof this fact by a
locally separating theorem in Section 4 of this paper.

Definition 1.3 (Reifenberg flat domain). We say that a domain � ⊂ Rn is (δ, R)-
Reifenberg flat if for every x ∈∂� and r ∈ (0, R], there exists a unit vector En(x, r)∈
Rn , such that

Br (x) ∩
{

y ∈ Rn
: 〈y − (x − rδEn(x, r)), En(x, r)〉< 0

}
⊂ Br (x)∩�

⊂
{

y ∈ Rn
: 〈y − (x + rδEn(x, r)), En(x, r)〉< 0

}
,

where 〈 · , · 〉 denotes the inner product in Rn .

This kind of domain is geometrically invariant with respect to scaling. The
study of elliptic partial differential equations on this domain is interesting [Byun
and Wang 2004]. In the first part of this paper, we prove the following theorem.

Theorem 1.4. Let � ⊂ Rn be a (δ, R)-Reifenberg flat domain such that ∂� con-
tains the origin O , and suppose that

B2 ∩ {x ∈ Rn
: xn <−δ} ⊂ B2 ∩ �⊂ {x ∈ Rn

: xn < δ}

if δ > 0 is sufficiently small. Then there exist a map

f : B1/2 ∩ {xn = 0} → ∂�∩ B1
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and numbers 0< α < 1 and β > 1 such that

f (B1/2 ∩ {xn = 0})⊃ ∂�∩ B1/4

and

c2|x − y|
β

≤ | f (x)− f (y)| ≤ c1|x − y|
α

for any x, y ∈ B1/2 ∩ {xn = 0}.

The base of our proof is the global construction of the approximating surfaces.
We mollify the characteristic function of � and use the 1

2 -level set of the mollified
function as the approximate set of ∂�. Varying ε, the mollifier scale, we get a series
of approximating surfaces which converge to ∂� as ε tends to zero. There exists
a bi-Lipschitz mapping (normal projection operator of a tubular neighborhood)
from each approximate set to the next one, and the Lipschitz constant is less than
2 (this estimation need some basic computation). Composing these bi-Lipschitz
mappings, we will obtain a bi-Hölder mapping from the (n−1)-disk to ∂�.

Our method is applicable to some degenerate metric spaces instead of the stan-
dard Rn: for instance, the parabolic space Rn+1. Section 5 treats the parabolic
case. We prove that the boundary of a parabolic Reifenberg flat domain is locally
a Cα-topological disk (Theorem 5.3).

Our construction yields an approximation of Reifenberg flat domains by C2

Reifenberg flat domains, both elliptic and parabolic. This type of approximations
allows to extend boundary regularity results for solutions of elliptic and parabolic
equations to nonsmooth domains.

2. Approximating surfaces and bi-Lipschitz maps

Mollifier. Define

η(x)=:

{
C1(1 − |x |

2)3 if |x | ≤ 1,
0 else,

where the constant C1 is adjusted so
∫

Rn η(x) dx = 1. Next define

ηε(x)=: ε−nη(ε−1x).

Thus

ηε(x) ∈ C2
0(B2ε),

and ∫
Rn
ηε(x) dx = 1.
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Level sets. From now on, we will assume � is as in Theorem 1.4. We define

χ�(x) :=

{
1 if x ∈�,

0 otherwise,

χε(x) := χ� ∗ ηε, Lε :=
{

x ∈ Rn
: χε(x)=

1
2

}
.

Curvature estimate of the 1
2 -level set Lε. We make some derivative estimates for

χε near Lε. Fix x ∈ Lε and let y ∈ ∂�, s.t. d =: |y−x | = infz∈∂� |z−x |. Obviously
d < ε. In fact, if ε ≤ d , then Bε(x) ∈ � or Bε(x) ∈ �

c
, that implies χε(x) = 1 or

χε(x)= 0. Set

A1 :=
{
z : 〈z − (y − 4εδEn(y, 4ε)), En(y, 4ε)〉< 0

}
∩ B4ε(y),

A2 :=
{
z : 〈z − (y + 4εδEn(y, 4ε)), En(y, 4ε)〉 ≥ 0

}
∩ B4ε(y)− A1,

A3 := B4ε(y)− (A1 ∪ A2),

T := ∂A1 − ∂B4ε(y).

Lemma 2.1. x ∈ A2 and d ≤ 8εδ.

Proof. If x ∈ A1, since d < ε,

χε(x)=

∫
Bε(x)∩�

ηε(z − x) dz ≥

∫
Bε(x)∩A1

ηε(z − x) dz >
1
2
.

Similarly, if x ∈ A3, then χε(x) < 1
2 . Thus x ∈ A2.

B8εδ(x)∩ ∂� 6= ∅ implies d ≤ 8εδ. �

From now on, we will assume that En(y, 4ε) = −en = (0, . . . , 0,−1). Let ê be
any unit vector in Rn−1 and define e := (ê, 0) ∈ Rn , so 〈e, en〉 = 0.

Lemma 2.2. For any x̄ ∈ A2 ∩ Bε(y), we have

∂

∂en
χε(x̄)≥ C2ε

−1,

∣∣∣∣ ∂∂e
χε(x̄)

∣∣∣∣ ≤ C3δε
−1,∣∣∣∣ ∂2

∂e2χε(x̄)
∣∣∣∣ ≤ C4δε

−2,

∣∣∣∣ ∂2

∂e∂en
χε(x̄)

∣∣∣∣ ≤ C4δε
−2,

∣∣∣∣ ∂2

∂e2
n
χε(x̄)

∣∣∣∣ ≤ C5ε
−2.

