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SHALIKA PERIODS ON GL2(D) AND GL4

HERVÉ JACQUET AND KIMBALL MARTIN

The exterior square L-function attached to an automorphic cuspidal rep-
resentation of GL2n has a pole if and only if a certain period integral does
not vanish on the space of the representation. We conjecture, in the “if”
direction, a similar result is true for representations of GL2(D), where D
is a division algebra. We prove a partial result which provides evidence for
the conjecture. The proof is based on a relative trace formula.

1. Introduction

Let F be a number field, A its ring of adeles, and D a division algebra of rank m2

over F . We regard D×, GLm , G = GL2(D), and G ′
= GL2m as algebraic groups

defined over F . The multiplicative group F× of F is identified with the center Z
of each one of these groups. For an algebraic group H over F and a place v of F ,
we will denote the group of its Fv-points by Hv. By an automorphic representation
of H(A), we will mean a subrepresentation of L2(Z(A)H(F)\H(A)).

The Jacquet–Langlands correspondence associates to each automorphic repre-
sentation π of D×(A) an automorphic representation π ′ of GLm(A) such that
πv ' π ′

v at all places where D×
v ' GLm(Fv); see [Harris and Taylor 2001]. It

is conjectured that there is a similar Jacquet–Langlands correspondence between
representations π of G(A) and π ′ of G ′(A) (or more generally between any inner
forms of GLn) such that πv 'π ′

v when Gv ' G ′
v. A consequence of this conjecture

is that multiplicity one and strong multiplicity one theorems should hold for G.
Such a correspondence has been established when D is split at each infinite place
[Badulescu 2007].

Suppose π and π ′ are cuspidal representations of G(A) and G ′(A), respec-
tively, that satisfy the Jacquet–Langlands correspondence. Assume that π satisfies
multiplicity one and strong multiplicity one, that is, if π0 is an automorphic repre-
sentation of G(A) with πv ' π0

v for almost all v, then π = π0. The purpose of this
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note is to illustrate how the relative trace formula may be used to compare Shalika
periods on π with those on π ′.

Let S be the subgroup of G of elements of the form{(
A X
0 A

)}
=

{(
A 0
0 A

) (
I X
0 I

)}
=

{(
I X
0 I

) (
A 0
0 A

)}
,

where A ∈ D× and X ∈ D. Similarly, let S′ be the subgroup of G ′ of elements
of the same form, but with A ∈ GLm and X ∈ Mm×m . This is called the Shalika
subgroup of G (or G ′). Let ψ be a nontrivial additive character of A/F . Define a
character θ on S(A) (or on S′(A)) by

θ

((
A 0
0 A

) (
I X
0 I

))
= ψ(tr(X)),

where tr denotes the reduced trace of D (or the trace on Mm×m). The Shalika
subgroup is unimodular, and a Haar measure on S(A) (or on S′(A)) is given by
a product d A d X where d A and d X are both Haar measures on the appropriate
spaces.

We say that an automorphic representation π of G(A) is distinguished (by θ ),
if it has trivial central character and the period integral

λ(φ) :=

∫
Z(A)S(F)\S(A)

φ(s)θ−1(s)ds

is nonzero for some smooth function φ in the space of π . Note that the quotient
Z(A)S(F)\S(A) is compact, and so the integral converges. Conjugating by a ma-
trix of the form

γ =

(
α · I 0

0 I

)
for α ∈ F×,

we see that if the condition of distinction is satisfied for π , it is also satisfied with
ψ replaced by the character x 7→ψ(αx). Thus the condition is independent of the
choice of ψ .

We make the same definitions for S′ mutatis mutandis. We define a character θ
on S′(A) by

θ

((
A 0
0 A

) (
I X
0 I

))
= ψ(tr(X)).

Thus a cuspidal automorphic representation π ′ is distinguished if and only if its
central character is trivial and the period integral

λ′(φ) :=

∫
Z(A)S′(F)\S′(A)

φ(s)θ−1(s)ds
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is nonzero for at least one smooth element φ in the space of π ′. Note that the
quotient Z(A)S′(F)\S′(A) has finite volume — it is the product of the volumes
of Z(A)GLm(F)\ GLm(A) and Mm×m(F)\Mm×m(A). Since the cusp form φ is
bounded, the integral converges.

We conjecture that if π is distinguished, then π ′ also is. The significance of this
is as follows. Recall that π ′ is distinguished if and only if the exterior square L-
function L(s, π ′

;32) attached to π ′ has a pole at s = 1; see [Bump and Friedberg
1990; Jacquet and Shalika 1990; Jiang 2006]. This is proved using an integral
representation of L(s, π ′

;32). On the other hand, there is no integral represen-
tation for the exterior square L-function L(s, π;32) attached to π . Nonetheless,
according to the conjecture, the nonvanishing of the period integral λ should imply
the existence of a pole for L(s, π;32).

Here we use a relative trace formula to establish the following partial result in
the case m = 2.

Theorem 1.1. Let D be a quaternion algebra that ramifies at at least one infinite
place. Suppose πv0 is supercuspidal for some finite place v0 where D splits. If
π is distinguished by θ , then the automorphic cuspidal representation π ′ of G ′

corresponding to π is distinguished by θ ′.

The assumptions on D at infinity and πv0 are purely technical assumptions made
to keep the trace formulas as simple as possible; specifically, we avoid the need
for truncation, whose details are presently unclear in this setting.

Subsequently, our conjecture has been proven for m = 2 by Gan and Takeda
using the theta correspondence [2007]. The authors remark, however, that their
method will not apply to higher rank. On the other hand, it is expected that the trace
formula approach we use here can be made completely general (with considerable
work). Separately, Jiang, Nien and Qin have proved our conjecture, under some
restrictions, for general n by yet another method [2007].

It is natural to also ask if the conjecture’s converse is true, for this would make
equivalent the nonvanishing of a Shalika period on π with the existence of a pole
for L(s, π;32). For now, we will not discuss this question but refer the reader to
[Gan and Takeda 2007].

Introducing some more notations, we write a matrix g of G (or G ′) in the form

g =

(
A B
C D

)
.

Then we denote by P the parabolic subgroup of matrices for which C = 0, by
U the subgroup of those for which C = 0 and A = B = I , by M the subgroup
of those for which C = 0 and B = 0, and by H the subgroup of those for which
C = B = 0 and A = D. Thus S (or S′) is the semidirect product of H and U .
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Henceforth, we restrict ourselves to the situation m = 2, that is, D is a quaternion
algebra, G = GL2(D), and G ′

= GL4.

2. Local Orbital Integrals for GL4

2.1. Relevant Double Cosets. Let F be any field and S be the Shalika subgroup
of G = GL4 over F . The group S(F)× S(F) operates on G(F) by g 7→ s1gs−1

2 .
Denote by σ the algebraic additive character σ : S → F defined by

σ

((
α 0
0 α

) (
I X
0 I

))
= tr(X) .

We say that an element ξ is relevant if the algebraic character of S × S,

(u1, u2) 7→ σ(u1)− σ(u2),

is trivial on the stabilizer of ξ . It amounts to the same to require that

σ(ξsξ−1)= σ(s)

on the group Sξ := S ∩ ξ−1Sξ .
Let us write the elements of GL4 in the form

g =

(
A B
C D

)
.

Recall P is the parabolic subgroup of G of matrices for which C = 0. Any double
coset of S is contained in a double coset of P . There are 3 double cosets of P .
The rank of C determines the double coset Pg P . If C = 0, then g is in P . If C is
invertible, then g lies in the double coset of

w :=

(
0 I
I 0

)
.

