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We show that certain semistable sheaves on the projective plane with linear
Hilbert polynomial are cokernels of semistable morphisms of decomposable
bundles. We exhibit certain locally closed subvarieties or open dense subsets
of moduli spaces of semistable sheaves as quotients modulo nonreductive
groups. These subvarieties are defined by cohomological conditions. We
find isomorphisms between such subvarieties given by sending a sheaf to its
dual.

1. Introduction

The notion of a (Gieseker) semistable sheaf is well-established in the literature and
allows one to construct moduli spaces of sheaves with fixed Hilbert polynomial on
a projective variety. The construction, carried out in [Simpson 1994a; 1994b],
relies on the existence theorems from geometric invariant theory, more precisely, it
is shown that the moduli space occurs as the quotient of a certain set of semistable
points of a quotient scheme modulo a reductive algebraic group.

To get a semistable quotient from a semistable sheaf F we need to express F as
a quotient mO(−d)→ F → 0 with large m and d . In general this procedure is quite
abstract and of little use for the purposes of describing concretely the geometry of
the moduli space.

Another approach for studying moduli spaces uses monads. Let MP2(r, c1, c2)

be the moduli space of semistable (in the sense of Mumford and Takemoto) torsion-
free sheaves on P2 of rank r and Chern classes c1, c2. Assume that there exist lo-
cally free sheaves E1, E2, E3 on P2 such that each F giving a point in MP2(r, c1, c2)

is the cohomology of a monad

0 → E1 → E2 → E3 → 0.

The space W of monads is acted upon in an obvious manner by the algebraic
group G = Aut E1 × Aut E2 × Aut E3. Two fundamental questions now arise: Is
there a semistability notion for W such that a monad is semistable precisely if its
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cohomology is semistable? And is MP2(r, c1, c2) a good quotient of the set W ss of
semistable monads modulo G ?

The description of MP2(2, c1, c2) as a good quotient was done in [Barth 1977]
for c1 even and in [Hulek 1979] for c1 odd. In [Chang 1983] it was shown that a
generic stable bundle on P3 of rank 2, Chern classes c1 =0, c2 =4 and α-invariant 1
is the cohomology of a self-dual monad. Drézet [1987] described as quotients those
MP2(r, c1, c2) for which 1= δ. He takes E3 = 0 and E1, E2 direct sums of certain
exceptional bundles. In all these instances the group G was reductive. Quotients
by nonreductive G were considered in [Drézet 1991], which studies MP2(r, c1, c2)

of “faible hauteur”. Again E3 = 0, so Drézet is able to express each semistable
bundle as the cokernel of a semistable morphism.

A notion of semistability for complexes of morphisms of sheaves modulo nonre-
ductive groups was proposed in [Drézet 1991; 1998; Drézet and Trautmann 2003].
We briefly explain the case of morphisms of sheaves. (In this paper we will not need
the notion of a semistable complex of length 3 or more.) Drézet and Trautmann
consider sheaves E1 and E2 on Pn which are direct sums of simple sheaves, e.g.,
direct sums of line bundles. Thus Aut E1 × Aut E2 is nonreductive if E1 or E2 has
more than one kind of simple sheaf in its decomposition. This group acts on the
vector space W = Hom(E1,E2) and the set of semistable points W ss is defined by
means of polarizations which will be not detailed here. We refer to Section 3 for
the precise definition. In [Drézet and Trautmann 2003] as well as in [Drézet 2000]
it was shown that this notion of semistability quite often leads to a theory similar
to the geometric invariant theory.

Freiermuth and Trautmann [2004] studied the moduli space of semistable (in the
sense of Gieseker) sheaves F on P3 with Euler characteristic 1 and with support
curves of multiplicity 3. They showed that each F has a resolution

0 → 2O(−3)
ψ
→ O(−1)⊕ 3O(−2)

ϕ
→ O(−1)⊕ O → F → 0

with ϕ semistable in the sense of [Drézet and Trautmann 2003]. Moreover, the
moduli space is a geometric quotient of the parameter space of (ψ, ϕ) modulo the
action of the group of automorphisms.

In this paper we are interested in semistable sheaves on P2 with linear Hilbert
polynomial. Let MP2(r, χ) denote the moduli space of such sheaves F with fixed
multiplicity r and Euler characteristic χ . Motivated by [Freiermuth and Trautmann
2004] we will seek to express F as a cokernel

E1
ϕ
→ E2 → F → 0

with E1 and E2 direct sums of line bundles and ϕ semistable in the sense of Drézet
and Trautmann. We carry this out in Sections 4–6 for sheaves satisfying certain
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cohomological conditions. The picture we provide is far from complete because
we do not have a full list of resolutions for all F giving a point in MP2(r, χ) even
in the case r = 4 (the cases r = 1, 2 are trivial while the case r = 3 is completely
understood).

Our cohomological conditions define locally closed subvarieties in MP2(r, χ)
and in Section 7 we address the question whether these subvarieties are good or
geometric quotients of the sets of semistable morphisms ϕ modulo the canonical
action of the group of automorphisms. We find that when r , χ are mutually prime,
in other words when MP2(r, χ) is a fine moduli space, we always have geometric
quotients. If the moduli space is not fine the problem is more complicated and we
can answer it only in some cases.

In Section 8 we compute the codimensions of all locally closed subsets of
MP2(r, χ) under investigation.

In Section 9 we prove a general duality result. The dual of a sheaf F giving
a point in MP2(r, χ) is FD

= Ext1(F, �2)(1). Applying the map F → FD to a
locally closed subset X in MP2(r, χ) we get a locally closed subset in MP2(r, r−χ)

denoted X D . At Theorem 9.6 we show that under certain conditions X and X D

are isomorphic. In particular, this is true for all sets X under investigation in this
paper. Our theorem is inspired from the result present in [Freiermuth 2000], that
MP2(r, χ) and MP2(r, r−χ) are birational if gcd(r, χ) = 1. We show that this is
also true if (r, χ)= (6, 4), (8, 6), or (9, 6).

We summarize our results in the tables that follow. The first column of each
table, after the header, contains the cohomological conditions defining a locally
closed subset X ⊂ MP2(r, χ). The second shows the codimension of X ; a zero
means an open dense subset. Each sheaf F giving a point in X has a resolution
of the kind featured in the header. We have more information about these resolu-
tions: the morphisms ϕ of which F is the cokernel form a subset Wo inside the
set W ss(G,3) of morphisms which are semistable with respect to a polarization
3 and to the canonical action of the group G of automorphisms (see Section 3 for
the terminology). The third column of our tables contains information about 3
and the forth column says whether X is a quotient of Wo by G. When we write
“good” it is understood that the quotient is not geometric; a question mark means
we could not prove that a quotient exists. The subset Wo ⊂ W ss(G,3) is given by
the following conditions: for all the blocks different than the last block in the table
we require that ϕ be injective and that its scalar entries (regarding it as a matrix)
are zero. For the last block we refer to Claims 6.9 and 6.10.

MP2(n+1, n), n ≥ 1 0 → O(−2)⊕(n−1)O(−1)→ nO → F → 0

h0(F(−1))= 0 0 0< λ1 <
1
n

geometric
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MP2(n+2, n), n = 3, 4, 5, 6 0 → 2O(−2)⊕(n−2)O(−1)→ nO → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 0

0 1
2n
< λ1 <

1
n

n = 4, 6: good
n = 3, 5: geometric

0 → 2O(−2)⊕(n−1)O(−1)→ O(−1)⊕nO → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 1

n−1

(λ1, µ1) in the interior of the
triangle with vertices (0, 0),
(α, α), (β, 2β), where
α=1/(n+1), β=1/(n2

−n+2)

n = 3, 5: geometric
n = 4, 6: ?

MP2(4, 2) 0 → 2O(−2)→ 2O → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 0

0 λ1 =
1
2 good

0 → 2O(−2)⊕O(−1)→ O(−1)⊕2O → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 1

1
(λ1, µ1) in the interior of the
quadrilateral with vertices (0, 0),( 1

3 ,
1
3

)
,
( 1

2 , 1
)
, (0, 1)

?

MP2(n+3, n), n = 4, 5, 6 0 → 3O(−2)⊕(n−3)O(−1)→ nO → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 0

0 2
3n
< λ1 <

1
n

n = 4, 5: geometric
n = 6: ?

0 → 3O(−2)⊕(n−2)O(−1)→ O(−1)⊕nO → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 1

n−2 see Claim 4.7
n = 4, 5: geometric
n = 6: ?

