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FINITE-DIMENSIONAL REPRESENTATIONS
OF HYPER LOOP ALGEBRAS

DIJANA JAKELIĆ AND ADRIANO ADREGA DE MOURA

We study finite-dimensional representations of hyper loop algebras, that is,
the hyperalgebras over an algebraically closed field of positive characteris-
tic associated to the loop algebra over a complex finite-dimensional simple
Lie algebra. The main results are the classification of the irreducible mod-
ules, a version of Steinberg’s tensor product theorem, and the construction
of positive characteristic analogues of the Weyl modules as defined by Chari
and Pressley in the characteristic zero setting. Furthermore, we start the
study of reduction modulo p and prove that every irreducible module of a
hyper loop algebra can be constructed as a quotient of a module obtained
by a certain reduction modulo p process applied to a suitable characteristic
zero module. We conjecture that the Weyl modules are also obtained by re-
duction modulo p. The conjecture implies a tensor product decomposition
for the Weyl modules which we use to describe the blocks of the underlying
abelian category.

Introduction

Let G be a semisimple connected algebraic group over an algebraically closed field
F. One can associate to G its Lie algebra L(G) and its algebra of distributions
U (G), which we prefer to call the hyperalgebra of G. If F is of characteristic
zero, the hyperalgebra coincides with the universal enveloping algebra U (L(G))
of L(G), but this is not so in positive characteristic. U (G) acts naturally on any
G-module, and it turns out that, as conjectured originally by Verma and proved by
Sullivan [1978], every finite-dimensional U (G)-module can be “lifted” to a rational
finite-dimensional G-module. We will restrict our attention to the case when G is
the Chevalley group of adjoint type associated to a complex finite-dimensional
simple Lie algebra g. In this case the algebra U (G) is isomorphic to the algebra
U (g)F constructed by considering Kostant’s integral form of U (g) and tensoring
with F over Z. It will suffice, for our purposes, to work over the purely algebraic
setting of U (g)F.
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Let g be as above, and let g̃ = g ⊗ C[t, t−1
] be the loop algebra over g. The

finite-dimensional representation theory of g̃ has been a very active research topic
in recent decades. It is related, for instance, to integrable models and the Bethe
ansatz in statistical mechanics. Garland [1978] introduced an integral form of U (g̃)
which can be used to construct what we call the hyper loop algebra U (g̃)F of g over
F; see also [Tits 1980–1981; Mitzman 1985]. The hyperalgebra U (g)F is naturally
a subalgebra of U (g̃)F.

This paper studies some basic aspects of the category C̃F of finite-dimensional
U (g̃)F-modules, such as the classification of its simple objects and its block de-
composition when F is an algebraically closed field of positive characteristic. In the
case F = C and thus U (g̃)F = U (g̃), these questions were studied in [Chari 1986;
Chari and Moura 2004; Chari and Pressley 1986]. It turns out that the simple finite-
dimensional g̃-modules are highest-weight modules with respect to the triangular
decomposition of g̃ obtained by “looping” the usual triangular decomposition of
g. As usual, we will call them `-highest-weight modules to distinguish them from
those that are highest weight with respect to the triangular decomposition coming
from the Chevalley generators of g̃ (nontrivial highest-weight representations with
respect to the latter decomposition are infinite-dimensional). Moreover, all the sim-
ple modules are isomorphic to suitable tensor products of the so-called evaluation
representations (obtained by pulling back the simple g-modules by the evaluation
map t 7→ a for some nonzero a ∈ C). We prove that these two results hold in
positive characteristic as well. This is done in Corollary 3.2 and Theorem 3.4,
the latter being a U (g̃)F-version of Steinberg’s tensor product theorem. Using the
tensor product theorem we compute the dual representation of a given irreducible
one. For highest-weight representations with respect to the usual triangular decom-
position in positive characteristic, see [Garland 1978; 1980; Mathieu 1988; 1996;
Tits 1987] and references therein.

The set of `-highest weights can be identified with rank(g)-tuples of polynomials
in F[u] with constant term 1. For F = C, Chari and Pressley [2001] showed there
exists a family of universal finite-dimensional `-highest-weight modules, called
the Weyl modules. We prove that the Weyl modules for U (g̃)F can be defined
in a similar fashion when F is of positive characteristic. The reason for calling
these `-highest-weight modules Weyl modules comes from a conjecture in [Chari
and Pressley 2001] stating that the Weyl modules for U (g̃) can be obtained as the
classical limit of certain irreducible finite-dimensional modules for the correspond-
ing quantum loop algebra; the limit process resembles the one for obtaining the
Weyl modules for U (g)F by reduction modulo p of simple g-modules. Chari and
Loktev [2006] proved this conjecture when g is of type A by using Gelfand-Tsetlin
filtrations, and Fourier and Littelmann [2006] proved it when g is of type ADE by
using Demazure modules. Moreover, H. Nakajima has pointed out that the general
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case can be deduced using the crystal and global basis results from [Beck and
Nakajima 2004; Kashiwara 1994; 2002; Nakajima 2001; 2004]. Other interesting
related references include [Chari and Greenstein 2007; Fourier and Littelmann
2007; Kuniba et al. 1998; 2000]. Conjecture 4.7(a) of this paper is an analogous
conjecture for the Weyl modules for U (g̃)F when F is of positive characteristic; it
states that they can be obtained from the Weyl modules for U (g̃)F0 by reduction
modulo p, where F0 is a suitable field of characteristic zero. As Z-lattices are
easily seen not to be well behaved with respect to evaluation maps, we consider
more general lattices for this purpose. Namely, we consider lattices over the ring A

of Witt vectors with coefficients in F, after changing scalars from C to the fraction
field F0 of A. We consider finite-dimensional `-highest-weight U (g̃)F0-modules
such that the coefficients of the `-highest weights are in A and that the leading ones
are units in A; we show all such modules contain an (admissible) A-ample-lattice.
Thus, we obtain all of the irreducible modules as quotients of modules coming
from a reduction modulo p process. This is done in Theorem 4.5 and Corollary
4.6. Combining Conjecture 4.7 with the one in [Chari and Pressley 2001], which is
now a theorem as remarked above, we have a bridge connecting the Weyl modules
for U (g̃)F with certain irreducible representations for quantum loop algebras (at
generic quantization parameter).

As corollaries of Conjecture 4.7, we obtain a tensor product decomposition of
the Weyl modules and the block decomposition of C̃F. Although this tensor product
decomposition is the natural analogue of the one obtained in [Chari and Pressley
2001] for characteristic zero, the techniques used in that paper do not seem to
apply to our setting. In fact, our motivation for considering the theory of reduction
modulo p originated from the search for other methods which would lead to a
proof of this tensor product decomposition. Indeed Conjecture 4.7(b) says that we
expect that this decomposition holds in the context of A-lattices, thus transferring
the problem to a characteristic zero setting. The block decomposition of C̃F is
described similarly to that of C̃C as well, that is, the blocks are parametrized by
functions with finite support χ : F×

→ P/Q called spectral characters. Here P and
Q are the weight and root lattices of g, and F×

= F − {0}. The proof runs parallel
to its characteristic zero counterpart found in [Chari and Moura 2004]; hence, the
tensor product decomposition for Weyl modules plays a key role. However, our
results on reduction modulo p are needed both to prove that the Weyl modules
have well-defined spectral characters and to obtain a positive characteristic version
of [Chari and Moura 2004, Proposition 3.4] — a key ingredient in the construction
of certain useful indecomposable modules.

In Section 1, we fix the basic notation for finite-dimensional complex simple
Lie algebras and their loop algebras, define the hyperalgebras, and collect some
important lemmas. Section 2 reviews the relevant facts about finite-dimensional
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U (g)F-modules. Sections 3 and 4 comprise the main part of the paper. In Section
3A, we define `-highest-weight modules and obtain the necessary relations satis-
fied by the finite-dimensional ones. Section 3B classifies the irreducible modules
and arrives at the aforementioned tensor product and duality results. Section 3C
constructs the Weyl modules. Section 4 ends the paper with the results and the
conjecture on reduction modulo p as well as their application to describing the
blocks.

1. Hyperalgebras

Throughout, C, Z, Z+, and N denote the sets of complex numbers, integers, non-
negative integers, and positive integers. For a ring A, we denote the underlying
multiplicative group of units by A×. The dual of a vector space V is V ∗.

1A. Preliminaries. Let I be the set of vertices of a finite-type connected Dynkin
diagram, and let g be the associated simple complex Lie algebra with a fixed Cartan
subalgebra h and nilpotent subalgebras n±. Denote by R+ the set of positive roots
such that

n±
=

⊕
α∈R+

g±α, where g±α = {x ∈ g : [h, x] = ±α(h)x, for all h ∈ h}.

We denote the simple roots by αi , the fundamental weights by ωi , and by Q, Q+

and P, P+ the root and weight lattices with corresponding positive cones. We
equip h∗ with the partial order λ ≤ µ if and only if µ− λ ∈ Q+. We denote the
Weyl group by W, its longest element by w0, and the maximal positive root by
θ . Let 〈 · , · 〉 be the bilinear form on h∗ induced by the Killing form on g, and
for λ ∈ h∗

− {0}, set λ∨
= 2λ/〈λ, λ〉 and dλ =

1
2〈λ, λ〉. Then {α∨

i : i ∈ I } is a set
of simple roots of the simple Lie algebra g∨ whose Dynking diagram is obtained
from that of g by reversing the arrows, and R∨

= {α∨
: α ∈ R} is its root system,

where R = R+
∪ (−R+). If α =

∑
i miαi and α∨

=
∑

i m∨

i α
∨

i , then

(1-1) m∨

i =
dαi

dα
mi .

If a is a Lie algebra (over any field F), define its loop algebra ã = a⊗F F[t, t−1
]

with bracket [x ⊗ tr , y ⊗ t s
] = [x, y] ⊗ tr+s . Clearly a ⊗ 1 is a subalgebra of ã

isomorphic to a, and by abuse of notation, we will continue denoting its elements
by x instead of x ⊗1. In case a = g, we have g̃ = ñ−

⊕ h̃⊕ ñ+, and h̃ is an abelian
subalgebra.

