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STRONGLY SINGULAR INTEGRALS ALONG CURVES

NORBERTO LAGHI AND NEIL LYALL

We obtain L2 bounds for strongly singular integral operators along curves
in Rd . Our results both generalize and extend to higher dimensions the
planar results of Chandarana. In addition, we show that these operators
are bounded from L log L to weak L1 at the critical exponent α = 0.

1. Introduction

It is standard and well known that the Hilbert transform along curves,

Hγ f (x)= p.v.
∫ 1

−1
f (x − γ (t))dt

t
,

is bounded on L p(Rd) for p in the range 1< p<∞, where γ (t) is an appropriate
curve in Rd . This work was initiated by Fabes and Rivière [1966]. Working in R2,
Nagel, Rivière, and Wainger [1974] showed that ‖Hγ f ‖p ≤ C‖ f ‖p, whenever

(1) γ (t)= (t, t |t |k) or (t, |t |k+1)

with k ≥ 1.
Stein and Wainger [1978] extended these results to well-curved γ in Rd ; these

γ are smooth mappings such that γ (0)= 0 and the derivatives

dkγ (t)
dtk

∣∣∣
t=0

for k = 1, 2, . . .

span Rd . In other words, these are smooth mappings of finite type in a small
neighborhood of the origin. For the most recent results and further references, see
[Christ et al. 1999].

These results notwithstanding, Hγ does display a certain “bad” behavior near
L1. Christ [1988] showed that Hγ maps the (parabolic) Hardy space H 1 into
weak L1 for the plane curves γ (t) = (t, t2). He also pointed out that H 1

→

L1 boundedness cannot hold. A previous result of Christ and Stein [1987] had
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established that Hγ maps L log L(Rd) into L1,∞(Rd) for a large class of curves γ
in Rd .

Seeger and Tao [2001] showed thatHγ maps the product Hardy space H 1
prod(R

2)

into the Lorentz space L1,2(R2). Their results are sharp, as Hγ does not map the
product Hardy space into any smaller Lorentz space. Finally, Seeger, Tao, and
Wright [2004] showed that Hγ maps L log log L(R2) into L1,∞(R2).

This short paper discusses a strongly singular analogue of the Hilbert transform
along curves γ (t) = (γ1(t), . . . , γd(t)) in Rd . Namely, we consider operators of
the form

(2) Tγ f (x)= p.v.
∫ 1

−1
Hα,β(t) f (x − γ (t))dt,

where β > α > 0 and Hα,β(t) = t−1
|t |−α exp(i |t |−β) is now a strongly singular

(convolution) kernel in R. This kernel enjoys some additional cancellation, as Hα,β
is an odd function for t 6= 0.

Theorem 1.1. If γ (t) is well curved, then Tγ is bounded on L2(Rd) if and only if
α ≤ β/(d + 1).

Continuing the work of Zielinski [1985], Chandarana [1996] proved this theo-
rem in R2 along the model homogeneous curves (1). Although Chandarana had
some partial L p results, our next endpoint result near L1 is the first for the critical
value α = 0:

Theorem 1.2. If γ (t) is well curved, α = 0, and β > 0, then Tγ : L log L(Rd)→

L1,∞(Rd).

As a consequence of complex interpolation, one gets a result involving suitable
intermediate spaces:

Corollary 1.3. If γ (t) is well curved, then

(i) Tγ : L p(log L)2(1/p−1/2)(Rd) → L p,p′

(Rd) whenever αp′
≤ 2β/(d + 1) and

1< p ≤ 2 and

(ii) Tγ : L p,p′

(Rd)→
(
L p(log L)2(1/2−1/p)(Rd)

)∗ whenever αp ≤ 2β/(d +1) and
2 ≤ p <∞.

Here L p,q denote the familiar Lorentz spaces

L p,q(Rd)=

{
f measurable on Rd : p

∫
∞

0
λq−1

|{x : | f (x)|> λ}|q/p dλ <∞

}
,

while the L p(log L)q spaces are defined by

L p(log L)q(Rd)=
{

f measurable on Rd :
∫

Rd
| f (x)|p logq(e +| f (x)|)dx <∞

}
.
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The statement of Theorem 1.2 bears an element of novelty as it is an endpoint
result near L1. As such, it is more important than the somewhat technical result of
Corollary 1.3. However, while it is simple to prove that Tγ : L p(Rd) → L p(Rd)

if α(d + 1)/β < 1 − 2|1/p − 1/2| and 1 < p <∞, Corollary 1.3 provides a first,
albeit technical, result for the conjectured sharp range of exponents α, β, and p.