MP2(7, 4) 0 → 3O(−2)⊕3O(−1)→ 2O(−1)⊕4O → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 2

6
(λ1, µ1) in the interior of the
quadrilateral with vertices (0, 0),( 1

3 ,
1
2

)
,
( 17

24 , 1
)
, (1, 1)

geometric
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MP2(6, 3) 0 → 3O(−2)→ 3O → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 0

0 λ1 =
1
3 good

0 → 3O(−2)⊕O(−1)→ O(−1)⊕3O → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 1

1
(λ1, µ1) in the interior of the
segment with endpoints

( 1
4 ,

1
4

)
,( 1

5 ,
2
5

) ?

0 → 3O(−2)⊕2O(−1)→ 2O(−1)⊕3O → F → 0

h0(F(−1))= 0
h1(F)= 0
h1(F⊗�1(1))= 2

4
(λ1, µ1) in the interior of the
triangle with vertices (0, 0),( 1

5 ,
1
5

)
,
( 1

3 ,
1
2

) ?

0 → O(−3)⊕3O(−1)→ 4O → F → 0

h0(F(−1))= 0
h1(F)= 1

4 0< λ1 <
1
4 geometric

0 → 4O(−2)→ 3O(−1)⊕O(1)→ F → 0

h0(F(−1))= 1
h1(F)= 0

4 0< µ2 <
1
4 geometric

MP2(4, 1) 0 → O(−3)⊕O(−1)→ 2O → F → 0

h0(F(−1))= 0
h1(F)= 1

2 0< λ1 <
1
2 geometric

MP2(5, 2) 0 → O(−3)⊕2O(−1)→ 3O → F → 0

h0(F(−1))= 0
h1(F)= 1

3 0< λ1 <
1
3 geometric

MP2(n, 2), 4 ≤ n ≤ 15 0 → O(−2)→ (n−2)O(−2)⊕3O(−1)
→ (n−3)O(−1)⊕3O → F → 0

h0(F(−1))= 1
h1(F)= 0

n−2

(λ1, µ1) in the interior of the
triangle with vertices (0, 0),(1

n
,

1
n

)
,
( 1

n−2
,

1
n−3

) 3 - n: geometric
3 | n: ?
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By virtue of our duality results Theorem 9.6 and Proposition 9.10, for each
block in the table there is a “dual block” obtained by replacing MP2(r, χ) with
MP2(r, r−χ), F with FD and ϕ with Hom(ϕ,�2)(1). We did not feel the need to
include another “dual” table, instead we only spell out in Corollary 9.11 the cases
of open dense subsets.

As a general remark, the kind of arguments from this paper become very hard to
carry out in the case of large multiplicity. This is so because, when the multiplicity
becomes large, other than semistability conditions on ϕ enter into play. Thus,
for large multiplicity, Drézet and Trautmann’s notion of semistability is no longer
satisfactory.

2. Semistable sheaves and their moduli

From now on k will be an algebraically closed field of characteristic zero. All
schemes over k will be assumed to be algebraic, meaning that they can be covered
with finitely many spectra of finitely generated k-algebras. A separated algebraic
scheme will also be called an algebraic variety. A variety will be the maximal
spectrum of a reduced algebraic variety. Our main reference for this section is
[Huybrechts and Lehn 1997].

Let X be a smooth projective variety of dimension n with ample line bundle
OX (1). For a coherent sheaf F on X we denote by χ(F) its Euler characteristic
given by

χ(F)=

∑
i≥0

(−1)i dimk H i (X,F).

The Euler characteristic of the twisted sheaf F(m) = F ⊗ OX (m) is a polynomial
expression in m. Thus, we can define the Hilbert polynomial PF(m) of F by the
formula

PF(m)= χ(F(m)).

It is known that the degree of PF(m) equals the dimension of the topological sup-
port supp(F) of F. We write

PF(m)=

d∑
i=0

αi (F)
mi

i !
.

The coefficients αi (F) are integers, see [Huybrechts and Lehn 1997]. The domi-
nant coefficient αd(F) is called the multiplicity of F and is positive because, by the
Theorem B of Serre, for m large enough we have PF(m)=dimk H 0(X,F(m)) > 0.
It is known that αd(F) equals the degree of the scheme Supp(F)which has supp(F)
as underlying topological space and OX/Ann(F) as structure sheaf. We define the
reduced Hilbert polynomial of F as
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pF =
PF

αd(F)
.

Definition 2.1. Let F be a coherent sheaf on X . Assume that Supp(F) is pure
dimensional of dimension d. We say that F is semistable (stable) if the following
two conditions are satisfied:

(i) F does not have nonzero subsheaves F′ with Supp(F′) having dimension
smaller than d;

(ii) for any proper subsheaf F′
⊂ F we have

pF′ ≤ (<)pF

meaning that for m sufficiently large the following inequality holds:

pF′(m)≤ (<)pF(m).

Remark 2.2. We will be interested in semistable sheaves on P2 with linear Hilbert
polynomial PF(m)= rm +χ . Such sheaves are supported on projective curves C
and the conditions from the above definition take the form:

(i) F does not have zero-dimensional torsion;

(ii) for any proper subsheaf F′
⊂ F we have

α0(F
′)

α1(F′)
(≤) <

α0(F)

α1(F)
.

We point out that F is a torsion OP2-module because at every point x there is a
nonzero germ of Ox vanishing on the support of F, hence annulating Fx . The
zero-dimensional torsion of a sheaf is its largest subsheaf supported on finitely
many points.

The positive integer r is the so-called multiplicity of F while χ is its Euler
characteristic. The restriction of F to a generic line in P2 is a sheaf of length r
supported at finitely many points; r is also equal to the degree of C . Here are more
facts about such sheaves (compare [Freiermuth 2000, Theorem 3.1]):

Proposition 2.3. Let F be a semistable sheaf on Pn with Hilbert polynomial
PF(m)= rm +χ, 0 ≤ χ < r . Let C be its support. Then:

(i) F is Cohen–Macaulay;

(ii) F is locally free on the smooth part of C ;

(iii) C has no zero-dimensional components and no embedded points;

(iv) if gcd(r, χ)= 1 then F is stable;

(v) if h0(F(−1))= 0 then h1(F(i))= 0 for i ≥ r −χ − 1.
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As a generic plane curve is smooth, we see that a generic F from Proposition 2.3
is a line bundle supported on a smooth curve of degree r . Its degree can be com-
puted with the Riemann–Roch formula: deg(F)= g(C)− 1 +χ =

1
2r(r − 3)+χ .

Line bundles supported on smooth curves are clearly stable because their quotient
sheaves are supported on finitely many points, hence their proper subsheaves have
the same multiplicity but strictly smaller Euler characteristic. Other, well-known,
examples of stable sheaves with one-dimensional support are the structure sheaves
OC , where C is any curve in P2 given as the zero-set of a polynomial of degree r .
We can see this using, for instance, Lemma 6.7: any ideal sheaf I ⊂ OC has Hilbert
polynomial

POC (t)− POC ′ (t)− a = r t −
r(r − 3)

2
− r ′t +

r ′(r ′
− 3)

2
− a,

where a ≥ 0 and r ′ < r are integers. Thus

α0(I)

α1(I)
=

−r − r ′
+ 3

2
−

a
r − r ′

<
−r + 3

2
=
α0(OC)

α1(OC)
.

Definition 2.4. Let F be a semistable sheaf on X . A Jordan–Hölder filtration of
F is a filtration by subsheaves

0 = F0 $ F1 $ . . .$ Fr = F

such that all quotients Fi/Fi−1 are stable with reduced Hilbert polynomial pF.
Two semistable sheaves F and G on X are said to be stable equivalent if they
posess Jordan–Hölder filtrations with isomorphic quotients. By this we mean the
following: there is a bijection between the set of quotients of the filtration of F

and the set of quotients of the filtration of G such that the quotients corresponding
via this bijection are isomorphic.

In the case of stable sheaves, stable equivalence means isomorphism. Any
semistable sheaf F has at least one Jordan–Hölder filtration. F may have more
than one filtration, but the direct sum ⊕Fi/Fi−1 does not depend on the filtration.

The moduli space of semistable sheaves on X parametrizes stable equivalence
classes with fixed Hilbert polynomial. It is a coarse moduli space for a certain
moduli problem that can be defined by means of the following functor: Fix a
numerical polynomial P(m), i.e., a polynomial with rational coefficients taking
integer values on the integers. For any scheme S over k we define MX (P)(S) as
the set of equivalence classes [F] of S-flat coherent sheaves F on S × X whose
restriction Fs to any fiber π−1(s) is a semistable sheaf with Hilbert polynomial P .
Here π : S × X → S is the projection onto the first factor. Two sheaves F and G

on S × X are said to be equivalent if there is a line bundle L on S such that F is
isomorphic to G⊗π∗L. Given a morphism f : T → S of schemes over k we have
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a map
MX (P)( f ) : MX (P)(S)→ MX (P)(T )

given by the pull-back

MX (P)( f )([F])= [( f × 1)∗F].