Let U (a) be the universal enveloping algebra of a. Then U (a) is a subalgebra
of U (ã), and for a = g, multiplication establishes isomorphisms

U (g)∼= U (n−)⊗ U (h)⊗ U (n+) and U (g̃)∼= U (ñ−)⊗ U (h̃)⊗ U (ñ+).
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The assignments

4 : a → U (a)⊗F U (a), x 7→ x ⊗ 1 + 1 ⊗ x,

S : a → a, x 7→ −x,

ε : a → F, x 7→ 0

can be uniquely extended so that U (a) becomes a Hopf algebra with comultiplica-
tion 4, antipode S, and counit ε. We shall denote by U (a)0 the augmentation ideal,
that is, the kernel of ε. Consider the associative F-algebra U (a)⊗F F[t, t−1

] with
the obvious tensor product structure and the usual bracket. Clearly the inclusion
ã ↪→U (a)⊗FF[t, t−1

] is a Lie algebra map. Therefore the next lemma is immediate
from the universal property of U (ã).

Lemma 1.1. There exists a unique algebra map U (ã)→ U (a)⊗F F[t, t−1
] which

is the identity on ã.

We call this map the formal evaluation map and denote it by ev. For each a ∈ F×,
consider the evaluation map U (a)⊗F F[t, t−1

] → U (a) sending x ⊗ f (t) to f (a)x ,
and denote by eva the composition of this map with ev. Then eva is a surjective
algebra homomorphism eva : U (ã) → U (a) which we call the evaluation map at
a.

Remark. Obviously, an existence proof for eva could be constructed like that of
ev. However, we will use the formal evaluation map to prove the existence of
evaluation maps in the context of hyper loop algebras using Z-lattices only; see
Proposition 3.3 and the remark after Proposition 4.10.

1B. Reduction modulo p. As usual, given any associative algebra A over a field
of characteristic zero, a ∈ A, and k ∈ Z+, we set

a(k) = ak

k!
and

(a
k

)
=

a(a−1) · · · (a−k+1)
k!

∈ A.

Let 8 = {x±
α , hαi : α ∈ R+, i ∈ I } be a Chevalley basis for g, where x±

α ∈ g±α.
Set hα = [x+

α , x−
α ], x±

α,r = x±
α ⊗ tr , and hα,r = hα ⊗ tr . When r = 0 we may just

write x±
α and hα. Also, we may write x±

i,r and hi,r in place of x±
αi ,r and hαi ,r . Note

the set 8̃ = {x±
α,r , hi,r : α ∈ R+, i ∈ I, r ∈ Z} is a basis for g̃, and define g̃Z to be

the Z-span of 8̃. The Z-span of 8 is a Lie Z-subalgebra of g̃Z which we denote
by gZ.

If F is any field, set gF = gZ ⊗Z F and g̃F = g̃Z ⊗Z F, so that gF and g̃F are Lie
algebras over F.
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Given α ∈ R+ and r ∈ Z, define elements3α,r ∈ U (h̃) by equating the following
formal power series in u:

3±

α (u)=

∞∑
r=0

3α,±r ur
= exp

(
−

∞∑
s=1

hα,±s

s
us

)
.

We may write3i,r for3αi ,r . It follows from (1-1) that, if α=
∑

i miαi ∈ R+, then
hα =

∑
i m∨

i hi and

(1-2) 3±

α (u)=

∏
i∈I

(3±

αi
(u))m

∨

i .

We have [Garland 1978, Lemma 5.1]:

(1-3) ev(3α,r )= (−1)r
(hα
|r |

)
⊗ tr .

Set

Hα(u)= ev−1(3
+

α (u))= exp
(
−

∑
s≥1

hα
(−u)s

s

)
,

so that (Hα(u))k , that is, the coefficient of uk in Hα(u), is
(hα

k

)
.

For k ∈ Z with k 6= 0, consider also the endomorphism τk of U (g̃) extending
t 7→ tk , and set 3α,r;k = τk(3α,r ) and 3±

α;k(u)=
∑

∞

r=03α,±r;kur . Notice that
(hi

k

)
is a polynomial in hi of degree k. Hence the set{(h1

k1

)
· · ·

(h`
k`

)
: k j ∈ Z+

}
, where `= |I |,

is a basis for U (h). Similarly, observe that 3i,±r;k for r, k ∈ N is a polynomial in
hi,±sk with 1 ≤ s ≤ r whose leading term is (−hi,±k)

(r). Finally, given an order
on 8̃ and a PBW monomial with respect to this order, we construct an ordered
monomial in the elements

(x±

α,r )
(k), 3i,r;k,

(hi
k

)
for r, k ∈ Z with k > 0, α ∈ R+, and i ∈ I

using the correspondence just discussed for the basis elements of U (h̃), as well
as the obvious correspondence (x±

α,r )
k
↔ (x±

α,r )
(k). The set of monomials thus

obtained is then a basis for U (g̃), while the monomials involving only (x±
α )

(k)

and
(hi

k

)
form a basis for U (g). Let U (g̃)Z and U (g)Z be the respective Z-spans of

these monomials. The following theorems are crucial:

Theorem 1.2 [Kostant 1966]. U (g)Z is the Z-subalgebra of U (g) generated by
{(x±

α )
(k)

: α ∈ R+ and k ∈ Z+}.

Theorem 1.3 [Garland 1978]. U (g̃)Z is the Z-subalgebra of U (g̃) generated by
{(x±

α,r )
(k)

: α ∈ R+ and r, k ∈ Z with k ≥ 0}.
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For a ∈ {g, n±, h, g̃, ñ±, h̃}, let U (a)Z denote the corresponding Z-subalgebra
of U (g̃). Given a field F, the F-hyperalgebra of a is defined by

U (a)F = U (a)Z ⊗Z F.

We will also refer to U (g̃)F as the hyper loop algebra of g over F. The PBW
Theorem gives

U (g)F = U (n−)FU (h)FU (n+)F and U (g̃)F = U (ñ−)FU (h̃)FU (ñ+)F.

Clearly, if F is of characteristic zero, U (a)F is naturally isomorphic to U (aF). For
fields of positive characteristic we just have an algebra homomorphism U (aF)→

U (a)F, which is neither injective nor surjective. If no confusion arises, we will
write x instead of x ⊗ 1 for the image of an element x ∈ U (g̃)Z in U (g̃)F.

Quite clearly the Hopf algebra structure on U (g̃) preserves the Z-forms U (a)Z
and therefore induces a Hopf algebra structure on U (g̃)F with counit given by
ε((x±

α,r )
(k))= 0 and comultiplication determined by

(1-4) 4
(
(x±

α,r )
(k))

=

∑
l+m=k

(x±

α,r )
(l)

⊗ (x±

α,r )
(m),

(1-5)

4

((hi
k

))
=

∑
l+m=k

(hi
l

)
⊗

(hi
m

)
,

4(3α,±k)=

∑
l+m=k

3α,±l ⊗3α,±m .

Moreover, the antipode on the basis of U (h̃)F is determined by

(1-6) S(3±

α;k(u))= (3±

α;k(u))
−1 and S(Hα(u))= (Hα(u))−1,

where the inverses in the last two equations are the ones of formal power series.

1C. Some lemmas. We now collect some essential identities on U (g̃)F, when F is
a field of characteristic p > 0. We begin with the trivial observation that

(1-7) (x±

α,r )
(k)(x±

α,r )
(l)

=

(k+l
k

)
(x±

α,r )
(k+l).

From this, one easily deduces

((x±

α,r )
(k))p

= 0.

It is well known [Humphreys 1977] that the elements
(hi

k

)
satisfy

(1-8)
(hi

k

)p
=

(hi
k

)
,
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and it is easy to see that

(1-9)
(hi

l

)
(x±

α,r )
(k)

= (x±

α,r )
(k)

(hi ±kα(hi )

l

)
.

Given α ∈ R+ and s ∈ Z, define

X−

α;s,±(u)=

∑
r≥1

x−

α,±(r+s)u
r .

Lemma 1.4. We have

(x+

α )
(l)(x−

α )
(k)

=

min{k,l}∑
m=0

(x−

α )
(k−m)

(hα−k−l+2m
m

)
(x+

α )
(l−m)(1-10)

and

(x+

α,∓s)
(l)(x−

α,±(s+1))
(k)

∈ (−1)l
(
(X−

α;s,±(u))
(k−l)3±

α (u)
)

k + U (g̃)FU (ñ+)0F.

(1-11)

In (1-11), k ≥ l ≥ 1, and the subindex k means the coefficient of uk of the power
series above.

Proof. It suffices to prove that the relations hold in U (g̃)Z. For both claims, the
strategy is to commute the elements on the left hand side. The proof of (1-10) can
be found in [Humphreys 1972, Lemma 26.2].

Relation (1-11) was proved in [Garland 1978, Lemma 7.5] for s = 0 and the
choice of “±” such that we have “+” on the right hand side. Consider the subalgebra
of U (g̃)Z generated by (x±

α,r )
(k) for a fixed α ∈ R+. It is easy to see that, for

each s ∈ Z, the assignment (x±
α,r )

(k)
7→ (x±

α,r±s)
(k) extends uniquely to an algebra

automorphism of this subalgebra which is the identity when restricted to U (h̃)Z.
The general case of (1-11) (with “+” on the right hand side) follows easily from the
case s = 0 using these automorphisms; see also [Chari and Pressley 2001, Lemma
1.3]. For the opposite choice of “±”, just apply the automorphism determined by
the assignment (x±

α,r )
(k)

7→ (x±

α,−r )
(k). �

The following lemmas will be needed in the proof of Theorem 3.11. Consider
monomials involving only the elements (x−

α,r )
(k). Define the degree of (x−

α,r )
(k) to

be k, and extend it additively.

Lemma 1.5. Let α, β ∈ R+, k, l ∈ Z+, and r, s ∈ Z. Then (x−
α,r )

(k)(x−

β,s)
(l) is in the

span of (x−

β,s)
(l)(x−

α,r )
(k) together with monomials of degree strictly smaller than

k + l.

Proof. Using that U (ñ−)Z is (Q+
×Z)-graded, the claim follows immediately from

the proof of [Humphreys 1972, Lemma 26.3.C]. �
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The next lemma is part of [Garland 1978, Lemma 5.11] and shows that the
elements 3α,r;k are linear combinations of products of the elements 3α,s .

Lemma 1.6. In U (h̃)Z, for all k, s ∈ N and α ∈ R+, we have

3α,±s;k = k3α,±sk +

∑
(Er ,En)

mEr ,En3
n1
α,±r1

· · ·3
nl
α,±rl

for some mEr ,En ∈ Z.

The sum is over the pairs (Er , En) where Er = (r1, . . . , rl) and En = (n1, . . . , nl) are
such that l, r j , n j ∈ N, ri 6= r j , l

∑
j n j > 1, and

∑
j n jr j = sk.

1D. Frobenius homomorphism.