The paper is structured as follows. In the next section we shall perform some
standard reductions and prove a basic oscillatory integral estimates. In Section 3,
we complete the proof of Theorem 1.1. In Section 4 we give the proof of The-
orem 1.2. Finally, in Section 5 we show how certain estimates found in [Seeger
et al. 2004] may be applied in some special two-dimensional cases to obtain better
regularity near L1.

Notation. Throughout this paper, C shall denote a strictly positive constant
whose value in proofs may change from line to line and even from step to step. It
depends only on the dimension d , on quantities such as α and β, and on the curve
γ . Whenever we write E = O(F) for any two quantities E and F we mean that
|E | ≤ C |F | for some strictly positive constant C.

2. L2 regularity and a lemma of van der Corput type

We first focus our attention on L2 estimates. We shall dyadically decompose our
operator Tγ in the standard way. To this end, we let η(t) ∈ C∞

0 (R+) be such that
η ≡ 1 if 0 ≤ t ≤ 1 and η ≡ 0 if t ≥ 2. Then, letting ϑ(t) = η(t)− η(2t), we have∑

j∈Z ϑ(2
j t)≡ 1 for t > 0. We then consider the rescaled operators

(3) T j f (x)= 2 jα
∫
ϑ(t)t−1

|t |−α exp
(
i2 jβ

|t |−β
)

f (x − γ (2− j t))dt,

where, of course, suppϑ ⊂ {t : 1/2 ≤ |t | ≤ 2}. Theorem 1.1 will then be a conse-
quence of the following two results, togther with an application of Cotlar’s lemma
and a standard limiting argument.

Theorem 2.1 (Dyadic estimate). If γ satisfies the finite-type condition of Theorem
1.1, then

‖T j f ‖L2(Rd ) ≤ C2 j (α−β/(d+1))
‖ f ‖L2(Rd ).

Proposition 2.2 (Almost orthogonality). If γ satisfies the finite-type condition of
Theorem 1.1 and α ≤ β/(d + 1), then the dyadic operators satisfy the estimate

‖T ∗

j T j ′‖L2(Rd )→L2(Rd ) + ‖T j ′ T ∗

j ‖L2(Rd )→L2(Rd ) ≤ C2−δ| j ′
− j |,

for some δ > 0.

These two statements will be proved in Section 3. The key to the proofs is the
following result, which is an immediate consequence (of the proof) of a lemma of
Ricci and Stein [1987]; see also [Stein and Wainger 1978].
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Lemma 2.3. Let ϕ(t)= tb0 +µ1tb1 +· · ·+µntbn be a real-valued function, where
µ1, . . . , µd are arbitrary real parameters and b0, b1, . . . , bn are distinct nonzero
real exponents. Then

(4)
∣∣∣∣∫ b

a
eiλϕ(t)dt

∣∣∣∣ ≤ Cλ−1/(n+1),

where C does not depend on µ1, . . . , µd or λ.

Ricci and Stein in fact proved that if b0, b1, . . . , bn are distinct positive real expo-
nents, then

(5)
∣∣∣∣∫ b

a
eiλϕ(t)dt

∣∣∣∣ ≤ Cλmin{1/b0,1/(n+1)}

uniformly in 0 ≤ a < b ≤ 1.
The analogue of (4) and (5), in which a cutoff function of bounded variation

is inserted in the amplitude of the integral, follows immediately from a standard
integration by parts argument.

The proof of Lemma 2.3 is essentially just that of Ricci and Stein, but we shall
outline the argument here. First we recall a standard formulation of van der Cor-
put’s lemma; see [Stein 1993].