We have thus defined a countervariant functor MX (P) from the category of schemes
over k to the category of sets.

Definition 2.5. A scheme M over k is called a coarse moduli space of semistable
sheaves on X with Hilbert polynomial P if there is a natural transformation of
functors

MX (P)( )
τ

→ Mor( ,M)

satisfying the following properties:

(i) the map

τ(Spec k) : MX (P)(Spec k)→ Mor(Spec k,M)

is a bijection. In other words the set of closed points of M is in a one-to-
one correspondence with the set of stable equivalence classes of semistable
sheaves on X with Hilbert polynomial P;

(ii) given a scheme N and a natural transformation

MX (P)( )
τ ′

→ Mor( ,N)

there is a unique morphism f : M→N such that f ◦ τ(S)= τ ′(S) for all S.

Theorem 2.6. Let X be a smooth projective variety with ample line bundle OX (1).
Let P be a numerical polynomial. Then:

(i) there exists a coarse moduli space MX (P) of semistable sheaves on X with
Hilbert polynomial P;

(ii) MX (P) is a projective scheme;

(iii) there is an open subscheme Ms
X (P) of MX (P) whose closed points parame-

trize the isomorphism classes of stable sheaves with Hilbert polynomial P.

The theorem in its full generality was proved in [Simpson 1994a]. We recall the
way MX (P) is constructed: For a suitably large integer m let V be a vector space
of dimension P(m). We consider the quotient scheme

Q = Quot(X, V ⊗ OX (−m), P)

of coherent sheaves F on X with Hilbert polynomial P which occur as quotients
V ⊗ OX (−m) � F. The reductive group SL(V ) acts on Q by its action on the
first component of V ⊗ OX (−m). Inside Q there is the open and SL(V )-invariant
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subset R of semistable points. Semistability here is meant in the sense of geometric
invariant theory, which also guarantees the existence of a categorical quotient (see
Definition 7.1) of R by SL(V ). This quotient is the moduli space MX (P).

We now turn to the question under which circumstances the moduli space of
stable sheaves Ms

X (P) is fine. Fine moduli spaces represent certain functors, so
we define the countervariant functor Ms

X (P) from the category of schemes over k
to the category of sets in the same way as MX (P) was defined, with the difference
that we now require each restriction Fs to be stable.

Definition 2.7. We say that Ms
X (P) is a fine moduli space of stable sheaves on X

with Hilbert polynomial P if the natural transformation

Ms
X (P)( )

τ s

→ Mor( ,Ms
X (P))

induced by τ is an isomorphism of functors. If this is true, let U be the sheaf on
Ms

X × X whose class [U] ∈ Ms
X (P)(M

s
X (P)) corresponds under τ to the identity

map of Ms
X (P). We say that U is a universal family on Ms

X (P).

Remark 2.8. The inverse of τ s(S) for a scheme S is given by τ s(S)−1( f )=[ f ∗U].
In fact, Ms

X (P) is a fine moduli space if and only if there exists a coherent sheaf
U on Ms

X (P)× X such that:

(i) U is flat over Ms
X (P);

(ii) for any point [F] ∈ Ms
X (P) the restriction of U to the fiber [F]× X is isomor-

phic to F;

(iii) U has the following universality property: for any scheme S over k and any S-
flat coherent family F of semistable sheaves on S×X with Hilbert polynomial
P , there exists a unique morphism f : S → Ms

X (P) such that F ' f ∗U⊗π∗L

for some line bundle L on S.

Theorem 2.9. Consider the numerical polynomial

P(m)=

d∑
i=0

αi

(
m + i − 1

i

)
.

Assume that gcd(α0, . . . , αd) = 1. Then Ms
Pn (P) is a fine moduli space for any

n ≥ d.

We refer to [Huybrechts and Lehn 1997] for the proof of this theorem. In this pa-
per we will focus on moduli spaces of sheaves on P2 with linear Hilbert polynomial
PF(m)= rm +χ . To bring us closer to the notations from [Le Potier 1993], where
such moduli spaces were systematically studied, we also write MPn (r, χ) instead
of MPn (rm + χ), respectively Ms

Pn (r, χ) instead of Ms
Pn (rm + χ). Combining

Theorem 2.9 with Proposition 2.3(iv) we obtain:
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Proposition 2.10. Assume that gcd(r, χ)= 1. Then MPn (r, χ)=Ms
Pn (r, χ) is a fine

moduli space.

From theorem 3.19(2) in [Le Potier 1993] we learn that Ms
P2(r, χ) is not a fine

moduli space in the case when r and χ are not mutually prime. We quote the
precise statement (which is stronger):

Theorem 2.11. If r and χ are not mutually prime, then for any open subset
U ⊂MP2(r, χ) there is no universal sheaf on U × P2.

As the spaces MP2(r, χ) and MP2(r, r + χ) are isomorphic, we will assume
henceforth that 0<χ ≤ r . Theorem 3.1 and Proposition 2.3 from [Le Potier 1993]
yield the following:

Theorem 2.12. For any integers r ≥ 1 and χ the moduli space MP2(r, χ) is ir-
reducible, of dimension r2

+ 1 and smooth on the open dense set represented by
stable sheaves.

We finish this section with an easy observation about subsets of moduli spaces:

Remark 2.13. Let E be a locally free sheaf on X . For any integers i, j ≥ 0 the
subset of MX (P) of stable equivalence classes of sheaves F with hi (X,F⊗E)≥ j
is a closed algebraic subset.

Proof. Using the notations preceeding Definition 2.7, we consider the universal
quotient V ⊗OX (−m)� F̃ on Q× X . The sheaf F̃�E is flat over Q so, according
to the semicontinuity theorem, the set Y of equivalence classes of quotients V ⊗

OX (−m) � F with hi (X,F ⊗ E) ≥ j is a closed algebraic subset in Q. Notice
that Y is SL(V )-invariant so, by virtue of property (iv) (Definition 7.2), its image
under the good quotient map R → MX (P) is closed. This image is precisely the
subset from the remark.

If MX (P) is a fine moduli space, then the remark follows directly from the
semicontinuity theorem applied to U � E. �

3. Semistable morphisms of sheaves

Given coherent sheaves E and F on Pn the affine space W =Hom(E,F) is acted
upon by the algebraic group G = Aut E × Aut F/k∗. Here k∗ is embedded as the
group of homotheties {(t · 1E, t · 1F), t ∈ k∗

}. The action is given by (g, h).w =

h ◦w◦g−1. If G is reductive then geometric invariant theory distinguishes an open
subset W ss

⊂ W of so-called semistable morphisms and constructs a categorical
quotient W ss//G. Our difficulty is that in general G is not reductive. A notion of
semistability in the context of nonreductive groups has been studied in [Drézet and
Trautmann 2003] and its usefulness has been made clear in [Drézet 2000].
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This section introduces Drézet and Trautmann’s notion of semistability and is
mainly a reproduction of notations from [Drézet and Trautmann 2003]. Fix sheaves

E = ⊕1≤i≤r Mi ⊗ Ei , F = ⊕1≤l≤s Nl ⊗ Fl

where Mi , Nl are vector spaces over k of dimensions mi , nl while Ei , Fl are
simple sheaves on Pn , meaning that their only endomorphisms are homotheties.
For our purposes Ei and Fl will be line bundles. We assume that Hom(Ei ,E j )= 0
when i > j and Hom(Fl,Fm)= 0 when l > m. We denote

Hli = Hom(Ei ,Fl),

A j i = Hom(Ei ,E j ),

Bml = Hom(Fl,Fm).

The group G consists of pairs of matrices (g, h),

g =


g1 0 · · · · · · 0
u21 g2 · · · · · · 0
...

. . .
...

...
. . .

...

ur1 · · · ur,r−1 gr

 , h =


h1 0 · · · · · · 0
v21 h2 · · · · · · 0
...

. . .
...

...
. . .

...

vs1 · · · vs,s−1 hs


with

gi ∈GL(Mi ), hl ∈GL(Nl), u j i ∈Hom(Mi ,M j⊗A j i ), vml ∈Hom(Nl,Nm⊗Bml).

The conditions ui j = 0 and vml = 0 define a reductive subgroup Gred inside G.
For fixed positive integers λi , µl we consider the character χ of G given by

χ(g, h)=

∏
1≤i≤r

det(gi )
−λi ·

∏
1≤l≤s

det(hl)
µl .

Since χ must be trivial on the subgroup of homotheties k∗, we impose the relation∑
1≤i≤r

miλi =

∑
1≤l≤s

nlµl

and we denote by d this sum. We will call a polarization the tuple

3= (λ1, . . . , λr , µ1, . . . , µs).