Proof.

∂

∂en
χε(x̄)=

(
χ� ∗

∂

∂en
ηε

)
(x̄)=

∫
�

∂

∂en
ηε(x̄ − z) dz

=

∫
A1∩Bε(x̄)

∂

∂en
ηε(x̄ − z) dz +

∫
�∩A2∩Bε(x̄)

∂

∂en
ηε(x̄ − z) dz =: I1 + I2.
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By Green’s Formula,

I1 =

∫
T ∩Bε(x̄)

ηε(x̄ − s) ds ≥

∫
T ∩Bε/2(x̄)

ηε(x̄ − s) ds ≥ C ′

2ε
−n

· C ′′

2

(
ε

2

)n−1

= C
′′′

2 ε
−1,

|I2| ≤

∫
A2∩Bε(x̄)

∣∣∣∣ ∂∂en
ηε(x̄ − z)

∣∣∣∣ dz ≤ C (4)
2 ε−nε−1

· C (5)
2 δεn

= C (6)
2 δε−1.

If C (6)
2 δ < C

′′′

2 /2, set C2 = C
′′′

2 /2. We have

∂

∂e
χε(x̄)=

∫
�

∂

∂e
ηε(x̄ − z) dz

=

∫
A1∩Bε(x̄)

∂

∂e
ηε(x̄ − z) dz +

∫
�∩A2∩Bε(x̄)

∂

∂e
ηε(x̄ − z) dz =: I3 + I4;

but I3 = 0 by Green’s formula, and

|I4| ≤

∫
A2∩Bε(x̄)

∣∣∣∣ ∂∂e
ηε(x̄ − z)

∣∣∣∣ dz ≤ C (6)
2 δε−1,

like I2. Set C3 = C (6)
2 . We have

∂2

∂e2χε(x̄)=

∫
A1∩Bε(x̄)

∂2

∂e2ηε(x̄ − z) dz +

∫
�∩A2∩Bε(x̄)

∂2

∂e2ηε(x̄ − z) dz =: I5 + I6;

now I5 = 0 by Green’s Formula, and

|I6| ≤

∫
A2∩Bε(x̄)

∣∣∣∣ ∂2

∂e2ηε(x̄ − z)
∣∣∣∣ dz ≤ C ′

4ε
−nε−2

· C (5)
2 δεn

= C4δε
−2.

We omit the proofs of the last two inequalities, which are similar to ones above. �

Since ∇χε(x) 6= 0 for x ∈ Lε∩ B1, Lε∩ B1 is a C2 (n−1)-dimensional manifold
and can be represented as the graph of some function from Rn−1 to R locally by
the Implicit Function Theorem. If you take a point x̂ ∈ Lε∩ B1, and ŷ is the nearest
point from ∂� to x̂ , then in A2 ∩ Bε(ŷ), the function can be taken as

xn = ϕ(x1, . . . , xn−1)=: ϕ(xT ).

Lemma 2.3.
∣∣∣∣ ∂∂ ê

ϕ(xT )

∣∣∣∣< C3

C2
δ and

∣∣∣∣ ∂2

∂ ê2ϕ(xT )

∣∣∣∣ ≤ C6δε
−1.

Proof. By the Implicit Function Theorem, we have

∂

∂ ê
ϕ(xT )= −

∂

∂e
χε(xT , ϕ(xT ))

∂

∂en
χε(xT , ϕ(xT ))

,
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so
∣∣∣∣ ∂∂ ê

ϕ(xT )

∣∣∣∣< C3
C2
δ; and

∂2

∂ ê2ϕ(xT )=−

∂2

∂e2χε(xT , ϕ(xT ))+
∂2

∂e2
n
χε ·

(
∂

∂ ê
ϕ(xT )

)2
+2 ∂2

∂e∂en
χε ·

(
∂

∂ ê
ϕ(xT )

)
∂

∂en
χε(xT , ϕ(xT ))

,

so∣∣∣∣ ∂2

∂ ê2ϕ(xT )

∣∣∣∣ ≤

C4δε
−2

+ C5ε
−2

(C3
C2

)2
δ2

+ 2C4δε
−2 C3

C2
δ

C2ε−1 ≤
2C4δε

−2

C2ε−1 = C6δε
−1,

where the second inequality holds for δ small enough. �

Corollary 2.4. The principal curvature of Lε in any tangent direction is less than
C6δε

−1. If C6δ < 1, a tubular neighborhood with radii of ε exists.

Closeness of Lε to ∂�. If E is an (n−1)-dimensional manifold in Rn having a
tubular neighborhood with radii of τ , we denote by N (E, s) an s-tubular neigh-
borhood of E for 0 < s ≤ τ , and by π the normal projection map of the tubular
neighborhood.

Lemma 2.5. ∂�∩ Br−ε ⊂ N (Lε ∩ Br , 4εδ) for r ≤ 1.

Proof. Given any x̄ ∈ ∂�∩ Br−ε, we have

B4ε(x̄) ∩
{

x : 〈x − (x̄ − 4εδEn(x̄, 4ε)), En(x̄, 4ε)〉< 0
}

⊂ B4ε(x̄)∩�

⊂
{

x : 〈x − (x̄ + 4εδEn(x̄, 4ε)), En(x̄, 4ε)〉< 0
}
.