Proposition 2.4 (Van der Corput). Suppose ψ is a function in Ck([a, b]) that
satisfies the estimate |ψ (k)(x)| ≥ C > 0 for all x ∈ (a, b). Then∣∣∣∣∫ b

a
eiλψ(t)dt

∣∣∣∣ ≤ kCkλ
−1/k

whenever (i) k = 1 and ψ ′′(x) has at most one zero or (ii) k ≥ 2.

In light of Proposition 2.4 we see that Lemma 2.3 will be a consequence of

Lemma 2.5. There exists a constant C1 =C1(b0, b1, . . . , bn), which is independent
of µ1, . . . , µd and λ, such that for each t ∈ [a, b] we have |ϕ(k)(t)| ≥ C1tb0−k for
at least one k in {1, . . . , n + 1}.

To prove Lemma 2.3, we split the interval [a, b] into a finite number of subintervals
so that one of the inequalities of Lemma 2.5 holds on each; if the first of the
inequalities holds on one, we split it further into subsubintervals on which ϕ′(t) is
monotonic. The number of such subintervals depends only on n, and the desired
conclusion follows from Proposition 2.4 and that a and b are contained in a compact
subinterval of (0,∞).

Proof of Lemma 2.5. If we set µ0 = 1, then, for k = 1, . . . , n + 1, we have

t−b0+kϕ(k)(t)=

n+1∑
j=1

mk, jµ j−1tb j−1−b0,
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where mk, j =
∏k

i=1(b j−1 − i + 1).
If we now define w = (w1, . . . , wn+1) with wk = t−b0+kϕ(k)(t) and define

v = (v1, . . . , vn+1) with vi = µi−1tbi−1−b0 , then we have w = Mv, where M is
a Vandermonde matrix with

det M =

n∏
j=0

b j

∏
0≤i< j≤n

(bi − b j ). �

3. The proofs of Theorem 2.1 and Proposition 2.2

Recall that establishing L2 estimates for the dyadic operators T j is equivalent to
establishing uniform bounds in Rd for the multipliers

(6) m j (ξ)= 2 jα
∫
ϑ(t)t−1

|t |−αeiψ(t)dt,

where ψ(t) = 2 jβ
|t |−β − γ (2− j t) · ξ . We shall take this multiplier approach to

prove both Theorem 2.1 and Proposition 2.2.
It follows from the proposition below that we may, with no loss in generality,

assume that our curves γ (t) are of standard type, that is, they are approximately
homogeneous and take the form

(7) γk(t)=
tak

ak !
+ higher order terms

for k = 1, . . . , d with 1 ≤ a1 < · · ·< ad .

Proposition 3.1. To every smooth well-curved γ (t) there exists a constant nonsin-
gular matrix M such that γ̃ (t)= Mγ (t) is of standard type.

For a simple proof of this result, see [Stein and Wainger 1978].
In the model case corresponding to the homogeneous (monomial) curves of the

form γk(t)= tak , we may write ψ(t)= 2 jβϕ(t), where

ϕ(t)= |t |−β−(µ1ta1 + · · · +µd tad ),

with
µ= 2− j

◦β ξ = (2− j (β+a1)ξ1, . . . , 2− j (β+ad )ξd).

In addition to observing that the nonisotropic dilations have entered naturally
into the analysis, we also point out that Theorem 2.1 now follows immediately
from Lemma 2.3 in this model case. In fact, by continuity we also obtain the
estimates

(8) |m j (ξ)| ≤ C2 j (α−β/(d+1))

for standard-type curves (7), provided the parameter µ remains bounded.
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Thus, to establish Theorem 2.1 for standard-type curves, we must obtain uniform
multiplier bounds at least as strong as (8) for all large |µ|. The following key result
achieves more than what we need to prove Theorem 2.1 for standard type curves.
The additional savings are used in a crucial way in the proof of Proposition 2.2.

Proposition 3.2 (Refined dyadic estimate). If γ (t) is a curve of standard type, then

(i) for all ξ ∈ Rd ,

|m j (ξ)| ≤ C2 j (α−β/(d+1))(1 + |2− j
◦β ξ |)

−1/(d+1)
;

(ii) there exists a fixed ε > 0 such that if |2− j
◦β ξ | /∈ (ε, ε

−1), then

|m j (ξ)| ≤ C2 j (α−β/d)(1 + |2− j
◦β ξ |)

−1/d ,

where ε and C are independent of both j and ξ .

