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The interior and boundary regularity of weakly intrinsic biharmonic maps
from 4-manifolds to spheres is proved.

1. Introduction

The regularity problem of harmonic maps has been intensively studied for a long
time. Hélein [1991] proved that any weakly harmonic maps from a closed Rie-
mannian surface to a compact Riemannian manifold without boundary is smooth.
Later Qing [1993] proved the boundary regularity for weakly harmonic maps from
compact Riemannian surface with boundary. However, when the domain dimen-
sion is greater than 2, Rivière [1995] constructed everywhere discontinuous weakly
harmonic maps into spheres. This implies that there is no hope of getting any reg-
ularity results for weakly harmonic maps in higher dimensional cases. Therefore,
it is of interest to study higher order energy functionals that enjoy better regularity
properties.

Let M be a Riemmanian manifold and N be a compact Riemannian mani-
fold without boundary that is isometrically embedded in RK . We say that u is
a weakly intrinsic biharmonic map if it is a critical point of the functional F(v) =∫

M |(1v)T
|
2 for v ∈ W 2,2(M, N ), where (1v)T is the component of 1v in RK

that is tangent to N at v(p) ∈ N for all p ∈ M . (Sometimes it is called the ten-
sion field τ(v) in the literature.) If the critical point u is smooth, we say u is an
intrinsic biharmonic map. It is intrinsic in that the definition is independent of the
choice of isometric embedding of the N into RK . If u ∈ W 2,2(M, N ) is a weakly
harmonic map, then (1u)T

= 0, and therefore u is obviously a minimizer of F . In
other words, the class of all weakly intrinsic biharmonic maps can be regarded as
an extension of the class of all weakly harmonic maps in W 2,2(M, N ). Another
functional considered by Chang, Wang, and Yang [1999c] is FE(v) =

∫
M |1v|

2,
whose critical point is called a weakly extrinsic biharmonic map. Unlike a intrinsic
biharmonic map, it depends on the choice of the embedding.
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The interior regularity of weakly intrinsic and extrinsic biharmonic maps from a
bounded domain in R4 to a compact Riemannian manifold without boundary was
established by C. Wang [2004]. And in recent paper of Lamm and Riviére [≥2008],
they successfully rewrite the Euler–Lagrange equation of a weakly intrinsic and
extrinsic biharmonic map into a conservation law, which simplifies the proof of
interior regularity. However, it remains unclear whether this method can be used
to prove the boundary regularity.

Here, we use the idea from [Chang et al. 1999c] to prove the interior and
boundary regularity of weakly intrinsic biharmonic maps from four-dimensional
Riemannian manifolds to Sn in Rn+1, that is, if u ∈ W 2,2(M, Sn) is weakly intrinsic
biharmonic, then it is intrinsic biharmonic. Moreover, if u has smooth Dirichlet
boundary data on ∂ M , then it is smooth up to the boundary.

The paper is arranged as follows. In Section 2, we introduce necessary notations
and derive the explicit Euler–Lagrange equations of a weakly intrinsic biharmonic
map to Sk ; the equations make up a fourth-order nonlinear elliptic system. As
in [Chang et al. 1999c], by exploiting the special structure of the nonlinearity of
these Euler–Lagrange equations, we are able to rewrite them as 12u = a linear
combination of several special types of “divergence forms.” From this, we can
obtain the crucial L p estimate which is key to the proof of interior Hölder regularity
of u. In Section 3, we prove that if u is Hölder continuous, it must be smooth. The
proof is based on an interesting observation in [Chang et al. 1999b] that if u is
continuous, the coefficients of the nonlinear terms can be made very small by a
specific scaling. Then by an iteration process, we prove that second derivatives of
u are Hölder continuous. Now standard regularity theory implies that u is smooth,
hence completing the proof of the interior regularity theorem. In Section 4, we
prove the boundary regularity theorem by modifying the method of proof of interior
regularity. For simplicity, we assume throughout the paper that the domain of the
intrinsic biharmonic map is a flat Euclidean ball. The proof in the general case is
essentially the same.

The author thanks Professor Alice Chang, Professor Paul Yang, and Professor
Lihe Wang for their helpful suggestions.

2. Interior Hölder regularity

Here, we consider the interior Hölder regularity of a weakly intrinsic biharmonic
map u. Since this is a local property, we may assume without loss of generality that
u : (B, g) → Sn

⊂ Rn+1, where B is a 4-dimensional unit ball in R4 with Euclidean
metric and Sn is canonically embedded in Rn+1 with the induced standard metric.
1, ∇, and div denote the Laplacian, gradient, and divergence.



REGULARITY OF INTRINSIC BIHARMONIC MAPS TO SPHERES 45

2.1. The functional F. Let u ∈ W 2,2(B, Sn) be a weakly intrinsic biharmonic
map. Write u(x) = (u1(x), . . . , un+1(x)) ∈ Rn+1 for x ∈ B. It is well known that

((1u)T )α = 1uα
+ uα

|∇u|
2 for α = 1, 2, . . . , n + 1.

Therefore, by straightforward calculations, we have

F(u) =

∫
B
(|1u|

2
− |∇u|

4).

And its Euler–Lagrange equation is

(1) 12uα
= −

(∑
β

(
(1uβ)2

+ 1(|∇uβ
|
2) + 2∇1uβ

· ∇uβ
)
+ 2|∇u|

4
)

uα

− 2 div(|∇u|
2
∇uα) for α = 1, 2, . . . , n + 1.

We say that u ∈ W 2,2(B, Sn) is weakly intrinsic biharmonic if and only if it satisfies
Equation (1) weakly.

2.2. Divergence forms. Now, we are going to write the right hand side of Equa-
tion (1) into a linear combination of certain types of “divergence forms.” Using
notations in [Chang et al. 1999c], we define

T1 ≡ div(∇uα1uβ(uβ
− cβ))

or div((uβ
− cβ)〈∇∇uβ, ∇uβ

〉),

T2 ≡ 1((uα
− cα)|∇uβ

|
2)

or 1((uβ
− cβ)1uβ)

or 1(uα(uβ
− cβ)1uβ),

T3 ≡ 1(div((uβ
− cβ)∇uβ)),

where cβ are constants and the β are summed from 1 to n + 1.
In our case, we have to consider one more type, namely,

T4 ≡ div(|∇u|
2(uα

∇uβ
− uβ

∇uα)(uβ
− cβ)).

Proposition 2.1. The right hand side of Equation (1) can be written as a linear
combination of Tl terms for l = 1, 2, 3, 4.

Proof. At any point p ∈ B, we choose a normal coordinate x = (x1, . . . , x4)

at p and let ui be the i-th covariant derivative of u. We name S1 = uα(1uβ)2,
S2 = 2uαuβ

j (1uβ) j , and S3 = uα1|∇uβ
|
2. Note that the j are summed from 1 to
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4. Then

1
2 S2 = uαuβ

j (1uβ) j =
(
uα(1uβ) j − uβ(1uα) j

)
uβ

j

=
(
uα(1uβ) j − uβ(1uα) j − uα

j (1uβ) + uβ

j (1uα)
)
uβ

j

+
(
uα

j (1uβ) − uβ

j (1uα)
)
uβ

j

=

((
uα(1uβ) j − uβ(1uα) j − uα

j (1uβ) + uβ

j (1uα)
)
(uβ

− cβ)
)

j

−
(
uα12uβ

− uβ12uα
)
(uβ

− cβ) +
(
uα

j (1uβ) − uβ

j (1uα)
)
uβ

j

=

((
uα(1uβ) − uβ(1uα)

)
(uβ

− cβ)
)

j j

− 2
((

uα
j (1uβ) − uβ

j (1uα)
)
(uβ

− cβ)
)

j

−
((

uα(1uβ) − uβ(1uα)
)
uβ

j

)
j +

(
uα

j (1uβ) − uβ

j (1uα)
)
uβ

j

−
(
uα12uβ

− uβ12uα
)
(uβ

− cβ)

= −
((

uα(1uβ) − uβ(1uα)
)
uβ

j

)
j +

(
uα

j (1uβ) − uβ

j (1uα)
)
uβ

j

−
(
uα12uβ

− uβ12uα
)
(uβ

− cβ) + (T2 + T1 terms).

