
Pacific
Journal of
Mathematics

CONVEXITY IN LOCALLY CONFORMALLY FLAT
MANIFOLDS WITH BOUNDARY
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Given a closed subset 3 of the open unit ball B1 ⊂Rn for n≥3, we consider a
complete Riemannian metric g on B1 \3 of constant scalar curvature equal
to n(n − 1) and conformally related to the Euclidean metric. We prove that
every closed Euclidean ball B ⊂ B1 \ 3 is convex with respect to the metric
g, assuming the mean curvature of the boundary ∂ B1 is nonnegative with
respect to the inward normal.

1. Introduction

Let B1 denote the open unit ball of Rn for n ≥ 3. Given a closed subset 3 ⊂ B1,
we will consider a complete Riemannian metric g on B1 \ 3 of constant positive
scalar curvature R(g) = n(n − 1) and conformally related to the Euclidean metric
δ. We will also assume that g has nonnegative boundary mean curvature. Here
and throughout, second fundamental forms will be computed with respect to the
inward unit normal vector.

In this paper we prove

Theorem 1.1. If B ⊂ B1 \ 3 is a standard Euclidean ball, then ∂ B is convex with
respect to the metric g.

Here, we say that ∂ B is convex if its second fundamental form is positive definite.
Since ∂ B is umbilical in the Euclidean metric and the notion of an umbilical point
is conformally invariant, we know that ∂ B is also umbilic in the metric g. In that
case, ∂ B is convex if its mean curvature h is positive everywhere.

This theorem is motivated by an analogous one on the sphere due to R. Schoen
[1991]. He shows that if 3 ⊂ Sn for n ≥ 3 is closed and nonempty and g is a
complete Riemannian metric on Sn

\ 3 that is conformal to the standard round
metric g0 and has constant positive scalar curvature n(n − 1), then every standard
ball B ⊂ Sn

\3 is convex with respect to the metric g. Schoen used this geometrical
result to prove the compactness of the set of solutions to the Yamabe problem in
the locally conformally flat case. D. Pollack [1993] also used Schoen’s theorem to
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prove a compactness result for the singular Yamabe problem on the sphere where
the singular set is a finite collection of points 3 = {p1, . . . , pk} ⊂ Sn for n ≥ 3.

In this context Theorem 1.1 can be viewed as the first step in the direction of
proving compactness for the singular Yamabe problem with boundary conditions.

As we will see, the problem of finding a metric satisfying the hypotheses of
Theorem 1.1 is equivalent to finding a positive solution to an elliptic PDE with
critical Sobolev exponent. This problem is invariant by conformal transformations.
So, by applying a convenient inversion on the Euclidean space, we may consider the
same problem on an unbounded subset of Rn . The idea of the proof is to show that
if ∂ B is not convex, we can find a smaller ball B̃ ⊂ B with a nonconvex boundary
as well. To do this we will use the hypothesis on the mean curvature of ∂ B1 and get
geometrical information from that equation by applying the moving planes method
as in [Gidas et al. 1979]. The contradiction follows by the construction of these
balls.

2. Preliminaries

Here we will introduce some notation and recall some results that will be used in
the proof of Theorem 1.1. We will also describe a useful example.

Let (Mn, g0) for n ≥ 3 be a smooth orientable Riemannian manifold, possi-
bly with boundary. Let us denote by R(g0) its scalar curvature and by h(g0) its
boundary mean curvature. Let g = u4/(n−2)g0 be a metric conformal to g0. Then
the positive function u satisfies the following nonlinear elliptic partial differential
equation with critical Sobolev exponent:

(1)
1g0u −

n−2
4(n−1)

R(g0)u +
n−2

4(n−1)
R(g)u(n+2)/(n−2)

= 0 in M ,

∂u
∂ν

−
n−2

2
h(g0)u +

n−2
2

h(g)un/(n−2)
= 0 on ∂ M ,

where ν is the inward unit normal vector field to ∂ M .
The problem of existence of solutions to (1) when R(g) and h(g) are constants

is referred to as the Yamabe problem. It was completely solved when ∂ M = ∅ in
a sequence of works, beginning with H. Yamabe himself [1960], followed by N.
Trudinger [1968] and T. Aubin [1976], and finally by R. Schoen [1984]. In the
case of nonempty boundary, J. Escobar solved almost all the cases [1992a; 1992b],
followed by Z. Han and Y. Li [1999], F. Marques [2005], and others.