Proof. Modifying our approach, we write ψ(t) = ±2 jβ max{1, |2− j
◦β ξ |}ϕ(t),

with ϕ(t)= tb0 +µ1tb1 + · · · +µd tbd and

b0 =

{
−β if 1 ≥ max

k
{2− j (β+ak)|ξk |},

` if 1 ≤ max
k

{2− j (β+ak)|ξk |} = 2− j (β+a`)|ξ`|.

It then follows immediately that |µk | ≤ 1 for all k = 1, . . . , d , and by continuity
we obtain the estimate

(9) |m j (ξ)| ≤ C2 j (α−β/(d+1))(1 + |2− j
◦β ξ |)

−1/(d+1)

for all curves of standard type.
It is also clear that there exists ε > 0 such that if |2− j

◦β ξ | ≤ ε, then

|m j (ξ)| ≤ C2 j (α−β).

Now if instead we assume that |2− j
◦β ξ | ≥ ε−1 for some ε > 0, then we may

choose a k such that

2− j (bk+β)|ξk | ≥ ε−(bk+β) and 2− jbk |ξk | ≥ 2− jbi |ξi | for all i 6= k.

It then follows from [Ricci and Stein 1987, Lemma 2], which is the analogue of
Lemma 2.5 in that setting, that if

8(t)=

d∑
i=1

µi tbi ,

with µi = 2− j (bi −bk)ξi/ξk , then |8(`)(t)| ≥ Ctbk−` for some ` in {1, . . . , d}.
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It then follows from the fact that 2− j (bk+β)|ξk | ≥ ε−(bk+β) and |µi | ≤ 1 for all
i = 1, . . . , d, that∣∣∣∣∫ ϑ(t)t−1

|t |−αei[2 jβ
|t |−β−γ (2− j t)·ξ]dt

∣∣∣∣ ≤ C2 jbk/d |ξk |
−1/d ,

provided ε > 0 is chosen small enough (and j large enough). �

Proof of Proposition 2.2. We shall only establish the desired estimate for T ∗

j T j ′ .
the proof of the other estimate is analogous.

It follows from Theorem 2.1 that the operators T j are uniformly bounded on
L2(Rd)whenever α≤β/(d+1), and since we also have that T ∗

j T j ′ f (x)= K j (−·)∗

K j ′ ∗ f (x), where K̂ j (ξ)= m j (ξ), we observe that

(10) ‖T ∗

j T j ′‖ = ‖m j (ξ)m j ′(ξ)‖L∞,

and we can clearly assume that | j ′
− j | � 1.

Let ε > 0 be the constant given in Proposition 3.2. Without loss in generality,
we assume that j ′

≥ j +C0, where 2C0(β+a1)� ε−2. We now distinguish two cases.

(i) If |2− j ′

◦β ξ | ≤ ε, it then follows from Proposition 3.2 that, for all N ′ > 0,

|m j ′(ξ)| ≤ C2 j ′(α−Nβ)
≤ C2− j ′ N ′β

≤ C2−( j ′
− j)N ′β .

(ii) If |2− j ′

◦βξ |>ε, then |2− j
◦βξ |≥C2C0(β+a1)ε≥ε−1. Appealing to Proposition

3.2 once more, it follows that

|m j (ξ)| ≤ C2 j (α−β/d)
|2− j

◦β ξ |
−1/d

≤ C |2 j ′
− j 2− j ′

◦β ξ |
−1/d

≤ C2−( j ′
− j)(β+a1)/d |2− j ′

◦β ξ |
−1/d

≤ Cε−1/d2−( j ′
− j)(β+a1)/d .