By [Chang et al. 1999c], we know that

S1 + S3 = (uα1uβ
− uβ1uα)1uβ

+ (T` terms for ` = 1, 2, 3),

=
(
(uα1uβ

− uβ1uα)uβ

j

)
j − (uα

j 1uβ
− uβ

j 1uα)uβ

j

−
(
uα(1uβ) j − uβ(1uα) j

)
uβ

j + (T` terms),

= −
1
2 S2 −

1
2 S2 −

(
uα12uβ

− uβ12uα
)
(uβ

− cβ) + (T` terms),

S1 + S2 + S3 = (T` terms) − (uα12uβ
− uβ12uα)(uβ

− cβ)

But by (1), we get that

uα12uβ
− uβ12uα

= − 2 div(|∇u|
2
∇uβ)uα

− µuαuβ

−
(
−2 div(|∇u|

2
∇uα)uβ

− µuαuβ
)

= − 2 div(|∇u|
2
∇uβ)uα

+ 2 div(|∇u|
2
∇uα)uβ

= 2
(
|∇u|

2(uβuα
j − uαuβ

j )
)

j

Hence we have

right side of (1) = − (λ + 2|∇u|
4)uα

− 2 div(|∇u|
2
∇uα)

= (T` terms) + 2
(
|∇u|

2(uβuα
j − uαuβ

j )
)

j (u
β

− cβ) − 2|∇u|
4uα
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= (T` terms) + 2
(
|∇u|

2(uβuα
j − uαuβ

j )
)

j (u
β

− cβ)

− 2|∇u|
2(uαuβ

j − uβuα
j )(u

β
− cβ) j

= (T` terms) − 2
(
|∇u|

2(uαuβ

j − uβuα
j )(u

β
− cβ)

)
j

= (T` terms for ` = 1, 2, 3, 4).

The third equality follows from uα
|∇u|

2
= (uαuβ

j − uβuα
j )(u

β
− cβ) j . �

2.3. Hölder continuity of u.

Theorem 2.1. If u ∈ W 2,2(B, S4) is weakly intrinsic biharmonic, then it is locally
Hölder continuous on B with exponent β for some β ∈ (0, 1).

To prove this, we first need standard L p elliptic estimates:

Lemma 2.1. Suppose Br is a Euclidean ball in R4 of radius r >0 and v ∈ W 2,2(Br )

is a weak solution on Br of one of

12v = div(F),

12v = 1G,

12v = 1(div H),

with v = 0 and ∂v/∂n = 0 on ∂ Br . Then for any 1 < q < ∞, the solution v satisfies
the corresponding member of∥∥∇

3v
∥∥

Lq (Br )
. ‖F‖Lq (Br ) ,∥∥∇

2v
∥∥

Lq (Br )
. ‖G‖Lq (Br ) ,

‖∇v‖Lq (Br ) . ‖H‖Lq (Br ) .

For any Br and p > 1, we define

E(u)(Br ) ≡

(∫
Br

|∇
2u|

2
)1/2

+

(∫
Br

|∇u|
4
)1/4

,

Mp(u)(Br ) ≡

(∫
\

Br

|u − u|
p
)1/p

where u =

∫
\

Br

u,

Dp(u)(Br ) ≡

(
r p

∫
\

Br

|∇u|
p
)1/p

.

The following is the main technical lemma:

Lemma 2.2. Let u ∈ W 2,2(B, Sn) be a weakly intrinsic biharmonic map. Then for
any p1 such that 2 < p1 < 4 and 1/p0 = 1/p1 − 1/4 and for any 0 < β < 1, there
exists τ < 1/4 and ε > 0 such that if E(u)(B) < ε, then

(Mp0(u) + Dp1(u))(Bτ ) < τβ(Mp0(u) + Dp1(u))(B).
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Proof. We fix some 1/2 ≤ r < 1 to be chosen later. Let v = u −h where 12hα
= 0

on Br and hα
= uα and ∂hα/∂n = ∂uα/∂n on ∂ Br . Write v =

∑4
i=1 vi such

that 12vi = (Ti terms) on Br and vi = ∂vi/∂n = 0 on ∂ Br for i = 1, 2, 3, 4. By
Proposition 2.1 and Lemma 2.1, we get

‖∇
3v1‖L p3 (Br ) + ‖∇

2v2‖L p2 (Br ) + ‖∇v3‖L p1 (Br ) + ‖∇
3v4‖L p3 (Br )

.
∥∥|∇u||∇

2u||u − c|
∥∥

L p3 (Br )
+

∥∥|∇u|
2
|u − c|

∥∥
L p2 (Br )

+
∥∥|∇u||u − c|

∥∥
L p1 (Br )

+
∥∥|∇u|

2
|u − c|

(∑
α,β, j

(uα
∇uβ

− uβ
∇uα)2)1/2∥∥

L p3 (Br )
,

where 1/p2 = 1/p3 − 1/4, 1/p1 = 1/p2 − 1/4 and c = (c1, . . . , cn+1). Then by
Sobolev imbedding theorem, we get

‖∇v‖L p1 (Br ) .
∥∥|∇u||∇

2u||u − c|
∥∥

L p3 (Br )
+

∥∥|∇u|
2
|u − c|

∥∥
L p2 (Br )

+
∥∥|∇u||u − c|

∥∥
L p1 (Br )

+
∥∥|∇u|

2
|u − c||∇u|

∥∥
L p3 (Br )

.

Using the Hölder inequality, we have, for 1/p0 = 1/p1 − 1/4,

‖∇v‖L p1 (Br ) . ‖u − c‖L p0 (Br )‖∇u‖L4(Br )‖∇
2u‖L2(Br )

+ ‖u − c‖L p0 (Br )‖∇u‖
2
L4(Br )

+ ‖u − c‖L p0 (Br )‖∇u‖L4(Br )

+ ‖∇u‖
3
L4(Br )

‖u − c‖L p0 (Br ).

Applying the Sobolev imbedding theorem again to the left hand side, we get

‖v‖L p0 (Br ) + ‖∇v‖L p1 (Br )

.
(∥∥∇

2u
∥∥2

L2(Br )
+ ‖∇u‖

2
L4(Br )

+ ‖∇u‖
3
L4(Br )

+ ‖∇u‖L4(Br )

)
× ‖u − c‖L p0 (Br )

. (E3(u) + E2(u) + E(u))(B) ‖u − c‖L p0 (Br ) .

Now, with this key estimate, the proof proceeds exactly the same as in [Chang et al.
1999c]. But we write it down for the sake of completeness.

Set c = u and we choose r with 1/2 ≤ r < 1 such that(∫
∂ Br

|u − u|
p0

)1/p0
+

(∫
∂ Br

|∇u|
p1

)1/p1
.

(∫
B
|u − u|

p0
)1/p0

+

(∫
B
|∇u|

p1
)1/p1

.

Then for any τ with 0 < τ < 1/4 and x ∈ Bτ , the above justifies the second . in

|∇h(x)| .
∫

∂ Br

|u − u| +

∫
∂ Br

∣∣∣∂u
∂n

∣∣∣ .
(∫

B
|u − u|

p0
)1/p0

+

(∫
B
|∇u|

p1
)1/p1

= (Mp0(u) + Dp1(u))(B).
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For any τ < 1/4, this in turn justifies the final step in

(Mp0(u) + Dp1(u))(Bτ )

=

(
τ−4

∫
Bτ

|u − u|
p0

)1/p0
+

(
τ p1−4

∫
Bτ

|∇u|
p1

)1/p1

= τ−4/p0 ‖u − u‖L p0 (Bτ ) + τ 1−4/p1 ‖∇u‖L p1 (Bτ )

. τ−4/p0 ‖u − h(0)‖L p0 (Bτ ) + τ 1−4/p1 ‖∇u‖L p1 (Bτ )

. τ−4/p0
(
‖v‖L p0 (Bτ ) + ‖h − h(0)‖L p0 (Bτ )

)
+ τ 1−4/p1

(
‖∇v‖L p1 (Bτ ) + ‖∇h‖L p1 (Bτ )

)
. τ 1−4/p1 (E3(u) + E2(u) + E(u))(B) ‖u − u‖L p0 (B) + τ sup

x∈Bτ

|∇h(x)|

. τ 1−4/p1 ε ‖u − u‖L p0 (B) + τ(Mp0(u) + Dp1(u))(B),

where E(u)(B) < ε.
If we choose τ sufficiently small, and then ε small, we get

(Mp0(u) + Dp1(u))(Bτ ) ≤ τ γ (Mp0(u) + Dp1(u))(B). �

Proof of Theorem 2.1. Take any point x ∈ B. Suppose Bρ(x) ⊂ B is such that
E(u)(Bρ(x)) < ε. By Lemma 2.2, we know that

(Mp0(u) + Dp1(u))(Bτρ(x)) < τ γ (Mp0(u) + Dp1(u))(Bτρ(x)).