Definition 3.1. Let 3 be a fixed polarization. A point w ∈ W is called:

(i) semistable with respect to Gred and 3 if there are n ≥ 1 and a polynomial
f ∈ k[W ] satisfying f (g.x)= χn(g) f (x) for all g ∈ Gred , x ∈ W , such that
f (w) 6= 0;
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(ii) stable with respect to Gred and 3 if StabGred (w) is zero-dimensional and
there is f as above but with the additional property that the action of Gred on
W f = {x ∈ W, f (x) 6= 0} is closed;

(iii) properly semistable if it is semistable but not stable.

The question is now how to define semistability with respect to G. The key
is the following observation from geometric invariant theory: let T be a maximal
torus inside a reductive algebraic group which acts on a projective variety. Then a
point on the variety is semistable if and only if all points in its orbit are semistable
with respect to T . In our context the subgroup of diagonal matrices is a maximal
torus inside both Gred and G. This justifies the following:

Definition 3.2. A point w ∈ W is called (semi)stable with respect to G and 3
if g.w is (semi)stable with respect to Gred and 3 for all g ∈ G. We denote by
W ss(G,3), W s(G,3) the corresponding sets.

To describe the sets of semistable points in concrete situations we will use a
very special case of King’s criterion of semistability as formulated in [Drézet and
Trautmann 2003]. Write

E = ⊕ j E′

j , F = ⊕m F′

m

where E′

j , F′
m are line bundles. We represent w by a matrix (wmj ) with wmj ∈

Hom(E′

j ,F′
m). We put

λ′

j = λi if E′

j ' Ei , µ′

m = µl if F′

m ' Fl .

Proposition 3.3. A morphism w ∈ W is (semi)stable with respect to G and 3 if
and only if for all g ∈ G and for any zero submatrix ((g.w)m, j )m∈M, j∈J we have∑

m∈M

µ′

m(≤) <
∑
j /∈J

λ′

j .

For convenience we replace each λi with λi/d and each µl with µl/d . Thus our
polarization 3 will be a tuple of rational numbers satisfying

(3.4)
r∑

i=1

miλi = 1 =

s∑
l=1

nlµl .

The set of polarizations can be realized as an open subset of the Euclidean space
of dimension r + s − 2.
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4. Sheaves F with h0(F(−1)) = 0 and h1(F) = 0

The main technical tool that we will use in this paper is the Beilinson complex.
Given a coherent sheaf F on P2 there is a sequence of sheaves

0 → C−2
→ C−1

→ C0
→ C1

→ C2
→ 0

that is exact except in the middle where the cohomology is F. The sheaves Ci are
given by

C−2
= H 0(F ⊗�2(2))⊗ O(−2),

C−1
= H 0(F ⊗�1(1))⊗ O(−1)⊕ H 1(F ⊗�2(2))⊗ O(−2),

C0
= H 0(F)⊗ O ⊕ H 1(F ⊗�1(1))⊗ O(−1)⊕ H 2(F ⊗�2(2))⊗ O(−2),

C1
= H 1(F)⊗ O ⊕ H 2(F ⊗�1(1))⊗ O(−1),

C2
= H 2(F)⊗ O.

The sheaves F we are interested in are supported on curves, so

H 2(F)= 0, H 2(F ⊗�1(1))= 0, H 2(F ⊗�2(2))= 0.

Also, on P2 we have �2(2) = O(−1). The Beilinson sequence that we will use
takes the form

(4.1) 0 → C−2
→ C−1

→ C0
→ C1

→ 0

where

C−2
= H 0(F(−1))⊗ O(−2),

C−1
= H 0(F ⊗�1(1))⊗ O(−1)⊕ H 1(F(−1))⊗ O(−2),

C0
= H 0(F)⊗ O ⊕ H 1(F ⊗�1(1))⊗ O(−1),

C1
= H 1(F)⊗ O.

The morphisms

H 0(F(−1))⊗ O(−2)→ H 1(F(−1))⊗ O(−2),

H 0(F ⊗�1(1))⊗ O(−1)→ H 1(F ⊗�1(1))⊗ O(−1),

H 0(F)⊗ O → H 1(F)⊗ O

from above are all zero. Indeed, each of these morphisms can be represented by a
matrix with scalar entries. Performing Gaussian elimination on these matrices we
arrive at a complex like (4.1) in which the cohomology vector spaces get replaced
by subspaces. Using standard methods in cohomology theory we can show that the
dimension of each of these subspaces equals the dimension of the corresponding
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cohomology space. In other words no Gaussian elimination was performed; the
matrices were zero to begin with.

Apart from the question of the semistability of the morphism ϕ, the resolutions
of generic sheaves giving points in MP2(r, χ) appeared first in [Freiermuth 2000].
For the sake of completeness we have included the really simple arguments here
without quoting every time the above work.

Claim 4.2. Let F be a sheaf on P2 with h0(F(−1))=0. Let n ≥2 be an integer and
assume that F has Hilbert polynomial PF(t)= (n + 1)t + n. Then F is semistable
if and only if it has a resolution

0 → O(−2)⊕ (n − 1)O(−1)
ϕ
→ nO → F → 0

with ϕ not equivalent to a matrix of the form[
? ψ

? 0

]
where ψ : mO(−1)→ mO, 1 ≤ m ≤ n − 1.

Equivalently, F is semistable if and only if it has a resolution as above with ϕ
semistable with respect to 3. Here 3= (λ1, λ2, µ1) is any polarization satisfying
0< λ1 < 1/n.

Proof. We have h0(F(−1))= 0, h1(F(−1))= 1, h0(F)= n, h1(F)= 0 because
of Proposition 2.3. Thus (4.1) gives the following resolution with ϕ12 = 0:

0 → O(−2)⊕ (m + n − 1)O(−1)
ϕ
→ mO(−1)⊕ nO → F → 0.

Here m is an integer and, since ϕ is injective, we can only have m = 0 or m = 1.
Assume that F is semistable. Then m 6= 1, otherwise F would have a subsheaf

F′ with resolution

0 → nO(−1)→ nO → F′
→ 0.

We have PF′(t)= nt +n, hence such a subsheaf would destabilize F. Thus far we
have obtained a resolution

0 → O(−2)⊕ (n − 1)O(−1)
ϕ
→ nO → F → 0.

We mention that this resolution was first obtained in [Maican 2000] and it is also
present in [Freiermuth 2000]. The matrix ϕ cannot be equivalent to a matrix of the
form [

? ψ

ϕ21 0

]



84 MARIO MAICAN

otherwise we would get an exact commutative diagram in which F′ is a destabi-
lizing subsheaf of F.

0

��

0

��
0 // mO(−1)

ψ //[
0
Im

]
��

mO //[
Im
0

]
��

F′ // 0

0 // O(−2)⊕ (n − 1)O(−1)
ϕ //

[I, 0]
��

nO //

[0, I ]
��

F // 0

0 // O(−2)⊕ (n − m − 1)O(−1)
ϕ21 //

��

(n − m)O

��
0 0

Conversely, we assume that F has a resolution as in the statement of the claim, and
we try to show that the conditions from Remark 2.2 are satisfied. At every point x
in the support of F we have

depthx F = 2 − pdx F ≥ 1,

showing that F does not have zero-dimensional torsion. Assume now that F has a
subsheaf F′ which contradicts Remark 2.2(ii), in other words which satisfies

α0(F
′)

α1(F′)
>

n
n + 1

.

The multiplicity m =α1(F
′) cannot exceed the multiplicity of F. Thus α0(F

′)≥m.
Since h0(F′(−1))≤ h0(F(−1))= 0 we have

PF′(−1)= −h1(F′(−1))≤ 0,

forcing α0(F
′) ≤ m. So far we have obtained PF′(t) = mt + m for some integer

1 ≤ m ≤ n. Now notice that F is generated by global sections, so we must have
h0(F′)≤ n − 1, forcing m ≤ n − 1. We have

h0(F′(−2))= 0, h1(F′(−2))= m, h0(F′(−1))= 0, h1(F′(−1))= 0.

The Beilinson sequence of F′(−1) gives a resolution

0 → mO(−2)→ mO(−1)→ F′(−1)→ 0.

This yields a commutative diagram
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0 // mO(−1)
ψ //

β

��

mO //

α

��

F′ //

��

0

0 // O(−2)⊕ (n − 1)O(−1)
ϕ // nO // F // 0

.

The map α is injective because it is injective on the level of global sections. Hence
also β is injective. It is clear now that ϕ is equivalent to a matrix of the form[

? ψ

? 0

]
.