The result then follows from estimate (10) and Theorem 2.1. �

We finally comment on the necessity of the condition α ≤ β/(d + 1) in the
statement of Theorem 1.1. It is not too difficult to see that if we consider the dyadic
operator T j along the curve γ (t)= (ta1, . . . , tad ) for t > 0 with 1 ≤ a1 < . . . < ad ,
it is possible to find constants c1, . . . , cd (as we shall show below) such that the
multiplier m j = m j (ξ) satisfies

A2 j (α−β/(d+1))
≤

∣∣m j
(
c1ξ1, c2ξ

(β+a2)/(β+a1)

1 , . . . , cdξ
(β+ad )/(β+a1)

1

)∣∣≤ 2 j (α−β/(d+1))

A

for some absolute constant 0<A<1. This will imply ‖T j‖L2→L2 = ‖m j‖L∞ ≈

2 j (α−β/(d+1)). Observe, however, that m j (ξ) = K̂ j (ξ), where K j is essentially
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defined as in (11) of the next section, namely

K j (x)= ϑ(2 jρ(x))K (x),

where K is the kernel of (2). Hence

|m j (ξ)| =
∣∣K̂ (ξ) ∗ ̂ϑ(2 jρ(·))

∣∣ =

∣∣∣∫ K̂ (ξ − τ)η j (τ )dτ
∣∣∣

≤ ‖K̂‖L∞‖ ̂ϑ(2 jρ(·))‖L1 ≤ C‖K̂‖L∞ .

In the last step, we have used that the L1 norm of ̂ϑ(2 jρ(·)) is normalized, which
is true because this function is the Fourier transform of a rescaled bump function.
Thus, ‖T ‖L2→L2 ≥ C‖T j‖L2→L2 , and our conclusion follows.

Now, to find the desired constants c1, . . . , cd , one just has to look at which points
the first d derivatives of the function ϕ = ϕ(t) vanish. One then obtains the system
of equations

−β|t |−β−1sgn(t)+ 2− j (β+a1)µ1a1ta1−1
+ · · · + 2− j (β+ad )µdad tad−1

= 0,
...

−βd |t |−β−d
[sgn(t)]d

+ 2− j (β+a1)µ1a1,d ta1−d
+ · · · + 2− j (β+ad )µdad,d tad−d

= 0,

where we have used the notation

βd =

d∏
i=1

(β + i − 1) and a j,d =

d∏
i=1

(a j − i + 1).

As this system is linear and nonsingular in the variables µ1, . . . , µd , it has a unique
solution. By expressing t as a function of the µ variables, one can extract the
formula for the desired curve by recalling that µ= 2− j

◦β ξ and by observing that,
due to its scaling properties, no powers of 2− j appear in the equation that gives the
curve in the ξ variables.

4. Estimates near L1

We now turn our attention to the proof of Theorem 1.2, which relies on the re-
sult obtained by Christ and Stein [1987]. Indeed, we shall show that the general
statement they proved applies to the operator (2).

We first fix some notation. For any tempered distribution u ∈ S′(Rd) we denote
by ux0 its translate by x0, namely,

〈ux0(x), φ(x)〉 = 〈u(x), φ(x − x0)〉
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for all test functions φ. We also define the (p, q) convolution norm for the operator
that convolves with u. It is

‖u‖CV (p,q) = sup
f ∈L p

‖ f ∗ u‖Lq/‖ f ‖L p .

We now summarize the assumptions of the Christ–Stein theorem. Define T , a
convolution operator, through T f (x)= f ∗ K (x), where K is a tempered distribu-
tion.

Now, consider the nonisotropic dilations x 7→ r ◦x = (ra1 x1, . . . , rad xd). If ρ(x)
is defined to be the unique r>0 such that |r−1

◦x |=1, then ρ becomes a quasinorm
homogeneous with respect to the dilations above, see [Stein and Wainger 1978].
Thus, we may define the distributions

(11) K j (x)= ϑ(2 jρ(x))K (x).

Theorem 4.1 [Christ and Stein 1987]. Suppose T =
∑

j∈Z T j , where T j f = f ∗K j

as defined above. Assume that there exist some constants δ, ε > 0 such that

(i) ‖K j+` − K x0
j+`‖CV (2,2) ≤ C2−ε` for all y with ρ(y) ≤ C2 j and all j ∈ Z and

` ∈ Z+;

(ii) ‖K j‖L1 ≤ C uniformly in j ;

(iii) ‖T j T ∗

j ′‖L2→L2 + ‖T ∗

j T j ′‖L2→L2 ≤ C2−δ| j− j ′
| for all j, j ′

∈ Z.