Note that E(u)(Bs(x))<ε for all s <ρ. So we can apply the Lemma 2.2 iteratively
and get

(Mp0(u) + Dp1(u))(Bτ j ρ(x)) ≤ τ γ j (Mp0(u) + Dp1(u))(Bτρ(x)) for j ∈ N.

From this, it can be shown that Dp1(Bs(y)) ≤ Csγ for some C > 0, for all y near x ,
and sufficiently small s > 0; see [Giaquinta 1983]. Then it follows that u is locally
Hölder continuous with exponent β = γ /4 in B using Morrey’s condition; again
see [Giaquinta 1983]. �

3. Higher interior regularity

Here we show that a weakly intrinsic biharmonic map u is smooth on B once it is
continuous on B, hence completing the proof of interior regularity.

3.1. Two remarks. In fact, we consider a more general class of elliptic system and
prove the following theorem:

Theorem 3.1. If u is a weak continuous solution of the system

12uα
= f α(x, Du, D2u) +

4∑
i=1

∂gα
i

∂xi
(x, Du, D2u) on B,
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where
| f α(x, P, M)| ≤ λ1(1 + |P|

4
+ |M |

2),

|gα
i (x, P, M)| ≤ λ2(1 + |P|

3
+ |M |

3/2),

then u ∈ C2,β(B) for some β ∈ (0, 1).

According to classical regularity theory, once the solution is C2,β(B), it is smooth
on B. Since the Euler–Lagrange equation satisfied by u is included in this class,
we have the following:

Corollary 3.1. If u is a continuous weakly intrinsic biharmonic map on B, then it
is smooth on B.

Combining this with the result in Section 2, we finally get the main interior
regularity theorem:

Theorem 3.2. If u ∈ W 2,2(B, Sn) is a weakly intrinsic biharmonic map, then
u ∈ C∞(B, Sn).

Two remarks: First, to show that u is C2,β(B) we only need to show that u1(x)=

(u(r x) − u(0))/c(r) belongs to C2,β(B), where c(r) = ‖u − u(0)‖L∞(Br ) + r . We
may assume u1(x) to be small when u is continuous on B and r is sufficiently
small. Then we get

(2) 12u1 = f̃ α(x, Du1, D2u1) +

4∑
i=1

∂ g̃α

∂xi
(x, Du1, D2u1),

where

f̃ α(x, P, M) =
r4

c(r)
f α

(
r x,

c(r)

r
P,

c(r)

r2 M
)
,

g̃α
i (x, P, M) =

r3

c(r)
gα

i
(
r x,

c(r)

r
P,

c(r)

r2 M
)
.

Thus u1 is a weak continuous solution of the same type of equations with f̃ α,
g̃α

i and ãcdst satisfying the following growth conditions:

(3)
| f̃ α(x, P, M)| ≤ λ̃1(1 + µ1|P|

4
+ µ1|M |

2),

|g̃α(x, P, M)| ≤ λ̃2(1 + µ2|P|
3
+ µ2|M |

3/2),

where λ̃1 = c(r)1/2λ1 , µ1 = c(r)1/2 , λ̃2 = c(r)1/4λ2 and µ2 = c(r)1/4. So λ̃ j

and µ j for j = 1, 2 can be made arbitrarily small as r is small. This important
observation allows us to reduce the proof of Theorem 3.1 to a scaling argument.

Second, the theorem holds if we replace 1u by any elliptic systems.
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3.2. Proof of Theorem 3.1. First of all, we need the following lemma:

Lemma 3.1. Suppose v is a weak solution of the Equation (2) satisfying the growth
conditions (3). And suppose

(4) µ1 ‖v‖L∞ ≤ δ and
∫

B
|D2v|

2dx +

(∫
B
|Dv|

4dx
)1/2

+

∫
B
|v|

2dx ≤ 1.

Then there exists an r0 > 0 such that for r < r0,

(5) r4
∫

Br

|D2(v − h)|2dx + r4
(∫

Br

|D(v − h)|4dx
)1/2

+

∫
Br

|v − h|
2dx

. λ̃2
1 + λ̃2

2 + δ,

where h : Br0 → RK is such that 12h = 0 in Br0 , and h = v and ∂h/∂n = ∂v/∂n
on Br0 .

Proof. Using the Sobolev inequality and integration by parts, we have

r4
∫

Br

|D2(v − h)|2dx + r4
(∫

Br

|D(v − h)|4dx
)1/2

+

∫
Br

|v − h|
2dx

≤ r0
4
∫

Br0

|D2(v − h)|2dx + r0
4
(∫

Br0

|D(v − h)|4dx
)1/2

+

∫
Br0

|v − h|
2dx

.
∫

Br0

|D2(v − h)|2dx .
∫

Br0

|1(v − h)|2dx

.
∫

Br0

(
λ̃1|v − h| + λ̃1µ1|v − h||Dv|

4
+ λ̃1µ1|v − h||D2v|

2)dx

+

∫
Br0

(
λ̃2|D(v − h)| + λ̃2µ2|D(v − h)||Dv|

3
+ λ̃2µ2|D(v − h)||D2v|

3/2)dx .

By [Chang et al. 1999a] we have the estimate

|(u − h)(x)| . osc(u)(B1) + ‖Du‖L4(∂ Br0 ) ≤ ‖u‖L∞(B1) + 1

if we choose r0 > 1/2 such that∫
∂ Br0

|Du|
4dσ .

∫
B
|Du|

4dx .
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Using this estimate and the interpolation inequality, we get

left side .
∫

Br0

( 1
ε2

1
λ̃2

1 + ε2
1|v − h|

2
+ (δ + 1)λ̃1(|Du|

4
+ |D2u|

2)
)

dx

+

∫
Br0

( 1
ε2

2
λ̃2

2 + ε2
2|D(v − h)|2

)
dx

+λ̃2µ2

(
ε2

3

∫
Br0

|D(v − h)|4dx +
1
ε2

3

(∫
Br0

|Du|
4dx

)3/2)
+λ̃2µ2

(
ε2

3

∫
Br0

|D(v − h)|4dx +
1
ε2

3

(∫
Br0

|D2u|
2dx

)3/2)
.

From this, by choosing a suitable ε j , we obtain the required estimate (5). �

Using Lemma 3.1, we can prove an important corollary:

Corollary 3.2. For any 0 < β < 1 and sufficiently small λ̃i with µi > 0, there exists
0 <τ < 1/4 such that if v is a weak solution of Equation (2) with growth conditions
(3) that satisfies conditions (4), then there exists a second-order polynomial p(x)=
1
2 x Ax + Bx + C such that∫

\
Bτ

|D2(v − p)|2dx +

( 1
τ 4

∫
\

Bτ

|D(v − p)|4dx
)1/2

+
1
τ 4

∫
\

Bτ

|v − p|
2dx ≤ τ 2β .

Also |A| + |B| + |C | ≤ C0, where C0 is a universal constant.

Proof. Let h be the biharmonic vector in the previous lemma, then

(6) ‖h‖C3(B1/4) .
∫

∂ Br0

(|u|+|Du|)dσ .
(∫

B1

|u|
2dx

)1/2
+

(∫
B1

|Du|
4dx

)1/4
≤ C0.