Lemma 1.7. U (g̃)F is generated as an algebra by the elements (x±
α,r )

(pk), and
U (g)F is generated by (x±

α )
(pk), where, in both statements, α ∈ R+, k, r ∈ Z, and

k ≥ 0. Moreover, U (h)F is generated as an algebra by
(hi

pk

)
for i ∈ I and k ∈ Z+.

Proof. The first two statements are immediate from Theorems Theorem 1.2 and
1.3 together with (1-7). The last is a statement on U (g)F and is well known. �

It is known that there exists a Hopf algebra map φ̃ : U (g̃)F → U (g̃)F sending
(x±
α,r )

(pk) to (x±
α,r )

(pk−1), with the convention that the latter is zero when k = 0. We
will denote the restriction of φ̃ to U (g)F by φ and call both of them the (arithmetic)
Frobenius homomorphisms. The first formula below is well known and the second
was proved in [Cline et al. 2000].

φ
(( hi

pk

))
=

( hi
pk−1

)
and φ̃(3i,r )=

{
3i,r/p if p divides r
0 otherwise.

The proof of the existence of the map φ can be found in [Jantzen 1987], for
instance. For the existence of φ̃, see [Mathieu 1996, Lemma 1.3] and [Chari and
Pressley 1997, Lemma 9.5].

Given a U (g̃)F-module V , we denote by V φ̃m
the pullback of V by φ̃m . Similarly

if V is a U (g)F-module, V φm
will denote the pullback of V by φm .

2. Review of finite-dimensional U(g)F-modules

In this section we review some results on finite-dimensional representations of
U (g)F. In the first subsection we consider the case F = C, where we summarize
the basic results without proofs. The literature for this subsection is vast and well
known; all the results we mention can be found, for example, in [Humphreys 1972].
In the other subsections F will be an algebraically closed field of characteristic
p > 0. Jantzen [1987] gives essentially all of the results, although the approach
is heavily geometric; see also [Borel et al. 1970]. Our approach follows that of
[Humphreys 1972, Chapter VII] and [Humphreys 1977]. Since some proofs are
relevant for Section 3, we consider it appropriate to sketch them.
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2A. Characteristic zero and lattices. Given a U (g)-module V , a vector v ∈ V
is called a weight vector if hv = µ(h)v for some µ ∈ h∗ and all h ∈ h. The
subspace consisting of weight vectors of weight µ will be denoted by Vµ. If v
is a weight vector such that n+v = 0, then v is called a highest-weight vector.
If V is generated by a highest-weight vector of weight λ, then V is said to be a
highest-weight module of highest weight λ.

Here is a summary of the basic facts of finite-dimensional U (g)-modules:

Theorem 2.1. Let V be a finite-dimensional U (g)-module.

(a) V =
⊕

µ∈h∗ Vµ and dim Vµ = dim Vwµ for all w ∈ W.

(b) V is completely reducible.

(c) For each λ ∈ P+ the U (g)-module V 0(λ) generated by a vector v satisfying

x+

i v = 0, hiv = λ(hi )v, and (x−

i )
λ(hi )+1v = 0 for all i ∈ I

is irreducible and finite-dimensional. If V is irreducible, then V is isomorphic
to V 0(λ) for some λ ∈ P+.

(d) If λ ∈ P+ and V ∼= V 0(λ), then Vµ 6= 0 if and only if wµ ≤ λ for all w ∈ W.
Furthermore, the minimal weight of V 0(λ) is w0λ.

An admissible lattice for a U (g)-module V is the Z-span of a basis for V that is
invariant under the action of U (g)Z. The basic results about lattices are summarized
next; see [Humphreys 1972].

Theorem 2.2. Let V,W be finite-dimensional U (g)-modules.

(a) If L is an additive subgroup of V that is invariant under the action of U (g)Z,
then L =

⊕
µ∈P Lµ, where Lµ = L ∩ Vµ.

(b) There exists an admissible lattice for V .

(c) If L ,M are admissible lattices for V,W , respectively, then L ⊗Z M is an
admissible lattice for V ⊗ W .

(d) If V is an irreducible module and v is a highest-weight vector of weight λ,
then L = U (n−)Zv is minimal in the set of admissible lattices for V satisfying
Lλ = Zv.

2B. Classification of irreducible modules in positive characteristic. From now
on, F is an algebraically closed field of characteristic p > 0, and Fp denotes its
prime field. In this subsection we recall the methods used to classify the irreducible
representations of U (g)F up to isomorphism. Although the classification is the
same as in the case of U (g), the methods are quite different and will be used when
we treat the case of U (g̃)F.
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Let V be a U (h)F-module. A nonzero vector v ∈ V is called a weight vector if
there exists z = (zi,k), called the weight of v, with zi,k ∈ F and i ∈ I, k ∈ Z+, such
that

(hi
pk

)
v = zi,kv. Notice that (1-8) implies zi,k must be in Fp. We say that z is

integral if zi,k =
(
µ(hi )

pk

)
for some µ ∈ P; we say z is dominant integral if the same

is true for some µ ∈ P+. In those cases we identify z with µ and say that v has
weight µ. If V is a U (g)F-module and v is weight vector such that (x+

α )
(k)v = 0

for all α ∈ R+ and k ∈ N, then v is said to be a highest-weight vector. If V is
generated by a highest-weight vector, V is called a highest-weight module.

Since the
(hi

pk

)
commute, we can decompose any finite-dimensional representa-

tion V of U (g)F in a direct sum of generalized eigenspaces for the action of U (h)F:

V =
⊕
z

Vz.

We say that z is a weight of V if Vz 6= 0, and in that case, Vz is called a weight
space of V . When z is integral we write Vµ instead of Vz .

Given z = (zi,k) and µ ∈ P define z +µ= y by the equality

yi,kv =

(hi +µ(hi )

pk

)
v,

where v is some weight vector of weight z. It follows from (1-9) that if v has weight
z, then (x±

α )
(k)v is either zero or has weight z±kα. Hence, if v is a highest-weight

vector for a highest-weight representation V , we have dim(Vz) = 1 and Vy 6= 0
only if y ≤ z, where y ≤ z if and only if y = z − η for some η ∈ Q+. Standard
arguments then show:

Proposition 2.3. Every highest-weight module is indecomposable and has a unique
maximal proper submodule and hence also a unique irreducible quotient.

Any nonnegative integer m can be written uniquely as m =
∑

j≥0 m j p j , where
0 ≤ m j< p, so that

(m
pr

)
= mr (mod p) for all r ≥ 0. We shall write m for the

image of m ∈ Z in Fp.

Theorem 2.4. If V is an irreducible finite-dimensional U (g)F-module, then V is a
highest-weight representation with dominant integral highest weight.

Proof. As V is irreducible, the generalized eigenspaces Vz are in fact eigenspaces.
Since V is finite-dimensional, it also follows that there exists a maximal weight z,
and hence V is a highest-weight module. It remains to prove that z is dominant
integral. Let v be a highest-weight vector for V . As we observed above, (x−

α )
(k)v

is either zero or has weight z − kα. This implies that, for every i ∈ I , there exists
Ni ∈ Z+ minimal such that (x−

i )
(pk)v = 0 for all k ≥ Ni . Moreover, we conclude

from (1-10) with k = l ≥ pNi that
(hi

pr

)
v = 0 for all r ≥ Ni . Now we easily see that

z coincides with λ ∈ P+ defined by λ(hi )=
∑Ni −1

j=0 mi, j p j with 0 ≤ mi, j< p such
that mi,r = zi,r . �
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To complete the classification of the irreducible U (g)F-modules in terms of high-
est weights, it remains to prove that for every λ ∈ P+, there exists an irreducible
U (g)F-module having λ as highest weight. We will use reduction modulo p.

Let V be a finite-dimensional U (g)-module, and let L be an admissible lattice for
V . Setting LF = L ⊗Z F, we have LF is a U (g)F-module and dimF(LF)= dimC(V ).
The U (g)F-module LF is called a reduction modulo p of V (via L). If L is a
minimal admissible lattice for V = V 0(λ), then LF is clearly highest-weight with
highest weight λ. Hence by Proposition 2.3, it has a finite-dimensional irreducible
quotient. Let V (λ) denote this quotient.

The following statement remains true in positive characteristic.

Proposition 2.5. Let V be a finite-dimensional U (g)F-module. The generalized
eigenspaces Vµ are in fact eigenspaces and dim Vµ = dim Vwµ for all w ∈ W.

2C. Weyl modules and duality.

Definition 2.6. Given λ∈ P+, let W (λ) be the U (g)F-module generated by a vector
v satisfying

(x+

α )
(pk)v = 0,

( hi
pk

)
v =

(
λ(hi )

pk

)
v, (x−

α )
(l)v = 0,

for all α ∈ R+, i ∈ I , and k, l ∈ Z+ with l > λ(hα).

The modules W (λ) are called Weyl modules. One can show that every finite-
dimensional highest-weight U (g)F-module is a quotient of some W (λ). A com-
parison between the definition of W (λ) and Theorem 2.1(c) hints at the following
theorem, which is a consequence of Kempf’s vanishing theorem and shows W (λ) is
universal in the family of finite-dimensional highest-weight modules with highest
weight λ.

Theorem 2.7. Let λ ∈ P+, and let L be a minimal admissible lattice for V 0(λ).
Then W (λ) is isomorphic to LF. In particular, W (λ) is finite dimensional.

We define the notions of lowest-weight vector and lowest-weight module sim-
ilarly to the corresponding highest-weight notions. It is well known that V 0(λ)

is a lowest-weight module with lowest weight w0λ, where w0 is the longest ele-
ment of W. Given a highest-weight vector v for V 0(λ) and a reduced expression
w0 = sil · · · si1 , set mik ∈ Z+ for k = 1, . . . , l to be (sik−1 · · · si1λ)(hik ). Then a
lowest-weight vector of V 0(λ) is given by v′

= (x−

il
)(mil ) · · · (x−

i1
)(mi1 )v, and more-

over v = (x+

i1
)(mi1 ) · · · (x+

il
)(mil )v′. This shows that the image of v′ in the irreducible

quotient of W (λ) is nonzero and:

Corollary 2.8. For all λ ∈ P+, W (λ) and V (λ) are lowest-weight modules with
lowest weight w0λ.
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Since U (g)F is a Hopf algebra, given a U (g)F-module V , one can equip the
dual vector space V ∗ with the structure of a U (g)F-module, where the action of
x ∈ U (g)F on f ∈ V ∗ is given by (x f )(v)= f (S(x)v) for all v ∈ V .