Then T : L log L(B)→ L1,∞(B) for any bounded set B ⊂ Rd .

The above statement provides a local regularity result. However, since we are
dealing with an operator given by convolution with a compactly supported kernel,
one may actually use the Christ–Stein theorem to obtain a global result.

To see how the Christ–Stein theorem applies to the operator Tγ in (2) when
α = 0, we first consider the model case γ (t) = (ta1, . . . , tad ), where the a j are
distinct positive integers. Note that the kernel Kγ of Tγ may be written as

Kγ (x)=

∫∫
exp

(
i(|t |−β + ξ · (x1 − ta1, . . . , xd − tad ))

)
χ(t)t−1 dt dξ.

If we now define, for each j ≥ 0,

Kγ, j = ϑ(2 jρ(x))Kγ (x)

as in (11), then it is simple to see that for a test function f one has

〈Kγ, j , f 〉 =

∫
exp(i |t |−β)χ(t)t−1ϑ(ρ(2 j

◦ (ta1, . . . , tad ))) f (ta1, . . . , tad ) dt,

and, as such,

Tγ, j f (x)=

∫
exp(i2 jβ

|t |−β)ϑ(ρ(γ (t)))t−1 f (x − γ (t)) dt.
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It is therefore clear that the operators Tγ, j are nearly identical to the operators T j

in (3): the cutoff function found in the definition of the kernels Kγ, j still restricts
the t variable to the set where |t | ≈ 1. Note that trivially

‖Kγ, j‖L1 ≤ C and ‖Tγ, j T ∗

γ, j ′‖L2→L2 + ‖T ∗

γ, j Tγ, j ′‖L2→L2 ≤ C2−ε| j− j ′
|

for all j, j ′
∈ Z+, because the almost orthogonality of the operators Tγ, j is truly

equivalent to that of the operators T j , and this has been proven in the previous
section.

Thus, to apply the Christ–Stein result we need only show that

‖Kγ, j+` − K x0
γ, j+`‖CV (2,2) ≤ C2−ε`

for all `∈ Z+ and some ε> 0.Note that j +`≥ 0, for otherwise the kernel vanishes
identically. To verify this condition, it suffices to check that

(12) ‖K̂γ, j+`(ξ)− K̂ x0
γ, j+`(ξ)‖L∞ = ‖(1 − ei x0·ξ )K̂γ, j+`‖L∞ ≤ C2−ε`,

where

K̂γ, j+`(ξ)=

∫
exp

(
i(|t |−β + ξ · (ta1, . . . , tad ))

)
ϑ(2 j+`ρ(γ (t)))t−1dt.

First, if j ≥ 0, there is nothing to show, as1

|K̂γ, j+`(ξ)| ≤ C2−( j+`)β/(d+1).

However, this pointwise estimate also shows that if j < 0, but | j | < (1 − δ)` for
some δ > 0, then (12) is also verified. To deal with the remaining case j < 0 and
| j |> (1 − δ)`, we note that∣∣(1 − ei x0·ξ )K̂γ, j+`(ξ)

∣∣ ≤ C
∣∣K̂γ, j+`(ξ)

∣∣ min {1, |ξ · x0|} .

Since |x0| ≤ C2 j , problems may arise only if 2 j (1−δ)
� |ξ | ≤ C . Indeed, if |ξ | ≤

C2 j (1−δ), we have the bound∣∣(1 − ei x0·ξ )K̂γ, j+`(ξ)
∣∣ ≤ C2δ j

≤ C2−δ`/2.

Thus, consider the case |ξ | � 2 j (1−δ). Here we may use estimate (9) to get∣∣K̂γ, j+`(ξ)
∣∣ ≤ C2−( j+`)β/(d+1)(1 + |2−( j+`)

◦β ξ |)
−1/(d+1).

Using that j < 0 and | j |> (1 − δ)` and the size of |ξ |, one obtains the estimate

(1 + |2−( j+`)
◦β ξ |)

−1/(d+1)
≤ C2−`/4(d+1),

1We shall no longer explicitly mention that the kernels K j have the same properties as those
defining the operators T j in (3).
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provided δ > 0 is sufficiently small. This is enough to prove (12) in this case and
Theorem 1.2 for model case curves.