Let p(x) be the second-order Taylor polynomial of h at 0, that is, let p(x) =
1
2 x D2h(0)x + Dh(0)x + h(0). By Lemma 3.1, we have, for τ < 1/4,∫
\

Bτ

|D2(v − p)|2dx +

( 1
τ 4

∫
\

Bτ

|D(v − p)|4dx
)1/2

+
1
τ 4

∫
\

Bτ

|v − p|
2dx

≤

∫
\

Bτ

|D2(v − h)|2dx +

( 1
τ 4

∫
\

Bτ

|D(v − h)|4dx
)1/2

+
1
τ 4

∫
\

Bτ

|v − h|
2dx

+

∫
\

Bτ

|D2(h − p)|2dx +

( 1
τ 4

∫
\

Bτ

|D(h − p)|4dx
)1/2

+
1
τ 4

∫
\

Bτ

|h − p|
2dx

≤ Cτ−8(λ̃2
1 + λ̃2

2 + δ) + sup|D3h|τ 2 (by Lemma 3.1)

≤ Cτ−8(λ̃2
1 + λ̃2

2 + δ) + C0τ
2 (by (6)).
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Now, first take τ small such that the second term is less than or equal to τ 2β/2,

and then take λ̃ j , µ j small (so that δ is also small) such that the rest is bounded by
τ 2β/2. Then the result follows. �

Proof of Theorem 3.1. First we prove this claim: There exists C > 0, 0 < λ̃i ,
µi < 1, and ε0 > 0 such that if |u| ≤ 1 and u is a weak solution of Equation (2)
with growth condition (3) and λ̃i has µi ≤ ε0, then for each k ∈ N there is a second
order polynomial pk(x) =

1
2 x Ak x + Bk x + Ck such that

(7)
∫
\

B
τk

|D2(u− pk)|
2dx +

( 1
τ 4k

∫
\

B
τk

|D(u− pk)|
4dx

)1/2
+

1
τ 4k

∫
\

B
τk

|u− pk |
2dx

≤ τ 2βk

and |Ak | + |Bk | + |Ck | ≤ C, where C is a universal constant.
We prove this claim by induction on k. Using Corollary 3.2, the case k = 1 is

true. To verify the inductive step, assume the claim is true for k and define

wk(x) =
(u − pk)(r k x)

r (2+β)k .

Then we get

12wα
k = Fα(x, Dwk, D2wk) +

4∑
i=1

∂Gα

∂xi
(x, Dwk, D2wk),

where

Fα(x, P, M) = τ (2−β)k f̃ α(τ k x, Dpk(τ
k x) + τ (1+β)k P, D2 pk(τ

k x) + τβk M)

+τ (2−β)k(Dcd ãcdst)(Dst pk)(τ
k x),

Gα
i (x, P, M) = τ (1−β)k g̃α

i (τ k x, Dpk(τ
k x) + τ (1+β)k P, D2 pk(τ

k x) + τβk M).

Next we check the growth conditions (3):

|Fα(x, P, M)| ≤ τ (2−β)k(λ̃1
(
1 + 8µ1(C

4
+ τ 4(1+β)k

|P|
4)

+ 2µ1(C
2
+ τ 2βk

|M |
2)

)
+ εC

)
≤ λ̃(1 + 8µ1τ

(6+3β)k
|P|

4
+ 2µ1r (2+β)k

|M |
2),

|Gα(x, P, M)| ≤ τ (1−β)k λ̃2
(
1 + 4µ2(C

3
+ τ 3(1+β)k

|P|
3)

+ 2µ2(C
3/2

+ τ 3βk/2
|M |

3/2)
)

≤ λ̃2
(
1 + 4µ2τ

(4+2β)k
|P|

3
+ 2µ2τ

(1+βk/2)
|M |

3/2).
for λ̃ j , µ j and τ sufficiently small. Now we verify the conditions (4) for wk :

2µ1τ
(2+β)k

‖wk‖L∞(B1) = 2µ1 ‖u − pk‖L∞(B
τk ) ≤ 2µ1(1 + C) ≤ δ,
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if µ1 is initially chosen to be small. Also, we have∫
B
|D2wk |

2dx +

(∫
B
|Dwk |

4dx
)1/2

+

∫
B
|wk |

2dx

=

∫
B

∣∣∣D2 (u − pk)(τ
k x)

τ (2+β)k

∣∣∣2
dx +

(∫
B

∣∣∣D
(u − pk)(τ

k x)

τ (2+β)k

∣∣∣4
dx

)1/2

+

∫
B

∣∣∣(u − pk)(τ
k x)

τ (2+β)k

∣∣∣2
dx

=
1

τ 2βk

(∫
\

B
τk

|D2(u − pk)|
2dx +

( 1
τ 4k

∫
\

B
τk

|D(u − pk)|
4dx

)1/2

+
1

τ 4k

∫
\

B
τk

|u − pk |
2dx

)
≤ 1,

by the induction hypothesis. So conditions (4) for wk are satisfied.
Therefore, we can apply the Corollary 3.2 to wk , that is, there exists a second

order polynomial q(x) =
1
2 x Ax + Bx + C such that∫

\
Bτ

|D2(wk − q)|2dx +

( 1
τ 4

∫
\

Bτ

|D(wk − q)|4dx
)1/2

+
1
τ 4

∫
\

Bτ

|wk − q|
2dx ≤ τ 2β

and |A| + |B| + |C | ≤ C0. Then define pk+1(x) = pk(x) + τ (2+β)kq(x/τ k). By a
change of variable, we get∫
\

B
τk+1

|D2(u − pk+1)|
2
+

( 1
τ 4(k+1)

∫
\

Brk+1

|D(u − pk+1)|
4dx

)1/2

+
1

τ 4(k+1)

∫
\

Brk+1

|u − pk+1|
2dx ≤ τ 2(k+1)β .

This proves the inequality (7) for k + 1. Now, it remains to show that |Ak+1| +

|Bk+1| + |Ck+1| ≤ C. Initially, we set C = (3C0)/(1 − 4−β). From the induction
step, we know that for j ≤ k, we have

|A j+1| ≤ |A j | + τβ j C0,

|B j+1| ≤ |B j | + τ (1+β) j C0,

|C j+1| ≤ |C j | + τ (2+β) j C0.

This implies

|A j+1| + |B j+1| + |C j+1| ≤ |A j | + |B j | + |C j | + 3τβkC0.

Hence we have
|Ak+1| + |Bk+1| + |Ck+1| ≤

3C0

1 − τβ
≤ C.
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This complete that proof of the claim for k + 1.
Now, similarly to the proof of Theorem 2.1, this result implies that u ∈ C2,β(B),

hence finishing the proof of Theorem 3.1. �

4. Boundary regularity

Here we will investigate the boundary regularity of weakly intrinsic biharmonic
maps u. The main is this:

Theorem 4.1. Suppose u ∈ W 2,2(B4, Sn) is a weakly intrinsic biharmonic map
such that u|∂ B∈ C l,β(∂ B, Sn), and ∂u/∂n|∂ B∈ C l−1,β(∂ B, Sn) for l ∈ N and β ∈

(0, 1). Then u ∈ C l,β(B, Sn).

Since the interior regularity has already been established in previous section, we
concentrate on the neighborhood of the boundary ∂ B. Without losing generality,
we may assume that u : (�+

1 , g) → Sn
⊂ Rk+1, where �+

r is the upper-half ball
of radius r , that is, �+

r = {(x, t) ∈ R4
| t ≥ 0, |x |

2
+ t2 < r}. Then, the Dirichlet

boundary conditions become

(8) u(x, 0) ∈ C l,β(01, Sn) and ∂u
∂n

(x, 0) ∈ C l−1,β(01, Sn),

where 01 is the flat part of ∂�+

1 .

4.1. Boundary C0,β regularity. To prove the main theorem, we first need to prove
the boundary C0,β regularity of u, a consequence of this theorem:

Theorem 4.2. Let u ∈ W 2,2(�+

1 , Sn) be a weakly intrinsic biharmonic map sat-
isfying (8). Then u ∈ C0,β(U, Sn), where U is a neighborhood of 0s for some
s ∈ (0, 1) in �+

1 .