This contradicts the hypothesis and finishes the proof of the first part of the claim.
The second part of the claim follows from Proposition 3.3. Namely, King’s

criterion says that ϕ is semistable with respect to 3 if and only if whenever

ϕ ∼

[
? ψ

? 0

]
with ψ : pO(−2)⊕ qO(−1)→ mO

we have mµ1 ≥ pλ1 + qλ2. Thus, we need to find 3 satisfying the conditions

mµ1 < pλ1 + qλ2 if and only if q ≥ m.

Here 0 ≤ m ≤ n, 0 ≤ p ≤ 1, 0 ≤ q ≤ n − 1. These conditions are the same as

mµ1 < mλ2 for 1 ≤ m ≤ n − 1,

mµ1 ≥ λ1 + (m − 1)λ2 for 1 ≤ m ≤ n.

Using relations (3.4)

µ1 =
1
n
, λ2 =

1 − λ1

n − 1
,

we arrive at the conditions

λ1 <
1
n
,

n − m
n(n − 1)

≥ λ1
n − m
n − 1

.

The conditions on λ1 are precisely those of the claim. �

Claim 4.3. Let F be a sheaf on P2
= P(V ) with h0(F(−1))= h1(F)= 0. Assume

that F has Hilbert polynomial P(t)= (n +2)t +n where n ∈ {3, 4, 5, 6}. Then F

is semistable if and only if it has a resolution

(i) 0 → 2O(−2)⊕ (n − 2)O(−1)
ϕ
→ nO → F → 0

with ϕ not equivalent to a matrix of the form[
? ψ

? 0

]
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where ψ : mO(−1) → mO, 1 ≤ m ≤ n − 2 or ψ : O(−2)⊕ (m − 1)O(−1) →

mO, n/2< m ≤ n − 1, or it has a resolution

(ii) 0 → 2O(−2)⊕ (n − 1)O(−1)
ϕ
→ O(−1)⊕ nO → F → 0

whith ϕ11 having linearly independent entries, ϕ12 = 0, ϕ21 6= 0 and ϕ22 not equiv-
alent to a matrix of the form [

? ψ

? 0

]
where ψ : mO(−1)→ mO, 1 ≤ m ≤ n − 1.

The maps ϕ occuring in (i) are precisely those maps ϕ∈ W ss(G,3)with nonzero
determinant. Here 3 = (λ1, λ2, µ1) is any polarization satisfying 1/(2n) ≤ λ1 <

1/n.
The maps ϕ occuring in (ii) are precisely those maps ϕ ∈ W ss(G,3) with

det(ϕ) 6= 0 and ϕ12 = 0. Here 3 = (λ1, λ2, µ1, µ2) is any polarization for which
the pair (λ1, µ1) is in the interior of the triangle with vertices

(0, 0),
(

1
n + 1

,
1

n + 1

)
,

(
1

n2 − n + 2
,

2
n2 − n + 2

)
.

When n ≥ 7 solely the “only if” part of the above statement is true. Thus, all we
can say in the case n ≥ 7, is that each semistable sheaf F occurs as the cokernel
of a semistable ϕ, but there are semistable morphisms ϕ whose cokernel is not a
semistable sheaf.

Proof. One direction is clear, cf. the proof of Claim 4.2. Conversely, suppose
that F′

⊂ F is a destabilizing subsheaf. Arguing as in Claim 4.2 we see that the
Hilbert polynomial of F′ is either mt + m with 1 ≤ m ≤ n or (m + 1)t + m with
n/2 < m ≤ n. In the case PF′(t) = mt + m we deduce that ϕ is equivalent to a
matrix of the form [

? ψ

? 0

]
where ψ : mO(−1)→ mO. Assume now that PF′(t) = (m + 1)t + m with n/2 <
m ≤ n. We have

h0(F′(−1))= 0, h1(F′(−1))= 1, h0(F′(−2))= 0, h1(F′(−2))= m + 2.

From �1
⊂ 3O(−1) and h0(F′(−1)) = 0 we get h0(F′

⊗�1) = 0. The Beilinson
sequence of F′(−1), which has F′(−1) as middle cohomology, takes the form

0 → (m + 2)O(−2)→ (m + 3)O(−1)
η

→ O → 0.

Since η is surjective it must be equivalent to a matrix of the form

(X, Y, Z , 0, . . . , 0).
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So far we have arrived at the following resolution of F′:

0 → (m + 2)O(−1)→�1(1)⊕ mO → F′
→ 0.

From this we get h1(F′)= 0, h0(F′)= m. Writing

p = h1(F′
⊗�1(1)),

the sequence (4.1) gives the resolution

0 → O(−2)⊕ (m + p − 1)O(−1)
ψ
→ pO(−1)⊕ mO → F′

→ 0,

with ψ12 = 0. From the injectivity of ψ we see that we can only have p = 0 or
p = 1. In the latter case F′ has a subsheaf F′′ with resolution

0 → mO(−1)→ mO → F′′
→ 0.

This situation has been examined before. Thus we arrive at the resolution

0 → O(−2)⊕ (m − 1)O(−1)
ψ
→ mO → F′

→ 0.

We get the following exact commutative diagrams in case (i)

0 // O(−2)⊕ (m − 1)O(−1)
ψ //

β

��

mO //

α

��

F′ //

��

0

0 // 2O(−2)⊕ (n − 2)O(−1)
ϕ // nO // F // 0

,

and in case (ii)

0 // O(−2)⊕ (m − 1)O(−1)
ψ //

β

��

mO //

α

��

F′ //

��

0

0 // 2O(−2)⊕ (n − 1)O(−1)
ϕ // O(−1)⊕ nO // F // 0

.

The map α is injective because it is injective on global sections. It follows that
β is also injective. If β11 6= 0, which can happen only in case (i), we get the
contradiction

ϕ ∼

[
? ψ

? 0

]
.

In case (ii) we have ϕ11β11 = α11ψ11 = 0, forcing β11 = 0 because, by hypothesis,
the entries of ϕ11 are linearly independent. Assume from now on that β11 = 0. The
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case

[
β21 β22

]
∼



X 0 · · · 0
Y 0 · · · 0
Z 0 · · · 0
0 1 · · · 0
...
...
. . .

...

0 0 · · · 1
0 0 · · · 0
...
...

...

0 0 · · · 0


leads to n−1 ≥ 3+m−1, so n ≥ 3+m> 3+n/2, which contradicts the hypothesis
n ≤ 6. The case

[
β21 β22

]
∼



X 0 · · · 0
0 1 · · · 0
...
...
. . .

...

0 0 · · · 1
0 0 · · · 0
...
...

...

0 0 · · · 0


is excluded from the fact that Coker(β), as a subsheaf of the torsion-free sheaf
Coker(α), must be torsion-free. We are left with the case

[
β21 β22

]
∼


X 0 · · · 0
Y 0 · · · 0
0 1 · · · 0
...
...
. . .

...

0 0 · · · 1

 ,

which yields

ϕ ∼

[
? ψ ′

? 0

]
with ψ ′ an (m +1)× (m +1)-matrix with entries in V ∗. This again contradicts the
hypothesis and shows that F is semistable.

The part of the claim concerning the semistability of ϕ follows from Proposition
3.3. Namely, in case (i), we are looking for 3 satisfying
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mµ1 < mλ2 for 1 ≤ m ≤ n − 2,

mµ1 < λ1 + (m − 1)λ2 for n/2< m ≤ n − 1,

mµ1 ≥ (m − 1)λ2 for n/2< m ≤ n − 1,

mµ1 ≥ λ1 + (m − 1)λ2 for 1 ≤ m ≤ n/2,

mµ1 ≥ 2λ1 + (m − 2)λ2 for 2 ≤ m ≤ n.

Using relations (3.4) the above conditions become 1/(2n) ≤ λ1 < 1/n. Similarly,
in case (ii), we need to find 3 satisfying the conditions

µ1 < 2λ1,

mµ2 < mλ2 for 1 ≤ m ≤ n − 1,

µ1 > λ1,

mµ2 ≥ (m − 1)λ2 for 1 ≤ m ≤ n,

µ1 + mµ2 < λ1 + mλ2 for 1 ≤ m ≤ n − 1,

µ1 + mµ2 ≥ 2λ1 + (m − 1)λ2 for 1 ≤ m ≤ n.

Using (3.4) the above conditions can be translated into the conditition that (λ1, µ1)

is in the interior of a triangle as in the statement of the claim. �

Observation 4.4. If n ≥ 7 then the situation

[
β21 β22

]
∼ β0 =



X 0 · · · 0
Y 0 · · · 0
Z 0 · · · 0
0 1 · · · 0
...
...
. . .

...

0 0 · · · 1
0 0 · · · 0
...
...

...