Passing to the general case of standard curves is not difficult. If γ is a curve of
standard type, then we again define

Tγ, j f (x)=

∫
ei |t |−βχ(t)t−1ϑ(ρ(2 j

◦ γ (t))) f (x − γ (t)) dt,

where ρ is homogeneous with respect to the dilations r ◦ x = (ra1 x1, . . . , rad xd).
Since γ is approximately homogeneous with respect to the same dilations, we see
that the Fourier transform of the kernel Kγ, j is given by

K̂γ, j (ξ)=

∫
ei(2 jβ

|t |−β+ξ ·γ (2− j t))ϑ(ρ(ta1 + O(2− j ), . . . , tad + O(2− j ))) dt.

Now, for all j > 0 sufficiently large, the cutoff function in the definition of m j

restricts t to the set where |t | ≈ 1 and has uniformly bounded C∞ seminorms.
Thus, the estimate of Lemma 2.3 applies, implying estimate (9), while the almost
orthogonality of the operators Tγ, j may be obtained as in Proposition 2.2. �

To prove Corollary 1.3, one may form an analytic family of operators in the
standard way and proceed as in [Chandarana 1996]. Then, the appropriate version
of Stein’s interpolation theorem applies. We omit the details.

5. Estimates in two dimensions

Seeger et al. [2004] proved a very interesting regularity result (near L1) for singu-
lar Radon transforms. Let 6 be a hypersurface in Rd , and let µ be a compactly
supported smooth density on 6, that is, let µ= ϑ(x)dσ , where ϑ ∈ C∞

0 (R
d) and

dσ is surface measure on 6. Let µ j be dilates of µ defined by

〈µ j , f 〉 = 〈µ, f (2 j
◦ ·)〉,

where ◦ denotes the nonisotropic dilations introduced in Section 4. Consider the
singular Radon transform R f (x)=

∑
j∈Z µ j ∗ f (x). Assuming that the Gaussian

curvature of 6 does not vanish to infinite order at any point (in 6) and that the
cancellation condition

∫
dµ= 0 holds, Seeger, Tao and Wright showed that

R : L log log L(Rd)→ L1,∞(Rd).

It is not difficult to see that the local version Rloc f (x) =
∑

k<C µk ∗ f (x) is also
of weak type L log log L .

We wish to apply this result to the operator Tγ in (2) in the case d = 2 and
α = 0. We also give γ the special form (t, t |t |b) for b > 0. To do so, we choose
a smooth cutoff function ϑ = ϑ(t) supported in [1/2, 1] with the property that∑

j∈Z+
ϑ(2 j t)≡ 1 for (say) 0< t ≤ 1/2. We choose another smooth cutoff η with
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the properties that η(t)≡ 1 for |t | ≤ M and η(t)≡ 0 for |t |> 2M , where M � 1.
Thus, if we pick the measure µ to be

µ(x)= ei |x1|
−β

x−1
1 ϑ(|x1|)η(|x2|),

we see that its action on test function φ is given by

〈µ, φ〉 =

∫
ei |t |−β t−1ϑ(|t |)η(t |t |b)φ(t, t |t |b) dt =

∫
ei |t |−β t−1ϑ(|t |)φ(t, t |t |b) dt,

provided we choose the number M in the definition of η to be large enough. Further,
it is simple to see that now

∫
dµ = 0 and that the curvature of γ does not vanish

to infinite order on [1/2, 1].

Now, if we choose nonisotropic dilations r ◦ x = (r x1, rb+1x2), it is simple to
see that

Tγ f (x)=

∑
j∈Z+

µ j ∗ f (x).

The result in [Seeger et al. 2004] then gives this:

Theorem 5.1. Let d = 2 and γ (t)= (t, t |t |b) for b > 0. If α = 0, then

Tγ : L log log L(R2)→ L1,∞(R2).

If we interpolate this estimate with the sharp L2 bounds of Theorem 1.1, we
get a better regularity result (in this special two dimensional case) than the one
provided by Corollary 1.3. The precise statement can be obtained by using the
same procedure as in Corollary 1.3.
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