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BRIAN D. BOE, DANIEL K. NAKANO AND EMILIE WIESNER

We investigate blocks of the Category O for the Virasoro algebra over C.
We demonstrate that the blocks have Kazhdan–Lusztig theories and that
the truncated blocks give rise to interesting Koszul algebras. The simple
modules have BGG resolutions, and from this we compute the extensions
between Verma modules and simple modules, and between pairs of simple
modules.

1. Introduction

Bernšteı̆n, Gel′fand, and Gel′fand [1976] initiated the study of Category O for
complex semisimple Lie algebras. Since the introduction of Category O, much
progress has been made in studying the structure of blocks for this category and
its variants. One of the major results in this area was the formulation and proof
of the Kazhdan–Lusztig (KL) conjectures [Kazhdan and Lusztig 1979; Beı̆linson
and Bernstein 1981; Brylinski and Kashiwara 1981], which provide a recursive
formula for the characters of simple modules in Category O. These conjectures
have been equivalently formulated in terms of Ext-vanishing conditions between
simple modules and Verma modules. For semisimple algebraic groups over fields
of positive characteristic p > 0, an analogous conjecture has been provided by
Lusztig as long as p is at least as large as the Coxeter number of the underlying
root system. The characteristic p Lusztig Conjecture still remains open.

In an attempt to better understand both the original Kazhdan–Lusztig Conjecture
and the Lusztig Conjecture, Cline, Parshall, and Scott [1988; 1993; 1997] devel-
oped an axiomatic treatment of highest weight categories with the added structures
involving “Kazhdan–Lustzig theories” and Koszulity. Irving [1990; 1992] has par-
tially developed some theories along these lines. Beı̆linson, Ginzburg, and Soergel
[1996] proved that the principal block of Category O is Koszul using perverse
sheaves and established Koszul duality between various blocks of Category O,
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which provides an alternative proof of the KL Conjecture. The work of Cline,
Parshall, and Scott is important because it isolates the key homological criteria for
verifying the existence of such properties.

The Virasoro algebra is the universal central extension of the Witt algebra and
plays a significant role in the definition of the vertex operator algebra. The theory
of vertex operator algebras has provided a mathematical foundation for conformal
field theory; see [Lepowsky 2005]. Understanding such field theories in two di-
mensions involves problems about the representation theory of the Virasoro and
vertex operator algebras.

The Witt algebra is an infinite-dimensional simple Lie algebra over C and is the
smallest example of a Cartan-type Lie algebra. The Virasoro algebra has a trian-
gular decomposition g= n−⊕h⊕n+, which allows one to define a Category O. In
this paper we study blocks of Category O for the Virasoro algebra, building on the
foundational work of Feı̆gin and Fuchs [1990], who determined all maps between
Verma modules for the Virasoro algebra. After making explicit the construction of
BGG-resolutions for simple modules in these blocks (which is implicit in [Feı̆gin
and Fuchs 1990]), we compute the n+-cohomology with coefficients in any sim-
ple module. This extends results of Gončarova [1973a; 1973b], who calculated
H•(n+, C), and of Rocha-Caridi and Wallach [1983a], who computed H•(n+, L)

for any simple module L in the trivial block. This cohomological information
allows us to calculate the extensions between simple and Verma modules. We then
verify that our categories satisfy properties given in [Cline et al. 1997]; in particular,
they have a KL theory. These properties yield a computation of extensions between
all simple modules and imply that truncated blocks of Category O for the Virasoro
algebra give rise to interesting Koszul algebras. We find it quite remarkable that
KL theories naturally arise in the representation theory of the Virasoro algebra. It
would be interesting to determine if this occurs in a more general context within
the representation theory of Cartan-type Lie algebras.

The authors thank Brian Parshall for conversations about calculating extensions
in quotient categories, Jonathan Kujawa for clarifying the connections between the
extension theories used in Section 4.1, and the referee for several helpful comments
and suggestions.

2. Notation and preliminaries

2.1. The Virasoro algebra is the Lie algebra g=C-span{z, dk |k ∈Z}with bracket
[ , ] given by

[dk, z] = 0 and [d j , dk] = ( j − k)d j+k +
δ j,−k

12
( j3
− j)z for all j, k ∈ Z.
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The Virasoro algebra can be decomposed into a direct sum of subalgebras g =

n−⊕ h⊕ n+ = n−⊕ b+, where

n− = C-span{dn | n ∈ Z<0}, h= C-span{d0, z}, n+ = C-span{dn | n ∈ Z>0},

and b+ = h⊕ n+. There is an antiinvolution σ : g→ g given by σ(dn)= d−n and
σ(z)= z.

2.2. Category O and other categories. The Category O consists of g-modules M
such that

• M =
⊕

µ∈h∗ Mµ, where h∗ = HomC(h, C) and Mµ
= {m ∈ M | hm =

µ(h)m for all h ∈ h};

• M is finitely generated as a g-module;

• M is n+-locally finite.

This definition is more restricted than the one given in [Moody and Pianzola 1995].
Identify each integer n ∈Z with a weight n ∈ h∗ by n(d0)= n and n(z)= 0. Define
a partial ordering on h∗ by

(1) µ < γ if µ= γ + n for some n ∈ Z>0.

The category defined in [Moody and Pianzola 1995], which we denote Õ, con-
sists of g-modules M such that M =

⊕
µ∈h∗ Mµ, dim Mµ <∞, and there exist

λ1, . . . , λn ∈ h∗ such that Mµ
6= 0 only for µ≤ λi for some i . Then O (as we have

defined it) is the full subcategory of Õ consisting of finitely generated modules.
Therefore, many of the results about Õ proven in [Moody and Pianzola 1995] apply
to O.

For µ ∈ h∗, the Verma module M(µ) is the induced module

M(µ)=U (g)⊗U (b+) Cµ.

The Verma module M(µ) has a unique simple quotient, denoted L(µ). The mod-
ules L(µ) for µ ∈ h∗ provide a complete set of simple modules in Category O; see
[Moody and Pianzola 1995, Section 2.3]. For µ, γ ∈ h∗, define a partial ordering

(2) µ� γ if L(µ) is a subquotient of M(γ ).