0 0 · · · 0


is feasible. Thus, to ensure the semistability of F, we would have to exclude, say
in case (i), matrices of the form ? ? ψ ′′

? ψ ′ 0
? 0 0

 with ψ ′
∼

 Y X 0
Z 0 X
0 −Z Y


and ψ ′′ an m × (m − 1)-matrix with entries in V ∗. From Proposition 3.3 we see
that such conditions cannot be formulated in terms of semistability, so they are
beyond the interest of this paper. Indeed, according to Proposition 3.3, semistability
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conditions on a matrix specify that the matrix should not, up to equivalence, have
certain zero submatrices.

Claim 4.5. Let F be a sheaf on P2
= P(V ) with h0(F(−1))= h1(F)= 0. Assume

that F has Hilbert polynomial P(t)= 4t + 2. Then F is semistable if and only if it
has a resolution

(i) 0 → 2O(−2)→ 2O → F → 0

or it has a resolution

(ii) 0 → 2O(−2)⊕ O(−1)
ϕ
→ O(−1)⊕ 2O → F → 0

with

ϕ =

 X1 X2 0
? ? Y1

? ? Y2

 ,
where X1, X2 ∈ V ∗ are linearly independent one-forms and, likewise, Y1, Y2 ∈

V ∗ are linearly independent. These morphisms are precisely the morphisms ϕ ∈

W ss(G,3) with nonzero determinant and ϕ12 = 0. Here

3= (λ1, λ2, µ1, µ2)

is any polarization for which the pair (λ1, µ1) belongs to the interior of the quadri-
lateral with vertices

(0 , 0),
( 1

3 ,
1
3

)
,

( 1
2 , 1

)
, (0 , 1).

Proof. For the first part of the claim the proof is the same as the proof of Claim
4.3 so we omit it. For the part of the claim concerning the semistability of ϕ we
arrive at the following conditions on 3:

µ1 > λ1 and µ2 < λ2 which is the same as µ1 > 4λ1 − 1.

They describe the quadrilateral from the claim. �

In the remaining part of this section we will be concerned with sheaves F on P2

having Hilbert polynomial P(t)= (n+3)t +n, n ≥ 3, and satisfying h0(F(−1))=
0, h1(F)= 0. Such a sheaf F has one of the following resolutions:

(i) 0 → 3O(−2)⊕ (n − 3)O(−1)
ϕ
→ nO → F → 0,

(ii) 0 → 3O(−2)⊕ (n − 2)O(−1)
ϕ
→ O(−1)⊕ nO → F → 0,

(iii) 0 → 3O(−2)⊕ (n − 1)O(−1)
ϕ
→ 2O(−1)⊕ nO → F → 0,

with ϕ12 = 0 in cases (ii) and (iii).
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Claim 4.6. Let F be a sheaf with resolution (i) and 3 ≤ n ≤ 6. Then F is semistable
if and only if ϕ is not equivalent to a matrix of the form[

? ψ

? 0

]
where

ψ : mO(−1)→ mO, 1 ≤ m ≤ n − 3, or

ψ : O(−2)⊕ (m − 1)O(−1)→ mO, n/3< m ≤ n − 2, or

ψ : 2O(−2)⊕ (m − 2)O(−1)→ mO, 2n/3< m ≤ n − 1.

Thus, any sheaf F with Hilbert polynomial 6t + 3 and resolution

0 → 3O(−2)
ϕ
→ 3O → F → 0

is semistable. The morphisms ϕ occuring form the open subset of W ss(G,3) given
by the condition det(ϕ) 6= 0. Here 3 is the only admissible polarization, namely
3= (1

3 ,
1
3).

A sheaf F with Hilbert polynomial (n + 3)t + n, n ∈ {4, 5, 6}, and resolution

0 → 3O(−2)⊕ (n − 3)O(−1)
ϕ
→ nO → F → 0

is semistable if and only if ϕ is semistable with respect to any polarization 3 =

(λ1, λ2, µ1) satisfying 2/(3n)≤ λ1 < 1/n.

Proof. One direction is clear. For the other direction suppose that F′
⊂ F is a

destabilizing subsheaf. The Hilbert polynomial of F′ must be one of the following:
mt+m, with 1≤m ≤n, (m+1)t+m with n

3 <m ≤n, (m+2)t+m with 2n
3 <m ≤n.

In the case PF′(t)= mt + m we deduce, as in the proof of Claim 4.2, that

ϕ ∼

[
? ψ

? 0

]
with ψ : mO(−1)→ mO.

In the case PF′(t)= (m + 1)t + m we arrive, as in the proof of Claim 4.3, at

ϕ ∼

[
? ψ

? 0

]
with ψ : O(−2)⊕ (m − 1)O(−1)→ mO or ψ : (m + 1)O(−1)→ (m + 1)O.

Assume now that PF′(t)= (m +2)t +m with 2n
3 <m ≤ n. Since F is generated

by global sections we must have h0(F′)≤ n − 1. Thus

n − 1 ≥ m + h1(F′) >
2n
3

+ h1(F′),
n
3

− 1> h1(F′), forcing h1(F′)= 0.
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The Beilinson sequence (4.1) of F′ gives one of the following resolutions:

0 → 2O(−2)⊕ (m − 2)O(−1)→ mO → F′
→ 0,

0 → 2O(−2)⊕ (m − 1)O(−1)
ψ
→ O(−1)⊕ mO → F′

→ 0,

0 → 2O(−2)⊕ mO(−1)
ψ
→ 2O(−1)⊕ mO → F′

→ 0,

with ψ12 = 0. In the third case F′ has a subsheaf F′′ with resolution

0 → mO(−1)→ mO → F′′
→ 0.

This situation has been examined before. In the first case we get an exact commu-
tative diagram

0 // 2O(−2)⊕ (m − 2)O(−1)
ψ //

β

��

mO //

α

��

F′ //

��

0

0 // 3O(−2)⊕ (n − 3)O(−1)
ϕ // nO // F // 0

with α, β injective. We have m − 2 ≤ n − 3 because β22 is injective. On the other
hand, m ≥ n−1 by hypothesis. Thus β22 is an isomorphism, forcing rank(β11)= 2.
In consequence

ϕ ∼

[
? ψ

? 0

]
.

Finally, assume that F′ has the second resolution. We get the commutative diagram

0 // 2O(−2)⊕ (m − 1)O(−1)
ψ //

β

��

O(−1)⊕ mO //

α

��

F′ //

��

0

0 // 3O(−2)⊕ (n − 3)O(−1)
ϕ // nO // F // 0

The map α12 is injective because α is injective on global sections. We have
ϕ12β22 = α12ψ22. The second map is injective, hence β22 is injective, too. Thus
n − 3 ≥ m − 1, n ≥ m + 2> 2n

3 + 2, n > 6, contradiction.
The rest of the proof is as in Claim 4.3, so it will be omitted. �

Claim 4.7. Let F be a sheaf on P2
= P(V ) with resolution (ii) and 3 ≤ n ≤ 6. Then

F is semistable if and only if the entries of ϕ11 span a subspace of V ∗ of dimension
at least two and ϕ is not equivalent to a matrix of the form[

? ψ

? 0

]
,
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where

ψ : mO(−1)→ mO, 1 ≤ m ≤ n − 2, or

ψ : O(−2)⊕ (m − 1)O(−1)→ mO, n/3< m ≤ n − 1, or

ψ : 2O(−2)⊕ (m − 1)O(−1)→ O(−1)⊕ mO, 2n/3< m ≤ n − 1.

Equivalently, F is semistable if and only if ϕ is semistable with respect to 3. Here
3= (λ1, λ2, µ1, µ2) is a polarization satisfying the property that the pair (λ1, µ1)

(i) is in the interior of the segment with endpoints ( 1
4 ,

1
4) and ( 1

5 ,
2
5), in the case

n = 3;

(ii) is in the interior of the triangle bounded by the lines µ1 = λ1, µ1 = 1 −

4λ1, µ1 = 4λ1 −
1
3 , in the case n = 4;

(iii) is in the interior of the triangle bounded by the lines µ1 = 1 − 5λ1, µ1 =
1
6 , µ1 =

15
4 λ1 −

1
4 , in the case n = 5;

(iv) is in the interior of the segment with endpoints (1
7 ,

1
7) and ( 3

29 ,
5

29), in the case
n = 6.

Proof. The proof is the same as the proof of Claim 4.6 with the only difference
that when n 6= 3 it is possible to have h1(F′)= 1 and PF′(t)= (m + 2)t + m. For
such a sheaf the Beilinson sequence takes the form

0 → 2O(−2)⊕ (p + m − 2)O(−1)
ρ
→ pO(−1)⊕ (m + 1)O

η
→ O → 0.