Proposition 2.9. Let V be a finite-dimensional U (g)F-module. Then

(a) The natural isomorphism of vector spaces V → V ∗∗ is a U (g)F-module iso-
morphism.

(b) If V = V (λ) for λ ∈ P+, then V ∗ ∼= V (−w0λ).

Proof. Part (a) is immediate because S2 is the identity. Now if V is irreducible,
it follows from (a), since duality preserves exact sequences, that V ∗ is also irre-
ducible. From (1-6) we conclude that Vµ 6= 0 if and only if V ∗

−µ 6= 0. The final
claim now follows immediately from Corollary 2.8. �

2D. Tensor products. We now recall Steinberg’s tensor product theorem [Stein-
berg 1963]. We sketch only the part of the proof which will be relevant for Section
3. Our argument essentially follows the one given in [Cline et al. 1980]. We
shall use the following lemma and refer to these references for its proof. Let
P+

p = {λ ∈ P+
: λ(hi ) < p, for all i ∈ I }.

Lemma 2.10. Let λ,µ ∈ P+
p − {0}. Then V (λ) is irreducible as a gF-module and

V (λ)⊗ V (µ) is reducible as a U (g)F-module.

Theorem 2.11. For λ ∈ P+, let λk be the unique elements of P+
p such that λ =∑m

k=0 pkλk . Then V (λ) ∼= ⊗k V (pkλk). Moreover, if µ j ∈ P+
p − {0} and l j ∈ Z+

for j = 0, . . . , n are such that ⊗
n
j=0V (pl jµ j ) ∼= V (λ), then m = n and (up to

reordering) µk = λk and lk = k for all k.

Proof. For any µ ∈ P+
p and k ∈ Z+ we have V (pkµ) ∼= V (µ)φ

k
(see Section

1D). Therefore (x±
α )

(pl )V (pkµ)= 0 if l < k. Let vk be highest-weight vectors for
V (pkλk), let V ′

= ⊗
m
k=1V (pkλk), and let v=

∑
i wi ⊗w

′

i ∈ V (λ0)⊗ V ′, where w′

i
are linearly independent. Then x+

α v=
∑

i (x
+
α wi )⊗w

′

i . Since V (λ0) is irreducible
as gF-module, it follows that x+

α v= 0 only if v= v0 ⊗v′ for some v′
∈ V ′. Now let

V ′′
=

⊗m
k=2 V (pkλk) and v = v0 ⊗

(∑
i w

′

i ⊗w
′′

i

)
∈ V (λ0)⊗ V (pλ1)⊗ V ′′, where

the w′′

i are linearly independent. Then (x+
α )

(p)v = v0 ⊗
(∑

i ((x
+
α )

(p)w′

i )⊗ w′′

i

)
.

Since V (λ1) is irreducible as gF-module, it follows that (x+
α )

(p)v = 0 only if v =

v0 ⊗v1 ⊗v′′ for some v′′
∈ V ′′. Continuing like this we see that

⊗m
k=0 V (pkλk) is

irreducible. Since it is clearly a highest-weight module with highest-weight λ, the
first statement is proved. On the other hand, we must have λk =

∑
j∈Jk

µ j , where
Jk = { j : l j = k}. Therefore, if {µ j } were not as stated, there would clearly exist
j 6= j ′ such that l j = l j ′ . The lemma above would then imply V (pl jµ j )⊗V (pl j ′µ j ′)

is reducible and hence also
⊗n

j=0 V (pl jµ j ). �
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Remark. One reason Theorem 2.11 is important comes from the fact that the
(finitely many) modules V (λ) for λ ∈ P+

p are irreducible as modules for the subal-
gebra of U (g)F generated by x±

α (since they are irreducible as gF-modules). This is
a finite-dimensional algebra, called the restricted universal enveloping algebra of
gF. Hence, the study of finite-dimensional irreducible U (g)F-modules is reduced
to the study of finitely many modules for a finite-dimensional algebra.

3. Finite-dimensional U(g̃)F-modules

We next establish some basic results of the category of finite-dimensional U (g̃)F-
modules, such as the classification of the irreducible ones and the characterization
of the universal highest-weight modules.

3A. `-highest-weight modules. Let V be a U (g̃)F-module. We say v ∈ V is an
`-weight vector if it is an eigenvector for the action of U (h̃)F, that is, if there exist
zi,k,$i,r ∈ F such that( hi

pk

)
v = zi,kv and 3i,rv =$i,rv

for all i ∈ I and all r, k ∈ Z, k ≥ 0. The corresponding functional $ ∈ (U (h̃)F)∗

is called the `-weight of v. If v is an `-weight vector and (x+
α,r )

(k)v = 0 for all
α ∈ R+ and all r, k ∈ Z with k > 0, we say v is an `-highest-weight vector. If V is
generated by an `-highest-weight vector, we say V is an `-highest-weight module.

Given a finite-dimensional U (g̃)F-module V we know from Section 2 that V can
be written as the direct sum of its weight spaces when regarded as U (g)F-module:

V =
⊕
µ∈P

Vµ.

Since U (h̃)F is a commutative algebra, we can also write the decomposition of V
into direct sum of generalized eigenspaces for the action of U (h̃)F:

V =
⊕

$∈(U (h̃)F)∗
V$ .

We next establish a set of relations satisfied by all finite-dimensional `-highest-
weight modules.

Proposition 3.1. Let V be a finite-dimensional U (g̃)F-module, λ∈ P+, and v ∈ Vλ
be such that

(x+

α,s)
(k)v = 0 and 3i,sv = ωi,sv,

for all α ∈ R+, i ∈ I , k, s ∈ Z with k > 0, and some ωi,s ∈ F. Then

(x−

α,s)
(k)v =3i,±rv = 0 for all k > λ(hα), r > λ(hi ), and s ∈ Z.



FINITE-DIMENSIONAL REPRESENTATIONS OF HYPER LOOP ALGEBRAS 385

Moreover, ωi,±λ(hi ) 6= 0 and there exist polynomials fi ∈ F[t0, t1, . . . , tλ(hi )], de-
pending only on λ(hi ), such that

ωi,−r = fi (ω
−1
i,λ(hi )

, ωi,1, . . . , ωi,λ(hi )) for all r = 1, . . . , λ(hi ).

Proof. For each r ∈ Z and α ∈ R+, the elements (x±

α,±r )
(k) for k ∈ Z+ gener-

ate a subalgebra U (g̃α,r )F of U (g̃)F isomorphic to U (sl2)F. Hence, the equality
(x−
α,r )

(k)v = 0 for k > λ(hα) follows because v generates a (finite-dimensional)
highest-weight module for this subalgebra, which is then isomorphic to a quotient
of the Weyl module W (λ(hα)).

Setting α=αi , s = 0, and l = k = r in (1-11), we get3i,±rv= 0 for r > |λ(hi )|.
Now, choosing r = λ(hi ), we see that ωi,±λ(hi ) 6= 0 . In fact, since W = U (g̃)Fv
is a finite-dimensional representation for U (g)F having Wλ = Fv as its highest-
weight space by Equation (1-9), it follows that λ− (r + m)αi is not a weight of
W for any m > 0. Therefore (x−

i )
(m)(x−

i,±1)
(r)v = 0 for all m ∈ N. On the other

hand, by considering the subalgebra U (g̃αi ,∓1)F, we see that (x−

i,±1)
(r)v 6= 0. It

follows that (x−

i,±1)
(r)v generates a lowest-weight finite-dimensional representation

of U (g̃αi ,0)F, and in particular 0 6= (x+

i )
(r)(x−

i,±1)
(r)v =3i,±rv.

For the last statement, we proceed by induction on r = 1, . . . , λ(hi ) = mi .
Setting α = αi , s = 0, l = mi , and k = l + r in (1-11), we get

ωi,mi (x
−

i,1)
(r)v+

mi∑
j=1
ωi,mi − j Y jv = 0,

where ωi,0 = 1 and Y j is the sum of the monomials (x−

i,1)
(k1) · · · (x−

i,mi +1)
(kmi +1)

such that
∑

n kn = r and
∑

n nkn = r + j . Now, since −r < r + j − 2r < mi , it
is not difficult to see that (x+

i,−2)
(r)Y j ∈ U (g̃)FU (ñ+)0F + H j , where H j is a linear

combination of monomials of the form 3i,r1 · · ·3i,rm such that −r < r j < mi .
Moreover, (x+

i,−2)
(r)(x−

i,1)
(r)

∈ (−1)r3i,−r + U (g̃)FU (ñ+)0F by (1-11). Hence,

0 = (x+

i,−2)
(r)

(
ωi,mi (x

−

i,1)
(r)v+

mi∑
j=1
ωi,mi − j Y jv

)
= (−1)sωi,−rωi,miv+

mi∑
j=1
ωi,mi − j H jv.

From here it is easy to deduce the last statement. �

We would like to be more precise about the last statement of the previous propo-
sition; compare [Chari and Pressley 2001, Proposition 1.1(v)]. Namely, we want
to prove that

(3-12) 3i,λ(hi )3i,−rv =3i,λ(hi )−rv for all i ∈ I, 0 ≤ r ≤ λ(hi ).
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In other words, given v, λ, and ωi,r as in the proposition and setting

ωi (u)= 1 +

λ(hi )∑
r=1

ωi,r ur ,

we want to show that 3−

i (u)v = ω−

i (u)v, where for a polynomial f (u)=
∏

j (1−

a j u) ∈ F[u], we set f −(u)=
∏

j (1 − a−1
j u) (when convenient we shall also write

f = f +). The element (ωi )i∈I is called the Drinfeld polynomial of the `-highest-
weight module generated by v. We denote by P+

F the multiplicative monoid con-
sisting of all |I |-tuples of the form ω = (ωi )i∈I where each ωi is a polynomial
in F[u] with constant term 1. The differential equations techniques used in [Chari
and Pressley 2001] for proving (3-12) do not work in positive characteristic. How-
ever, in light of Proposition 3.1, it suffices to exhibit for each ω ∈ P+

F one finite-
dimensional `-highest-weight module with `-highest weight ω on which (3-12) is
satisfied. This will be done in the next subsection.