Extend this to an equivalence relation ∼. The blocks of g are the equivalence
classes of h∗ determined by ∼. For each block [µ] ⊂ h∗, define O[µ] to be the full
subcategory of O such that, for any M ∈ O[µ], the module L(γ ) is a subquotient
of M only for γ ∈ [µ]. For M ∈ O, M =

⊕
[µ]⊂h∗ M [µ], where M [µ] ∈ O[µ]; see

[Moody and Pianzola 1995, 2.12.4].



4 BRIAN D. BOE, DANIEL K. NAKANO AND EMILIE WIESNER

We will use several other categories. Let W be the category whose objects
are g-modules M such that M =

⊕
λ∈h∗ Mλ, where Mλ is not necessarily finite-

dimensional. For a fixed weight µ ∈ h∗, define W(µ) to be the full subcategory of
W whose objects are g-modules M such that M =

⊕
λ≤µ Mλ.

The antiinvolution σ can be used to define a duality functor D on W. For
M ∈ W, define DM =

⊕
µ(Mµ)∗ (as a vector space) with g-action given by

(x f )(v) = f (σ (x)v) for x ∈ g, f ∈ DM , and v ∈ M . Then, HomW(M, M ′) ∼=
HomW(DM ′, DM) for all M, M ′ ∈W. Since σ(h)= h for h ∈h, DM decomposes
as a direct sum of weight spaces where (DM)µ = (Mµ)∗. Therefore, W(µ) is
closed under D. Finally, note that DL ∼= L for any simple module L ∈ O.

3. BGG resolutions and n+-cohomology

3.1. Theorem 1 describes all Verma module embeddings in a given block of O.
Since every nonzero map between Verma modules is an embedding, this describes
all homomorphisms between Verma modules in a block. From this result one can
construct BGG resolutions of the simple modules L(µ) to compute H•(n+, L(µ)).

Theorem 1 [Feı̆gin and Fuchs 1990, 1.9]. Suppose µ ∈ h∗, and set h = µ(d0) and
c = µ(z) ∈ C. Define

ν =
c− 13+

√
(c− 1)(c− 25)

12
and β =

√
−4νh+ (ν+ 1)2,

and consider the line in the rs-plane

(3) Lµ : r + νs+β = 0.

The Verma module embeddings involving M(µ) are determined by integer points
(r, s) on Lµ:

(i) Suppose Lµ passes through no integer points or one integer point (r, s) with
rs = 0. Then the block [µ] is given by [µ] = {µ}.

(ii) Suppose Lµ passes through exactly one integer point (r, s) with rs 6= 0. The
block [µ] is given by [µ] = {µ, µ+ rs}. The block structure is given below,
where an arrow λ→ γ between weights indicates M(λ)⊆ M(γ ).

µ = µ0

µ1 = µ + rs

rs > 0

µ = µ0

µ
−1 = µ + rs

rs < 0
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(r
−1, s

−1)

(r0, s0)

(r1, s1)

(r2, s2)

(r3, s3)

(r4, s4)

(r5, s5)

(r6, s6)

(r7, s7)

(r8, s8)

(r9, s9)

Figure 1. The points (r, s) on Lµ.

(iii) Suppose Lµ passes through infinitely many integer points and crosses an axis
at an integer point. Label these points (ri , si ) so that

· · ·< r−2s−2 < r−1s−1 < 0= r0s0 < r1s1 < r2s2 < · · ·

as in Figure 1. The block [µ] is given by [µ] = {µi = µ+ ri si }. The block
structure is given below.
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slope (Lµ) > 0 slope (Lµ) < 0

µ = µ0

µ = µ0

µ
−1

µ
−1

µ1

µ1

(iv) Suppose Lµ passes through infinitely many integer points and does not cross
either axis at an integer point. Label the integer points (ri , si ) on Lµ so that

· · ·< r−1s−1 < r0s0 < 0 < r1s1 < r2s2 < · · · .

Also consider the auxiliary line L̃µ with the same slope as Lµ passing through
the point (−r1, s1). Label the integer points on this line (r ′j , s ′j ) in the same
way as Lµ. The block [µ] is given by [µ] = {µi , µ

′

i }, where

µi =

{
µ+ ri si for i odd,
µ+ r1s1+ r ′i s

′

i for i even,
µ′i =

{
µ+ ri+1si+1 for i odd,
µ+ r1s1+ r ′i+1s ′i+1 for i even.

The block structure is given below.
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We will refer to blocks as in case (iii) as “thin” blocks and blocks as in case (iv) as
“thick” blocks. The second type of thick block has a highest weight poset structure
equivalent to the Bruhat order on D∞, the infinite dihedral group.

3.2. BGG resolutions. Feı̆gin and Fuchs [1988] observe without elaboration that
their result, Theorem 1 above, yields a BGG resolution for the simple modules in
Category O. We now provide the details for constructing these resolutions.

Given a module M in Category O, define the radical of M , rad M , to be the
smallest submodule such that M/ rad M is semisimple. Put rad0 M = M , and
for i > 0 put radi M = rad(radi−1 M). This defines a decreasing filtration of M ,
the radical filtration. For i ≥ 0, layer i of the radical filtration is defined to be
radi M = radi M/ radi+1 M . We also write hd M = M/ rad M . In general, see
[Feı̆gin and Fuchs 1990], the terms and the layers of the radical filtration of M(µ),
in the notation of Theorem 1(ii)–(iv), are as follows:

(4) rad0 M(µ)= L(µ),
radi M(µ)= M(µi )+M(µ′i ) for i > 0,

radi M(µ)= L(µi )⊕ L(µ′i ) for i > 0.

If µ belongs to a finite or thin block, then terms involving µ′i are to be ignored.
Also if µ belongs to a block with a minimal element, say µn , then

radn M(µ)= radn M(µ)=M(µn)= L(µn), radi M(µ)= radi M(µ)=0 for i > n.