As η12 = 0 we may assume that η = (X, Y, Z , 0, . . . , 0). Thus p ≥ 3 and F′ has
resolution

0 → 2O(−2)⊕ (p + m − 2)O(−1)→�1
⊕ (p − 3)O(−1)⊕ (m + 1)O → F′

→ 0

from which we get the resolution

0 → O(−3)⊕ 2O(−2)⊕ (p + m − 2)O(−1)
ϕ′

→ 3O(−2)⊕ (p − 3)O(−1)⊕ (m + 1)O → F′
→ 0

with ϕ′

13 = 0 and ϕ′

23 = 0. Since ϕ′ is injective we must have p = 3. But then F′

has a subsheaf F′′ with resolution

0 → (m + 1)O(−1)→ (m + 1)O → F′′
→ 0.

This situation has already been examined. �

Claim 4.8. Let F be a sheaf on P2 with Hilbert polynomial PF(t) = 6t + 3 and
resolution

0 → 3O(−2)⊕ 2O(−1)
ϕ
→ 2O(−1)⊕ 3O → F → 0,
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with ϕ12 = 0. Then F is semistable if and only if

ϕ11 �
[
? ? 0
? ? 0

]
, ϕ11 �

[
? 0 0
? ? ?

]
, ϕ22 �

 ? 0
? 0
? ?

 , ϕ22 �

 0 0
? ?

? ?

 .
Equivalently, F is semistable if and only if ϕ is semistable with respect to3, where
3= (λ1, λ2, µ1, µ2) is any polarization for which (λ1, µ1) is in the interior of the
triangle with vertices (0, 0), ( 1

5 ,
1
5), (

1
3 ,

1
2).

Claim 4.9. Let F be a sheaf on P2 with Hilbert polynomial PF(t) = 7t + 4 and
resolution

0 → 3O(−2)⊕ 3O(−1)→ 2O(−1)⊕ 4O → F → 0,

with ϕ12 = 0. Then F is semistable if and only if ϕ11 satisfies the same conditions
as in Claim 4.8 and, in addition, ϕ22 is not equivalent to a matrix of the form[

? ψ

? 0

]
with ψ : mO(−1)→ mO, m = 1, 2, 3.

Equivalently, F is semistable if and only if ϕ is semistable with respect to3, where
3= (λ1, λ2, µ1, µ2) is any polarization for which (λ1, µ1) is in the interior of the
quadrilateral with vertices (0, 0),

( 1
3 ,

1
2

)
,

( 17
24 , 1

)
, (1, 1).

5. Sheaves F with h0(F(−1)) = 0 and h1(F) = 1

In this section F will be a sheaf on P2 with h0(F(−1))= 0, h1(F)= 1 and Hilbert
polynomial PF(t) = at + b, 0 ≤ b < a. From the Beilinson complex (4.1) we
deduce that F must have one of the following resolutions:

(i) when a ≤ 2b,

0→ (a−b)O(−2)⊕(m+2b−a)O(−1)
ρ
→�1

⊕(m−3)O(−1)⊕(b+1)O→F→0,

(ii) when a > 2b,

0 → (a−b)O(−2)⊕mO(−1)
ρ
→�1

⊕(m+a−2b−3)O(−1)⊕(b+1)O → F → 0,

where m is an integer and ρ12 = ρ22 = 0. Combining these with the exact sequence

0 → O(−3)→ 3O(−2)→�1
→ 0

we get one of the following resolutions for F:

(i) 0 → O(−3)⊕ (a − b)O(−2)⊕ (m + 2b − a)O(−1)
ψ
→ 3O(−2)⊕ (m − 3)O(−1)⊕ (b + 1)O → F → 0,
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(ii) 0 → O(−3)⊕ (a − b)O(−2)⊕ mO(−1)
ψ
→ 3O(−2)⊕ (m + a − 2b − 3)O(−1)⊕ (b + 1)O → F → 0,

where

ψ =


X
Y ψ12 0
Z
0 ρ21 0
0 ρ31 ρ32

 .
Claim 5.1. There are no semistable sheaves F on P2 with h0(F(−1))= 0, h1(F)=

1 and Hilbert polynomial

PF(t)= (n + 1) t + n or PF(t)= (n + 2)t + n, n ≥ 0.

Proof. If a − b = 1 then ψ cannot be injective. If a − b = 2, then we must have
m = 3 in case (i), respectively m = 2b + 3 − a in case (ii). It follows that F has a
subsheaf F′ with resolution

0 → (n + 1)O(−1)
ρ32
→ (n + 1)O → F′

→ 0.

This subsheaf destabilizes F.
If PF(t)= (n+1)t+n, the claim already follows from the fact that h0(F(−1))=

0 implies h1(F)=0; see Proposition 2.3(v). Above we have an alternate argument.1

�

In the remaining part of this section we will assume that F is a semistable sheaf
with Hilbert polynomial PF(t)= (n + 3)t + n, n ≥ 0. We have the resolution

0 → O(−3)⊕3O(−2)⊕(m+n)O(−1)
ψ
→ 3O(−2)⊕mO(−1)⊕(n+1)O → F → 0.

We must have m ≤ 1 to ensure that ψ be injective. But if m = 1 then F has a
destabilizing sheaf F′ as above. Thus m = 0 and we arrive at the resolution

0 → O(−3)⊕ 3O(−2)⊕ nO(−1)
ψ
→ 3O(−2)⊕ (n + 1)O → F → 0.

1The referee pointed out that for any sheaf on P2, semistable or not, with Hilbert polynomial
PF(t)= (n +1)t +n and h0(F(−1))= 0, we must have h1(F)= 0. Indeed, as in the proof of Claim
4.3 with F instead of F′, we have a monad

0 → (n + 2)O(−1)→ (n + 3)O
η
→ O(1)→ 0

with cohomology F. As (n +3)O is generated by global sections, it follows that O(1) is generated by
their images under η. But O(1) cannot be generated by fewer than 3 linearly independent sections.
Thus η is surjective on the level of global sections. We get h1(Ker(η))= 0 and, a fortiori, h1(F)= 0.
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Since ψ is injective we must have rank(ψ12) ≥ 2. If rank(ψ12) = 2 then F has a
destabilizing subsheaf F′ with resolution

0 → O(−2)⊕ nO(−1)→ (n + 1)O → F′
→ 0.

In conclusion rank(ψ12)= 3 and F has the resolution

0 → O(−3)⊕ nO(−1)
ϕ
→ (n + 1)O → F → 0.

If n > 3 some of the semistability conditions on F cannot be translated into
semistability conditions on ϕ because one of the conditions on ϕ would have to be
that there is no commutative exact diagram

(5.2)
0 // O(−2)⊕ (m − 1)O(−1)

ϕ′

//

β

��

mO //

α

��

F′ //

��

0

0 // O(−3)⊕ nO(−1)
ϕ // (n + 1)O // F // 0

with α, β injective and 3m > n. If n > 3 then β may have the form[
0
β0

]
with β0 as in Observation 4.4. In this case the condition ϕβ = αϕ′ cannot be
translated in terms of semistability of ϕ.

Claim 5.3. Let F be a sheaf on P2 with h0(F(−1)) = 0, h1(F) = 1 and Hilbert
polynomial

PF(t)= (n + 3)t + n, n = 1, 2, 3.

Then F is semistable if and only if it has a resolution

0 → O(−3)⊕ nO(−1)
ϕ
→ (n + 1)O → F → 0

with ϕ not equivalent to a matrix of the form[
? ψ

? 0

]
where ψ : mO(−1)→ mO, 1 ≤ m ≤ n.

The morphisms ϕ occuring above are precisely those morphisms semistable with
respect to 3 with nonzero determinant. Here 3 = (λ1, λ2, µ1) is any polarization
satisfying 0 < λ1 < 1/(n + 1). If n > 3 solely the “only if” part of the above
statement remains true.

Proof. One direction follows from the discussion before the claim. Conversely, we
assume that F has a resolution as above and we try to prove that F is semistable.
As in the proof of Claim 4.6, a destabilizing subsheaf F′ of F must have one of
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the following Hilbert polynomials: mt + m with 1 ≤ m ≤ n, (m + 1)t + m with
n
3 <m ≤ n, (m+2)t +m with 2n

3 <m ≤ n. In the first case we get the contradiction

ϕ ∼

[
? ψ

? 0

]
with ψ : mO(−1)→ mO, 1 ≤ m ≤ n.

In the second case we have the exact commutative diagram (5.2) with injective
α and β. Since Coker(β) is torsion-free as a subsheaf of the torsion-free sheaf
Coker(α), and since

β �
[

0
β0

]
, we must have β =

 0
X
Y

 or β =


0 0
X 0
Y 0
0 1

 .
We get

ϕ ∼

[
? ψ

? 0

]
with ψ : (m + 1)O(−1)→ (m + 1)O.