Thus χε(x̄ − 2εEn) = 1, χε(x̄ + 2εEn) = 0. By the continuity of χε, there exists
s ∈ (−1, 1) such that χε(x̄ + 2sεEn) =

1
2 . In fact, |s| < 2δ by the proof of Lemma

2.1. �

Taking ε = 4−k , k = 1, 2, . . . , we gain a series of approximating surfaces L4−k .
Define S0 := {xn = 0}∩ B1/2 and Sk := L4−k ∩ Br(k), where r(k)= 1

2 +
∑k

j=1 4− j .

Corollary 2.6. Sk ∈ N (L4−k+1, 6 · 4−k+1δ).

Proof. For any x ∈ Sk , there exists y ∈ ∂�∩ B5/6 such that |x − y|< 8 · 4−kδ, and
z ∈ L4−k+1 ∩ B1 such that |y − z|< 4 · 4−k+1δ, so |x − z|< 6 · 4−k+1δ. �

Bi-Lipschitz maps.

Lemma 2.7. π : Sk → L4−k+1 is inject, and if δ is small enough, given any z1,
z2

∈ Sk , satisfying |z1
− z2

| ≤ 4−k , then

1
2 |π(z1)−π(z2)| ≤ |z1

− z2
| ≤ 2|π(z1)−π(z2)|.
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Proof. We write x1
=: π(z1), x2

=: π(z2) ∈ L4−k+1 . For simplicity, we will still
write 4−k+1 as ε sometimes. By choosing an appropriate coordinate system, we can
assume that original point O is the nearest point of ∂� to z1, and En(0, 4ε)= −en .
Define

A1 := {x : xn > 4εδ} ∩ B4ε;

A2 := {x : −4εδ ≤ xn ≤ 4εδ} ∩ B4ε;

A3 := {x : xn <−4εδ} ∩ B4ε.

Then A1 ⊂�, A3 ⊂ �̄c, and x1, x2, z1, z2
∈ A2 ∩ Bε.

We assume Lε ∩ Bε is the graph of function xn = ϕ(xT )= ϕ(x1, . . . , xn−1) and
Lε/4 ∩ Bε is the graph of function zn = ψ(zT ). Thus we can write

x1
= (x1

T , ϕ(x
1
T )), x2

= (x2
T , ϕ(x

2
T )),

z1
= (z1

T , ψ(z
1
T )), z2

= (z2
T , ψ(z

2
T )).

We define l =: |x1
T − x2

T |, l̂ =: |z1
T − z2

T |. By assumption,

l̂ ≤ ε/4 and l ≤ ε/2.

By Lemma 2.3 and the Differential Mean Value Theorem,

(2-1) |ϕ(x1
T )−ϕ(x

2
T )| ≤ l ·

C3

C2
δ, |ψ(z1

T )−ψ(z
2
T )| ≤ l̂ ·

C3

C2
δ.

Then

(2-2)
l ≤ |x1

− x2
| ≤

√
l2 + 2

(C3
C2
δ
)2

l2 ≤
11
10 l (using δ small),

l̂ ≤ |z1
− z2

| ≤
11
10 l̂.

Since π(z1)= x1 and π(z2)= x2, there exist ξ, ζ ∈ R, such that

(2-3) z1
= x1

+ ξν(x1) and z2
= x2

+ ζν(x2),

where ν(x1), ν(x2) are inward-pointing unit normal vectors Lε, at x1, x2. Explic-
itly,

νi (x1)=
−Diϕ(x1

T )√
1 +

∣∣∇ϕ(x1
T )

∣∣2
for i = 1, . . . , n − 1,

νn(x1)=
1√

1 +
∣∣∇ϕ(x1

T )
∣∣2
,

and likewise for ν(x2). By Corollary 2.6 we have

(2-4) |ξ |, |ζ | ≤ 6εδ;



328 GUANGHAO HONG AND LIHE WANG

moreover, |νi (x j )|< C3/C2δ for i = 1, . . . , n − 1, and

νn(x j ) >
1√

1 + (C3/C2δ)2
for j = 1, 2,

by Lemma 2.3. These two inequalities show that ν(x j ) is very close to en as δ is
very small.

Subtracting the second equality in (2-3) from the first, we get

z1
i − z2

i = x1
i − x2

i + ξ(νi (x1)− νi (x2))+ (ξ − ζ )νi (x2),(2-5)

z1
n − z2

n = x1
n − x2

n + ξ(νn(x1)− νn(x2))+ (ξ − ζ )νn(x2).(2-6)

By Lemma 2.3 and the Differential Mean Value Theorem, we obtain

|νi (x1)− νi (x2)| ≤ |Diϕ(x2
T )− Diϕ(x1

T )| + |∇ϕ(x1
T )|

2
· |∇ϕ(x2

T )− ∇ϕ(x1
T )|

≤ 2l · C6δε
−1,

and likewise

(2-7) |νn(x1)− νn(x2)| ≤
(
|∇ϕ(x1

T )| + |∇ϕ(x2
T )|

)
·
∣∣∇ϕ(x1

T )− ∇ϕ(x2
T )

∣∣
≤ l · C6δε

−1.