Assume µ belongs to a thick block. According to [Bernšteı̆n et al. 1975], there
will be a complex C• → L(µ) → 0, where Ci is the direct sum of the Verma
modules M(µi )⊕M(µ′i ), provided that to each edge of the poset below µ, using
the ordering �, it is possible to assign a sign +1 or −1 so that the product of the
signs on any diamond is −1. Such a labeling is indicated in Figure 2. It is easy to
check directly in this case that the resulting complex is in fact a resolution, called
a BGG resolution of L(µ).
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µn

µ
′
n−1

µn−1

µ
′
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Figure 2. Assignment of signs.

Explicitly, the following are BGG resolutions of L(µ): for µ belonging to a
thick block with a minimal element µn ,

0→ M(µn)→ M(µn−1)⊕M(µ′n−1)→ · · ·

→ M(µ1)⊕M(µ′1)→ M(µ)→ L(µ)→ 0;

and for µ belonging to a thick block with a maximal element,

· · · → M(µi )⊕M(µ′i )→ · · · → M(µ1)⊕M(µ′1)→ M(µ)→ L(µ)→ 0.

Next consider a weight µ ∈ h∗ belonging to a thin block or a finite block. Then
rad M(µ) = M(µ1) if µ1 exists in the block, and rad M(µ) = 0 otherwise. Thus,
if M(µ) is not itself irreducible, the BGG resolution of L(µ) is

0→ M(µ1)→ M(µ)→ L(µ)→ 0.

We now introduce some additional notation. Fix µ∈h∗. Define a length function
l : [µ] → Z by

l(µi )= l(µ′i )= i,

using the notation of Theorem 1(ii)–(iv). While l( ) depends on a choice of rep-
resentative µ for the block, the value (and, in particular, the parity) of l(ν)− l(γ )

for ν, γ ∈ [µ] is independent of the choice of representative. This will be relevant
later.
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In summary of the description given above, each simple module L(µ) has a
BGG resolution · · · → C1→ C0→ L(µ)→ 0 where

(5) Ci =


⊕

l(ν)=i, ν�µ M(ν) if [µ] is a thick block or a finite block,⊕
l(ν)=i M(ν) if i ≤ 1 and [µ] is a thin block,

0 if i > 1 and [µ] is a thin block.

3.3. n+-cohomology. Gončarova [1973a; 1973b] proved that

(6) Hk(n+, C)= C(3k2+k)/2⊕C(3k2−k)/2.

Rocha-Caridi and Wallach use Gončarova’s work to obtain BGG resolutions for C

[1983a] and for the other simple modules in the trivial block [1983b]. Using this,
they compute Hk(n+, L) for any simple module L in the trivial block [1983b]. We
extend their result to cohomology with coefficients in any simple module in O.

Theorem 2. Let µ ∈ h∗, and let k ∈ Z≥0.

(a) Suppose that µ belongs to a thick block or a finite block. As an h-module,

Hk(n+, L(µ))∼= Hk(n
−, L(µ))∼=

⊕
ν ∈ [µ], ν � µ

l(ν)− l(µ)= k

Cν .

(b) Suppose that µ belongs to a thin block. As an h-module,

Hk(n+, L(µ))∼= Hk(n
−, L(µ))∼=


⊕

ν ∈ [µ], ν � µ

l(ν)− l(µ)= k

Cν if k ≤ 1,

0 if k > 1.

Proof. We first compute the homology groups Hk(n
−, L(µ)), where Hk(n

−,−) is
the k-th left derived functor of C⊗U (n−)−. Since Verma modules are free U (n−)-
modules, apply C⊗U (n−)− to the resolution (5). Note that C⊗U (n−) M(ν)∼= Cν .
The resulting differential maps in the resolution are h-equivariant, and Cν appears
at most once in the resolution for each weight ν. Therefore, all of the differential
maps must be zero. This verifies that Hk(n

−, L(µ)) is as stated.
We now show that Hk(n

−, L(µ))∼=Hk(n+, L(µ)). This may be well known; it is
claimed in [Rocha-Caridi and Wallach 1983a] to follow from “standard arguments.”
Because the infinite-dimensional case seems somewhat subtle, we include a proof
for completeness.

Write L = L(µ). Recall that Hk(n
−, L) can be computed using the complex

· · · →3k(n−)⊗ L
dk
→3k−1(n−)⊗ L→ · · ·
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and Hk(n+, L) can be computed using the complex

· · · →3k((n+)∗)⊗ L
dk

→3k+1((n+)∗)⊗ L→ · · · .

We extend the notion of duality defined in Section 2.2 to 3k(n−), viewed as
an h-module, as follows. For f ∈ ⊕λ∈h∗((3

k(n−))∗)λ, define f̃ ∈ (3k(n+))∗ by
f̃ (x)= f (σ (x)) for x ∈3k(n+). Let D(3k(n−))= { f̃ | f ∈⊕λ∈h∗((3

k(n−))∗)λ}.
Define 3k(D(n−))⊆3k((n+)∗) analogously.

By choosing a basis for each weight space (3k(n−)⊗ L)λ, we can construct an
h-module embedding 3k(n−)⊗ L → D(3k(n−))⊗ L ⊆ (3k(n+))∗ ⊗ L . Since
D(L)∼= L , the differential map dk+1 induces a codifferential map d̃k :D(3k(n−))⊗

L→D(3k+1(n−))⊗L as follows. Let f ∈⊕λ∈h∗(3
k(n−))∗)λ and g∈⊕λ∈h∗(L∗)λ.

Then f⊗g corresponds to an element f̃ ⊗ g∈D(3k(n−))⊗DL∼=D(3k(n−))⊗L .
Define d̃k( f̃ ⊗ g)(x⊗m)= ( f ⊗g)(dk+1(σ (x)⊗m)) for x ∈3k+1(n+) and m ∈ L .
For λ ∈ h∗, it can be shown that dim(ker d̃k)

λ
− dim(Im d̃k−1)

λ
= dim(ker dk)

λ
−

dim(Im dk+1)
λ. This implies

(7) Hk(D(3•(n−))⊗ L)∼= Hk(n
−, L).