Finally, if C has rank 1, then g is in the double coset of

w0 :=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

 .

Now we come back to the double S-coset of an element g. If C = 0, then the
double coset of g contains an element of the form

ξ =

(
I 0
0 γ

)
.
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Then Sξ is the group of matrices of the form(
A X
0 A

)
, A = γ−1 Aγ.

The element ξ is relevant if and only if tr(X)= tr(Xγ−1) for all X . This is so only
if γ = 1. Thus the only relevant double coset of S contained in P is S itself.

If C is invertible then the double coset of g contains an element of the form

ξγ :=

(
0 γ

I 0

)
.

Then Sξγ is the group of matrices of the form(
g 0
0 g

)
for g ∈ Tγ ,

where Tγ is the centralizer of γ in GL2(F). Such ξγ is relevant. Two elements
ξγ1 and ξγ2 are in the same double coset if and only if γ1 and γ2 are conjugate in
GL2(F).

Next, we make the preliminary observation that for g =

(
A B
C D

)
to be relevant

it is necessary that for Y1, Y2 ∈ M2×2(F) the relations

Y1C = 0, CY2 = 0, Y1 D = AY2

imply tr Y1 = tr Y2.
If C has rank 1, then simple computations show that the double coset of g always

contains an element of the form
0 0 a b
1 0 0 0
0 1 0 0
0 0 c d

 or


1 0 0 0
0 0 a b
0 1 0 0
0 0 c d

 ,

where (
a b
c d

)
is invertible.

In the first case, the preliminary observation implies that if g is relevant then
c = 1. Further computations show that the double coset contains a unique element
of the form

ηr :=


0 0 0 r
1 0 0 0
0 1 0 0
0 0 1 0

 ,
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with r 6= 0. The intersection Sηr = S ∩η−1
r Sηr is the group of matrices of the form

a 0 0 0
0 b 0 0
0 0 a 0
0 0 0 b




1 0 0 0
0 1 0 x
0 0 1 0
0 0 0 1

 ,

and ηr is relevant.
In the second case, the preliminary observation implies that if g is relevant then

c = 0. Further computations show that the double coset contains a unique element
of the form

εr :=


1 0 0 0
0 0 r 0
0 1 0 0
0 0 0 1

 ,

with r 6= 0. The group Sεr is the group of elements of the form

z


1 x u y
0 1 0 ru
0 0 1 x
0 0 0 1

 ,

with z in Z . It is easily checked that such an element is relevant if and only if
r = −1. Thus we have another relevant double coset, namely, the double coset of

ε :=


1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1


with Sε , the group of matrices of the form

z


1 x −u y
0 1 0 u
0 0 1 x
0 0 0 1

 .

An important observation is that the antiautomorphism

g 7→ w1
tgw1 for w1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


leaves invariant P , its unipotent radical U , the subgroup S and the character σ of
S, and fixes any relevant double coset. Indeed, this antiautomorphism sends ξγ to
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ξw2 tγw2 , with

w2 =

(
0 1
1 0

)
.

Since γ is conjugate to tγ , the elements ξγ and ξw2 tγw2 are in the same double
coset. For the other double cosets, the given representative is actually invariant
under the antiautomorphism. The observation follows. Altogether, we have:

Lemma 2.1. The relevant S-double cosets for GL4(F) are S, Sξγ S (where γ is
determined up to GL2(F)-conjugacy), Sηr S with r 6= 0, and SεS.

2.2. Local orbital integrals for GL4(F). Let F be a local field. By abuse of nota-
tions, we often write G = GL4(F). Let S denote the Shalika subgroup of G. Let ψ
be a nontrivial additive character of F . We endow the vector space M2×2(F) with
the self-dual Haar measure for the character ψ ◦ tr. On the other hand, we choose a
Haar measure on GL2(F) and Tγ (F), the centralizer of γ in GL2(F), in the usual
way (as in the ordinary trace formula computations). We use the isomorphisms

X ↔

(
12 X
0 12

)
and g ↔

(
g 0
0 g

)
to transport these measures to U and H , respectively. The product of these mea-
sures is then a Haar measure on S.

As in the global case, we define a character θ : S(F)→ C× by

θ

((
A 0
0 A

) (
I X
0 I

))
= ψ(tr(X)) .

To say that an element g is relevant amounts to saying that the character

(u1, u2) 7→ θ(u1)θ(u2)
−1

is trivial on the stabilizer of G in S(F)× S(F), that is,

θ(gsg−1)= θ(g) for all g ∈ Sg(F) := S(F)∩ g−1S(F)g .

Assuming g is relevant, we study the orbital integrals of a function f ∈ C∞
c (G),

that is, the integrals

4( f, g) :=

∫
f (s1gs−1

2 )θ(s1)θ(s2)
−1ds1ds2 .

The integral is over the quotient of S(F)× S(F) by the stabilizer of g in S(F)×
S(F). We can also write this integral as

(2-1) 4( f, g) :=

∫
Sg(F)\S(F)

(∫
S(F)

f (s1gs2)θ(s1)ds1

)
θ(s2)ds2 .
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If g = 1, then

4( f, 1)=

∫
S

f (s)θ(s)ds

and convergence is evident for smooth f of compact support.
If g = ξγ , then computing formally at first we define

F f (h) :=

∫
f
((

I X
0 I

) (
g 0
0 g

) (
0 h
I 0

) (
I Y
0 I

))
ψ(tr(X + Y ))d XdY dg .

Then

(2-2) 4( f, ξγ )= O(F f , γ ) ,

where, for any smooth function of compact support φ on GL2(F), we denote by
O(φ, γ ) the orbital integral of φ on γ , that is,

O(φ, γ )=

∫
GL2(F)/Tγ (F)

φ(hγ h−1)dh .

To justify our computation we prove a lemma.

Lemma 2.2. The integral defining F f converges. If φ is any smooth function of
compact support on F×, then the function F f (h)φ(det h) is a smooth function of
compact support on GL2(F).

Proof. Indeed (
I X
0 I

) (
0 gh
g 0

) (
I Y
0 I

)
=

(
Xg gh + XgY
g gY

)
has determinant equal to det g2

· det h. If this matrix belongs to a compact set and
det h is also in a compact set, then det g is in a compact set of F×. By inspection,
g is in a compact set of M2×2(F) and thus in fact in a compact set of G(F). Now
Xg and gY belong to compact sets of M2×2(F), and therefore X and Y do as well.
Next, gh is in a compact set of M2×2(F), and hence so is h. Since det h is in a
compact set of F×, we have finally that h is in a compact set of G(F). �

For a given γ , we have det hγ h−1
= det γ . Thus our computation (2-2) is

justified; the orbital integral converges. More precisely, for a given γ , it is equal to
the orbital integral of a smooth function (which depends on γ ) of compact support
on G(F).

In particular, assume F is non-Archimedean, ψ is unramified — that is, the
largest ideal of F on which ψ is trivial is O — and f is the characteristic function
of GL4(O). Let φ0 be the characteristic function of O×. Then F f (h)φ0(det h) is the
characteristic function 80 of GL2(O). In other words, for |det γ | = 1, the orbital
integral of 80 at γ is 4( f, ξγ ).
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We briefly discuss the convergence of the other orbital integrals. For ηr it suffices
to prove that if the product

a u x y
0 b z t
0 0 a u
0 0 0 b

 ηr


1 u1 0 y1

0 1 z1 t1
0 0 1 u1

0 0 0 1

 =


u uu1 + x y + xz1 ar + t1x + u1 y + uy1

b bu1 + z t + zz1 tu1 + by1 + t1z
0 a u + az1 at1 + uu1

0 0 b bu1


belongs to a compact set of GL4, then a and b lie in compact sets of F× and the
other variables in a compact set of F . This is immediate.