Proof. First, for any r > 0 we define

Mp(u)(�+

r ) =

(∫
\
�+

r

|u − u(0)|p
)1/p

and Dp(u)(�+

r ) =

(
r p

∫
\
�+

r

|∇u|
p
)1/p

.

Suppose 1/2 < r1 < 1 and 0 < τ < r1/4, with both τ and r1 to be chosen later. Let
h1 : �+

r1
→ Rn+1 be such that 12h1 = 0 in �+

r1
and h1 = u and ∂h1/∂n = ∂u/∂n

on ∂�+
r1

. For p0 and p1 as in Section 2, we have

Mp0(u)(�+

τ ) + Dp1(u)(�+

τ ) =

(∫
\
�+

τ

|u − u(0)|p0
)1/p0

+

(
τ p1

∫
\
�+

τ

|∇u|
p1

)1/p1

≤

(∫
\
�+

τ

|u − h1|
p0

)1/p0
+

(
τ p1

∫
\
�+

τ

|∇(u − h1)|
p1

)1/p1

+

(∫
\
�+

τ

|h1 − h1(0)|p0
)1/p0

+

(
τ p1

∫
\
�+

τ

|∇h1|
p1

)1/p1
.
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Similarly to Section 2, we get the key estimate on �+
r1

:∫
�+

r1

|∇(u − h1)|
p1 . (E3

+ E2
+ E)(�+

r1
)p1

(∫
�+

r1

|u − u(0)|p0
)p1/p0

.

Apply this and the Sobolev inequality, we get

Mp0(u)(�+

τ )+Dp1(u)(�+

τ ). +

(∫
\
�+

τ

|h1−h1(0)|p0
)1/p0

+

(
τ p1

∫
\
�+

τ

|∇h1|
p1

)1/p1

+
1

τ 4/p0
(E3(u) + E2(u) + E(u))(�+

1 )
(∫

�+

1

|u − u(0)|p0
)1/p0

.

Now we apply the above inequality to u(τ k−1x) for k = 2, 3, . . .. Then by a change
of variable, we get

Mp0(u)(�+

τ k )+Dp1(u)(�+

τ k ).+

(∫
\
�+

τ

|hk−hk(0)|p0
)1/p0

+

(
τ p1

∫
\
�+

τ

|∇hk |
p1

)1/p1

| + τ−4/p0 (E3(u) + E2(u) + E(u))(�+

1 )
(∫

\
�+

τk−1

|u − u(0)|p0
)1/p0

,

where hk : �+
rk

→ Rn+1 is such that 12hk = 0 in �+
rk

, and hk(x) = u(τ k−1x) and
∂hk(x)/∂n = ∂(u(τ k−1x))/∂n on ∂�+

rk
, for some rk ∈ (r1/2, r1] to be chosen later.

Now define h̃k(x) = h1(τ
k−1x). We have

Mp0(u)(�+

τ k ) + Dp1(u)(�+

τ k )

. τ−4/p0 (E3(u) + E2(u) + E(u))(�+

1 )
(∫

\
�+

τk−1

|u − u(0)|p0
)1/p0

+

(∫
\
�+

τ

|hk − h̃k |
p0

)1/p0
+

(
τ p1

∫
\
�+

τ

|∇(hk − h̃k)|
p1

)1/p1

+

(∫
\
�+

τ

|h̃k − h̃k(0)|p0
)1/p0

+

(
τ p1

∫
\
�+

τ

|∇ h̃k |
p1

)1/p1

. τ−4/p0 (E3(u) + E2(u) + E(u))(�+

1 )
(∫

\
�+

τk−1

|u − u(0)|p0
)1/p0

+

(∫
\
�+

τk

|h1 − h1(0)|p0
)1/p0

+

(
τ kp1

∫
\
�+

τk

|∇h1|
p1

)1/p1
+ τ sup

�+
τ

|∇φk |

. τ−4/p0 (E3(u) + E2(u) + E(u))(�+

1 )Mp0(u)(�+

τ k−1)

+ Mp0(h1)(�
+

τ k ) + Dp1(h1)(�
+

τ k ) + τ sup
�+

τ

|∇φk |,

where φk = hk − h̃k . Note that 12φk = 0 in �+
rk

and φk = ∂φk/∂n = 0 on 0rk .
Therefore, by Schauder theory (see [Agmon et al. 1959]), we know that φk is
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smooth on �+
τ . Moreover, let G be the Green function of 12 on �+

rk
satisfying

Dirichlet boundary conditions. By Green’s identity and that φk = ∂φk/∂n = 0 on
0rk , we get

φk(x) =

∫
∂�+

rk \0rk

(∂(1G)

∂n
(x, y)φk(y) − 1G(x, y)

∂φk

∂n
(y)

)
dσ(y).

So for x ∈ �+
τ , we have the estimate

sup
�+

τ

|∇φk | .
∫

∂�+
rk \0rk

(
|φk | +

∣∣∣∂φk

∂n

∣∣∣)dσ

=

∫
∂�+

rk \0rk

(
|(u − h1)(τ

k−1x)| + |∇((u − h1)(τ
k−1x))|

)
dσ(x).

Now we choose rk such that∫
∂�+

rk \0rk

|(u − h1)(τ
k−1x)|dσ(x) .

∫
�+

1

|(u − h1)(τ
k−1x)|,∫

∂�+
rk \0rk

|∇((u − h1)(τ
k−1x))|dσ(x) .

∫
�+

1

|∇((u − h1)(τ
k−1x))|.

Applying these estimates and the Hölder inequality, we get

sup
�+

τ

|∇φk | .
(∫

�+

1

|(u − h1)(τ
k−1x)|p0

)1/p0
+

(∫
�+

1

|∇((u − h1)(τ
k−1x))|p1

)1/p1

.
(∫

�+

1

|u(τ k−1x) − u(0)|p0
)1/p0

+

(∫
�+

1

|∇(u(τ k−1x))|p1
)1/p1

+

(∫
�+

1

|h1(τ
k−1x) − h1(0)|p0

)1/p0
+

(∫
�+

1

|∇(h1(τ
k−1x))|p1

)1/p1

. Mp0(u)(�+

τ k−1) + Dp1(u)(�+

τ k−1)

+ Mp0(h1)(�
+

τ k−1) + Dp1(h1)(�
+

τ k−1).

Therefore, we have

Mp0(u)(�+

τ k ) + Dp1(u)(�+

τ k )

. τ−4/p0 (E3(u) + E2(u) + E(u))(�+

1 )Mp0(u)(�+

τ k )

+ τ
(
Mp0(u)(�+

τ k−1) + Dp1(u)(�+

τ k−1)
)

+ Mp0(h1)(�
+

τ k−1) + Dp1(h1)(�
+

τ k−1)

+ Mp0(h1)(�
+

τ k ) + Dp1(h1)(�
+

τ k ) for k = 1, 2, . . . .
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By the definition of h1 and the boundary assumption on u, we can deduce from
Schauder theory that h1 ∈ C1,β(�+

τ , Sn), and so for k ∈ N, we have

Mp0(h1)(�
+

τ k ) + Dp1(h1)(�
+

τ k ) ≤ Cτ kβ

for some constant C > 0 independent of k and some sufficiently small τ . Now first
choose τ small. Then for sufficiently small E(u)(�+

1 ) for k ∈ N, we have

Mp0(u)(�+

τ k )+ Dp1(u)(�+

τ k ) ≤
τβ

2
(
Mp0(u)(�+

τ k−1)+ Dp1(u)(�+

τ k−1)+Cτ (k−1)β
)
.