For each k, define φk = φ :3k((n+)∗)→
(
3k(n+)

)∗ by

φ( f1 ∧ · · · ∧ fk)(x1 ∧ · · · ∧ xk)=
∑
τ∈Sk

sgn(τ )
∏

i

fi (xτ(i))

for xi ∈ n+ and fi ∈ (n+)∗. The map φ is an h-module isomorphism and satisfies
φ(3k(D(n−)))= D(3k(n−)). Moreover, it can be checked that (φk+1⊗1)◦dk

=

d̃k ◦ (φk ⊗ 1) on D(3k(n−))⊗ L . Therefore, φ⊗ 1 gives an isomorphism

(8) Hk(D(3•(n−))⊗ L)∼= Hk(3•(D(n−))⊗ L).

To complete the proof, we need to show that Hk(3•(D(n−))⊗ L) ∼= Hk(n+, L),
which entails checking that

(i) for X ∈ Im(dk−1)∩3k(D(n−))⊗ L , there is a Y ∈ 3k−1(D(n−))⊗ L with
dk−1(Y )= X ;

(ii) for X ∈ ker(dk), there is an X̃ ∈3k(D(n−))⊗ L such that X− X̃ ∈ Im(dk−1).

Let X ∈ 3k((n+)∗) ⊗ L . The space 3k((n+)∗) ⊗ L decomposes as a direct
product of its weight spaces. Write X =

∏
λ∈h∗ Xλ, where Xλ ∈ (3k((n+)∗)⊗L)λ.

Then Xλ = f1⊗m1+· · ·+ fn⊗mn for some fi ∈3k((n+)∗)µi and mi ∈ Lνi with
µi + νi = λ. From the definition of 3k(D(n−)), we see that 3k(D(n−)) is the set
of elements f ∈3k((n+)∗) with f =

∏
µ∈h∗ fµ such that fµ 6= 0 for only finitely

many µ. Therefore, fi ∈3k(D(n−)), and so Xλ ∈3k(D(n−))⊗ L .
The differential map dk preserves weight spaces. Suppose X = dk−1(Ỹ ) for

some Ỹ ∈ 3k−1((n+)∗)⊗ L . Define Y =
∏

λ∈h∗ Yλ by Yλ = Ỹλ if Xλ 6= 0 and
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Yλ= 0 otherwise. If X ∈3k(D(n−))⊗L then Y ∈3k−1(D(n−))⊗L . This proves
(i).

Now let X ∈ker(dk). Then dk(Xλ)=0 for all λ∈h∗. Equations (7) and (8) imply
that Hk(3•(D(n−))⊗ L) is finite dimensional. Because Xλ ∈ 3k(D(n−))⊗ L ,
this means that there are only finitely many λ1, . . . , λr such that Xλi 6= 0 and
Xλi 6= dk(Yλi ) for some Yλi ∈3k−1(D(n−))⊗L . Define X̃λi = Xλi for i = 1, . . . , r
and X̃λ = 0 otherwise. Then X̃ ∈ (3k(D(n−))⊗ L and X − X̃ ∈ Im(dk−1). This
proves (ii). �

Corollary 3. Every irreducible module in Category O for the Virasoro algebra is a
Kostant module (in the sense of [Boe and Hunziker 2006]).

4. Extensions

The structure of the infinite blocks of O presents various obstacles in computing
Ext-groups. The infinite blocks with a minimal element do not have enough projec-
tives. In the infinite blocks with a maximal element, objects do not generally have
finite length. We demonstrate that the first problem can be remedied by truncation,
and the second can be addressed via a quotient construction.

4.1. Cohomology and truncated categories. We first define the truncation of an
infinite block of O having a minimal element. Fix a weight µ in the block C, and
consider the full subcategory C(µ) — called the truncation of the block at µ — of
modules all of whose composition factors have highest weights less than or equal
to µ, using the partial ordering given in (2).

Now let C be a finite block of O, an infinite block of O with a maximal element,
or a truncated infinite block with minimal element. Denote the weight poset of C by
3. Then there is a maximal element µ∈3. If C is a truncated thick block, we can
write µ=µ0 as in Theorem 1(iv). We assume that µ is chosen so that µ0≤µ′0 in the
partial ordering given by Equation (1). Then 3={ν ∈ [µ] | ν≤µ}, which allows us
to compare C and W(µ). We now use Theorem 2 to compute ExtiC(M(λ), L(ν))

by passing through relative cohomology and using the categories W and W(µ)

defined in Section 2.2.

Lemma 4. If λ, ν ∈3 and i ∈ Z≥0, then ExtiW (M(λ), L(ν))∼= Hi (n+, L(ν))λ.

Proof. For i ∈ Z≥0, define Pi = U (g)⊗U (h) 3i (g/h). Then, for any g-module
M , the sequence (with suitably defined maps) · · · → P2 ⊗C M → P1 ⊗C M →
M → 0 is a (g, h)-projective resolution [Kumar 2002, 3.1.8]. If M = M(λ), then
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Pi ⊗C M(λ) ∈W, and so this gives a projective resolution in W. We then have

ExtiW (M(λ), L(ν))∼= Exti(g,h) (M(λ), L(ν))∼= Exti(b+,h) (Cλ, L(ν))

∼= Exti(b+,h) (C, C−λ⊗ L(ν))∼= Hi (b+, h, C−λ⊗ L(ν))

∼= Hi (n+, L(ν))λ.

The second through fourth isomorphisms follow from [Kumar 2002, 3.1.14, 3.1.13,
3.9], respectively. The last isomorphism follows from definitions. �

There are two functors η :W→W(µ) and θ :W→W(µ) defined as follows. For
M ∈W, there is a unique minimal submodule M ′ ⊆ M such that M/M ′ ∈W(µ).
Define ηM = M/M ′. Note that M ′ is generated, as a g-module, by

⊕
λ6≤µ Mλ.