Equality (2-6) implies

|ξ − ζ | ≤

√
1 + (

C3
C2
δ)2

(
|z1

n − z2
n| + |x1

n − x2
n | + |ξ | · |νn(x1)− νn(x2)|

)
≤

√
1 + (

C3
C2
δ)2

(
l̂ ·

C3
C2
δ+ l ·

C3
C2
δ+ 5εδ · l · C6δε

−1
)

≤ C7δ(l + l̂);

here the second inequality follows using (2-1), (2-4) and (2-7).
Using the triangle inequality, (2-5) implies

l̂ ≤ l + |ξ | · |νi (x1)− νi (x2)| + |ξ − ζ | · |νi (x2)| ≤ (1 + C8δ
2)l + C7

C3
C2
δ2l̂.

Thus if δ is small enough, we obtain l̂ ≤
11
10 l. Similarly, one can show that l̂ ≥

9
10 l.

Combining these two bounds with (2-2), we conclude the proof. �

We define gk : Sk−1 → Sk satisfying π(gk(x)) = x for k = 1, 2, . . . , and hk :

S0 → Sk by setting hk =: gk ◦ · · · ◦ g1.

Corollary 2.8. |hk(x)− hk−1(x)| = |gk(hk−1(x))− hk−1(x)|< 6 · 4−k+1δ.
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3. Proof of Theorem 1.4

Corollary 2.8 implies that {x, h1(x), . . . , hk(x), . . . } is a Cauchy sequence. Letting
f (x) be the limit point, Lemma 2.1 indicates that f (x) ∈ ∂�∩ B1. Thus we get a
map

f : B1/2 ∩ {xn = 0} = S0 → ∂�∩ B1.

Given x and y ∈ S0, define d := | f (x)− f (y)|. If d< 10
3 42δ, choose k satisfying

1
3 4−k+2δ ≤

1
10 d < 1

3 4−k+3δ,(3-1)

then by triangle inequality and Corollary 2.8,

8
10 d < |hk(x)− hk(y)|< 12

10 d.(3-2)

From Lemma 2.7,

2−k
|x − y| ≤ |hk(x)− hk(y)| ≤ 2k

|x − y|.(3-3)

However, (3-1) implies

log4 d−1
+ 2 + log4

10
3 + log4 δ ≤ k < log4 d−1

+ 3 + log4
10
3 + log4 δ.

Combining this with (3-2) and (3-3), we obtain

c2|x − y|
β

≤ d ≤ c1|x − y|
α,

where α = 1/(1 + λ), β = 1/(1 − λ), for λ= log4 2 =
1
2 .

Finally, the inclusion f (S0) ⊃ ∂�∩ B1/4 follows from Lemma 2.5. This con-
cludes the proof of Theorem 1.4.

Remark 3.1. From the argument it is easy to see that α and β can be taken arbi-
trarily close to 1 as long as δ is sufficiently small and c1, c2 are allowed to be large.

4. The locally separating theorem

Theorem 4.1. Let K be a set satisfying Definition 1.1 in the case m = n − 1. We
assume that the original point O ∈ K and TO,1 = {x ∈ Rn

: x1 = 0}. Set

A1: = B1 ∩ {x : x1 <−2δ},

A2: = B1 ∩ {x : −2δ ≤ x1 ≤ 2δ},

A3: = B1 ∩ {x : x1 > 2δ}.

(I) The set B3/4 − K has at least two connected components, one containing
A1 ∩ B3/4 and the other A3 ∩ B3/4. We denote by �1 and �2, respectively,
these two components.

(II) B1/2 − K ⊂�1 ∪�2.
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(III) For any a ∈ K ∩ B1/2 and r ∈ (0, R] satisfying |a|+ r < 1/2, Br (a)∩�i 6= ∅
for i = 1, 2.

(IV) K ∩ B1/2 = ∂�1 ∩ B1/2 = ∂�2 ∩ B1/2.

Proof. We prove the disconnectedness of B3/4 − K by contradiction. If B3/4 − K
is connected, it is arcwise connected. So we can choose a path which connect
z1 =: (− 1

4 , 0, . . . , 0) with z2 =: (1
4 , 0, . . . , 0) and is contained in B3/4 − K . We

denote it as γ : [0, l] → B3/4 − K (arclength parameter t is used), which satisfy
γ (0)= z1 and γ (l)= z2. Set d := inft∈[0,l] dist(γ (t), K ). Any path connecting z1

with z2 and contained in B1 must traverse TO,1. So the distance of the path to K
is less than δ. Hence, we assume d < δ at first. We will move γ away from K
constantly and enlarge the distance of the path to k till it is bigger than δ. By this
way, we will get a contradiction.

Let t1 be such that γ (t1) ∈ ∂A1 and γ (t) ∈ A2 ∪ A3, for t ≥ t1. We may as
well assume that γ (t) ∈ A1 for 0 ≤ t < t1 (otherwise, we connect z1 with γ (t1)
by a straight line and take the new path as γ ). Let t∗ be such that γ (t∗) ∈ ∂A3

and γ (t) ∈ A1 ∪ A2, for t ≤ t∗. For the same reason, we assume γ (t) ∈ A3, for
t∗ < t ≤ l.

Now define r1 := dist(γ (t1), K ); obviously, d ≤ r1 < 3δ. Letting y1 be a nearest
point to γ (t1) from K , we consider Ty1,5r1 . Because of

dist(γ (t1), y1)≤ dist(γ (t1), y), for any y ∈ K

and
HD(K ∩ B5r1(y1), Ty1,5r1 ∩ B5r1(y1)) < 5r1δ,

γ (t1)− y1 is almost vertical to Ty1,5r1 , more precisely,

](γ (t1)− y1, T ⊥

y1,5r1
) < C(n)δ.