Now we can apply this inequality iteratively and get

(9) Mp0(u)(�+

τ k ) + Dp1(u)(�+

τ k ) ≤ τ kβ(
Mp0(u)(�+

1 ) + Dp1(u)(�+

1 )

+
C
2

+
C
22 + · · ·

)
. τ kβ

for all k ∈ N. In fact, we can apply the argument to all x ∈ 0s for some s ∈ (0, 1)

and obtain the estimate (9) for x . Then by a standard argument we can prove that
u ∈ C0,β(U, Sn), where U is a neighborhood of 0s in �+1 �

4.2. Proof of Theorem 4.1 for l = 1. This case is in fact a consequence of this
theorem:

Theorem 4.3. Let u ∈ W 2,2(�+

1 , Sn) be a weakly intrinsic biharmonic map satis-
fying (8) for l = 1. Then u ∈ C1,β(U, Sn), where U is a neighborhood of 0s for
some s ∈ (0, 1) in �+

1 .

First, for any r > 0, we define

M ′

p0
(u)(�+

r ) ≡

( 1
r p0

∫
\
�+

r

|u − u(0) − ∇u(0)x |
p0

)1/p0
,

D′

p1
(u)(�+

r ) ≡

(∫
\
�+

r

|∇u − ∇u(0)|p1
)1/p1

.

We have to rewrite the right side of the Euler–Lagrange equation again so as to
obtain the right estimate. First, from the proof of Proposition 2.1 and [Chang et al.
1999c], we observe that

12uα
= Tl terms + 1(uα

|∇u|
2) for l = 1, 2, 4.

Now we rewrite each of these terms in the following way:
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Type T1 terms:

(IA) = div(∇uα1uβ(uβ
− cβ) = div((∇uα

− aα)1uβ(uβ
− cβ)

+ div(aα1uβ(uβ
− cβ)),

(IB) = div(〈∇uβ, ∇∇uβ
〉(uβ

− cβ)) = div((uβ
− cβ)〈(∇uα

− aα), ∇∇uβ
〉)

+ div((uβ
− cβ)〈aβ, ∇∇uβ

〉).

Type T2 terms:

(IIA) = 1((uβ
− cβ)|∇uβ

|
2) = 1((uβ

− cβ)〈∇uβ, ∇uα
− aα

〉)

+ 1((uβ
− cβ)〈∇uβ, aβ

〉),

(IIB) = 1(uα(uβ
− cβ)1uβ) = 1 div(uα(uβ

− cβ)(∇uα
− aα))

− 1(uα
〈∇uα

− aα, ∇uβ
〉)

− 1((uβ
− cβ)〈∇uα, ∇uβ

− aβ
〉).

Term of the form 1((uβ
− cβ)1uα) do not appear.

Type T4 terms:

(IV) = div(|∇u|
2(uα

∇uβ
− uβ

∇uα)(uβ
− cβ))

= div(|∇u|
2uα(∇uβ

− aβ)(uβ
− cβ)) + div(aβ

|∇u|
2uα(uβ

− cβ))

−
(
div(|∇u|

2uβ(∇uα
− aα)(uβ

− cβ)) + div(aβ
|∇u|

2uα(uβ
− cβ))

)
.

1(uα
|∇u|

2) terms:

(V) = 1(uα
|∇u|

2) = div(∇(uα
|∇u|

2))

= div(∇uα
|∇u|

2) + 2 div(uα
〈∇∇uβ, ∇uβ

〉)

= 1((uβ
− cβ)|∇uβ

|
2) − 2 div((uβ

− cβ)〈∇uβ, ∇∇uβ
〉)

+ 21(uα
〈∇uβ

− aβ, ∇uβ
〉) − 2 div(∇uα

〈∇uβ
− aβ, ∇uβ

〉)

− 2 div(uα
〈∇uβ

− aβ, ∇∇uβ
〉).

Then

(V) = (IIA) term + (IB) term + 21(uα
〈∇uβ

− aβ, ∇uβ
〉)

− 2 div(∇uα
〈∇uβ

− aβ, ∇uβ
〉)

− 2 div(uα
〈∇uβ

− aβ, ∇∇uβ
〉),

where aβ
=

∑4
i=1 aβ

i ∂/∂xi is any constant vector field and cβ is any constant.
Now we are ready to prove this technical lemma:
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Lemma 4.1. For any r ∈ (0, 1), the estimate∫
�+

r

|∇(u − h)|p1 .
(
(E2

+ E)(u)(�+

r )p1 + max
�+

r

|u − c|p1
)(∫

�+
r

|∇u − a|
p1

+ |a|

∫
�+

r

|u − c|p1
)

holds on �+
r , where h : �+

r → Rk+1 is such that 12h = 0 in �+
r and such that

h = u and ∂h/∂n = ∂u/∂n on ∂�+
r .

Proof. Using Lemma 2.1 in Section 2 and the Hölder inequality, we get

‖∇(u − h)‖L p1 (�+
r ) . (IA)′ + (IB)′ + (IIA)′ + (IIB)′ + (IV)′ + (V)′ terms,

where

(IA)′ = ‖1u‖L2(�+
r )‖∇u − a‖L p1 (�+

r ) + |a|‖1u‖L2(�+
r )‖u − c‖L p1 (�+

r ),

(IB)′ = ‖∇
2u‖L2(�+

r )‖∇u − a‖L p1 (�+
r ) + |a|‖∇

2u‖L2(�+
r )‖u − c‖L p1 (�+

r ),

(IIA)′ = ‖∇u‖L4(�+
r )‖∇u − a‖L p1 (�+

r ) + |a|‖∇u‖L4(�+
r )‖u − c‖L p1 (�+

r ),

(IIB)′ = (max
�+

r

|u − c|)‖∇u − a‖L p1 (�+
r ) + ‖∇u‖

2
L4(�+

r )
‖∇u − a‖L p1 (�+

r ),

(IV)′ = ‖∇u‖
2
L4(�+

r )
‖∇u − a‖L p1 (�+

r ) + |a|‖∇u‖
2
L4(�+

r )
‖u − c‖L p1 (�+

r ),

(V)′ = (IB)′ + (IIA)′

+
(
‖∇u‖

2
L4(�+

r )
+ ‖∇u‖L4(�+

r ) + ‖∇
2u‖L2(�+

r )

)
‖∇u − a‖L p1 (�+

r ).

After grouping terms, it is easy to obtain the required estimate. �

Proof of Theorem 4.3. Suppose 1/2 < r1 < 1 and 0 < τ < r1/4, but both τ and r1

are otherwise to be chosen later. Define h1 as in previous section. By the Sobolev
inequality, we have

M ′

p0
(u)(�+

τ ) + D′

p1
(u)(�+

τ )

. τ−4/p1
(∫

\
�+

r1

|∇(u − h1)|
p1

)1/p1
+ M ′

p0
(h1)(�

+

τ ) + D′

p1
(h1)(�

+

τ )

. τ−4/p1
(
(E2

+ E)(u)(�+

1 ) + max
�+

1

|u − u(0)|
)

×
(
D′

p1
(u)(�+

1 ) + |∇u(0)|Mp1(u)(�+

1 )
)
+ M ′

p0
(h1)(�

+

τ ) + D′

p1
(h1)(�

+

τ ).

The last inequality follows from Lemma 4.1 by setting cα
= uα(0) and aβ

=

∇uβ(0). Now we apply the above inequality to u(τ k−1x) for k = 2, 3, . . ., and
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then by a change of variable, we get

M ′

p0
(u)(�+

τ k ) + D′

p1
(u)(�+

τ k )

. τ−4/p0
(
(E2

+ E)(u)(�+

1 ) + max
�+

τk−1

|u − u(0)|
)

×
(
D′

p1
(u)(�+

τ k−1) + |∇u(0)|Mp1(u)(�+

τ k−1)
)

+
1

τ k−1

(
M ′

p0
(hk)(�

+

τ ) + D′

p1
(hk)(�

+

τ )
)
,

where hk is defined on �+
rk

in previous section and rk is to be chosen later. Repeat-
ing the proof method of Theorem 4.2, we consider h̃k(x) = h1(τ

k−1x). Then we
have

M ′

p0
(hk)(�

+

τ ) + D′

p1
(hk)(�

+

τ )

≤ M ′

p0
(φk)(�

+

τ ) + D′

p1
(φk)(�

+

τ ) + M ′

p0
(h̃1)(�

+

τ ) + D′

p1
(h̃1)(�

+

τ )

≤ τ sup
�+

τ

|∇
2φk | +

(
M ′

p0
(h1)(�

+

τ k ) + D′

p1
(h1)(�

+

τ k )
)
τ k−1,

where φk =hk−h̃k . Again note that by Schauder theory, we know that φk is smooth
on �+

τ , and so ∇
2φk is well defined. As before, by a Green function argument,

we have the estimate
1

τ k−1 sup
�+

τ

|∇
2φk | . M ′

p0
(u)(�+

τ k−1) + D′

p1
(u)(�+

τ k−1)

+ M ′

p0
(h1)(�

+

τ k−1) + D′

p1
(h1)(�

+

τ k−1).