For the element ε, it suffices to prove that if the product
a u x y
0 b z t
0 0 a u
0 0 0 b

 ε


a1 0 x1 0
0 1 z1 0
0 0 a1 0
0 0 0 1

 =


aa1 x −a1u + ax1 + xz1 0
0 z −a1b + zz1 t
0 a az1 u
0 0 0 b


belongs to a compact set of GL4, then a, b, a1 are in compact sets of F× and the
other variables are in a compact set of F . Again, this is immediate.

3. Local orbital integrals for GL2(D)

3.1. Local orbital integrals. Let F be any field and D a quaternion (or even any
division) algebra of center F . Again, let S be the Shalika subgroup of G = GL2(D)
of matrices of the form (

A B
0 A

)
,

and let σ be the algebraic character(
A 0
0 A

) (
I X
0 I

)
7→ tr(X) ,

where tr is the reduced trace. We say that an element ξ is relevant if the algebraic
character

(u1, u2) 7→ σ(u1)− σ(u2)

is trivial on the stabilizer of ξ in S × S, or, what amounts to the same,

σ(ξsξ−1)= σ(s)

on the group Sξ := S ∩ ξ−1Sξ . Describing the relevant elements is similar to the
previous case but simpler. The only relevant elements (up to double cosets) are the
identity and those of the form

ξγ :=

(
0 γ

I 0

)
for γ ∈ D×.
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The subgroup Sξγ is the group of matrices of the form(
A 0
0 A

)
with A belonging to Tγ , the centralizer of γ in D×.

Let P (the parabolic subgroup), M , U (the unipotent radical), and H be sub-
groups given respectively by matrices of the form(

A B
0 D

)
,

(
A 0
0 D

)
,

(
I B
0 I

)
,

(
A 0
0 A

)
.

Let us denote by g 7→
ιg an antiautomorphism of D such that g +

ιg = tr(g)I
and gιg = det gI . Then g and ιg have the same characteristic polynomial and are
thus conjugate in D×. We set then

τ

[(
A B
C D

)]
= w

(
ιA ιC
ιB ιD

)
w, where w =

(
0 I
I 0

)
.

Again, this is an antiautomorphism leaving the relevant double cosets invariant.
Now suppose F is a local field and G = GL2(D). Let ψ be a nontrivial additive

character of F . We endow the vector space D with self-dual Haar measure for the
character ψ ◦ tr, where tr is the reduced trace. Let ψ be a nontrivial additive
character of F . We endow the vector space M2×2(F) with the self-dual Haar
measure for the character ψ ◦ tr, where tr is the reduced trace. On the other hand,
we choose a Haar measure on D× and Tγ in the usual way (as in the ordinary trace
formula computations). We use the isomorphisms

X ↔

(
I X
0 I

)
and g ↔

(
g 0
0 g

)
to transport these measures to U and H , respectively. The product of these mea-
sures is then a Haar measure on S.

Define θ : S(F)→ C× by

θ

((
A 0
0 A

) (
I X
0 I

))
= ψ(tr(X)).

We consider the orbital integral of a relevant element g,

4( f, g)=

∫
Sg(F)\S(F)

(∫
S(F)

f (s1gs2)θ(s1)ds1

)
θ(s2)ds2 .

Then

4( f, I )=

∫
S

f (s)θ(s)ds .
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If g = ξγ , then we define

F f (h) :=

∫
f
((

I X
0 I

) (
0 gh
g 0

) (
I Y
0 I

))
ψ(tr(X + Y ))d XdY dg

and

4( f, ξγ )= O(F f , γ ) , where O(F f , γ )=

∫
D×/Tγ

F f (hγ h−1)dh .

The product F f (h)φ(det h), for φ smooth of compact support on F×, is a function
of compact support on D×, and4( f, ξγ ) is the orbital integral of a smooth function
of compact support on D× (depending on det γ ).

3.2. Matching orbital integrals. Now let F be a local field. Let f be a function
on GL2(D) with support contained in the set �D of elements(

A B
C D

)
such that det C 6= 0. Then, on the support of f , det C remains in a compact set of
F×. In the formula for computing F f (h),

F f (h)=

∫
f
(

Xg gh + XgY
g gY

)
ψ(tr(X + Y ))d XdY dg,

we see that det g2
· det h and det g remain in a compact set of F×. Thus det h is in

a compact set of F×, and the function F f is a smooth function of compact support
on D×. Any smooth function of compact support can be obtained this way.

The same discussion applies to G ′
= GL4(F). We let �4 be the subset(
A B
C D

)
of G ′ such that det C 6= 0. Then for any smooth function f ′ of compact support
contained in �4, the function F f ′ is a smooth function of compact support.

Recall the notion of matching orbital integrals for smooth functions of compact
support on G and G ′. If γ and γ ′ are semisimple noncentral elements of G and
G ′ with the same characteristic polynomials, we write γ ∼ γ ′. We say φ and
φ′, functions on D× and GL2(F) respectively, have matching orbital integrals if
O(φ, γ )= O(φ′, γ ′) whenever γ and γ ′ are semisimple noncentral elements such
that γ ∼γ ′, and O(φ, γ ′)=0 when γ ′ is an element of G ′ with distinct eigenvalues
in F×. Recall that for every φ there is a function φ′ with matching orbital integrals;
see for example [Rogawski 1983, Section 2].

Thus for any f with support contained in�D , there is a function f ′ with support
contained in�4 such that4( f, ξγ )=4( f ′, ξ ′

γ ) whenever γ and γ ′ are semisimple
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noncentral elements with γ ∼ γ ′, and 4( f ′, ξ ′
γ ) = 0 each time γ ′ is an element

with distinct eigenvalues in F×.
In the Archimedean case we will denote by �D,e the set of matrices of the form(

I X
0 I

) (
0 gh
g 0

) (
I Y
0 I

)
for h ∈ D×

− Z(F),

and we will assume that the support of f is contained in �D,e. Similarly, we will
denote by �4,e the set of matrices of the form(

I X
0 I

) (
0 gh
g 0

) (
I Y
0 I

)
,

where h is elliptic regular, that is, has distinct eigenvalues not in F . We will
assume the support of f ′ is contained in �4,e. Any f with support contained in
�D,e matches a function f ′ with support contained in �4,e.

4. A simple trace formula for GL2(D)

Let G = GL2(D), where D is a quaternion algebra over a number field F . An
element ξ ∈ G(F) is relevant if and only if

θ(ξuξ−1)= θ(u)

for all u ∈ Sξ (A)= S(A)∩ ξ−1S(A)ξ . We consider then the orbital integral

4( f, ξ) :=

∫ (∫
f (s1ξs2)θ(s1)ds1

)
θ(s2)ds2

with s1 ∈ S(A) and s2 ∈ Sξ (A)\S(A). Suppose ξ = ξγ . Computing formally, we
set

F f (h)=

∫
f
((

I X
0 I

) (
0 gh
g 0

) (
I Y
0 I

))
dgψ(tr(X + Y ))d XdY .

Then 4( f, ξγ )= O(F f , γ ), where O(φ, γ ) is the global orbital integral

O(φ, γ )=

∫
D×(A)/Tγ (A)

φ(hγ h−1)dh

and Tγ denotes the centralizer of γ in D×. To justify our computations we prove
the following lemma.