Hence, if we move γ (t1) to x1 := γ (t1)+ d(γ (t1)− y1), then

dist(x1, K ) > r1 + 0.9d (use the smallness of δ).

If we have chosen tk , rk , yk and xk , then let tk+1 be such that

γ (tk+1) ∈ ∂Brk/3(γ (tk))

satisfying
γ (t) ∈ Brk/3(γ (tk)) for tk ≤ t < tk+1.

Obviously, tk+1 − tk ≥ rk/3 ≥ d/3. Let rk+1, yk+1 and xk+1 be defined as previous
process. Thanks to the lower bound of step length, there exists j ∈ N , such that
t j−1 < t∗

≤ t j .
Let γ̃ be a path consisting of straight line segments xk xk+1 (k = 0, . . . , j),

with x0 = z1 and x j+1 = z2. We claim that dist(γ̃ , K ) > min{1.8d, δ}. In fact,
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The straight lines z1x1 and x j z2 are contained in A1 and A3 respectively, so their
distances to K are greater than δ. For any straight line xk xk+1 (k = 1, . . . , j − 1),
we assume dist(xk xk+1, K )≤ δ. The three relations

](γ (tk)− yk, T ⊥

yk ,5rk
) < C(n)δ,

γ (tk+1) ∈ ∂Brk/3(γ (tk)),

HD(K ∩ B5r1(y1), Ty1,5r1 ∩ B5r1(y1)) < 5r1δ

together imply that

](γ (tk+1)− yk+1, γ (tk)− yk) < C(n)δ.

Therefore, dist(xk xk+1, K ) >min{rk, rk+1} + 0.8d ≥ 1.8d .
If 1.8d < δ, we continue to move γ̃ . After finitely many such moves, we obtain

a path whose distance to K exceeds δ. This proves (I).

For any point b ∈ A2 ∩ B1/2 − K , define db := dist(b, K ). We can move b
(away from K ) to b1 such that dist(b1, K ) ≥ 1.9db by the previous method. If
necessary, we continue to move b1 to b2, . . . . After finite (say i) times, it will
happen that dist(bi , K ) > 3δ. So bi ∈ A1(or A3). However, the straight lines
bkbk+1 (k = 0, . . . , i − 1), where b0 = b, are contained in B1 − K . So b ∈ �1 or
b ∈�2. This proves (II).

For any a ∈ K ∩ B1/2 and r ∈ (0, R] satisfying |a|+ r < 1/2, let J ∈ N be such
that 2J−1r ≤ 4δ < 2J r . We consider B2kr (a) and Ta,2kr for k = 0, 1, . . . , J . For any
k, the set B2kr (a)− N (Ta,2kr , 2krδ) have just two parts. Because of the closeness
of Ta,2kr and Ta,2k+1r , the two parts of B2kr (a)− N (Ta,2kr , 2krδ) meet the two parts
of B2k+1r (a)− N (Ta,2k+1r , 2k+1rδ) respectively. Moreover, due to that 2J r exceed
the width of A2, the two parts of B2J r (a)− N (Ta,2J r , 2J rδ) meet A1 ∩ B3/4 and
A3 ∩ B3/4 respectively. Note that if two connected subset meet, then they belong
to the same connected component. Therefore, the two parts of Br (a)− N (Ta,r , rδ)
belong to �1 and �2 respectively. This proves (III).

(II) and (III) imply (IV). �

Remark 4.2. Together, Theorems 4.1 and 1.4 imply Theorem 1.2 in the case
m = n − 1.

5. Extension to parabolic space

We now turn to the extension of the theorem of parabolic space. We start with
some notations and definitions:

(1) y = (y1, . . . , yn)= (y′, yn) is a typical point of Rn , and y′
∈ Rn−1.
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(2) |y1
− y2

| =: (6n
i=1(y

1
i − y2

i )
2)1/2 and 〈y1, y2

〉 =: 6n
i=1 y1

i y2
i are the standard

Euclidean metric and inner product.

(3) x = (y, t) ∈ Rn
× R is a point of Rn+1.

(4) The parabolic distance between x1 and x2 is defined as

|x1
− x2

|p :=
(
|y1

− y2
|
2
+ |t1

− t2
|
)1/2

,

and Rn+1 with this distance is called parabolic space.

(5) Br (a) := {y ∈ Rn
: |y − a|< r}, where a ∈ Rn , Br =: Br (0).

(6) Tr (a) := {s ∈ Rn−1
: |s − a|< r}, where a ∈ Rn−1.

(7) The parabolic ball is pBr (a) := {x ∈ Rn+1
: |x − a|p < r}, where a ∈ Rn+1.

(8) pTr (a) := {z ∈ R(n−1)+1
: |z − a|p < r}, where a ∈ R(n−1)+1.

(9) A hyperplane in parabolic space Rn+1 has the form Ẽ = E × R, namely,
Ẽ =: {(y, t) ∈ Rn+1

: y ∈ E}, where E is a hyperplane in Euclidean Rn .

(10) For y0
∈ Rn and En ∈ Rn with |En| = 1, we denote by E(y0, En) := {y ∈ Rn

:

〈y−y0, En〉 = 0} the hyperplane passing through y0 with normal vector En in
Rn .