We end this subsection introducing additional notation. The multiplicative group
corresponding to P+

F will be denoted by PF. We let wt : PF → P be the unique
group homomorphism such that wt(ω)=

∑
i∈I deg(ωi )ωi for all ω ∈ P+

F . We also
have an injective group homomorphism PF → (U (h̃)F)∗ given as follows. Any
element $ ∈ PF can be written uniquely as ωπ−1, where ω,π ∈ P+

F are such that
ωi ,π i are coprime for all i ∈ I . Its image $ ∈ (U (h̃)F)∗ is defined by

$
(( hi

pk

))
=

(wt($ )(hi )

pk

)
and $ (3±

i (u))= $±

i (u),

for all k ∈ Z+, and where $+

i = $ i and $−

i = ω−

i (π
−

i )
−1. The second equality

is that of power series in u, obtained by expanding (π±

i )
−1 as a product of geo-

metric power series. We shall identify PF with its image in (U (h̃)F)∗ and refer to
its elements as the integral `-weights. Similarly, we call the elements in P+

F the
dominant integral `-weights.

3B. Classification of irreducible modules. If V is a finite-dimensional irreducible
U (g̃)F-module, then, proceeding as in the proof of Theorem 2.4, we see that V is
generated by a vector v satisfying

(x+

α,r )
(pk)v = 0,

( hi
pk

)
v =

(
λ(hi )

pk

)
v, 3i,rv = ωi,rv,

for all α ∈ R+, i ∈ I , r, k ∈ Z with k ≥ 0, and some λ ∈ P+ and ωi,r ∈ F. In
particular, we have an immediate corollary of Proposition 3.1:

Corollary 3.2. Every finite-dimensional irreducible U (g̃)F-module is an `-highest-
weight module whose `-highest weight lies in P+

F .
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We now introduce an important class of U (g̃)F-modules, called evaluation rep-
resentations.

Proposition 3.3. For a ∈ F×, there exists a surjective algebra homomorphism
heva :U (g̃)F →U (g)F mapping (x±

α,r )
(k) to ark(x±

α )
(k). In particular, heva(3α,r )=

(−a)r
(hα
|r |

)
.

We call heva the hyperevaluation map at a.

Proof. First observe that the formal evaluation map ev on U (g̃) (see Lemma 1.1)
sends U (g̃)Z to U (g)Z ⊗Z[t, t−1

]. Hence, by reducing ev modulo p, we obtain the
formal hyperevaluation map hev : U (g̃)F → U (g)F ⊗ F[t, t−1

]. The statements of
the proposition are now obvious (compare the definition of eva and (1-3)). �

Given any U (g)F-module V , let V (a) be the pullback of V by heva . V (a) is
called the evaluation representation with spectral parameter a corresponding to V .
For a ∈F× andµ∈ P , let ωµ,a be the element in PF whose i-th entry is (1−au)µ(hi )

for i ∈ I . If V is a U (g)F-highest-weight module of highest weight λ ∈ P+, it is
easy to see that V (a) is an `-highest-weight module with Drinfeld polynomial
ωλ,a ∈ P+

F and that the action of 3−

i (u) on the `-highest vector is given by (3-12).
We shall denote the evaluation representation by V (λ, a) when V = V (λ) and by
W (λ, a) when V = W (λ).

If λ∈ P+
p , it is easy to see that V (pkλ, a) is isomorphic to V (λ, a pk

)φ̃
k
, where φ̃

is the Frobenius homomorphism defined in Section 1D. Moreover, for any λ∈ P+,
Theorem 2.11 implies

(3-13) V (λ, a)∼=
⊗

k
V (pkλk, a), where λk ∈ P+

p are such that λ=
∑

k pkλk .

We now prove the following version of Steinberg’s tensor product theorem for
hyper loop algebras.

Theorem 3.4. If µ j ∈ P+
p − {0}, a j ∈ F×, and l j ∈ Z+ for j = 0, . . . , n, then

V =
⊗

j V (pl jµ j , a j ) is irreducible if and only if a j 6= a j ′ whenever l j = l j ′ .

Proof. The proof is a combination of the arguments used in Theorem 2.11 and
[Chari and Pressley 1986, Theorem 1.7]. First consider the case V = V (plλ, a)⊗
V (plµ, b), where λ,µ ∈ P+

p , and let v =
∑

j v j ⊗w j ∈ V be such that w j are
linearly independent. Using (1-4) we get

(x+

α,r )
(k)v =

∑
j

∑
l+m=k

arlbrm (
(x+

α )
(l)v j

)
⊗

(
(x+

α )
(m)w j

)
.

Hence, if a = b, this implies (x+
α,r )

(k)v = ark(x+
α )

(k)v, and it follows that, if v
generates a U (g)F-submodule of V , it also generates a U (g̃)F-submodule of V .
This proves the “only if” part.
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Conversely, for each l ∈ Z+, let Jl = { j : l j = l} and Vl =
⊗

j∈Jl
V (plµ j , a j ),

so that V ∼=
⊗

l:Jl 6=∅ Vl . Now observe that

Vl ∼=
(⊗

j∈Jl
V (µ j , a pl

j )
)φ̃l

.

The same arguments used in [Chari and Pressley 1986, Theorem 1.7] show that⊗
j∈Jl

V (µ j , a pl

j ) is irreducible as a g̃F-module, and therefore Vl is irreducible as
an U (g̃)F-module. Now let {l1, . . . , lm}={l : Jl 6=∅} and suppose l1< l2< · · ·< lm .
Set V ′

=
⊗m

j=2 Vl j and let v =
∑

i wi ⊗w′

i ∈ Vl1 ⊗ V ′ such that w′

i are linearly
independent. Then

(x+

α,r )
(pl1 )v =

∑
i

(
(x+

α,r )
(pl1 )wi

)
⊗w′

i ,

and we see that v is an `-highest-weight vector only if v = v1 ⊗ v′ where v1 is
an `-highest-weight vector for Vl1 , since we already know that Vl j is irreducible.
Proceeding inductively like the proof of Theorem 2.11, we conclude that v must
be a multiple of the tensor product of the `-highest-weight vectors. �

As a corollary, we obtain the classification of the irreducible representations for
U (g̃)F; see [Chari 1986; Chari and Pressley 1986; 2001]. It is easy to see that every
element $ ∈ PF can be uniquely decomposed as $ =

∏
j ωµ j ,a j for some µ j ∈ P

and ai 6= a j .

Corollary 3.5. (a) If ω =
∏

ωλ j ,a j ∈ P+

F with ai 6= a j for i 6= j , and λ j =∑
k pkλ j,k with λ j,k ∈ P+

p , then V =
⊗

j,k V (pkλ j,k, a j ) is an irreducible
U (g̃)F-module with `-highest weight ω. In particular, (3-12) holds for V .

(b) The isomorphism classes of irreducible finite-dimensional U (g̃)F-modules are
in one-to-one correspondence with the elements of P+

F .

Proof. It is immediate from Theorem 3.4 that V is irreducible and therefore has an
`-highest weight in P+

F . To see that this `-highest weight is ω, one easily computes
the action of 3+

i (u) on the `-highest-weight vector using (1-5) and observing that
each tensor factor is an evaluation representation. The proof of (3-12) is completed
in a similar way by computing the action of3−

i (u) on the `-highest-weight vector.
This completes the proof of part (a), from which part (b) follows immediately. �

Given ω ∈ P+

F , let us denote by V (ω) an irreducible U (g̃)F-module with `-
highest weight ω. If ω =

∏
ωλ j ,a j ∈ P+

F with ai 6= a j for i 6= j , it follows from
(3-13) and the corollary above that V (ω)∼=

⊗
j V (λ j , a j ).

Corollary 3.6. If V is a finite-dimensional U (g̃)F-module, then V$ 6= 0 only if
$ ∈ PF and Vµ =

⊕
$ :wt($ )=µ V$ .
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Proof. It suffices to prove the claim for irreducible representations. Using (1-5) and
the last corollary, it suffices to consider the irreducible evaluation representations
V = V (λ, a)with λ∈ P+. But in this case we have Vµ= Vωµ,a (see also Proposition
4.11 below and its corollary). �

We end the subsection computing the dual representation of a given irreducible
one. Let V be a finite-dimensional U (g̃)F-module. Exactly as in the case of U (g)F,
we see that the dual vector space V ∗ can be equipped with a U (g̃)F-module struc-
ture and that V ∗∗ is naturally isomorphic to V . If W is another finite-dimensional
U (g̃)F-module, the usual Hopf algebra arguments prove that we have a natural
isomorphism of U (g̃)F-modules

(3-14) (V ⊗ W )∗ ∼= W ∗
⊗ V ∗.

Given $ =
∏

j ωµ j ,a j ∈ PF for ai 6= a j , set $ ∗
=

∏
j ω−w0µ j ,a j . We have:

Proposition 3.7. Let ω ∈ P+

F and V = V (ω). Then V ∗ ∼= V (ω∗).

Proof. Due to Theorem 3.4 and (3-14), it suffices to consider the case ω = ωλ,a
for some a ∈ F× and λ ∈ P+. Since in this case V is an evaluation representation,
every weight vector of V is also an `-weight vector and Vµ= Vωµ,a . Choose a basis
for V consisting of weight vectors. Then it is easy to see using (1-6) and (1-3) that
if v is a basis element of weight µ, then its dual vector v∗ is an `-weight vector of
`-weight ωw0µ,a . In particular, since V ∗ ∼= V (−w0λ) as U (g)F, we conclude that
V ∗ is the evaluation representation V (−w0λ, a). �

3C. The Weyl modules. We now study the universal finite-dimensional `-highest-
weight U (g̃)F-modules motivated by [Chari and Pressley 2001].

Definition 3.8. Given ω = (ωi )i∈I ∈ P+

F , let W (ω) be the U (g̃)F-module generated
by a vector v satisfying

(x+

α,r )
(pk)v = 0,

( hi
pk

)
v =

(wt(ω)(hi )

pk

)
v, 3i,±sv = (ω±

i (u))sv,(3-15)

(x−

α,r )
(l)v = 0,(3-16)

for all α ∈ R+, i ∈ I , and k, l, r, s ∈ Z with s, k ≥ 0 and l > wt(ω)(hα). Here as
before, (ω±

i (u))s means the coefficient of us . We call W (ω) the Weyl module with
`-highest weight ω.

It follows from (1-9) that

W (ω)=
⊕

µ≤wt(ω)
W (ω)µ.

Standard arguments show:
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Proposition 3.9. W (ω) has a unique maximal submodule and hence a unique
irreducible quotient.

In particular, V (ω) is the irreducible quotient of W (ω) for ω ∈ P+

F . Moreover, it
follows from Proposition 3.1 that every finite-dimensional `-highest weight module
of `-highest weight ω is isomorphic to a quotient of W (ω). Hence, to complete the
proof of the universality of W (ω), it remains to show that it is finite dimensional.
We begin with:

Proposition 3.10. If W (ω)µ 6= 0, then W (ω)wµ 6= 0 for all w ∈ W. In particular,
W (ω)µ 6= 0 only if w0wt(ω)≤ µ≤ wt(ω).