Lemma 4.1. If the matrix(
I X
0 I

) (
0 gh
g 0

) (
I Y
0 I

)
=

(
Xg gh + XgY
g gY

)
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is in a compact set of GL2(D(A)) and the reduced determinant det h is in F×, then
det h takes only finitely many values, g and h remain in a compact set of D×(A),
and X and Y lie in a compact set of D(A).

Proof. Indeed g is in a compact set of D(A) and det g2
· det h in a compact set of

A×. A fortiori, det h−1 remains in a compact set of A. Since it is in F×, it remains
in a finite set. Hence det g2 — and thus det g — remains in a compact set of A×.
Hence g is in fact in a compact set of D×(A). Now Xg and Y g — and thus X and
Y — are in compact sets of D(A). �

The lemma shows in particular that there is a smooth function of compact sup-
port φ on D×(A) such that F f (h)= φ(h) when det h is in F×. Then

4( f, ξγ )= O(φ, γ ) .

For each finite place v, let αi for 1 ≤ i ≤ 4 be an Fv-basis of Dv. In an obvious
way, it gives a basis αi, j for 1 ≤ i, j ≤ 4 of M2×2(Dv). Let αv and α2,v be the
Ov-modules generated respectively by {αi } and

{
αi, j

}
. Then for almost all v, Dv

is split, αv is a maximal compact subring of Dv, and α2,v is a maximal compact
subring of M2×2(Dv). The groups K 1

v :=α×
v and Kv :=α×

2,v are then maximal com-
pact subgroups of D×

v and GL2(Dv), respectively. We choose maximal compact
subgroups Kv at the remaining places and set K =

∏
Kv.

We assume that f =
∏

fv, where, for almost all v, the function fv is the charac-
teristic function of Kv. Then, for a given γ and almost all v, if det h = det γ , then
F fv (hv) = φ0,v(hv), where φ0,v is the characteristic function of α×

v . Furthermore,
for a given γ , almost all orbital integrals are equal to 1, for a suitable choice of the
measures.

Consider the kernel function

(4-3) K (x, y)= K f (x, y)=

∑
Z(F)\G(F)

∫
Z(A)

f (zx−1ξ y)dz.

We assume that at every place v where D is ramified the support of the function
fv is contained in the set �Dv

. Furthermore, if v is Archimedean we assume that
the support of fv is contained in �Dv,e. Then the intersection supp f ∩ S(A)ξ S(A),
where ξ ∈ S(F), is empty unless ξ is in the double coset of an element of the form
ξγ with γ in a finite union of conjugacy classes of D×

− F×. We now compute∫
Z(A)S(F)\S(A)

∫
Z(A)S(F)\S(A)

K (s1, s2)θ(s1)
−1ds1θ(s2)ds2 .
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This can be computed as∫
Z(A)S(F)\S(A)

( ∑
ξ∈S(F)\G(F)

∫
S(A)

f (s1ξs2)θ(s1)ds1

)
θ(s2)ds2

=

∫
Z(A)S(F)\S(A)

( ∑
γ,σ∈Sξγ (F)\S(F)

∫
S(A)

f (s1ξγ σ s2)θ(s1)ds1

)
θ(s2)ds2

=

∑
γ

∫
Z(A)Sξγ (F)\S(A)

(∫
S(A)

f (s1ξγ s2)θ(s1)ds1

)
θ(s2)ds2 ,

where γ runs over a set of representatives for the conjugacy classes in D×
− Z .

We now use the fact that

s2 7→

∫
S(A)

f (s1ξγ s2)θ(s1)ds1 θ(s2)

is invariant on the left under Sξγ (A) to write this as∑
γ

Vol(Z(A)Sξγ (F))\Sξγ (A))
∫

Sξγ (A)\S(A)

(∫
S(A)

f (s1ξs2)θ(s1)ds1

)
θ(s2)ds2

Recall that Sξγ is the group of matrices of the form(
g 0
0 g

)
for g ∈ Tγ ,

where Tγ is the centralizer of γ in D×. Thus our integral has the final expression∑
γ

Vol(F×(A)Tγ (F)\Tγ (A)) 4( f, γ ) .

We will assume furthermore that there is a place v0 where D is split and the
function fv0 is supercuspidal, that is,∫

U (Fv0 )
fv0(u)du = 0

each time U is the unipotent radical of a parabolic subgroup of Gv0 defined over
Fv0 . We then have

K f (x, y)=

∑
π

Kπ, f (x, y) ,

where the sum is over all cuspidal representations π of G(A) with trivial central
character that have a supercuspidal component at v0. Here,

Kπ, f (x, y)=

∑
π( f )φi (x)φi (y) ,
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where φi is an orthonormal basis of the space of π . We set

Bπ ( f )=

∫
S(F)Z(A)\S(A)

∫
S(F)Z(A)\S(A)

Kπ, f (s1, s2)θ
−1(s1)θ(s2)ds1ds2 .

This is the global Bessel distribution attached to π . At least, if each fv is Kv finite
and we take the φi to be K -finite, then we can write

Bπ ( f )=

∑
i

λ(π( f )φi )λ(φi ) .

In fact, one can show that the series converges absolutely. At any rate, we denote by
Hπ the Hilbert space of the representation π , by Vπ the space of smooth vectors,
and by V∗

π its topological dual. Then

Vπ ⊆ Hπ ⊆ V∗

π .

We still denote by π the natural representation of π on Vπ and V∗
π . The scalar

product ( · , · ) on Hπ×Hπ extends to Vπ×V∗
π or V∗

π×Vπ . Finally, for f smooth
of compact support and λ ∈ V∗

π , the vector π( f )λ is in Vπ . The period integral λ
is in V∗

π . Then, at least under the assumption of K -finiteness,

Bπ ( f )=

∑
i

(π( f )(φi ), λ)(φi , λ)= (π( f )λ, λ) .

This expression still holds for f smooth of compact support; compare with [Shalika
1974, page 184]. Then∫

S(F)Z(A)\S(A)

∫
S(F)Z(A)\S(A)

K f (s1, s2)θ
−1(s1)θ(s2)ds1ds2 =

∑
π

Bπ ( f ) .

Of course, π is distinguished if and only if the distribution Bπ is not identically 0.
Finally, we get∑

π

Bπ ( f )=

∑
γ

Vol(F×(A)Tγ (F)\Tγ (A)) 4( f, γ ) .

5. A simple trace formula for GL4

Now we consider the group G ′
= GL4 with Shalika subgroup S′. We choose

maximal compact subgroups K ′
v in the usual way. Thus K ′

v = GL4(Ov) if v is
finite. We set K ′

=
∏
v K ′

v. We let f ′ be a smooth function of compact support
on G ′(A). We assume that f ′

=
∏
v f ′

v, where f ′
v is the characteristic function of

K ′
v for almost all v. We assume that, at each place v where D is ramified, the

support of f ′
v is contained in the set �4,v. Furthermore if v is an Archimedean

place where D is ramified, we assume that the support of f ′
v is contained in the

set �4,v,e. Then there are only finitely many cosets S′(F)ξ S′(F) for ξ ∈ G ′(F)
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such that the support of f ′ intersects S′(A)ξ S′(A). Furthermore they are cosets of
the form S′(F)ξγ S′(F), where γ ∈ GL2(F) is elliptic at any Archimedean place
where D splits.

We introduce the kernel function

K ′(x, y)= K f ′(x, y)=

∑
Z(F)\G(F)

∫
Z(A)

f ′(zx−1ξ y)dz.