Then, for any N , M ∈W, and any g-module homomorphism f : M→ N we have
f (M ′) ⊆ N ′. Therefore f induces a homomorphism from ηM to ηN . Define
η( f ) to be this map. For M ∈W, there is also a unique maximal submodule M ′′

such that M ′′ ∈W(µ). Define θ M = M ′′. For any N , M ∈W and any g-module
homomorphism f : M → N , define θ(g) = g|M ′′ . Using these functors we relate
ExtiW(−,−) and ExtiW(µ)(−,−).

Lemma 5. Let M, N ∈W(µ). Then ExtiW(µ)(M, N )= ExtiW(M, N ).

Proof. First observe that η takes projectives to projectives and θ takes injectives
to injectives. Let N → I• be an injective resolution in W. Since M ∈ W(µ),
Homg(M, Ik) ∼= Homg(M, θ Ik). Therefore, ExtiW(M, N ) = Hi (Homg(M, Ik)) ∼=

Hi (Homg(M, θ Ik)). The lemma follows if we can show that θ is acyclic on N
because this would imply that N = θ N → θ I• is an injective resolution.

Note that Hi (θ I•)= 0 if and only if Hi ((θ I•)γ )= 0 for all γ ∈ h∗. For γ ∈ h∗,
define Pγ =U (g)⊗U (h) Cγ . Then (θ Ik)

γ
= Homg(Pγ , θ Ik). This implies

Hi ((θ I•)γ )∼= Hi (Homg(Pγ , θ I•))
∼= Hi (Homg(ηPγ , I•))∼= ExtiW(ηPγ , N ).

Therefore, to complete the proof it is enough to show that ExtiW(ηPγ , N ) = 0 for
i ≥ 1. There is a short exact sequence 0→ P ′γ → Pγ → ηPγ → 0, which gives a
long exact sequence

· · · → Exti−1
W (P ′γ , N )→ ExtiW(ηPγ , N )→ ExtiW(Pγ , N )→ · · · .

Since Pγ is projective in W, ExtiW(Pγ , N )=0 for i≥1. We claim Exti−1
W (P ′γ , N )=

0 for all i . To see this, let

P 6≤µ
γ = span{m ∈ Pγ | m ∈ Pν

γ for some ν 6≤ µ, m = x ⊗ 1 for some x ∈U (n+)}.

Then P 6≤µ
γ is a b+-module.
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Define Wb+ to be the category of b+-modules M such that M =
⊕

λ∈h∗ Mλ.
Define Qk =U (b+)⊗U (h) 3k(b+/h)⊗C P 6≤µ

γ . Then Q•→ P 6≤µ
γ is a projective

resolution of P 6≤µ
γ in Wb+ ; see [Kumar 2002, 3.1.8]. Also, U (g)⊗U (b+) Q• is a pro-

jective resolution of P ′γ ∼=U (g)⊗U (b+) P 6≤µ
γ in W. Moreover, Homg(U (g)⊗U (b+)

Qk, N ) = Homb+(Qk, N ) = 0 since Qν
k 6= 0 only for ν 6≤ µ and N ν

6= 0 only for
ν ≤µ. Therefore Exti−1

W (P ′γ , N )= 0 for all i . This implies that ExtiW(ηPγ , N )= 0
for i ≥ 1. �

We now transfer the information from W(µ) to C.

Theorem 6. Let C be a finite block of O, an infinite block of O with a maximal
element, or a truncated infinite block with minimal element. Let 3 be the weight
poset of C with maximal element µ, and let λ, ν ∈3. Then for i ≥ 0,

(a) if C is a thick block or a finite block,

ExtiC (M(λ), L(ν))∼=

{
C if λ� ν and l(λ)− l(ν)= i ,

0 otherwise;

(b) if C is a thin block,

ExtiC (M(λ), L(ν))∼=

{
C if λ� ν and l(λ)− l(ν)= i for i ≤ 1,

0 otherwise.

Proof. Let M, N ∈C. Given Theorem 2 and Lemmas 4 and 5, it is enough to show
that ExtiC(M, N )∼= ExtiW(µ)(M, N ).

Let γ ∈ h∗, and recall that Pγ = U (g) ⊗U (h) Cγ . Then Pγ is projective in
W, and thus ηPγ is projective in W(µ). Also, ηPγ is finitely generated: ηPγ is
generated by 1⊗1 if γ ≤µ and ηPγ = 0 otherwise. Thus, ηPγ ∈ O. Therefore, we
can construct a resolution P•→ M of M such that Pi =

⊕ni
j=1 ηPγ i

j
∈ O for some

γ i
j ∈ h∗, which is projective in W(µ).
Recall that modules in O decompose according to blocks. Let P̃i be the compo-

nent of Pi contained in C. (If C is a truncated block, the component of Pi corre-
sponding to the full block will be contained in the truncation C since Pi ∈W(µ)

and C is truncated at µ.) Then, P̃•→ M is a projective resolution in W(µ) and
lies entirely in C. �

4.2. Cohomology and quotient categories. Throughout this section, let C be an
infinite block for the Category O with a maximal element. Then C is a highest
weight category which contains enough projective objects. Let 3 be the corre-
sponding weight poset indexing the simple objects in C. For λ ∈ 3 let P(λ) be
the projective cover of L(λ). Set P =⊕λ∈3 P(λ). Then P is a progenerator for C,
and C is Morita equivalent to Mod(B), where B = EndC(P)op.
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We now apply results as described in [Cline et al. 1988, Theorem 3.5]. Let �

be a finite coideal, that is, �=3−{γ ∈3 | γ � δ} for some fixed δ ∈3. Consider
P�=⊕λ∈� P(λ) and set A= EndC(P�)op. Then there exists an idempotent e ∈ B,
corresponding to the sum of identity maps in EndC(P(λ)) with λ ∈ � such that
eBe = A. Also, observe that the quotient category C(�) = Mod(A) is a highest
weight category.

For λ ∈ �, set M�(λ) = eM(λ), L�(λ) = eL(λ), and P�(λ) = eP(λ). Note
that P�(λ) is the projective cover of L�(λ). The following proposition compares
extensions between Verma modules and simple modules in C and C(�). We remark
that this result appears as [Cline et al. 2004, Corollary 3.5] with more finiteness
restrictions.