Here, however, we wish to study solutions of (1) with R(g) constant; these
become singular on a closed subset 3 ⊂ M . This is the so called singular Yamabe
problem. This singular behavior is equivalent, at least in the case that g0 is confor-
mally flat, to requiring g to be complete on M \ 3. The existence problem (with
∂ M = ∅) displays a relationship between the size of 3 and the sign of R(g). It
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is known that for a solution with R(g) < 0 to exist, it is necessary and sufficient
that dim(3)> (n−2)/2 (see [Aviles and McOwen 1988; McOwen 1993; Finn and
McOwen 1993]), while if a solution exists with R(g)≥0, then dim(3)≤ (n−2)/2.
Here dim(3) stands for the Hausdorff dimension of 3. In this paper we will treat
the case of constant positive scalar curvature, which we suppose equal to n(n −1)

after normalization. In this case the simplest examples are given by the Fowler
solutions which we will now discuss briefly.

Let u : Rn
\ {0} → R be a positive smooth function such that

(2)
1u +

n(n−2)

4
u(n+2)/(n−2)

= 0 in Rn
\ {0} for n ≥ 3 and

0 is an isolated singularity.

Then g = u4/(n−2)δ is a complete metric on Rn
\ {0} of constant scalar curvature

n(n − 1).
Using the invariance under conformal transformations we may work in different

background metrics. The most convenient one here is the cylindrical metric gcyl =

dθ2
+ dt2 on Sn−1

× R. Then g = v4/(n−2)gcyl, where v is defined in the whole
cylinder and satisfies

(3) d2v

dt2 + 1θv −
(n−2)2

4
v +

n(n−2)

4
v(n+2)/(n−2)

= 0.

One easily verifies that the solutions to Equation (2) and (3) are related by

(4) u(x) = |x |
(2−n)/2v(x/|x |, − log |x |).

By a deep theorem of Caffarelli, Gidas and Spruck [1989, Theorem 8.1], we know
that v is rotationally symmetric, that is v(θ, t) = v(t), and therefore the PDE (3)
reduces to the ODE

d2v

dt2 −
(n−2)2

4
v +

n(n−2)

4
v(n+2)/(n−2)

= 0.

Setting w = v′ this equation is transformed into a first order Hamiltonian system

dv

dt
= w,

dw

dt
=

(n−2)2

4
v −

n(n−2)

4
v(n+2)/(n−2),

whose Hamiltonian energy is

H(v, w) = w2
−

(n−2)2

4
v2

+
(n−2)2

4
v2n/(n−2).

The solutions (v(t), v′(t)) describe the level sets of H , and we note that (0, 0)

and (±v0, 0), where v0 = ((n−2)/n)(n−2)/4, are the equilibrium points. We restrict
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ourselves to the half-plane {v >0} where g =v4/(n−2)gcyl has geometrical meaning.
On the other hand, we are looking for complete metrics. Those will be generated
by the Fowler solutions, that is, the periodic solutions around the equilibrium point
(v0, 0). They are symmetric with respect to v-axis and can be parametrized by the
minimum value ε attained by v for ε ∈ (0, v0] (and a translation parameter T ). We
will denote them by vε. We point out that v0 corresponds to the scaling of gcyl

that makes the cylinder Sn−1
× R have scalar curvature n(n − 1). One obtains the

Fowler solutions uε in Rn
\ {0} by using the relation (4).

We can now construct metrics satisfying the hypotheses of Theorem 1.1 (with
3 = {0}) from the Fowler solutions. To do this, we just take a Fowler solution v

defined for t ≥ t0, where t0 is such that w = dv/dt ≤ 0 or equivalently

h(g) = −
2

n−2
v−n/(n−2) dv

dt
≥ 0.

We point out that, by another result of Caffarelli, Gidas, and Spruck [1989,
Theorem 1.2], it is known that, given a positive solution u to

(5) 1u +
n(n−2)

4
u(n+2)/(n−2)

= 0

that is defined in the punctured ball B1 \{0} and that is singular at the origin, there
exists a unique Fowler solution uε such that

u(x) = (1 + o(1))uε(|x |) as |x | → 0.

Therefore, from Equation (4) or also [Korevaar et al. 1999], either u extends as a
smooth solution to the ball, or there exist positive constants C1 and C2 such that

C1|x |
(2−n)/2

≤ u(x) ≤ C2|x |
(2−n)/2.

3. Proof of Theorem 1.1

The proof will be by contradiction. If ∂ B is not convex then, since it is umbilical,
there exists a point q ∈ ∂ B such that the mean curvature of ∂ B at q (with respect
to the inward unit normal vector) is H(q) ≤ 0. If we write g = u4/(n−2)δ, then u is
a positive smooth function on B1 \ 3 satisfying

(6)
1u +

n(n−2)

4
u(n+2)/(n−2)

= 0 in B1 \ 3,

∂u
∂ν

−
n−2

2
u +

n−2
2

hun/(n−2)
= 0 on ∂ B1.