We find, as before,∫∫
K ′(s1, s2)θ(s1)

−1θ(s2)ds1ds2 =

∑
γ

Vol(F×(A)\Tγ (A))4( f ′, ξγ ) ,

where γ runs through a set of representatives for the conjugacy classes of elliptic
elements of GL2(F)— in fact, the elements elliptic at each Archimedean place
where D is ramified. Next, we assume that f ′

v0
is supercuspidal at a finite place v0

where D splits. We have then an identity

K ′(x, y)=

∑
π ′

Kπ ′, f ′(x, y) ,

where the sum is over all cuspidal representations π ′ of G ′(A) with trivial central
character which have a supercuspidal component at v0. As before, we have set

Kπ ′, f ′(x, y)=

∑
i

π ′( f ′)φi (x)φi (y) ,

where the sum is over an orthonormal basis φi of π ′. We set

Bπ ′( f ′)=

∫∫
Kπ ′, f ′(s1, s2)θ(s1)

−1θ(s2)ds1ds2 .

This is the global Bessel distribution attached to π ′. The representation π ′ is dis-
tinguished if and only if the distribution Bπ ′ is not identically 0.

The sum over π ′ converges in the space of smooth rapidly decreasing func-
tions on G ′(F)\G ′(A). Now we can integrate over the space of finite volume
(Z(A)S′(F)\S′(A))2 to get∫∫

K ′(s1, s2)θ(s1)
−1θ(s2)ds1ds2 =

∑
π ′

Bπ ′( f ′) .

On the other hand, at least when f ′ is K ′-finite,

Bπ ′( f ′)=

∑
i

λ′(π ′( f ′)φi )λ′(φi ) .
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As before, we can think of λ′ as a continuous linear form on the space of smooth
vectors and write

Bπ ( f )= (π ′( f ′)λ′, λ′) .

6. Comparison

Now we compare the two expressions we have just obtained. We choose matching
f and f ′. At a place v where D is ramified, we demand that fv and f ′

v match
in the sense given above. At a place v where D splits, we have an isomorphism
Dv ' GL2(Fv) and thus an isomorphism Gv ' G ′

v which takes Sv to S′
v. Then

the isomorphism is unique up to inner automorphisms defined by elements of Sv
and S′

v. Furthermore, at almost all places we may assume that the isomorphism
Dv ' M2×2(Fv) takes αv to M2×2(Ov). Then the isomorphism Gv ' G ′

v takes the
maximal compact subgroup Kv to K ′

v. We then assume that fv and f ′
v correspond

to one another by this isomorphism. (Since Gv'G ′
v almost everywhere, there is no

issue of a fundamental lemma.) Then4( f, ξ ′
γ )=0 unless there exists γ ∈ D×

−F×

with γ ∼ γ ′, in which case 4( f, ξγ ) = 4( f ′, ξ ′
γ ). Moreover, Tγ and Tγ ′ are then

isomorphic. In particular, Tγ (A)/Tγ (F)F×(A) and Tγ ′(A)/Tγ (F)F×(A) have the
same volume. We conclude that∑

Vol(Tγ (A)/F×(A))4( f, ξγ )=

∑
Vol(Tγ ′(A)/F×(A))4( f ′, ξγ ′) ,

and thus ∑
π

Bπ ( f )=

∑
π ′

Bπ ′( f ′) .

If π is distinguished, the distribution Bπ is nonzero. Our next task is to prove
that if π is distinguished, then we can choose f as above such that Bπ ( f ) 6= 0.
This requires local preliminaries.

7. Local periods: non-Archimedean case

Let F be a local non-Archimedean field and G = GL2(D) where D is a quaternion
algebra over F . Let π be an irreducible admissible unitary representation of G
with trivial central character. Let V be the space of smooth vectors of π . Let V ∗

be the dual space of V . We define the space of Shalika functionals of π to be

S(π)=
{
λ ∈ V ∗

| λ(π(s)v)= θ(s)λ(v), v ∈ V, s ∈ S
}
.

We say that π is distinguished if S(π) 6= 0.
If λ and µ are in S(π), we can define a distribution

B( f )=

∑
i

λ(π(φ)φi )µ(φi ) ,
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where φi is an orthonormal basis of smooth vectors in π . As in the global case
we have inclusion V ⊆ H ⊆ V ∗, and we can write the distribution in the form
B( f )= (π( f )λ, µ). For every s1, s2 ∈ S, we have B(Ls1 Rs2 f )= θ(s1s−1

2 )B( f ).
We first recall the following result.

Proposition 7.1 [Prasad and Raghuram 2000]. Let π be an irreducible, admissible,
unitary representation of GL2(D). Then dimC S(π) is at most one.

We briefly give the argument here. The involution τ introduced previously leaves
P , U , H and S invariant. In addition θ(τ (s)) = θ(s). For any function f we set
f τ (x)= f (τ (x)), and for any distribution T we define T τ by T τ ( f )= T ( f τ ). A
standard argument shows that the proposition above follows from:

Proposition 7.2. Let 3 be a distribution on G such that, for all s1, s2 ∈ S(F) and
all functions f , 3(Rs1 Ls2 f )= θ(s1)θ(s2)

−13( f ). Then 3τ =3.

Proof. As we have observed, the double cosets are invariant under τ . Thus the
orbital integrals satisfy the hypotheses of the proposition and the conclusion. One
concludes by using an argument of density. See [Prasad and Raghuram 2000] for
details. �

Now suppose that S(π) 6= 0. Choose λ 6= 0 in S(π) and set

Bπ ( f )=

∑
i

λ(π( f )φi )λ(φi ) .

This is the (local) Bessel distribution associated to π (and λ). Recall the open set
�=�D of matrices of the form (

A B
C D

)
with C invertible.

Proposition 7.3. The restriction of Bπ to the open set � is nonzero.

Proof. Assume that this restriction is 0. Then Bπ is supported on P . Thus it is in
fact a distribution on P . We show that the restriction of Bπ to P − S is 0. To that
end, we use:

Lemma 7.4 [Raghuram ≥ 2008, Lemma 6.7]. If T is a distribution on P − S such
that T (Lu1 Ru2 f )= θ(u1u−1

2 )T ( f ) for any u1, u2 ∈ U , then T = 0.

Proof. Since the author leaves the details to the reader there, we give a proof here.
Let M be the group of diagonal matrices and M0 the open subset of matrices of
the form diag(a, b) with a 6= b. Thus P − S = M0U = U M0. The property of
invariance of T on the right implies there is a distribution µ on M0 such that

T ( f )=

∫
α f (a, b)dµ(a, b), where α f (a, b) :=

∫
f
((

a 0
0 b

)
u
)
θ(u)du .



SHALIKA PERIODS ON GL2(D) AND GL4 359

The function α f is an arbitrary smooth function of compact support on M0. The
property of invariance on the left implies that µ satisfies that, for every X ∈ D,

ψ(tr(a−1 Xb − X))dµ(a, b)= dµ(a, b) .

This can also be written as

ψ(tr((ba−1
− I )X))dµ(a, b)= dµ(a, b) .

Let φ be a smooth function of compact support on D. The above identity implies

φ̂(ba−1
− I )dµ(a, b)= dµ(a, b) ,

where φ̂ is the Fourier transform of φ. If α is any smooth function of compact
support on M0, the difference ba−1

− I remains in a compact set on the support
of α. We can choose φ̂ so that φ̂(ba−1

− I ) = 0 on the support of α. Thus
α(a, b)φ̂(ba−1

− I )= 0 and
∫
α(a, b)dµ(a, b)= 0. So T = 0. �

At this point we are reduced to the case where Bπ is supported on S and hence is
a distribution on S. Thus

(7-4) Bπ ( f )= c
∫

S
f (s)θ(s)ds

for some constant c; see[Bernšteı̆n and Zelevinskiı̆ 1976] or [Bump 1997, Propo-
sition 4.3.2].