In the codimension-1 case, if we substitute parabolic ball, parabolic hyperplane
and parabolic distance for Euclidean ball, hyperplane and distance in Definition
1.1, we get the definition of a Reifenberg flat set in parabolic space. We give two
simple examples demonstrating what such set looks like. It is easy to verify them.

Example 5.1. In parabolic R × R, the line with slope k, namely, the graph of
t = ky + b is (δ, R)-Reifenberg flat if R < 1

2δk.

Example 5.2. In parabolic R × R, the graph of t = sign(y) k |y|
1+α is (δ, R)-

Reifenberg flat if R <
(
k (δ/2)1+α

)1/(1−α), where 0 ≤ α < 1.

Now we state our second main theorem.

Theorem 5.3. Let � ⊂ Rn+1 be a domain such that the origin O = (0, 0) lies in
∂�, with normal vector En(O, 2)) = en . Let δ > 0 be a (small) constant. Assume
that, for every x1

= (y1, t1)∈ pB2 ∩∂� and every r > 0 satisfying pBr (x1)⊂ pB2,
there exists a unit vector En(x1, r) ∈ Rn such that

pBr (x1)∩ {(y, t) ∈ Rn+1
: 〈y − (y1

− rδEn(x1, r)), En(x1, r)〉< 0}

⊂ pBr (x1)∩�

⊂ {(y, t) ∈ Rn+1
: 〈y − (y1

+ rδEn(x1, r)), En(x1, r)〉< 0}.

Then there exist a map

f : pT1/2 ⊂ R(n−1)+1
→ ∂�∩ pB1
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and numbers 0< α < 1 and β > 1 such that

f (pT1/2)⊃ ∂�∩ pB1/4

and
c2|x1

− x2
|
β
p ≤ | f (x1)− f (x2)|p ≤ c1|x1

− x2
|
α
p

for any x1, x2
∈ pT1/2.

Domains satisfying the “for every. . . ” condition of Theorem 5.3 are called par-
abolic Reifenberg flat. Such domains are geometrically invariant with respect to
parabolic scaling. For the study of parabolic equations on parabolic Reifenberg
flat domains, see [Byun and Wang 2005].

The proof of Theorem 5.3 parallels that of Theorem 1.4, so we omit most details.
Attention should be paid to the degenerate direction t .

The parabolic mollifier. We define

η(y, t) :=

{
C1(

1
2 − |y|

4
− |t |2)3 if |y|

4
+ |t |2 ≤

1
2 ,

0 else,

where the constant C1 is so adjusted that
∫

Rn+1 η(y, t) dy dt = 1. Next define

ηε(y, t) := ε−(n+2)η(ε−1 y, ε−2t)

Thus
ηε(y, t) ∈ C2

0(pBε),

and ∫
Rn+1

ηε(y, t) dy dt = 1.

Level sets. From now on, we assume � is as in Theorem 5.3. Let χ� be the
characteristic function of �, and define

χε := χ� ∗ ηε,

Lε := {x ∈ Rn+1
: χε(x)=

1
2}, �t := {y ∈ Rn, (y, t) ∈�},

Lε,t := {y ∈ Rn
: (y, t) ∈ Lε}, ∂�t := {y ∈ Rn, (y, t) ∈ ∂�}.

Curvature estimate of the 1
2 -level set Lε,t . Fix y0

∈ Lε, t0, and let y1
∈ ∂�t0 be

such that |y1
− y0

| = infy∈∂�t0
|y − y0

| =: d . Obviously, d < ε. Define

A1 :=
{
(y, t) :

〈
y − (y1

− 4εδEn((y1, t0),4ε)), En((y1, t0),4ε)
〉
< 0

}
∩ pB4ε(y1, t0),

A2 :=
{
(y, t) :

〈
y − (y1

+ 4εδEn((y1, t0),4ε)), En((y1, t0),4ε)
〉
≥ 0

}
∩ pB4ε(y1, t0)

A3 := pB4ε(y1, t0)− (A1 ∪ A2),
− A1,

T := ∂A1 − ∂pB4ε(y1, t0).
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Lemma 5.4. (y0, t0) ∈ A2, and d ≤ 8εδ.

Proof. The proof is the same as for Lemma 2.1. �

We assume that en = −En((y1, t0), 4ε). Let ê be any unit vector in Rn−1 and set
e := (ê, 0) ∈ Rn .

Lemma 5.5. For any x̄ = (ȳ, t̄) ∈ A2 ∩ pBε(y1, t0) we have

∂

∂en
χε(x̄)≥ C2ε

−1,

∣∣∣∣ ∂∂e
χε(x̄)

∣∣∣∣ ≤ C3δε
−1,

∣∣∣∣ ∂∂t
χε(x̄)

∣∣∣∣ ≤ C4δε
−2,∣∣∣∣ ∂2

∂e2χε(x̄)
∣∣∣∣ ≤ C5δε

−2,

∣∣∣∣ ∂2

∂e∂en
χε(x̄)

∣∣∣∣ ≤ C5δε
−2,

∣∣∣∣ ∂2

∂e2
n
χε(x̄)

∣∣∣∣ ≤ C6δε
−2,∣∣∣∣ ∂2

∂e∂t
χε(x̄)

∣∣∣∣ ≤ C7δε
−3

∣∣∣∣ ∂2

∂en∂t
χε(x̄)

∣∣∣∣ ≤ C8δε
−3.