Now, we will choose a point p ∈ ∂ B with p 6= q and consider the inversion

I : Rn
\ {p} → Rn

\ {p}.
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This map takes B1 \ ({p} ∪3) on Rn
\ (B(a, r)∪3), where B(a, r) is an open

ball of center a ∈ Rn and radius r > 0 and 3 still denotes the singular set. Let us
denote by 6 the boundary of B(a, r), that is, 6 = I (∂ B1).

The image of ∂ B \ {p} is a hyperplane 5, and by a coordinate choice we may
assume 5 = 50 := {x ∈ Rn

: xn
= 0}. We may suppose that the ball B(a, r) lies

below 50. In this case 3 also lies below 50.
Since I is a conformal map we have I ∗g = v4/(n−2)δ, where v is the Kelvin

transform of u on Rn
\ (B(a, r) ∪ 3).

Thus this metric has constant positive scalar curvature n(n−1) in Rn
\(B(a, r)∪

3) and nonnegative mean curvature h on 6.
As before, v is a solution of the problem

1v +
n(n−2)

4
v(n+2)/(n−2)

= 0 in Rn
\ (B(a, r) ∪ 3),

∂v

∂ν
+

n−2
2r

v +
n−2

2
hv(n)/(n−2)

= 0 on 6.

Also, by hypotheses of contradiction, the mean curvature of the hyperplane 50

at I (q) (with respect to ∂/∂xn) is H ≤ 0. By applying the boundary equation of
the system (1) to 50, we obtain

∂v

∂xn +
n−2

2
Hvn/(n−2)

= 0

on 50. Thus we conclude that ∂v/∂xn(I (q)) ≥ 0.
Now we start with the moving planes method. Given λ ≥ 0 we will denote by

xλ the reflection of x with respect to the hyperplane 5λ := {x ∈ Rn
: xn

= λ} and
set �λ = {x ∈ Rn

\ (B(a, r) ∪ 3) : xn
≤ λ}. We define

wλ(x) = v(x) − vλ(x) for x ∈ �λ, where vλ(x) := v(xλ).

Since infinity is a regular point of I ∗g, we have

v(x) = |x |
2−n(a +

∑
bi x i

|x |
−2)

+ O(|x |
−n)

in a neighborhood of infinity. It follows from [Caffarelli et al. 1989, Lemma 2.3]
that there exist R > 0 and λ> 0 such that wλ > 0 in interior of �λ\B(0, R) if λ≥λ.
Without loss of generality, we can choose R > 0 such that B(a, r)∪3 ⊂ B(0, R).

Now we note that v has a positive infimum, say v0 >0, in B(0, R)\(B(a, r)∪3).
It follows from the fact that v is a classical solution to (5) in B(0, R)\(B(a, r)∪3).
So, since v decays in a neighborhood of infinity, we may choose λ>0 large enough
so that vλ(x) < v0/2 for x ∈ B(0, R) and for λ ≥ λ. Thus for sufficiently large λ,
we get wλ > 0 in int(�λ).

We also write

(7) 1wλ + cλ(x)wλ = 0 in int(�λ),
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where

cλ(x) =
n(n − 2)

4
v(x)(n+2)/(n−2)

− vλ(x)(n+2)/(n−2)

v(x) − vλ(x)
.

By definition, wλ always vanishes on 5λ. In particular, setting λ0 = inf{λ >

0 : wλ > 0 on int(�λ) for all λ ≥ λ} we obtain by continuity that wλ0 satisfies (7),
wλ0 ≥ 0 in �λ0 , and wλ0 = 0 on 5λ0 . Hence, by applying the strong maximum
principle, we conclude that either wλ0 > 0 in int(�λ0) or wλ0 = v − vλ0 vanishes
identically. We point out that the second case occurs only if 3 = ∅.

If wλ0 ≡ 0, then 5λ0 is a hyperplane of symmetry of v and therefore v extends
to a global positive solution of (5) on the entire Rn . Using [Caffarelli et al. 1989],
we conclude that (B1, g) is a convex spherical cap and the result is obvious.

If wλ0 > 0 in int(�λ0) we apply the E. Hopf maximum principle to conclude

(8)
∂wλ0

∂xn = 2
∂v

∂xn < 0 in 5λ0 ,

and since ∂v/∂xn(I (q)) ≥ 0, we have λ0 > 0. In this case, by definition of λ0, we
can choose sequences λk ↑ λ0 and xk ∈ �λk such that wλk (xk) < 0.