Proposition 7. Let λ, ν ∈�. For all i ≥ 0,

ExtiC(M(λ), L(ν))∼= ExtiC(�)(M�(λ), L�(ν)).

Proof. Let λ, ν ∈ �. According to [Doty et al. 2004, Theorem 2.2], there exists a
first quadrant spectral sequence,

E i, j
2 = ExtiB(TorA

j (Be, M�(λ)), L(ν))⇒ Exti+ j
A (M�(λ), L�(ν)),

and by their [Theorem 4.5], TorA
0 (Be, M�(λ)) = M(λ). We need to show that

TorA
j (Be, M�(λ)) = 0 for j ≥ 1. Then the spectral sequence above collapses and

yields

ExtiB(M(λ), L(ν))∼= ExtiA(M�(λ), L�(ν)).

for i ≥ 0 and λ, ν ∈�, as required.
First we consider the case when j = 1. Since C(�) is a highest weight cat-

egory, we may again invoke [Doty et al. 2004, Theorem 4.5] which states that
TorA

0 (Be, M�(λ)) = M(λ) and M(λ) belongs to X; see their [Section 3.1] for a
definition of X. Therefore, TorA

1 (Be, M�(λ))= 0 by their [Proposition 3.1(A)].
To show that TorA

j (Be, M�(λ))= 0 for j ≥ 2, we use induction on the ordering
on the weights in �. If λ is a maximal weight (relative to �, the order introduced
in (2)), then M�(λ) is the projective cover of L�(λ) and TorA

j (Be, M�(λ))= 0 for
j ≥ 1. Now suppose that TorA

j (Be, M�(µ))= 0 for j ≥ 1 for all µ� λ for µ ∈�.
Consider the short exact sequence

0→ N → P�(λ)→ M�(λ)→ 0,

where N has a filtration by modules M�(µ) with µ� λ. This induces a long exact
sequence

· · · ← TorA
j−1(Be, N )← TorA

j (Be, M�(λ))← TorA
j (Be, P�(λ))← . . .



14 BRIAN D. BOE, DANIEL K. NAKANO AND EMILIE WIESNER

For j ≥1, TorA
j (Be, P�(λ))=0, and for j ≥2, TorA

j−1(Be, N )=0 by the induction
hypothesis. Thus from the long exact sequence we can conclude for j ≥ 2 that
TorA

j (Be, M�(λ))= 0. �

Let L(λ) and L(ν) be simple B-modules with λ, ν ∈ �. Then eL(λ) 6= 0 and
eL(ν) 6= 0. Let

· · · → P2→ P1→ P0→ L(λ)→ 0

be the minimal projective resolution of L(λ) in C. Set �n+1(L(λ)) to be the kernel
of the map Pn→ Pn−1. By convention, we let �0(L(λ))= L(λ). Under a suitable
condition on the minimal projective resolution, we can compare extensions be-
tween simple modules in C and C(�). This comparison depends on bounding the
composition factors in the projective resolution of L(λ). The following proposition
provides such a bound.

Proposition 8. Let λ, ν ∈3.

(i) If ExtnC(rad M(λ), L(ν)) 6= 0 then l(λ)− l(ν)≤ n− 1.

(ii) If ExtnC(L(λ), L(ν)) 6= 0 then l(λ)− l(ν)≤ n.

Proof. In this proof we assume that C is a thick block. In the case that C is a thin
block or a finite block, the proposition follows from similar arguments.

(i) We prove this by induction on n. Let n=0. Since rad M(λ)=M(λ1)+M(λ′1),
with notation as in Theorem 1(iv), HomC(rad M(λ), L(ν)) 6=0 if and only if ν=λ1

or λ′1, whence l(λ)− l(ν)=−1.
Assume the result is true for n−1 and all pairs of weights in 3. Recall from (4)

that rad M(λ)= M(λ1)+M(λ′1) and rad2 M(λ)= M(λ2)+M(λ′2)= rad M(λ1)=

rad M(λ′1). Thus we have a short exact sequence

0→ rad M(λ1)= rad M(λ′1)→ M(λ1)⊕M(λ′1)→ rad M(λ)→ 0,

where the inclusion sends x to (x,−x) and the surjection sends (x, y) to x + y.
This induces a long exact sequence

· · · → Extn−1
C (rad M(λ1), L(ν))→ ExtnC(rad M(λ), L(ν))

→ ExtnC(M(λ1)⊕M(λ′1), L(ν))→ · · · .

Suppose l(λ) − l(ν) > n − 1. Then l(λ1) − l(ν) = l(λ) + 1 − l(ν) > n. This
implies ExtnC(M(λ1), L(ν))= 0 by Theorem 6, and similarly for λ′1. Also, l(λ1)−

l(ν) > (n − 1)+ 1, so Extn−1
C (rad M(λ1), L(ν)) = 0 by induction. This implies

ExtnC(rad M(λ), L(ν))= 0.
(ii) The proof is again by induction on n. The result is clear for n = 0. Assume

it is true for n− 1. Consider the short exact sequence

0→ rad M(λ)→ M(λ)→ L(λ)→ 0.
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This induces a long exact sequence

· · ·→Extn−1
C (rad M(λ), L(ν))→ExtnC(L(λ), L(ν))→ExtnC(M(λ), L(ν))→· · · .

Suppose l(λ) − l(ν) > n. Then Extn−1
C (rad M(λ), L(ν)) = 0 by part (i), and

ExtnC(M(λ), L(µ))= 0 by Theorem 6. This implies ExtnC(L(λ), L(ν))= 0. �

Recall P•→ L(λ) is a minimal projective resolution of L(λ). For γ ∈3, if L(γ ) is
a composition factor of hd Pj , then Ext j

C(L(λ), L(γ )) 6= 0. Therefore, Proposition
8 gives a bound on the composition factors which can appear in hd Pj . This is the
condition needed to compare extensions between simple modules in C and C(�).