Proof of the third inequality.

∂

∂t
χε(x̄)=

∫
�

∂

∂t
ηε(ȳ−y, t̄−t) dy dt

=

∫
A1∩pBε(ȳ,t̄)

∂

∂t
ηε(ȳ−y, t̄−t) dy dt

+

∫
�∩A2∩pBε(ȳ,t̄)

∂

∂t
ηε(ȳ − y, t̄ − t) dy dt

=: I5 + I6;

but I5 = 0 by Green’s formula, and

|I6| ≤

∫
A2∩pBε(ȳ,t̄)

∣∣∣∣ ∂∂t
ηε(ȳ − y, t̄ − t)

∣∣∣∣ dy dt

≤ C ′

4ε
−(n+2)ε−2

· C ′′

4 δε
n+2

= C4δε
−2. �

From the preceding lemma, we know that ∇χε(x) 6= 0 for x ∈ Lε ∩ pB1; thus
Lε∩pB1 is a C2 n-dimensional manifold and can be represent as the graph of some
function from Rn−1

× R to R locally. Take x ∈ Lε ∩ pB1 of the form (y0, t0); then
in A2 ∩ pBε(y1, t0), the function can be taken as

yn = ϕ(y1, . . . , yn−1, t)=: ϕ(yT , t).
Lemma 5.6. ∣∣∣ ∂

∂ ê
ϕ(yT , t)

∣∣∣< C3
C2
δ,

∣∣∣ ∂2

∂ ê2ϕ(yT , t)
∣∣∣ ≤ C9δε

−1,∣∣∣ ∂
∂t
ϕ(yT , t)

∣∣∣< C4
C2
δε−1,

∣∣∣ ∂2

∂ ê∂t
ϕ(yT , t)

∣∣∣ ≤ C10δε
−2.

Proof. The proof is the same as for Lemma 2.3. �
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Corollary 5.7. For any t ∈ (−1, 1), Lε,t ∩ B1 is a C2 (n −1)-dimensional manifold
in Rn . The principal curvature of Lε,t in any tangent direction is less than C9δε

−1.
So a tubular neighborhood with radii ε exists as long as C9δ < 1.

Closeness of Lε to ∂�. Recall from page 326 the notation N (E, s) for an s-tubular
neighborhood of E and π for the corresponding normal projection map. Further,
for F ∈ Rn+1, let Ft =: {y ∈ Rn

: (y, t)∈ F}. If each Ft has a tubular neighborhood
of radius τ , we define the parabolic tubular neighborhood

pN (F, τ ) :=

⋃
t

N (Ft , τ )× {t},

and the corresponding projection map π̃ : pN (F, τ ) → F such that π̃(y, t) =

(πt y, t), where πt is the normal projection operator of N (Ft , τ ).

Lemma 5.8. ∂�∩ pBr−ε ⊂ pN (Lε ∩ pBr , 4εδ), for r ≤ 1.

Proof. Same as for Lemma 2.5. �

Taking ε = 4−k , k = 1, 2, . . . , we obtain a sequence of approximate sets L4−k .
Denote S0 =: {yn = 0}∩ pB1/2, Sk =: L4−k ∩ pBr(k), where r(k)= 1

2 +
∑k

j=1 4− j .

Corollary 5.9. Sk ∈ pN (L4−k+1, 6 · 4−k+1δ).

Proof. Same as for Corollary 2.6. �

Bi-Lipschitz maps.

Lemma 5.10. π̃ : Sk → L4−k+1 is injective, and if δ is small enough, |z1
− z2

|p ≤

4−k , then
1
2 |π̃(z1)− π̃(z2)|p ≤ |z1

− z2
|p ≤ 2|π̃(z1)− π̃(z2)|p.

Proof. We write x1
=: π̃(z1) = (y1, t1), x2

=: π̃(z2) = (y2, t2) ∈ L4−k+1 , and
z1

= (y3, t1), z2
= (y4, t2)∈Sk . For simplicity, we still write 4−k+1 as ε sometimes.

We assume that O is the nearest point of ∂� ∩ {t = t1
} to z1, by choosing a

appropriate coordinate system, we can let O = (0, 0) (that means t1
= 0) and

En(0, 4ε)= −en . Define

A1 := {(y, t) : yn > 4εδ} ∩ pB4ε,

A2 := {(y, t) : −4εδ ≤ yn ≤ 4εδ} ∩ pB4ε,

A3 := {(y, t) : yn <−4εδ} ∩ pB4ε.

Then A1 ⊂�, A3 ⊂ �̄c, and x1, x2, z1, z2
∈ A2 ∩ pBε.

We assume Lε∩pBε is the graph of a function yn =ϕ(yT , t)=ϕ(y1, . . . , yn−1, t),
and Lε/4 ∩ pBε is the graph of a function yn = ψ(yT , t). Thus, we can write

x1
= (y1

T , ϕ(y
1
T , 0), 0), x2

= (y2
T , ϕ(y

2
T , t2), t2),

z1
= (y3

T , ψ(y
3
T , 0), 0), z2

= (y4
T , ψ(y

4
T , t2), t2).
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Set l := |y1
T − y2

T | and l̂ := |y3
T − y4

T |; by assumption,

(5-1) l̂ ≤ ε/4, l ≤ ε/2, |t2
| ≤ ε2.