Combining these results, we get

M ′

p0
(u)(�+

τ k ) + D′

p1
(u)(�+

τ k )

.
1

τ 4/p0

(
(E2

+ E)(u)(�+

1 ) + max
�+

τk−1

|u − u(0)|
)

×
(
D′

p1
(u)(�+

τ k−1) + |∇u(0)|Mp1(u)(�+

τ k−1)
)

+ τ
(
M ′

p0
(u)(�+

τ k−1) + D′

p1
(u)(�+

τ k−1) + M ′

p0
(h1)(�

+

τ k−1)

+ D′

p1
(h1)(�

+

τ k−1)
)
+ M ′

p0
(h1)(�

+

τ k ) + D′

p1
(h1)(�

+

τ k ).

By Schauder theory, we know that h1 ∈ C1,β(�+
τ ), and we know by Theorem 4.2

that u ∈ C0,β(�+
τ ). Therefore, we have

M ′

p0
(h1)(�

+

τ k ) + D′

p1
(h1)(�

+

τ k ) . τβk,

Mp1(u)(�+

τ k−1) . τβ(k−1),

max
�+

τk−1

|u − u(0)| . τβ(k−1)
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for k = 2, 3, . . . and τ sufficiently small. With these estimates, we first choose
k0 ∈ N such that (k0 − 1)β − 4/p0 ≥ 1, then choose τ small, and finally, for
E(u)(�+

1 ) sufficiently small, we get

M ′

p0
(u)(�+

τ k ) + D′

p1
(u)(�+

τ k ) ≤
τβ

2
(
M ′

p0
(u)(�+

τ k−1) + D′

p1
(u)(�+

τ k−1) + Cτ (k−1)β
)

for some constant C > 0 independent of k and k ≥ k0. Then iteratively applying
the above inequality we get

(10) M ′

p0
(u)(�+

τ k ) + D′

p1
(u)(�+

τ k ) ≤
τ kβ

2
(
M ′

p0
(u)(�+

τ k0
) + D′

p1
(u)(�+

τ k0
)

+ C +
C
2

+
C
22 + · · ·

)
. τ kβ for k ≥ k0.

Again, as in the proof of Theorem 2.1, we can apply the argument to all x ∈ 0s

and obtain the estimate (10) for x . Then by a standard argument it can be shown
that u ∈ C1,β(U, Sn). �

4.3. Proof of Theorem 4.1 for l ≥ 2. Again, by standard regularity theory, it suf-
fices to prove the case l = 2. As in Section 3, we consider a larger class of elliptic
systems. In this section, we will prove this:

Theorem 4.4. Suppose u ∈ C1,β(�+1, Sn) is a weak solution on �+

1 of the elliptic
system

12uα
= f α(x, Du, D2u) +

4∑
i=1

∂gα
i

∂xi
(x, Du, D2u)

with growth conditions

(11)
| f α(x, P, M)| ≤ λ1(1 + |P|

4
+ |M |

2),

|gα
i (x, P, M)| ≤ λ2(1 + |P|

3
+ |M |

3/2)

and Dirichlet boundary data satisfying (8) for l = 2. Then u ∈ C2,β(U, Sn), where
U is a neighborhood of 0s in �+

1 for some s ∈ (0, 1).

Since the Euler–Lagrange equation of the intrinsic biharmonic map u belongs
to this class of elliptic system and, by the previous section, we already know that
u ∈ C1,β(�+1), we see Theorem 4.4 implies Theorem 4.1.

As in Section 3, to show that u ∈ C2,β(U), it suffices to show that u1(x) =

(u(r x)−u(0))/c(r, K ) belongs to C2,β(U), where c(r, K )= K (‖u − u(0)‖L∞(Br )+

r) for some K > 1 and r > 0. Since u is continuous, c(r, K ) becomes arbitrarily
small as r → 0. Therefore, by a computation in Section 3, we know u1 satisfies
the same type of elliptic system

(12) 12uα
= f̃ α(x, Du, D2u) +

4∑
i=1

∂ g̃α
i

∂xi
(x, Du, D2u) in �+

1
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with growth conditions

(13)
| f̃ α(x, P, M)| ≤ λ̃1(1 + µ1|P|

4
+ µ1|M |

2),

|g̃α(x, P, M)| ≤ λ̃2(1 + µ2|P|
3
+ µ2|M |

3/2)

where λ̃1 = c(r, K )1/2λ1, µ1 = c(r, K )1/2, λ̃2 = c(r)1/4λ2, and µ2 = c(r, K )1/4.
So λ̃ j and µ j for j = 1, 2 can be made arbitrarily small as r goes to zero. Also
note we can assume |u|C1,β (�+1)

, |u|C2,β (01), and |∂u/∂n|C1,β (01) to be very small
if we fix a large enough K .

To prove Theorem 4.4, we need a lemma.

Lemma 4.2. Suppose v is a weak solution of Equation (12) with growth conditions
(13) and Dirichlet boundary data satisfying (8) for l = 2. Also suppose

(14)

µ1(|v − h|L∞(�+
r0 )) ≤ δ,∫

�+

1

|D2v|
2dx +

(∫
�+

1

|Dv|
4dx

)1/2
+

∫
�+

1

|v|
2dx ≤ 1

for some r0 ∈ (0, 1] and h : �+
r0

→ RK such that 12h = 0 in �+
r0

and such that
h = v and ∂h/∂n = ∂v/∂n on ∂�+

r0
. Then for 0 < r < r0,

r4
∫

Br

|D2(v − k)|2dx + r4
(∫

Br

|D(v − k)|4dx
)1/2

+

∫
Br

|v − k|
2dx . λ̃2

1 + λ̃2
2 + δ.

The proof of Lemma 4.2 is similar to that of Lemma 3.1 and is therefore omitted.

Proof of Theorem 4.4. First let w0 = u, p0 = 0, and h0 = h where h : �+
r0

→ RK+1

is such that 12h = 0 in �+
r0

and such that h = u and ∂h/∂n = ∂u/∂n on ∂�+
r0

for
some r0 ∈ (0, 1), to be chosen later. Let τ ∈ (0, r0) also to be chosen later. For
k ∈ N, we define

wk =
(u − pk)(τ

k x)

τ (2+β)k ,

where pk(x) = pk−1(x) + τ (2+β)kqk−1(x/τ k) for qk−1(x) =
1
2 x D2hk−1(0)x +

Dhk−1(0)x + hk−1(0) and hk−1 : �+
rk−1

→ Rn+1 such that 12hk−1 = 0 in �+
rk−1

and hk−1 = wk−1, ∂hk−1/∂n = ∂wk−1/∂n on ∂�+
rk−1

for some rk−1 ∈ (r0/4, r0/2),
also to be chosen later.

Notice that by definition hk(0) = 0 and Dhk(0) = 0 for all k ∈ N. So p1(x) =
1
2 x D2h(0)x + Dh(0)x +h(0) and pk(x) = pk−1(x)+

1
2τβ x D2hk−1(0)x for k ≥ 2.

Also, it can be shown that x D2hk−1(0)x = 0 and D(∂hk−1/∂n)(0)x = 0 for all
x ∈ 0rk−1 for k ≥ 2.

To prove Theorem 4.4, it suffices to prove that∫
\
�+

τk

|D2(u−pk)|
2dx+

( 1
τ 4k

∫
\
�+

τk

|D(u−pk)|
4dx

)1/2
+

1
τ 4k

∫
\
�+

τk

|u−pk |
2dx ≤τ 2βk
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for all k ∈ N and |Ak | + |Bk | + |Ck | ≤ C for some constant C independent of k,
where pk(x) =

1
2 x Ak x + Bk x + Ck .