Proposition 9. Let λ, ν ∈� and define N =min{|l(λ)− l(γ )| : γ ∈3−� }− 1.
Then, for j = 0, 1, . . . , N ,

Ext j
C(L(λ), L(ν))∼= Ext j

C(�)(L�(λ), L�(ν)).

Proof. We first claim that BePj = Pj for j = 0, . . . , N . Note that BePj = Pj if
and only if hd Pj contains no composition factors that are killed by the idempotent
e. Suppose that L(γ ) ⊆ hd Pj . Then Ext j

C(L(γ ), L(λ)) 6= 0. From the proof of
Theorem 6 and using the duality on W(µ), we have

Ext j
C(L(γ ), L(λ))∼= Ext j

W(µ)(L(γ ), L(λ))

∼= Ext j
W(µ)(L(λ), L(γ ))∼= Ext j

C(L(λ), L(γ )).

Then Proposition 8 implies that |l(λ)− l(γ )| ≤ j . Therefore, for j ≤ N , γ ∈ �,
and so eL(γ ) 6= 0. Since hd � j (L(λ))∼= hd Pj , we have Be� j (L(λ))=� j (L(λ))

for j = 0, 1, 2, . . . , N .
Let j = 0, 1, . . . , N − 1. Since Be� j (L(λ)) = � j (L(λ)) there exists a short

exact sequence [Doty et al. 2004, Theorem 3.2],

0→� j+1(L(λ))/Be� j+1(L(λ))→ TorA
0 (Be, e� j (L(λ)))→� j (L(λ))→ 0.

Note that we are using that �1(� j (L(λ))) ∼= � j+1(L(λ)). Since � j+1(L(λ)) =

Be� j+1(L(λ)), we have

TorA
0 (Be, e� j (L(λ)))∼=� j (L(λ)).
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Finally, we can apply [Doty et al. 2004, Theorem 2.4(B)(ii)] and a dimension
shifting argument twice (see [Benson 1998, Corollary 2.5.4]) to see that

Ext j+1
B (L(λ), L(ν))∼= Ext1B(� j (L(λ)), L(ν))

∼= Ext1B(TorA
0 (Be, e� j (L(λ))), L(ν))

∼= Ext1A(e� j (L(λ)), eL(ν))

∼= Ext1A(� j (eL(λ)), eL(ν))

∼= Ext j+1
A (eL(λ), eL(ν))

∼= Ext j+1
A (L�(λ), L�(ν)).

To justify the step between lines 3 and 4 in the identifications above, observe that
the idempotent functor e(−) :Mod(B)→Mod(A) is exact. Moreover, BePj = Pj

for j = 1, 2, . . . , N so we have an exact sequence of projective A-modules:

ePN → ePN−1→ . . . eP1→ eP0→ eL(λ)→ 0.

This implies that e� j (L(λ)) ∼= � j (eL(λ)) ⊕ Q j , where Q j is a projective A-
module for j = 0, 1, . . . , N . �

4.3. Extensions between simple modules. Let C be a finite block, an infinite block
with a maximal element, or a truncation of an infinite block with a minimal element.
Let 3 be the weight poset of C, with length function l :3→ Z.

Theorem 10. Let λ, ν ∈3. Then,

(a) if C is a thick block or a finite block,

dim ExtnC(L(λ), L(ν))= #{γ ∈3 | γ � λ, ν; 2l(γ )− l(λ)− l(ν)= n};

(b) if C is a thin block,

dim ExtnC(L(λ), L(ν))= #{γ ∈3 | γ � λ, ν; 2l(γ )− l(λ)− l(ν)= n}

if n ≤ 2 and equals zero otherwise.

In particular, ExtnC(L(λ), L(ν)) 6= 0 only when n ≡ (l(λ)− l(ν)) (mod 2).

Proof. Suppose C is an infinite block with a maximal element. Let � be a finite
coideal of 3 containing λ, ν. From Proposition 7, we know ExtiC(M(λ), L(ν)) =

ExtiC(�)(M�(λ), L�(ν)). For a fixed n ∈ Z>0, we assume that � is sufficiently
large so that γ ∈� for all γ ∈3 with |l(λ)−l(γ )| ≤ n. Then Proposition 9 implies
that ExtnC(L(λ), L(ν))∼= ExtnC(�)(L�(λ), L�(ν)).

Thus, by replacing C by a quotient category C(�) where appropriate, we may
assume that C is a highest weight category with finite weight poset 3. Because
the objects of C have finite composition length, C is closed under the duality D on
W(µ). Define A(γ )= DM(γ ).
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Now apply [Cline et al. 1993, 3.5]:

dim ExtnC(L(λ), L(ν))=
∑

γ∈3, i, j∈Z≥0
i+ j=n

dim ExtiC(L(λ), A(γ )) dim Ext j
C(M(γ ), L(ν)).

Using the duality on C, ExtiC(L(λ), A(γ ))∼= ExtiC(M(γ ), L(λ)). Then Theorem 6
gives the result. �

4.4. Ext1-quivers. Let C be a finite block, a quotient of an infinite block with a
maximal element, or a truncation of an infinite block with a minimal element. Let
3 be the (finite) weight poset of C. The Ext1-quiver of C is defined to be the
directed graph with vertices labelled by 3 and with dim Ext1C(L(λ), L(µ)) edges
from λ to µ. It is clear from Theorem 10 and Proposition 9 that the Ext1-quiver of
C is obtained from the poset 3 simply by replacing each edge by a pair of directed
edges, one pointing in each direction.

The edges from λ to µ can also be viewed as representing linearly independent
elements of HomC(P(λ), P(µ)) in the finite dimensional algebra

A = EndC

(⊕
λ∈3

P(λ)

)op

.

One can ask for the relations that exist between the maps in this algebra, which
provides a presentation of the algebra by the quiver with relations.