Proof. Using an argument identical to the one used in characteristic zero, it follows
from (3-16) that every vector w ∈ W (ω) lies inside a finite-dimensional U (g)F-
submodule of W (ω). Now all the claims follow from the corresponding results for
finite-dimensional U (g)F-modules. �

Theorem 3.11. W (ω) is finite-dimensional for all ω ∈ P+

F .

This was proved in [Chari and Pressley 2001] for characteristic zero and for
quantum groups, the latter under the assumption that g is simply laced; for non-
simply laced it follows from [Beck and Nakajima 2004].

Proof. Set λ= wt(ω), and let v be an `-highest-weight vector of W (ω). It suffices
to prove that W (ω) is spanned by the elements

(x−

β1,s1
)(k1) · · · (x−

βm ,sm
)(km)v,

with m, s j , k j ∈Z+ and β j ∈ R+ such that s j <λ(hβ j ) and
∑

j k jβ j ≤λ−w0λ. The
last condition is immediate from the previous proposition. Moreover, the elements
(x−

β1,s1
)(k1) · · · (x−

βm ,sm
)(km)v with no restriction on s j clearly span W (ω).

Let R = R+
× Z × Z+, and let 4 be the set of functions ξ : N → R given by

j 7→ ξ j = (β j , s j , k j ) such that k j = 0 for all j sufficiently large. Also let 4′

be the subset of 4 consisting of the elements ξ such that 0 ≤ s j< λ(hβ j ). Given
ξ ∈ 4, we associate an element vξ ∈ W (ω) as above in the obvious way, that
is, if k j = 0 for j > m, then vξ = (x−

β1,s1
)(k1) · · · (x−

βm ,sm
)(km)v. Define the degree

of ξ to be d(ξ) =
∑

j k j and the maximal exponent of ξ to be e(ξ) = max{k j }.
Clearly e(ξ) ≤ d(ξ) and d(ξ) 6= 0 implies e(ξ) 6= 0. Since there is nothing to be
proved when d(ξ) = 0, we assume from now on that d(ξ) > 0. Thus let 4d,e be
the subset of 4 consisting of those ξ satisfying d(ξ) = d and e(ξ) = e, and set
4d =

⋃
1≤e≤d 4d,e.

We prove by induction on d and subinduction on e that if ξ ∈ 4d,e is such that
there exists j with either s j < 0 or s j ≥ λ(hβ j ), then vξ is in the span of vectors
associated to elements in 4′. More precisely, given 0 < e ≤ d ∈ N, induction
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hypothesis says that this statement is true for every ξ that belongs either to 4d,e′

with e′ < e or to 4d ′ with d ′ < d .
Observe that (1-11) implies

(3-17)
(
(X−

β;r,+(u))
(k−l)3+

β (u)
)

kv = 0

for all β ∈ R+ and k, l, r ∈ Z with k > λ(hβ) and 1 ≤ l ≤ k. We divide the proof
according to whether e = d or e < d .

When e = d, it follows that vξ = (x−

β,s)
(e)v for some β ∈ R+ and s ∈ Z. Suppose

first that e = 1, and let l = λ(hβ) and k = l + 1 in (3-17) to get

(3-18) (x−

β,r+13β,l + x−

β,r+23β,l−1 + · · · + x−

β,r+l+1)v = 0.

We consider the cases s ≥ l and s < 0 separately and prove the statement by a
further induction on s and |s|, respectively. If s ≥ l, this is easily done by setting
r = s − l − 1 in (3-18). Similarly, after observing that 3β,lv 6= 0, the case s < 0 is
dealt with by setting r = s − 1 in (3-18). If e > 1, let l = eλ(hβ) and k = l + e in
(3-17) to obtain

(3-19)
λ(hβ )∑
n=0

(x−

β,r+1+n)
(e)3β,l−env+ other terms = 0,

where the other terms belong to the span of elements vξ ′ with ξ ′
∈4e,e′ for e′ < e.

As before, we argue by induction on s and |s| by setting r = s − 1 − λ(hβ) and
r = s − 1 in (3-19), respectively.

For the case e< d , the induction hypothesis gives that 0 ≤ s j <λ(hβ j ) for j > 1.
An easy application of Lemma 1.5 completes the argument in this case. �

4. Reduction modulo p

4A. Introductory remarks and notation. We now start the theory of reduction
modulo p for U (g̃)K-modules, where K is a field of characteristic zero. In the case
of U (g)K, it sufficed to prove the existence of admissible lattices for the irreducible
modules because the underlying abelian category was semisimple. The category
C̃K is not semisimple so, even if it is possible to obtain a nice lattice theory for all
irreducible modules, one could not guarantee that all of the objects in C̃K would
contain such a lattice. In fact, even for irreducible modules the story is more subtle
than the one in the U (g)K-case since the evaluation maps heva do not preserve
Z-lattices unless a = ±1. Still, we will prove that all the `-highest-weight modules
whose coefficients of their Drinfeld polynomials are “good” with respect to p can
indeed be reduced modulo p. In particular, it will follow that every irreducible
U (g̃)F-module can be constructed as a quotient of a module obtained by a reduction
modulo p process.
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We consider two kinds of lattice theories. The first is a natural generalization
of the one reviewed in Theorem 2.2 for U (g). Namely, in Section 4B, we consider
modules containing finitely-generated free Z-submodules that are invariant under
the action of U (g̃)Z. However, the modules V 0(λ, a) with a ∈ Z for a 6= ±1 are
easily seen not to contain such a lattice. In Section 4C, we consider lattices over
rings other than Z, namely, over torsion-free discrete valuation rings. We think
these lattices are more suitable for studying reduction modulo p in the present
context.

If A is any commutative ring with identity, define PA,P+

A in the obvious way
(see the definition of PF). Define also P++

A as the subset of P+

A consisting of the
elements ω such that the coefficient of the leading term of ωi belongs to A× for all
i ∈ I . Recall that A is a discrete valuation ring if it is a local principal ideal domain
which is not a field; recall that its residue field is the quotient of A by its unique
maximal ideal. If A is a discrete valuation ring with residue field F, a ∈ A, and
ω ∈ P+

A , we let a and ω be the images of a in F and of ω in P+

F , respectively. As
before, F denotes an algebraically closed field of characteristic p>0. We shall also
denote by ω the image of ω ∈ P+

Z in P+

F . We fix a torsion-free discrete valuation
ring A with residue field F, for instance, the ring of Witt vectors with coefficients in
F [Serre 1979, Section II.5]; we denote by F0 the algebraic closure of the fraction
field of A. Given ω ∈ P+

F0 , we denote by W 0(ω) the corresponding U (g̃)F0-Weyl
module [Chari and Pressley 2001] and by V 0(ω) its irreducible quotient.

4B. Z-lattices.

Definition 4.1. If V is a finite-dimensional F0-vector space, we say that a finitely-
generated free Z-submodule L of V is an ample-lattice for V if L spans V over
F0. If the rank of L is equal to the dimension of V , then we say L is a lattice for
V . If V is a U (g̃)F0-module, we say that an ample-lattice for V is admissible if L
is invariant under the action of U (g̃)Z.

If L is an admissible ample-lattice for a U (g̃)F0-module V , we set LF = L ⊗Z F.
Thus, LF is a U (g̃)F-module and rank(L) = dimF(LF) ≥ dimF0(V ). It is trivial to
see that the modules V 0(λ, a) with a 6= ±1 do not contain a finitely-generated Z-
submodule invariant under the action of U (g̃)Z. In fact, if v is the `-highest-weight
vector, then (3i,±λ(hi ))

kv = (−a)±kλ(hi )v is not a finitely-generated Z-module.

Proposition 4.2. Let V be a finite-dimensional `-highest weight U (g̃)F0-module
with `-highest-weight ω ∈ P++

Z and `-highest-weight vector v. Then L = U (g̃)Zv
is an admissible ample-lattice for V , and LF is isomorphic to a quotient of W (ω).
If V = W 0(ω), then L is a lattice.

Proof. It is easy to see from (1-2), Lemma 1.6, and (3-12) that U (h̃)Zv = Zv and
therefore L = U (ñ−)Zv. Also, L is quite clearly a torsion-free Z–submodule of V
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which is invariant under the action of U (g̃)Z. The proof of Theorem 3.11 together
with the hypothesis ω ∈ P++

Z shows that L is a finitely-generated Z-module which
spans V over F0 (the hypothesis ω ∈ P++

Z is used to replace the remark 3β,lv 6= 0
by 3β,lv = av with a ∈ Z×). This completes the proof that L is an admissible
ample-lattice. Since the image of v in LF is clearly an `-highest-weight vector with
`-highest weight ω, the second statement follows immediately. The last statement
is clear since L ⊗Z F0 is an `-highest-weight U (g̃)-module of `-highest weight ω

and of dimension at least that of W 0(ω), and thus L ⊗Z F0 ∼= W 0(ω). �

Clearly the only irreducible U (g̃)F-modules that can be obtained as a quotient
of some LF, where L is as in the proposition, are precisely those whose Drinfeld
polynomials ω lie in P+

Fp
and whose coefficient in the leading term of ωi is ±1 for

all i ∈ I . However, all of the `-highest-weight U (g̃)F-modules V whose Drinfeld
polynomial is of the form ωλ,1 can be obtained in this way. In the next section
we will see that, for each a ∈ F×, there exists an automorphism ψa of U (g̃)F
determined by the assignment (x±

α,r )
(k)

7→ ark(x±
α,r )

(k) for all α ∈ R+ and k, r ∈ Z

with k > 0. One can then show that the pullback of such V by ψa is an `-highest-
weight module with Drinfeld polynomial ωλ,a . Hence, up to twisting by ψa , we
obtain all of the evaluation modules V (λ, a). The other irreducible modules are
then obtained using tensor products.