Recall that a distribution µ is said to be of positive type if µ( f ∗ f ∗)≥ 0 for all
f , where f ∗(x)= f (x−1). Then the completion of 〈 f1, f2〉 :=µ( f1 ∗ f ∗

2 ) modulo
its kernel is a unitary representation of G which is said to be associated with π .

By definition, Bπ ( f ) is a distribution of positive type. Indeed,

(7-5) Bπ ( f ∗
∗ f )= (π( f )λ, π( f )λ) .

Because π is irreducible, the representation associated to the distribution Bπ is π
itself.

On the other hand,
∫

f (s)θ(s)ds is clearly of positive type. Thus c ≥ 0. The
representation associated to the distribution

∫
f (s)θ(s) is the unitary representation

σ of G induced by the character θ . If c > 0 then σ ' π [Dixmier 1977, p. 40].
Thus σ is admissible. But this is a contradiction. Indeed, let U be a small enough
open subring of D. Denote by K0 the subgroup of matrices congruent to I modulo
U. Then

K0 = (K0 ∩ P) . (U ∩ K0) ,

where U is the transpose of U . Consider the subspace V0 of σ of functions f
supported on P K0 and invariant under K0 on the right. Such a function f is
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uniquely determined by the function φ on D× determined by

φ(h)= f
(

h 0
0 I

)
.

Now φ is any function such that φ(k1hk2)=φ(h) for k1, k2 congruent to 1 modulo
U. Thus V0 is infinite dimensional, which contradicts the fact that σ is admissible.
Thus c = 0 and Bπ = 0, a contradiction. �

8. An argument of Shalika

Before we proceed to the Archimedean case we review an argument of Shalika
[1974] on the transversal order of distributions supported by a manifold. Let G
be a real Lie group and G1, G2 be closed subgroups. We do not assume that the
groups are connected. Let g, g1, g2 be their Lie algebras, and U(g),U(g1),U(g2)

the enveloping algebras. For every X ∈ g, let ρ(X) be the corresponding left
invariant vector field. Similarly, for every X ∈ U(g), let ρ(X) be the corresponding
differential operator. Thus, for X ∈ g,

ρ(X) f (g)=
d
dt

∣∣∣∣
t=0

f (g exp(t X)) .

We denote by X 7→ X̌ the involution of U(g) such that X̌ = −X for X ∈ g. If T is
a distribution and X ∈ g we define ρ(X)T by ρ(X)T ( f )= T (ρ(X̌) f ).

We assume that g= g1⊕g2. Then at any point x ∈ G, Tx(G)=ρ(g1)x ⊕ρ(g2)x .
Here Tx(G) is the tangent space at x , and L x is the evaluation of a vector field L at
x . In particular, if x ∈ G1 then Tx(G)= Tx(G1)⊕ρ(g2)x . We denote by U(g)n and
U(gi )n the canonical filtrations of the enveloping algebras. We choose a basis of
g2 and then use it to construct a basis of standard monomials Xq of U(gi ). We let
|q| be the degree of the monomial. Thus Xq ∈ U(g2)|q| and Xq 6∈ U(g2)|q|−1. Let
T be a distribution on G that is supported on G1. Then, if x is a point of G1, there
is a relatively compact open neighborhood U of x in G such that the restriction of
T to U has the form

T |U =

∑
q

ρ(Xq)Tq ,

where the Tq are uniquely determined distributions on U ∩ G1 (almost all 0). We
say that T |U has transversal order ≤ n if |q| ≤ n for all q with Tq 6= 0; if, in
addition, there is at least one q such that |q| = n and Tq 6= 0, we say that T has
transversal order n on U ∩ G1. This notion is independent of the choice of the
basis. Shalika observes that if X is in U(g1) and T has transversal order ≤ n, then
ρ(X)T has transversal order ≤ n. Similarly, if φ is a smooth function on G and T
has transversal order ≤ n, then φT has transversal order ≤ n.
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Often this can be used to show that if the distribution T satisfies a suitable
differential equation then, in fact, it is 0. For instance, suppose G2 has dimension
3 and let X1, X2, X3 be a basis of g2. Suppose that

ρ(X2
1 + X2

2 + X2
3)T = ρ(D)T +φT ,

where D ∈ U(g1) and φ is a smooth function on G. Suppose T is nonzero. Then
we can find U as above such that T |U 6= 0. Then let n ≥ 0 be the transversal order
of T |U . The right hand side has transversal order ≤ n. On the other hand, we
claim the transversal order of the left hand side is n + 2; this gives a contradiction
and proves our assertion. To check our claim, we can take for basis of U(gi ) the
monomials Xa

1 Xb
2 X c

3 = Xq for q = (a, b, c); we let |q| = a + b + c. Let us order
lexicographically the multiindices q with |q| = n. Let q = (a, b, c) be the largest
index with |q| = n and Tq nonzero. Then (writing XT for ρ(X)T ),

T |U = Xa,b,cTa,b,c +

∑
a′

+b′
+c′

=n
(a′,b′,c′)<(a,b,c)

Xa′,b′,c′ Ta′,b′,c′ +

∑
|q ′|<n

Xq ′ Tq ′ .

Then

(X2
1 + X2

2 + X2
3)T |U = Xa+2,b,cTa,b,c + Xa,b+2,cTa,b,c + Xa,b,c+2Ta,b,c

+

∑
a′

+b′
+c′

=n
(a′,b′,c′)<(a,b,c)

(Xa′+2,b′,c′ Ta′,b′,c′+Xa′,b′+2,c′ Ta′,b′,c′+Xa′,b′,c′+2Ta′,b′,c′)+
∑

|q ′|<n

Xq ′ Sq ′ .

Now (a + 2, b, c) is larger than all the monomials q ′ with |q ′
| = n that appear in

this formula. Our claim follows.
Similarly, suppose that X ∈ g2, X 6= 0 and g2 has an arbitrary dimension. Sup-

pose further that X T = ρ(D)T + φT , where D and φ are as above. Then again
T = 0. The proof is similar but simpler.

9. Local periods: Archimedean case

Let F = R and G = GL2(H), where H is the Hamilton quaternion algebra over R.
Let π be an irreducible admissible unitary representation of G. Let V be the space
of smooth vectors of π equipped with its usual topology. Let V ∗ be the topological
dual space of V . We define the space of Shalika functionals of π to be

S(π)=
{
λ ∈ V ∗

| λ(π(s)v)= θ(s)λ(v), v ∈ V, s ∈ S
}
.

If λ and µ are in S(π) we can define a corresponding distribution B by

B( f )= (π( f )λ, µ) .

Our first goal in this section is to establish the following proposition.
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Proposition 9.1. Let π be an irreducible, admissible, unitary representation of
GL2(H). Then dimC S(π) is at most one.

To state the Archimedean analogue of Proposition 7.2, we need to introduce
an element of the center Z(g) of the enveloping algebra of the Lie algebra g of
G = GL2(H). Let {1, i, j, k} denote the usual basis for H over R. Thus i j = k and
i2

= j2
= k2

= −1. Also tr i = tr j = tr k = 0 and we take ι to be the involution
that takes i, j, k to −i,− j,−k. Then the involution τ of GL(2,H) is defined by

τ

(
A B
C D

)
= w

(
ιA ιC
ιB ιD

)
w , where w =

(
0 I
I 0

)
.