Suppose that C is either a finite block or a finite quotient or truncation of a
thin block. Then 3 is a simple chain, say of length n, and it is quite easy to
write down the structure of the projective indecomposables P(λ). This is done for
n = 4 in [Futorny et al. 2001], and the pattern is the same for any n. Moreover, if
the elements of 3 are numbered λ1, . . . , λn from top to bottom, and if αi and βi

represent the maps from P(λi ) to P(λi+1) and from P(λi+1) to P(λi ), respectively,
for 1≤ i ≤ n− 1, then one sees easily that, up to scalar multiples,

(9) α1β1 = 0 and βiαi = αi+1βi+1 for 1≤ i ≤ n− 2

Note that maps compose left-to-right, because of the ()op in the definition of A.
Now we can assume we’re working in the basic algebra with simple modules

(respectively, projective indecomposable modules) labelled by L̂(λi ) (respectively,
P̂(λi )) for i = 1, 2, . . . , n. Note that dim L̂(λi ) = 1 for every i so that dim A =∑n

i=1 dim P̂(λi ), which is easy to compute using the known structures of the P̂(λi ).
On the other hand, using the relations given in (9), one can check directly that there
are at most

∑n
i=1 dim P̂(λi ) linearly independent words in the αi and βi . Thus (9)

must be all the relations.
In contrast, suppose that C is a finite quotient or truncation of a thick block.

Then the poset 3 is isomorphic to the Bruhat order on a dihedral group. In this
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case the structure of the projectives, and the exact nature of the relations, seem to be
quite difficult to deduce. For example, Stroppel [2003] works out the relations for
the Ext1-quiver of the regular blocks of Category O for the finite simple complex
rank 2 Lie algebras, using some deep results of Soergel. Not only are the answers
quite complicated (for example, for G2 there are 70 relations), but as far as we
are aware the analogs of Soergel’s results are not known for the Virasoro algebra.
Nonetheless, based on Stroppel’s computations, we speculate that the relations in
the Ext1-quiver of C are all quadratic.

5. Kazhdan–Lusztig theories and Koszulity

5.1. Let B = B0⊕ B1⊕· · ·⊕ Bq be a finite-dimensional graded algebra, and let
C

gr
B be the category of finite-dimensional graded B-modules. Regard every simple

B-module L as concentrated in degree zero; then the simple modules in C
gr
B can

be obtained by shifting the gradings of the simple B-modules. If L is a simple
B-module then L(i) will denote the simple module in C

gr
B by shifting i places to

the right; see [Cline et al. 1997, Section 1.3]. The algebra B is Koszul if for all
simple B-modules L and L ′ and m, n, p ∈ Z,

(10) Extp
C

gr
B
(L(m), L ′(n)) 6= 0⇒ n−m = p.

Now let C be either a finite block of O, a truncation of an infinite block of O with
a minimal element, or a quotient of an infinite block of O with a maximal element.
Then C is a highest weight category (with duality) having a finite weight poset 3

and length function l. Moreover, Theorem 6 implies that C has a Kazhdan–Luzstig
theory, as defined in [Cline et al. 1993]. Recall that C is equivalent to Mod(A) for
a finite-dimensional algebra A. Let gr A be the associated graded algebra obtained
by using the radical filtration on A. Moreover, set L =

⊕
λ∈3 L(λ), and define the

homological dual of A to be A! = Ext•C(L , L). The following theorem establishes
Koszulity results on A.

Theorem 11. Let C be as described above, and let A be the associated quasihered-
itary algebra. Then

(a) A! is Koszul,

(b) gr A is Koszul, and

(c) (A!)! ∼= gr A.

Proof. To prove the theorem, it suffices to check the condition
(SKL′)

ExtnC(radi M(λ), L(µ)) 6= 0⇒ n ≡ l(µ)− l(λ)+ i (mod 2) for all λ, µ ∈3.

In principle, that the same parity vanishes for ExtnC(L(λ), A(µ)/soci A(µ)) should
also be checked, but this follows by duality in our setting.
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Once (SKL′) is established, then by [Cline et al. 1997, Lemma 2.1.5] C
gr
A! has a

graded KL-theory, and so C
gr
A! and A! are Koszul using [Cline et al. 1994, Theorem

3.9]. The condition (SKL′) implies parts (b) and (c) by [Cline et al. 1997, Theorem
2.2.1].

The case i = 0 of (SKL′) follows immediately from Theorem 6. Assume i > 0.
Then radi M(λ) is either 0, a Verma module M(ν) with l(ν)− l(λ) = i , or a sum
of two such Verma modules. The first case is trivial, and in the second, we can use
the same argument as for i = 0. So assume we are in the third case. Let λi and λ′i
be the two elements ν satisfying l(ν)− l(λ)= i . We have a short exact sequence

0→ M(λi )→ radi M(λ)→ L(λ′i )→ 0.

The corresponding long exact sequence is

· · · → ExtnC(L(λ′i ), L(µ))→ ExtnC(radi M(λ), L(µ))

→ ExtnC(M(λi ), L(µ))→ · · · ,

and we are assuming the middle term is nonzero. Then one of the two adjacent
terms must be nonzero. If the term on the right is nonzero, then the same argument
as for i = 0 gives the desired parity condition, since l(λi )= l(λ)+ i . If the term on
the left is nonzero, then by Theorem 10 we have n ≡ l(λ′i )− l(µ)≡ l(λ)+ i− l(µ)

(mod 2), which is equivalent to the required condition. �

Remarks. 1. Since this proof holds for all quotient categories of C, this shows
that C satisfies the strong Kazhdan Lusztig condition; see [Cline et al. 1997,
2.4.1].

2. Suppose C comes from either a finite or a thin block of O. Since the relations
in the Ext1-quiver of C are all homogeneous (in fact quadratic; see (9)), it
follows that A itself is tightly graded (that is, A ∼= gr A). In particular in this
case A is Koszul.

3. An interesting open question is to determine whether A is tightly graded or
whether A itself is Koszul when A is associated to a thick block. The answers
would be affirmative if the relations are all quadratic, as speculated in Section
4.4.
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[Gončarova 1973a] L. V. Gončarova, “Cohomology of Lie algebras of formal vector fields on the
line”, Funkcional. Anal. i Priložen. 7:2 (1973), 6–14. In Russian; translated in Funct. Anal. Appl. 7
(1973), 91–97. MR 49 #4058a Zbl 0284.17006
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