By Lemma 5.6 and the Differential Mean Value Theorem,

(5-2)
|ϕ(y1

T , 0)−ϕ(y2
T , t2)| ≤ l C3

C2
δ+ |t2

|
C4
C2
δ ε−1,

|ψ(y3
T , 0)−ϕ(y4

T , t2)| ≤ l̂ C3
C2
δ+ |t2

|
C4
C2
δ ε−1.

Then √
l2 + |t2| ≤ |x1

− x2
|p ≤

√
l2 + 2

(C3
C2
δ
)2

l2 + 2
(C4

C2
δ
)2
ε−2|t2|2 + |t2|(5-3)

≤
11
10

√
l2 + |t2| (using δ small and (5-1));

and

(5-4)
√

l̂2 + |t2| ≤ |z1
− z2

|p ≤
11
10

√
l̂2 + |t2|.

Since π̃(z1)= x1, π̃(z2)= x2, there exist ξ and ζ ∈ R such that

y3
= y1

+ ξν(x1), y4
= y2

+ ζν(x2),(5-5)

where ν(x1), ν(x2) are inward-pointing unit normal vectors of Lε at x1, x2 (with
expressions similar to those near the bottom of page 327). By Corollary 5.9,

(5-6) |ξ |, |ζ | ≤ 6 · εδ;

moreover, |νi (x j )|< C3/C2δ for i = 1, . . . , n−1, and, by Lemma 5.6,

νn(x j ) >
1√

1 + (C3/C2δ)2
for j = 1, 2.

These two inequalities show that ν(x j ) is very close to en when δ is very small.
Subtracting the second equality in (5-5) from the first, we get

y3
i − y4

i = y1
i − y2

i + ξ(νi (x1)− νi (x2))+ (ξ − ζ )νi (x2),(5-7)

y3
n − y4

n = y1
n − y2

n + ξ(νn(x1)− νn(x2))+ (ξ − ζ )νn(x2).(5-8)

By Lemma 5.6 and the Differential Mean Value Theorem,

|νi (x1)− νi (x2)|

≤ |Diϕ(y2
T , t2)− Diϕ(y1

T , 0)| + |∇yT ϕ(y
1
T , 0)|2 · |∇yT ϕ(y

2
T , t2)− ∇yT ϕ(y

1
T , 0)|

≤ 2(l · C9δε
−1

+ |t2
| · C10δε

−2)
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and

(5-9) |νn(x1)− νn(x2)|

≤
(
|∇yT ϕ(y

1
T , 0)| + |∇yT ϕ(y

2
T , t2)|

)
·
∣∣∇yT ϕ(y

1
T , 0)− ∇yT ϕ(y

2
T , t2)

∣∣
≤ l C9δε

−1
+ |t2

| C10δε
−2.

Equality (5-8) implies

|ξ − ζ | ≤

√
1 +

(C3
C2
δ
)2(

|y3
n − y4

n | + |y1
n − y2

n | + |ξ | |νn(x1)− νn(x2)|
)

≤

√
1 +

(C3
C2
δ
)2(

l̂ C3
C2
δ+ |t2

|
C4
C2
δ ε−1

+ l C3
C2
δ+ |t2

|
C4
C2
δ ε−1

+ 5εδ (l C9δε
−1

+ |t2
| C10δε

−2)
)

≤ C11(δl + δl̂ + δε−1
|t2

|),

where we used (5-2), (5-6) and (5-9) in the second inequality and the third holds
for δ small.

Using the triangle inequality, (5-7) implies

l̂ ≤ l + |ξ | |νi (x1)− νi (x2)| + |ξ − ζ | |νi (x2)|

≤ (1 + C12δ
2)l + C11

C3

C2
δ2l̂ + C12δ

2ε−1
|t2

|.

Thus, if δ is small enough,

l̂ ≤
11
10 l + δε−1

|t2
|.

Similarly, we can show that

(5-10) l̂ ≥
9

10 l − δε−1
|t2

|.

Therefore,

(5-11)
√

l̂2 + |t2| ≤

√
2(11

10)
2l2 + 2δ2ε−2|t2|2 + |t2| ≤

√
2 11

10

√
l2 + |t2|,

where we have used (5-1). On the other hand, if l2
≤ |t2

|, we have√
l̂2 + |t2| ≥

√
|t2| ≥

1
√

2

√
l2 + |t2|,(5-12)

and if l2 > |t2
|, then (5-10) becomes

l̂ > 9
10 l − δε−1l2 >

( 9
10 − δ

)
l > 4

5 l
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(using (3-1)), so we also have

(5-13)
√

l̂2 + |t2| ≥
4
5

√
l2 + |t2|.

Combining (5-3), (5-4), (5-11), (5-12) and (5-13), we conclude the proof. �

We define gk : Sk−1 → Sk satisfying π̃(gk(x)) = x for k = 1, 2, . . . , and hk :

S0 → Sk by setting hk := gk ◦ · · · ◦ g1.

Corollary 5.11. |hk(x)− hk−1(x)| = |gk(hk−1(x))− hk−1(x)|< 6 · 4−k+1δ.

Proof of Theorem 5.3. The proof is assembled from Corollary 5.11 and Lemmas
5.8 and 5.10 in precisely the same way as the proof of Theorem 1.4 (Section 3),
with obvious modifications to the notation. The same constants can be used. �
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