We may identify g with M2×2(H). We let g0 be the subspace of X ∈ g with
tr X = 0 and B the R-bilinear invariant form defined by B(X, Y ) = tr(XY ). Thus
g0 is a 15-dimensional Lie algebra over R with basis

E0 =

(
I 0
0 −I

)
,

E1,a =

(
a 0
0 0

)
,

E3,b =

(
0 0
b 0

)
,

E2,b =

(
0 b
0 0

)
,

E4,a =

(
0 0
0 a

)
,

where a ∈ {i, j, k} and b ∈ {1, i, j, k}. For an element Eα of the above basis, let Eα

be the corresponding dual basis element with respect to B(X, Y ), i.e, B(Eα, Eβ)=
δα,β for all α, β in the index set. One may compute

E0
=

1
4 E0,

E1,a
= −

1
2 E1,a,

E4,a
= −

1
2 E4,a,

E2,a
= −

1
2 E3,a,

E3,a
= −

1
2 E2,a,

E2,1
=

1
2 E3,1,

E3,1
=

1
2 E2,1,

where a runs through {i, j, k}. We set

1=

∑
EαEα

=
1
4

E2
0 −

1
2

∑
{i, j,k}

(
E2

1,a + E2
4,a

)
+

1
2

∑
{1,i, j,k}

a2 (
E2,a E3,a + E3,a E2,a

)
.

This element is invariant under Ad(G) because tr is. In particular, it is in Z(g).
Thus the element 1 acts on V by a scalar. Also τ(1)=1 and 1̌=1.

Proposition 9.2. Suppose F = R. Let 3 be a distribution on G such that, for all
s1, s2 ∈ S(F) and all functions f ,

3(Ls1 Rs2 f )= θ(s1s−1
2 )3( f ) .

Suppose furthermore that 13= k1 for some k ∈ C. Then 3τ =3.
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It is a standard argument that this implies the previous proposition [Gel’fand and
Kajdan 1975; Shalika 1974]. The proof of Proposition 9.2 will follow from two
subsequent propositions.

Let P , U , M , and H respectively be the subgroups of matrices of the form(
A B
0 D

)
,

(
I B
0 I

)
,

(
A 0
0 D

)
,

(
A 0
0 A

)
.

We denote the Lie algebra of one of these groups by the corresponding lower case
gothic letter. Let �=�H be the open subset of matrices(

A B
C D

)
with C invertible.

Proposition 9.3. Suppose 3 is a distribution on � such that 3(Ls1 Rs2 f ) =

θ(s1s−1
2 )3( f ) for all s1, s2 ∈ S and all f . Then 3τ =3.

Proof. Given f ∈ C∞
c (�), we have defined

F f (h)=

∫
U×U

f
[

u1

(
g 0
0 g

) (
0 h
I 0

)
u2

]
θ(u1u2)du1du2dg.

Let 3 be a distribution on � such that 3(Ls R(u) f ) = θ(s)θ(u)−1 f . There is a
unique distribution 3∗ on H× such that 3∗(F f )=3( f ). In other words,

3( f )=

∫ (∫
f
(

u1

(
g 0
0 g

) (
0 h
I 0

)
u2

)
θ(u1)θ(u2)du1du2dg

)
d3∗(h) .

Moreover, 3 satisfies 3(R(m) f ) = 3( f ) for all m ∈ H if and only 3∗ is an
invariant distribution. Assuming this is the case, we have

3τ ( f )=3( f τ )

=

∫ (∫
f
(

u1

(
0 ιh
I 0

) (
g 0
0 g

)
u2

)
θ(u1)θ(u2)du1du2dg

)
d3∗(h)

=

∫ (∫
f
(

u1

(
g 0
0 g

) (
0 ιh
I 0

)
u2

)
θ(u1)θ(u2)du1du2dg

)
d3∗(h) .

Hence (3τ )∗ = (3∗)ι. Now we appeal to a well-known result.

Lemma 9.4. Let 4 be an invariant distribution on H×. Then 4ι =4.

For the convenience of the reader we provide a proof.

Proof. Let T be a torus of H× that is stable under ι; for instance, we can take T
to be the stabilizer of i . Then ι induces on T conjugation by an element of the
normalizer of T . Now any conjugacy class intersects T . Thus if f is an invariant
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function, then f ι = f . Since 4 is invariant and H×/Z is compact we have, for any
function f ,

4( f )=4( f0), where f0(g)=

∫
H×/Z

f (hgh−1)dh.

Then 4ι( f )=4ι( f0)=4( f ι0)=4( f0)=4( f ). The lemma follows. �

Applying the above lemma to 3∗ establishes Proposition 9.3. �

Coming back to the proof of Proposition 9.2, we see that the restriction of3−3τ

to � vanishes. Thus 3−3τ is supported on P . Since 1(3−3τ ) = k1, it will
suffice to prove:

Proposition 9.5. Suppose 3 is a distribution on G supported on P such that
13 = κ3 for some κ ∈ C and 3(Ru f ) = θ(u)−13( f ) for all u ∈ U and all f .
Then 3= 0.

Proof. We can write the element 1 ∈ U(g) in the form

1= D +

∑
a∈{1,i, j,k}

a2 E3,a E2,a,

where D ∈ U(m). First observe that, for a ∈ {1, i, j, k},

E2,a3= 2iπ tr(a)3= 2iπδ1,a3.

Thus 2iπE3,13=13− D3= κ3− D3, and

E3,1 ∈ U(u), where u =

{(
0 0
∗ 0

)}
,

is the Lie algebra of the subgroup U , the transpose of U . Certainly g = p⊕u. Thus
by Shalika’s argument 3= 0. This finishes proving all the above propositions. �

Now let λ 6= 0 in S(π). We define the local Bessel distribution

Bπ ( f )=

∑
i

λ(π( f )vi ) λ(vi ) .

Let K be a maximal compact subgroup. As before, this is well defined, at least if
f is K -finite, and the φi a basis of the K -finite vectors. For general f , we may
take Bπ ( f ) to be

Bπ ( f )= (π( f )λ, λ) .

Since π is irreducible,1Bπ =k Bπ for some k. We already know that the restriction
of Bπ to � is nonzero.
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We want to show something more precise.

Proposition 9.6. The restriction of Bπ to �e is nonzero.

Proof. As before, the distribution Bπ descends to a distribution on H×. We use a
slightly different notation from before. For g ∈�, let 8 f ∈ C∞(�) be given by

8 f (g)=

∫
f
((

I X
0 I

)
g

(
A 0
0 A

) (
I Y
0 I

))
ψ(tr(X + Y ))d Ad XdY .

For any function 8 on � denote by r8 the function on H× defined by

r8(γ )=8

(
0 γ

I 0

)
.

There is a unique distribution T on H× such that Bπ ( f ) = T (r8 f ). We have to
show that T is not supported on the center R× of H×.

To that end we show that T satisfies a certain partial differential equation. Recall
we took

1=

∑
EαEα =

1
4

E2
0 −

1
2

∑
{i, j,k}

(
E2

1,a + E2
4,a

)
+

1
2

∑
{1,i, j,k}

b2 (
E2,b E3,b + E3,b E2,b

)
in Z(g). We compute

E3,1 E2,1 = E2,1 E3,1 − E0 and E3,a E2,a = E2,a E3,a + E0

for a ∈ {i, j, k}. Thus we may rewrite

1=
1
4

E2
0 −

1
2

∑
{i, j,k}

(E2
1,a + E2

4,a)+
∑

(1,i, j,k}

b2 E3,b E2,b + 2E0.

Since 1 is Ad(G) invariant, ρ(1)8 f =8ρ(1) f . Since Bπ (ρ(1) f )= κBπ ( f ),
we see that T (r18 f ) = κT (r8 f ). To understand what this means, we need to
know what r18 f is. By linearity, we may write

(9-6) 18 f =
1
4
ρ(E2

0)8 f −
1
2

∑
{i, j,k}

(
ρ(E2

1,a)8 f + ρ(E2
4,a)8 f

)
+

∑
{1,i, j,k}

b2ρ(E3,b)ρ(E2,b)8 f + 2ρ(E0)8 f .