4C. Lattices over discrete valuation rings. We begin by giving a motivation for
considering lattices over discrete valuation rings. Let P = Z(p) be the localization
of Z at Z − pZ, and let U (g̃)P = U (g̃)Z ⊗Z P. Then P is a torsion-free discrete
valuation ring with residue field Fp and U (g̃)P ⊗P F ∼= U (g̃)F. Let a ∈ P×, v be an
`-highest-weight vector of V = V 0(λ, a), and L = U (g̃)Pv. It is easy to see from
(1-2), (1-3), and Lemma 1.6 that U (h̃)Fv = Pv, and therefore L = U (ñ−)Pv =

P
(
U (ñ−)Zv

)
= PL ′, where L ′

= U (n−)Zv and PL ′ is its P-span. Since L ′ is the
Z-span of a basis for V by Theorem 2.2, it follows that L is the P-span of the
same basis. Thus, setting LF = L ⊗P F, we obtain a U (g̃)F-module isomorphic to
W (λ, a), where a is the image of a in Fp. In this way we can obtain all evaluation
representations of the form V (λ, b) for b ∈ Fp as quotients of the reduction modulo
p of the irreducible U (g̃)-modules V 0(λ, a), where a is such that a = b. To obtain
V (λ, b) for all b ∈ F, we will have to use in place of P the bigger discrete valuation
ring A fixed in Section 4A. Recall that F0 denotes the algebraic closure of the
fraction field of A.

Definition 4.3. If V is a finite-dimensional F0-vector space, we say that a finitely-
generated free A-submodule L of V is an A-ample-lattice for V if L spans V over
F0. If the rank of L is equal to the dimension of V , then we say L is an A-lattice
for V . If V is a U (g̃)F0-module, we say that an ample-lattice for V is admissible
if L is invariant under the action of U (g̃)A = U (g̃)Z ⊗Z A.



394 DIJANA JAKELIĆ AND ADRIANO ADREGA DE MOURA

If L is an A-ample-lattice for a U (g̃)F0-module V , we set LF = L ⊗A F. Then
U (g̃)F ∼= U (g̃)A ⊗A F, and LF is a U (g̃)F-module. The next lemma is immediate.

Lemma 4.4. Let V and W be finite-dimensional U (g̃)F0-modules, L and M (ad-
missible) ample-lattices for V and W , respectively. Then L⊗A M is an (admissible)
ample-lattice for V ⊗ W and (L ⊗A M)F ∼= LF ⊗ MF as U (g̃)F-modules.

Theorem 4.5. Let V be a finite-dimensional U (g̃)F0-`-highest-weight module with
Drinfeld polynomial ω ∈ P++

A and `-highest-weight vector v. If L = U (g̃)Av we
have

(a) L is an admissible A-ample-lattice for V and LF is isomorphic to a quotient
of W (ω);

(b) if V = W 0(ω), then L is a lattice;

(c) if V = V 0(ω) and ω =
∏m

j=1 ωλ j ,a j with λ j ∈ P+, a j ∈ A×, ai 6= a j when
i 6= j , then L is a lattice.

Proof. The proofs of parts (a) and (b) are like that of Proposition 4.2 with A in
place of Z.

We now prove (c). When V is an evaluation representation, that is when m = 1,
we proceed as in the motivation at the beginning of 4C by replacing P with A,
U (g̃) with U (g̃)F0 and regarding U (g̃)Z as embedded in U (g̃)F0 . In the general
case we have V = V 0(λ1, a1)⊗ · · · ⊗ V 0(λm, am). Let v j be an `-highest-weight
vector of V 0(λ j , a j ) so that v = v1 ⊗ · · · ⊗ vm and set L ′

= L1 ⊗A · · · ⊗A Lm ,
where L j = U (g̃)Av j . Since each L j is an admissible lattice for V 0(λ j , a j ), L ′

is an admissible lattice for V by Lemma 4.4. It is clear from (1-4) that L is an
A-submodule of L ′. Moreover, by part (a), L is a finitely-generated free A-module
which spans V , and hence L = L ′, since A is a principal ideal domain. �

We have finished the task of constructing all the irreducible U (g̃)F-modules
directly as quotients of some U (g̃)F0-modules by a reduction modulo p process:

Corollary 4.6. For every $ ∈ P+

F there exists ω ∈ P++

A such that ω =$ and V ($ )

is isomorphic to a quotient of LF, where L = U (g̃)Av and v is an `-highest-weight
vector for W 0(ω).

Proof. Write $ =
∏

j ωλ,b j for b j ∈ F× and bi 6= b j with i 6= j , and let a j ∈ A×

be lifts of b j to A. The claim follows from Theorem 4.5 with ω =
∏

j ωλ j ,a j . �

Let ω, v, and L be as in Theorem 4.5. Suppose that V = W 0(ω) and that ω =∏m
j=1 ωλ,a j with a j ∈ A and ai 6= a j when i 6= j , so that W 0(ω)∼=

⊗
j W 0(ωλ j ,a j );

see [Chari and Pressley 2001]. Choose `-highest-weight vectors v j of W (ωλ j ,a j )

such that v = v1 ⊗ · · · ⊗ vm , and set L j = U (g̃)Av j , L ′
= L1 ⊗A · · · ⊗A Lm . As

before, it follows from (1-4) that L ⊆ L ′.

Conjecture 4.7. (a) W (ω)∼= LF. (b) If ai 6= a j for i 6= j , then L = L ′.
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Part (a) is the analogous statement of the conjecture in [Chari and Pressley
2001] mentioned in the introduction of the paper. Note Theorem 4.5 implies
that dimF(LF) = dimF0(W 0(ω)). Hence, for proving (a), it suffices to prove that
dimF(W (ω))≤ dimC(W 0(ω)).

Now part (b) is rather unusual since for Z-lattices the appropriate analogous
statement is false; as a counterexample, one can take g = sl2, p 6= 2, and ω =

(1−u)(1+u). Below we give an example showing that equality can indeed happen
when working with A-lattices. This is actually the main point behind the choice
of working with discrete valuation rings: they have plenty of units. Conjecture 4.7
has a corollary:

Corollary 4.8. Let λ j ∈ P+ for b j ∈ F× with j = 1, . . . k be such that bi 6= b j for
i 6= j , and ω =

∏
j ωλ j ,b j . Then:

(a) W (ω)∼= ⊗W (ωλ j ,b j ).

(b) If M j is a quotient of W (ωλ j ,b j ), then M =
⊗

j M j is a quotient of W (ω).

Proof. Let a j ∈ F0 be such that a j = b j . From part (a) of the conjecture we have
W (ω)∼= LF and from (b) LF = L ′

F. Now Lemma 4.4 implies L ′

F
∼=

⊗
j (L j )F. Thus,

applying part (a) of the conjecture to (L j )F we conclude part (a).
Once we have part (a), the proof of (b) is standard. Namely, let V j be the kernel

of the projection W (ωλ j ,b j ) → M j . Proceeding recursively on j = 1, . . . , k, we
obtain short exact sequences

0 →

( j−1⊗
i=1

Mi

)
⊗ V j ⊗

(
k⊗

i= j+1
W (ωλi ,bi )

)
→

( j−1⊗
i=1

Mi

)
⊗

(
k⊗

i= j
W (ωλi ,bi )

)
→

( j⊗
i=1

Mi

)
⊗

(
k⊗

i= j+1
W (ωλi ,bi )

)
→ 0. �

The characteristic zero counterpart of part (a) of the corollary was proved in
[Chari and Pressley 2001, Section 3]. So far we have not managed to adapt or
compliment those techniques. By transferring the problem to the setting of A-
lattices, we expect that other characteristic zero arguments, for example, as in
[Feigin and Loktev 2004], will lead to a proof of Conjecture 4.7(b).

Theorem 2.2(a) leads immediately to:

Proposition 4.9. Let V be a finite-dimensional U (g̃)F-module. Every additive
subgroup of V which is invariant under the action of U (g̃)A is the direct sum of its
intersection with the weight spaces of V .

We now give the example showing that Conjecture 4.7(b) may hold in the setting
of discrete valuation rings. Let g = sl2. Since I is a singleton, we will drop
the root index and write x±

r , hr , and 3r instead of x±

1,r and so on. We will also



396 DIJANA JAKELIĆ AND ADRIANO ADREGA DE MOURA

identify P with Z. We will verify part (b) of Conjecture 4.7 for the Weyl module
V = W 0((1 − au)2(1 − bu)), where a, b ∈ A× for some discrete valuation ring A

such that a 6=b. In particular, W 0((1−au)2(1−bu))∼= W 0((1−au)2)⊗W 0(1−bu).
Let v0 and w0 be `-highest weight vectors of W 0((1 − au)2) and W 0(1 − bu),
respectively.

W 0(1 − bu) is isomorphic to the evaluation representation V 0(1, b). It is then
easy to see that x−

s w0 = bs x−

0 w0 for all s ∈ Z. Thus, letting w1 = x−

0 w0, the set
{w0, w1} is an A-basis for L2 = U (g̃)Aw0.

Now consider W 0((1 − au)2) and let L1 = U (g̃)Av0. Since wt((1 − au)2)= 2,
letting k > 2 in (1-11) we get

(4-20)
(
(X−

α;s,+(u))
(k−l)3+

α (u)
)

kv0 = 0 for all l, s ∈ Z with 1 ≤ l ≤ k.

Setting k = 3 and l = 2 above, we get (x−

s+132 + x−

s+231 + x−

s+3)v0 = 0. Since
32v0 = a2v0 and 31v0 = −2av0, one easily proves inductively that

(4-21) x−

s v0 = sas−1x−

1 v0 − (s − 1)as x−

0 v0 for all s ∈ Z.

Let v1 = x−

0 v0 and v3 = x−

1 v0. Thus we see that {v1, v3} is an A-basis for the
zero-weight space of W 0((1 − au)2)∩ L1. Now setting k = 3, l = 1 in (4-20), we
get (x−

s+1)
(2)31v0 + x−

s+1x−

s+2v0 = 0. Setting s = −1 we get

(4-22) x−

1 x−

0 v0 = 2a(x−

0 )
(2)v0,

and setting s = 0 we get 2a(x−

1 )
(2)v0 = x−

1 x−

2 v0. Now using (4-21) and then (4-22)
on the right hand side of the last equation gives

(4-23) (x−

1 )
(2)v0 = a2(x−

0 )
(2)v0.

Finally, using (4-21), (4-22), and (4-23) we get

(4-24) x−

r x−

s v0 = 2ar+s(x−

0 )
(2)v0 for all r, s ∈ Z.

Hence v2 = (x−

0 )
(2)v0 completes an A-basis for L1, that is, L1 is the A-span of

{v0, v1, v2, v3}.
Clearly the set A = {vi ⊗ w j : i = 0, 1, 2, 3 and j = 0, 1} is an A-basis for

L ′
= L1 ⊗A L2. Since L = U (g̃)A(v0 ⊗w0)⊆ L ′, we are left to show that A ⊆ L .