It follows from the work in [Korevaar et al. 1999] that wλ achieves its infimum.
Then we lose no generality in assuming xk is a minimum of wλk in �λk .

We have xk /∈ 5k because wλk always vanishes on 5λk . So, either xk is in 6 or
it is an interior point. Even when xk is an interior point we claim that the xk form
a bounded sequence. More precisely:

Claim 3.1 [Chen and Lin 1998, Section 2]. There exists R0 > 0, independent of λ,
such that if wλ solves (7) and is negative somewhere in int(�) and if x0 ∈ int(�) is
a minimum point of wλ, then |x0| < R0.

For completeness we present a proof in the Appendix.
So, we can take a convergent subsequence xk → x ∈�λ0 . Since wλk (xk)< 0 and

wλ0 ≥ 0 in �λ0 , we necessarily have wλ0(x) = 0 and therefore x ∈ ∂�λ0 = 5λ0 ∪6.
If x ∈ 5λ0 then xk is an interior minimum point to wλk , and hence ∇wλ0(x) = 0,

which cannot occur by inequality (8). Thus we have x ∈ 6 and, by the E. Hopf
maximum principle again,

(9)
∂wλ0

∂η
(x) =

∂v

∂η
(x) −

∂v

∂η
(xλ0) < 0,

where η := − ν is the inward unit normal vector to 6.
Now, we recall that

(10) ∂v

∂ν
+

n−2
2r

v +
n−2

2
hv(n+2)/(n−2)

= 0 on 6.

Thus, since v(x) = v(xλ0) we have from (9) and (10) that the mean curvature of
6λ0 at xλ0 (with respect to the inward unit normal vector) is strictly less than −h.
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Since h is nonnegative, xλ0 is a nonconvex point in the reflected sphere 6λ0

Considering the problem back to B1, we denote by K1 the ball corresponding to
the one whose boundary is 6λ0 and by P1 the ball corresponding to 5+

λ0
. Thus we

have obtained a strictly smaller ball K1 ⊂ B with a nonconvex boundary which is
the reflection of ∂ B1 with respect to ∂ P1.

We can repeat this argument to obtain a sequence of balls with nonconvex points
on the boundaries, that is, B ⊃ K1 ⊃ · · · ⊃ K j ⊃ · · · .

This sequence cannot converge to a point, since small balls are always convex.
On the other hand, if K j → K∞ where K∞ is not a point, then K∞ ⊂ B is a ball
in B1 \ 3 whose boundary is the reflection of ∂ B1 with respect to itself. This is a
contradiction.

Appendix. Proof of Claim 3.1

First write Equation (7), setting cλ(x) = 0 when wλ(x) = 0. Fix 0 < µ < n − 2,
and define g(x) = |x |

−µ and φ(x) = wλ(x)/g(x). Then, using (7),

1φ +
2
g
〈∇g, ∇φ〉 +

(
cλ(x) +

1g
g

)
φ = 0.

By a computation we get 1g = −µ(n − 2 − µ)|x |
−µ−2, that is,

1g
g

= −µ(n − 2 − µ)|x |
−2.

On the other hand, the expansion of v in a neighborhood of infinity implies that
wλ(x)= O(|x |

2−n) and consequently cλ(x)= O(|x |
−n−2−2+n)= O(|x |

−4). Hence
we obtain

cλ(x) +
1g
g

≤ C(|x |
−4

− µ(n − 2 − µ))|x |
−2).

In particular c(x) + 1g/g < 0 for large |x |. Choose R0 with B(a, r) ∪ 3 ⊂

B(0, R0) such that

(11) C(|x |
−4

− µ(n − 2 − µ))|x |
−2) < 0 for |x | ≥ R0.

Now let x0 ∈ int(�λ) so that wλ(x0) = infint(�λ) wλ < 0.
Since lim|x |→+∞ φ(x) = 0 and φ(x) ≥ 0 on ∂�λ, there exists x0 such that φ

has its minimum at x0. By applying the maximum principle for φ at x0 we get
cλ(x0) + 1g(x0)/g ≥ 0 and by (11), we get |x0| < R0. Now we have

wλ(x0)

g(x0)
≤

wλ(x0)

g(x0)
= φ(x0) ≤ φ(x0) =

wλ(x0)

g(x0)
.

This implies |x0| ≤ |x0| ≤ R0 and proves the claim.
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