366 HERVÉ JACQUET AND KIMBALL MARTIN

By definition,

ρ(E0)8 f

(
0 γ

I 0

)
=

d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ

I 0

) (
et 0
0 e−t

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ e−2t

I 0

) (
et 0
0 et

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ e−2t

I 0

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

r8 f (γ e−2t)= ρ(−2X0)r8 f ,

where the integrals on the first three lines are taken over d A d X dY , ψ is short for
ψ(tr(X + Y )), and X0 = I ∈ H = Lie(H×). Similarly,

ρ(E2
0)8 f

(
0 γ

I 0

)
=

d2

dtds

∣∣∣∣∣
t=0, s=0

∫
f
((

I X
0 I

) (
0 γ

I 0

)

×

(
et+s 0

0 e−t−s

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d2

dtds

∣∣∣∣∣
t=0, s=0

r8 f (γ e−2(t+s)) .

Thus (ρ(E0)8 f )= ρ(−2X0)r8 f and r(ρ(E2
0)8 f )= ρ(4X2

0)r8 f .
Let a ∈ {i, j, k}. Computing as above, we see

ρ(E1,a)8 f

(
0 γ

1 0

)
=

d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ

I 0

) (
eat 0
0 I

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ e−at

I 0

) (
eat 0
0 eat

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

r8 f (γ e−at)= ρ(−Xa)r8 f ,

where Xa = a ∈ H = Lie(H×). Thus r(ρ(E2
1,a)8 f )= ρ(X2

a)r8 f .
Similarly

ρ(E4,a)8 f

(
0 γ

I 0

)
=

d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ

I 0

) (
I 0
0 eat

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ eat

I 0

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

r8 f (γ eat)= ρ(Xa)8 f .
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Thus r(ρ(X2
4,a)8 f )= ρ(X2

a)r8 f .
Next, for b ∈ {1, i, j, k},

ρ(E2,b8 f )(g)=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

)
g

(
I tb
0 I

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

)
g

(
A 0
0 A

) (
I A−1tbA
0 I

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0
ψ(− tr(tb))8 f (g).

Note that tr b = 0 if b = i, j or k, so the above quantity will vanish. On the other
hand, if b = 1, then

d
dt

∣∣∣∣
t=0
ψ(− tr(tb))=

d
dt

∣∣∣∣
t=0

e−4π iηt
= −4π iη ,

if ψ(x)= 2iπη. Hence ρ(E2,b)8 f = −4π iηδ1,b8 f .
Thus we only need to compute

ρ(E3,1)8 f

(
0 γ

1 0

)
=

d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
0 γ

I 0

) (
I 0
t I

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0

∫
f
((

I X
0 I

) (
I tγ
0 I

) (
0 γ

I 0

) (
A 0
0 A

) (
I Y
0 I

))
ψ

=
d
dt

∣∣∣∣
t=0
ψ(−t tr(γ ))r8 f (γ )= −2π iη tr γ r8 f (γ ).

Summing up, we have

rρ(1)8 f = ρ
(
X2

0 − X2
i − X2

j − X2
k − 4X0

)
r8 f (γ )− 8π2η2 tr γ r8 f (γ ).

Hence κT (φ)= T (Dφ), where D is the differential operator with variable coeffi-
cients given by

Dφ(γ )= ρ
(
X2

0 − X2
i − X2

j − X2
k − 4X0

)
φ(γ )− 8π2 tr(γ )φ(γ ).

We want to show T is not supported on R×. We apply Shalika’s argument to
the groups G1 = R× and G2 = H1 = {h : det h = 1}. The Lie algebra of G1 is
RX0 and the Lie algebra of G2 is H0 = {h : tr h = 0} with basis X i , X j , Xk . If T
is supported on R×, we get T = 0, a contradiction. �

10. Local periods for GL4

Let π a unitary irreducible representation of G ′
= GL4. As before, we define S(π).

Then dim(S(π)) ≤ 1. This is established in [Jacquet and Rallis 1996] in the non-
Archimedean case (in the context of GL2n) and in [Ash and Ginzburg 1994, Lemma
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5.4.2] in the Archimedean case. We remark that, at least in the non-Archimedean
case, this would follow from the fact that the relevant orbits are invariant under an
involution of GL4.

In addition, if F is non-Archimedean, the character ψ is unramified, and the
representation π admits a GL2(OF )-invariant vector v0 6= 0, then λ(v0) 6= 0 for any
λ 6= 0 in S(π). This follows from the discussion in [Bump and Friedberg 1990] or
[Jacquet and Shalika 1990]. If λ 6= 0 is in S(π), we define the Bessel distribution
Bπ ( f ) as before.

11. Proof of Theorem 1.1

Let F be a number field and G = GL2(D), where D is a quaternion algebra over
F . Suppose π1 is an automorphic cuspidal representation of G(A) distinguished
by θ . Let λ be the linear form

λ(φ)=

∫
S(F)Z(A)\S(A)

φ(s)θ(s)ds .

As we have observed, the quotient is compact so that the integral is absolutely
convergent and defines a continuous linear form on the space of smooth vectors of
π . Recall the Bessel distribution

Bπ1( f )= (π1( f )λ, λ) .

It follows that every local component π1v of π1 is distinguished by θv. Furthermore,
one can choose the local linear forms λv ∈ S(π1v) so that, if f =

∏
v fv, then

Bπ1( f )=

∏
v

Bπ1v ( fv) .

This factorization into local distributions follows from the uniqueness of local dis-
tributions established in [Prasad and Raghuram 2000] and Proposition 9.1 above.
Of course, the local λv are so chosen that in this product almost all factors are 1.
We assume D ramifies at some infinite place v and π1v0 is supercuspidal for some
finite place v0 which splits D. We choose the functions at a place v where Dv

ramifies as in the previous sections. Thus fv is supported on the open set �Dv
if

v is finite and D ramifies at v and the set �Dv,e is v is infinite and D ramifies at
v. As we have seen, if D ramifies at v, then we have Bπ1v ( fv) 6= 0 for at least one
choice of fv. It is elementary that there is a choice of fv0 supercuspidal such that
Bπ1v0

( fv0) 6= 0
We choose a matching function f ′ on G ′(A) as explained above. Then we have

the identity ∑
π

Bπ ( f )=

∑
π ′

Bπ ′( f ′) .
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On the left and right, the sums are respectively over all cuspidal automorphic rep-
resentations π of G(A) and π ′ of G ′(A) that are distinguished and supercuspidal
at the place v0.

Let U (π1) (or U ′(π1)) be the set of all cuspidal representations π of G (or
G ′) such that πv ' π1v at almost all places where π1 is unramified and πv0 is
supercuspidal. By the assumption that π1 has a Jacquet-Langlands lift to GL4 and
the strong multiplicity one assumption for GL4, we find U ′(π1) contains precisely
one element, π ′

1. Then the principle of infinite linear independence of characters
of the Hecke algebra [Langlands 1980, Section 11] gives∑

π∈U (π1)

Bπ ( f )=

∑
π ′∈U ′(π1)

Bπ ′( f ′)= Bπ ′

1
( f ′) .

By our strong multiplicity one assumption on π ′

1, that is, U (π1) = {π1}, we see
Bπ ′

1
( f ′)= Bπ1( f ) is not identically zero. Thus π ′

1 is distinguished as claimed.
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