Using (4-21), (4-24) and x−
s w0 = bs x−

0 w0 we compute

x−

0 (v0 ⊗w0)= v1 ⊗w0 + v0 ⊗w1,

x−

1 (v0 ⊗w0)= v3 ⊗w0 + bv0 ⊗w1,

x−

2 (v0 ⊗w0)= 2av3 ⊗w0 − a2v1 ⊗w0 + b2v0 ⊗w1.
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Recording the coordinates of these vectors in the basis {v1 ⊗w0, v3 ⊗w0, v0 ⊗w1}

of L ′
∩ V1 we get the matrix 1 0 −a2

0 1 2a
1 b b2

 ,
whose determinant is (a − b)2. Since a 6= b if and only if a − b ∈ A×, we see that
the vectors x−

0 (v0 ⊗w0), x−

1 (v0 ⊗w0), and x−

2 (v0 ⊗w0) also form an A-basis for
L ′

∩ V1. Now we compute

(x−

0 )
(2)(v0 ⊗w0)= v2 ⊗w0 + v1 ⊗w1,

x−

1 x−

0 (v0 ⊗w0)= 2av2 ⊗w0 + bv1 ⊗w1 + v3 ⊗w1,

(x−

1 )
(2)(v0 ⊗w0)= a2v2 ⊗w0 + bv3 ⊗w1,

and, in the basis {v2 ⊗w0, v1 ⊗w1, v3 ⊗w1} of L ′
∩ V−1, these vectors have the

matrix 1 2a a2

1 b 0
0 1 b

 .
The determinant is again (a−b)2 and we are done with this weight space as before.
Finally, one easily sees that (x−

0 )
(3)(v0 ⊗w0) = v2 ⊗w1, showing that A ⊆ L as

claimed.
Let us end this subsection proving the existence of the automorphisms ψa , as

promised at the end of Proposition 4.2.

Proposition 4.10. For every a ∈ F× there exists an algebra automorphism ψa :

U (g̃)F → U (g̃)F sending (x±
α,r )

(k) to ark(x±
α,r )

(k).

Proof. Let b be a lift of a to A, and let ψ0
b : U (g̃)F0 → U (g̃)F0 be the algebra

automorphism extending t 7→ bt . It is easy to see that ψ0
b maps U (g̃)A onto itself.

Now let ψa be the reduction modulo p of the restriction of ψ0
b to U (g̃)A. �

Remark. The same kind of argument gives an alternate proof of Proposition 3.3
without using the formal evaluation map but using instead the A-form U (g̃)A.

4D. Block decomposition. We now assume Conjecture 4.7 to obtain the block
decomposition of the category of finite-dimensional U (g̃)F-modules. We begin
with a proposition on the Jordan–Hölder series of Weyl modules.

Proposition 4.11. The `-weights of W (ωλ,a) are of the form ωµ,a with µ ∈ P such
that µ≤ λ.

Proof. Let b be a lift of a to A, consider W 0(ωλ,b), and let L = U (g̃)F0v for
some choice of `-highest-weight vector v of W 0(ωλ,b). It is well known that the
`-weights of W 0(ωλ,b) are of the form ωµ,b with µ∈ P such that µ≤λ (see [Chari
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and Moura 2004, Proposition 3.3] and [Chari and Moura 2005] for instance). In
particular, the weight spaces of W 0(ωλ,b) coincide with its `-weight spaces, and
therefore, using Proposition 4.9, we conclude that L is equal to its intersection
with the `-weight spaces of W 0(ωλ,b). Since by Conjecture 4.7(a) W (ωλ,a) is
isomorphic to LF, the proposition is now easily deduced. �

For each a ∈ F× and i ∈ I , set ωi,a = ωωi ,a (the `-fundamental weights) and
αi,a(u) = ωαi ,a (the `-simple roots). Let QF be the subgroup of PF generated by
all αi,a(u); similarly, let Q+

F be the submonoid of PF generated by all αi,a(u). We
call QF the `-root lattice. The last proposition and Corollary 4.8 will give

Corollary 4.12. If V is a finite-dimensional `-highest-weight U (g̃)F-module with
`-highest weight ω, then V$ 6= 0 only if $ ∈ ω(Q+

F )
−1.

Proof. Proposition 4.11 implies the result holds for W (ωλ,a). Then Corollary 4.8
finishes the proof. In fact, (1-5) implies that the `-weights of the tensor product
are products of the `-weights of each tensor factor; see [Chari and Moura 2005,
Lemma 4.4]. �

Definition 4.13. A spectral character is a function χ : F×
→ P/Q with finite

support. Equipping the space of all spectral characters 4F with the usual abelian
group structure, one sees that the assignment ωi,a 7→ χi,a , where χi,a(b)= δa,bωi ,
determines a group homomorphism PF →4F,$ 7→ χ$ , with kernel QF. We say
a U (g̃)F-module V has spectral character χ if χ$ = χ whenever V$ 6= 0. Let C̃χ
be the category of all finite-dimensional U (g̃)F-modules with spectral character χ .

We will denote by χµ,a the spectral character corresponding to ωµ,a for µ ∈ P
and a ∈ F×. We use additive notation for the group operation of 4F.

Proposition 4.14. (a) For all ω ∈ P+

F , W (ω) ∈ C̃χω .

(b) C̃χ1 ⊗ C̃χ2 ⊆ C̃χ1+χ2 for all χ1, χ2 ∈4F.

(c) If V ∈ C̃χ then V ∗
∈ C̃−χ .

Proof. Parts (a) and (b) are immediate from Corollary 4.12 and its proof. Part (c)
follows from Proposition 3.7. �

Let C̃F be the category of all finite-dimensional U (g̃)F-modules. In the rest of
the section we prove that the block decomposition of C̃F is described just as in the
characteristic zero case [Chari and Moura 2004] and quantum group case [Chari
and Moura 2005; Etingof and Moura 2003]. Namely:

Theorem 4.15. The categories C̃χ for χ ∈4F are the blocks of C̃F.
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Once we have the statements of Propositions 4.14 and 2.9 available, arguments
identical to those [Chari and Moura 2004, Section 5] show that every indecompos-
able object from C̃F belongs to some C̃χ , proving that we have the decomposition

C̃F =
⊕
χ∈4F

C̃χ .

It remains to see that C̃χ are indecomposable abelian subcategories. To do this,
it suffices to show that for any two given irreducible U (g̃)F-modules V and W
having the same spectral character, there exists a finite sequence of indecomposable
objects M1, . . . ,Mk such that V is a simple constituent of M1, W is a simple
constituent of Mk , and for every j , M j has a common simple constituent with
M j+1; see [Etingof and Moura 2003, Section 1]. Let us begin with the case when
V = V (λ, a) and W = V (µ, b) for some λ,µ ∈ P+ and a, b ∈ F×. Quite clearly
χλ,a = χµ,b if and only if λ−µ ∈ Q, and if λ /∈ Q, also a = b.

Proposition 4.16. Let a ∈ F×, and suppose λ,µ ∈ P+ are such that HomgF0
(gF0 ⊗

V 0(λ), V 0(µ)) 6= 0 and λ > µ. Then there exists a quotient M of W (ωλ,a) having
V (µ, a) as simple constituent.

Proof. Let b be a lift of a to A. By [Chari and Moura 2004, Proposition 3.4], there
exists a nonsplit short exact sequence of g̃F0-modules:

0 → V 0(µ, b)→ M0
→ V 0(λ, b)→ 0

for some `-highest-weight module M0. From Theorem 4.5, there exists an ad-
missible ample-lattice L for M0 such that M = LF is a quotient of W (ωλ,a). It
remains to show that there exists an `-highest-weight vector v′ for V 0(µ, b) in M0

such v′
∈ L and its image in LF is nonzero. Thus, let v be an `-highest-weight

vector for M0. From the proof of Theorem 3.11, using that b ∈ A× as in the proof
of Proposition 4.2, we see that there exists an A-basis for L consisting of vectors
that are A-linear combinations of elements of the form (x−

α1,r1
)(k1) · · · (x−

αm ,rm
)(km)v.

Let v1, . . . , vn be an A-basis for Lµ. Any `-highest-weight vector for V 0(µ, b) is
a solution

∑n
j=1 c jv j for some c j ∈ F0 of the linear system

(x+

α,r )
(k)

n∑
j=1

c jv j = 0

for all α ∈ R+, r ∈ Z and k ∈ Z+. Since L is admissible and the `-weights of M0

are in PA (Proposition 4.11), it follows that there exists a solution with the c j lying
in the field of fractions of A. Since A is a unique factorization domain, it follows
that we can choose c j in A such that the nonzero c j are coprime. �

This proposition and Corollary 4.8(b) imply:
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Corollary 4.17. Let a = a0, λ, µ,M be as in Proposition 4.16, and for j =

1, . . . , k, let ν j ∈ P+ and a j ∈ F× be such that ai 6= al for all i, l = 0, . . . , k with
i 6= l. Then the U (g̃)F-module M ⊗

(⊗
j V (ν j , a j )

)
is `-highest-weight and has

V (µ, a)⊗
(⊗

j V (ν j , a j )
)

and V (λ, a)⊗
(⊗

j V (ν j , a j )
)

as simple constituents.

Now let a ∈ F× and λ,µ∈ P+ be such that λ−µ∈ Q−{0}. Then by [Chari and
Moura 2004, Proposition 1.2], there exists a finite sequence λ= ν1, ν2, . . . , νk =µ

such that ν j 6= ν j+1 and HomgF0
(gF0 ⊗ V 0(ν j ), V 0(ν j+1)) 6= 0. Since

HomgF0
(gF0 ⊗ V 0(ν j ), V 0(ν j+1))= HomgF0

(gF0 ⊗ V 0(ν j+1), V 0(ν j )),

we conclude that there exists a sequence of U (g̃)F-`-highest-weight modules M j

for j = 1, . . . , k − 1 having both V (ν j , a) and V (ν j+1, a) as simple constituents.
From here it is quite clear how to complete the proof of Theorem 4.15 using the
last corollary; see [Chari and Moura 2004, Section 4].

Remark. We give an informal argument to justify why it should be expected
that the block decomposition of C̃F is described like that of C̃F0 , contrary to what
happens with the block decompositions of CF and CF0 (the categories of finite-
dimensional representations for U (g)F and U (g)F0). While the blocks of CF0 are
as small as possible (CF0 is a semisimple category), the blocks of C̃F0 are as large as
one can expect (for instance, when P/Q is trivial, C̃F0 is itself an indecomposable
abelian category). Hence, while the blocks of CF have space to become “larger” —
and they indeed become so, but still not as large as possible [Jantzen 1987, Chapter
II.7] — that is not the case for C̃F.
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