We prove this claim by induction on k. First consider when k = 1. By the dis-
cussion at the beginning of this section, we may assume without loss of generality
that ∫

�+

1

|u|
2dx +

(∫
�+

1

|Du|
4dx

)1/2
+

∫
�+

1

|D2u|
2dx ≤ 1,

8µ1 ‖u − h0‖L∞(�+
r0 ) ≤ δ,

|u|C1,β (�+1)
+ |u|C2,β (01) +

∣∣∣∂u
∂n

∣∣∣
C1,β (01)

≤ δ′

for small δ and δ′ to be chosen later. Then we have∫
\
�+

τ

|D2(u − p1)|
2dx +

(
1/τ 4

∫
\
�+

τ

|D(u − p1)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|u − p1|
2dx

≤

∫
\
�+

τ

|D2(u − h0)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(u − h0)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|u − h0|
2dx

+

∫
\
�+

τ

|D2(h0 − q0)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(h0 − q0)|
4dx

)1/2

+
1
τ 4

∫
\
�+

τ

|h0 − q0|
2dx

≤ C1τ
−8(λ̃2

1 + λ̃2
2 + δ) + 3[h0]

2
C2,β (�+

τ )
τ 2β (by Lemma 4.2)

≤ C1τ
−8(λ̃2

1 + λ̃2
2 + δ) + C2δ

′τ 2β .

Let λ̃i , δ, and δ′ be small enough that

(15) C1τ
−8(λ̃2

1 + λ̃2
2 + δ) ≤

τ 2β

2
and C2δ

′τ 2β
≤

τ 2β

4
.

Therefore, the claim is true for k =1. Now assume the claim is true for k. Similarly,
we have∫
\
�+

τ

|D2(wk − qk)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(wk − qk)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|wk − qk |
2dx

≤

∫
\
�+

τ

|D2(wk − hk)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(wk − hk)|
4dx

)1/2

+

∫
\
�+

τ

|D2(hk − qk)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(hk − qk)|
4dx

)1/2

+
1
τ 4

∫
\
�+

τ

|wk − hk |
2dx +

1
τ 4

∫
\
�+

τ

|hk − qk |
2dx
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≤ τ−8
[
τ 4

∫
�+

τ

|D2(wk − hk)|
2dx + τ 4

(∫
�+

τ

|D(wk − hk)|
4dx

)1/2

+

∫
\
�+

τ

|D2(hk − qk)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(hk − qk)|
4dx

)1/2

+

∫
�+

τ

|wk − hk |
2dx

]
+

1
τ 4

∫
\
�+

τ

|hk − qk |
2dx .

To use Lemma 4.2, we must verify conditions (14) for wk . First, by the induction
hypothesis, we have∫

�+

1

|D2wk |
2dx +

(∫
�+

1

|Dwk |
4dx

)1/2
+

∫
�+

1

|wk |
2dx ≤ 1.

Therefore, the second condition of (14) is satisfied. Second, by the computation in
Section 3, the first condition of (14) for wk becomes

8µ1τ
(2+β)k

‖wk − hk‖L∞(�+
rk ) ≤ δ.

It is easy to see that for k ≥ 0,

hk(x) = (ĥk(x) − pk(τ
k x))/τ (2+β)k,

where ĥk : �+
rk

→ Rn+1 is such that 12ĥk = 0 on �+
rk

and such that ĥk = u(τ k x)

and ∂ ĥk/∂n = ∂(u(τ k x))/∂n on ∂�+
rk

. So the condition is equivalent to

8µ1‖u(τ k x) − ĥk(x)‖L∞(�+
rk ) ≤ δ.

By definition, ‖u‖L∞(�+
rk ) ≤ 1 for any k. By the Schauder estimates, we have

‖ĥk(x)‖L∞(�+
rk ) . |u|C1,β (�+1)

. δ′.

So by an initial choice of small µ1 and δ′, condition 4.3 is satisfied. Now we can
apply Lemma 4.2 for wk and get∫
\
�+

τ

|D2(wk − qk)|
2dx +

( 1
τ 4

∫
\
�+

τ

|D(wk − qk)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|wk − qk |
2dx

≤ C1τ
−8(λ̃2

1 + λ̃2
2 + δ) +

∫
\
�+

τ

|D2(hk − qk)|
2dx

+

( 1
τ 4

∫
\
�+

τ

|D(hk − qk)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|hk − qk |
2dx
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≤
τ 2β

2
+

∫
\
�+

τ

|D2(hk − h̃k − qk)|
2dx

+

( 1
τ 4

∫
\
�+

τ

|D(hk − h̃k − qk)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|hk − h̃k − qk |
2dx

+

∫
\
�+

τ

|D2h̃k |
2dx +

( 1
τ 4

∫
\
�+

τ

|Dh̃k |
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|h̃k |
2dx,

where h̃k(x) = ((h0 −q0)(τ
k x))/τ (2+β)k . Define φk = hk − h̃k . Note that 12φk = 0

in �+
rk

and φk = ∂φk/∂n = 0 on 0rk . Therefore by Schauder theory, φk is smooth
on �+

τ , and so we have∫
\
�+

τ

|D2(wk − qk)|
2dx +

1
τ 4

∫
\
�+

τ

|wk − qk |
2dx +

( 1
τ 4

∫
\
�+

τ

|D(wk − qk)|
4dx

)1/2

≤ C1τ
−8(λ̃2

1 + λ̃2
2 + δ) + 3[h0]

2
C2,β (�+

τ )
τ 2β

+ τ 2sup
�+

τ

|D3φk |
2

≤
τ 2β

2
+

τ 2β

4
+ τ 2 sup

�+
τ

|D3φk |
2.

The first and third term of the last inequality follow from Equation (15).
As before, we can estimate |D3φk |

2 as follows:

sup
�+

τ

|D3φk |
2
≤ C3

(∫
∂�+

rk \0rk

|φk |
2dσ +

(∫
∂�+

rk \0rk

|
∂φk

∂n
|
4dσ

)1/2
)

≤ C4

(∫
�+

1

|wk |
2dx +

(∫
�+

1

|Dwk |
4dx

)1/2
+

∫
�+

1

|h̃k |
2dx +

(∫
�+

1

|Dh̃k |
4dx

)1/2
)

≤ C4
(
1 + 2[h0]

2
C2,β (�+

τ )

)
≤ C4(1 + 2C2δ

′).

Then by an initial choice of small τ , we can assume that τ 2C4(1+2C2δ
′) ≤ τ 2β/4.

Therefore we get∫
\
�+

τ

|D2(wk−qk)|
2dx+

( 1
τ 4

∫
\
�+

τ

|D(wk−qk)|
4dx

)1/2
+

1
τ 4

∫
\
�+

τ

|wk−qk |
2dx ≤τ 2β

By change of variable, we get∫
\
�+

τk+1

|D2(u − pk+1)|
2dx +

( 1
τ 4(k+1)

∫
\
�+

τk+1

|D(u − pk+1)|
4dx

)1/2

+
1

τ 4(k+1)

∫
\
�+

τk+1

|u − pk+1|
2dx ≤ τ 2β(k+1).
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This finishes the proof for k + 1. Finally, we need to show that |Ak | + |Bk | + |Ck |

has a bound that is independent of k. Note that Ck = u(0) and Bk = Du(0) for all
k. So it suffices to consider Ak . First, we know that

|D2hk(0)|2 = |D2φk(0)|2 ≤ C4

(∫
∂�+

rk \0rk

|φk |
2dσ +

(∫
∂�+

rk \0rk

∣∣∣∂φk

∂n

∣∣∣4
dσ

)1/2
)

,

which is less than or equal to C4(1+2C2δ
′). So |D2hk(0)| ≤ C5 for some constant

C5 independent of k. The desired k-independence then follows by definition:

|Ak | = |D2h0(0)|+ τβ
|D2h1(0)|+ τ 2β

|D2h2(0)|+ · · · ≤ |D2h0(0)|+
C5τ

β

1−τβ
. �
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