Finally, in the third case, we must have m = n and, as in the proof of Claim 4.6,
an exact commutative diagram

0 // 2O(−2)⊕ (n − 2)O(−1)
ϕ′

//

β

��

nO //

α

��

F′ //

��

0

0 // O(−3)⊕ nO(−1)
ϕ // (n + 1)O // F // 0

or a diagram

0 // 2O(−2)⊕ (n − 1)O(−1)
ϕ′

//

β

��

O(−1)⊕ nO //

α

��

F′ //

��

0

0 // O(−3)⊕ nO(−1)
ϕ // (n + 1)O // F // 0

.

In the first case α is injective because it is injective on global sections. Thus β is
injective. But then Coker(β) has a direct summand supported on a conic. This
contradicts the fact that Coker(β) is a subsheaf of Coker(α)' O.

In the second diagram we have ϕ12β22 = α12ϕ
′

22. But α12 is injective because
α is injective on global sections. Also, ϕ′

22 is injective because ϕ′

12 = 0 and ϕ′

is injective. Thus ϕ12β22 is injective, forcing β22 to be injective. It follows that
Ker(β)⊂ 2O(−2). If α is not injective then we get the contradiction

O(−1)' Ker(α)' Ker(β)⊂ 2O(−2).

Thus α is injective, forcing Coker(α) to be supported on a line. But this is impos-
sible, because O(−3)⊂ Coker(β)⊂ Coker(α). �
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Remark 5.4. The sheaves from Claim 5.3 with Hilbert polynomial 6t + 3 are
stable. Indeed, assume that F has a subsheaf F′ with Hilbert polynomial 2t + 1.
It must be stable, hence the structure sheaf of a conic. We arrive at a commutative
diagram

0 // O(−2) //

β

��

O //

α

��

F′ //

��

0

0 // O(−3)⊕ 3O(−1)
ϕ // 4O // F // 0

with injective α and β. After performing column operations on ϕ we may assume
that three among the rows of ϕ12β21 are zero. But, according to Claim 5.3, ϕ12 is
semistable with respect to the only admissible polarization on the vector space of
morphisms 3O(−1) → 4O. From remark Remark 5.5 we get β21 = 0, so β = 0,
contradiction.

Assume now that F has a quotient sheaf F′′
= F/F′ with Hilbert polynomial

2t + 1. F′′ must be stable, hence it is the structure sheaf of a conic, hence it is
generated by one global section. Thus the map F → F′′ is surjective on global
sections, forcing h0(F′) = 2. Thus h1(F′) = 0 which, together with h1(F′′) = 0,
implies that h1(F)= 0. Contradiction.

Remark 5.5. Let ϕ be a 4 × 3-matrix with entries in V ∗ which is semistable:
Modulo operations on rows and columns, ϕ is not equivalent to a matrix having
a zero row, a zero 2 × 2-submatrix, or a zero 3 × 1-submatrix. Then one of the
maximal minors of ϕ is not zero.

Proof. Assume that all maximal minors of ϕ are zero. Each 3 × 3-submatrix ψ of
ϕ satisfies the hypotheses of remark Remark 5.6, hence it is equivalent to ψ1 or ψ2.
We can choose ψ to have a zero entry, thus ruling out ψ2. From the assumption
that all minors of ϕ are zero it is easy to deduce that the row of ϕ which is not part
of ψ is a linear combination of the rows of ψ ; see the proof of Claim 6.6. This
contradicts the semistability of ϕ. �

Remark 5.6. Let ψ be a 3 × 3-matrix with entries in V ∗ and zero determinant.
Assume that ψ is equivalent to neither of the following matrices: 0 ? ?

0 ? ?

0 ? ?

 or

 0 0 ?

0 0 ?

? ? ?

 or

 0 0 0
? ? ?

? ? ?

 .
Then ψ is equivalent to one of the following matrices:

ψ1 =

 X Y 0
Z 0 Y
0 −Z X

 or ψ2 =

 X Y Z
Y a1 X + a2Y a3 X + a4Y + a5 Z
Z a6 X + a7Y + a8 Z a9 X + a10 Z


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with a1, . . . , a10 ∈k∗. Modulo operations on rows and columnsψ2 is not equivalent
to a matrix having a zero entry.

Proof. We distinguish two cases: either ψ has one zero entry or, modulo equiva-
lence, all entries of ψ are nonzero. In the second case ψ ∼ ψ2. In the first case
we may assume that ψ11 = X, ψ12 = Y, ψ13 = 0. We now consider two subcases:
span{ψ23, ψ33} is equal to or is different from span{X, Y }. In the second subcase
we may write

ψ =

 X Y 0
ψ21 ψ22 Y
ψ31 ψ32 Z

 .
We have

det(ψ)= X Zψ22 + Y 2ψ31 − XYψ32 − Y Zψ21 = 0,

forcing ψ22 = aY . Performing operations on rows we may assume that ψ22 = 0.
Thus Yψ31 − Xψ32 − Zψ21 = 0. We get

ψ31 = cZ modulo X, ψ21 = cY modulo X.

But then

ψ ∼

 X Y 0
0 ? Y
0 ? Z

 .
From det(ψ)= 0 we get

ψ ∼

 X Y 0
0 0 Y
0 0 Z

 ,
contradiction. This eliminates the second subcase.

Finally, we may assume that

ψ =

 X Y 0
ψ21 ψ22 Y
ψ31 ψ32 X

 .
We have

det(ψ)= X2ψ22 + Y 2ψ31 − XYψ32 − XYψ21 = 0

hence

ψ22 = aY, ψ31 = bX, ψ21 +ψ32 = aX + bY.

Performing operations on rows we may assume that a = b = 0. Denoting Z =ψ21

we arrive at ψ ∼ ψ1. �
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6. Sheaves F with h0(F(−1)) 6= 0 and h1(F) = 0

Let F be a sheaf on P2 with h0(F(−1))= p 6=0, h1(F)=0 and Hilbert polynomial
PF(t)= at + b, 0 ≤ b < a. From the Beilinson complex we deduce that F has to
have one of the following resolutions:

(i) when a < 2b

0→ pO(−2)
ψ
→ (p+a−b)O(−2)⊕(m+2b−a)O(−1)

ϕ
→mO(−1)⊕bO→F→0,

(ii) when a ≥ 2b

0→ pO(−2)
ψ
→ (p+a−b)O(−2)⊕mO(−1)

ϕ
→ (m+a−2b)O(−1)⊕bO→F→0,

where m is an integer, ψ11 = 0 and ϕ12 = 0. In case (ii) we must have m ≥ 2
because, if m = 1, then we get the contradiction ψ = 0. We obtain the following
exact commutative diagram, say in case (ii):

0

��

0

��
0→pO(−2)

=

��

ψ21 // mO(−1)[
0
I

]
��

ϕ22 // bO //[
0
I

]
��

C→0

��
0→pO(−2)

��

ψ // (p+a−b)O(−2)⊕mO(−1)
ϕ //

[I, 0]

��

(m+a−2b)O(−1)⊕bO
η //

[I, 0]

��

F→0

��
0−−→K // (p+a−b)O(−2)

��

ϕ11 // (m+a−2b)O(−1)

��

// G→0

��
0 0 0.

This induces the exact sequence

0 → K → C → F → G → 0.

Note that K is torsion-free or zero, because it is a subsheaf of the torsion-free sheaf
(p + a − b)O(−2).

Remark 6.1. Assume that F is semistable. Then C does not have zero-dimensional
torsion and is not supported on a curve.

Proof. Let T be the zero-dimensional torsion of C. As F has no zero-dimensional
torsion it follows that the induced map T → F is zero. Thus T is a subheaf of K.
The latter is torsion-free, so T = 0.
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Assume now that C is supported on a curve. Then m = p + b and K = 0. Thus
C is a subsheaf of F. We have

PC(t)= b
(

t + 2
2

)
− (p + b)

(
t + 1

2

)
+ p

(
t
2

)
= (b − p)t + b.

But b/(b − p) > b/a, which shows that C violates the semistability of F. �

Remark 6.2. Assume that F is semistable. Then, in case (i), we either have
m + 2b − a < b or m + 2b − a ≥ b and all maximal minors of ϕ22 are zero.
Similarly, in case (ii), either m < b or m ≥ b and all maximal minors of ϕ22 are
zero. This follows from Remark 6.1.

Remark 6.3. η is an isomorphism on global sections. As a consequence, if F is
semistable, ϕ22 cannot have the form

0 0 ? · · · ?
...
...
...

...

0 0 ? · · · ?

X Y ? · · · ?

 .
Indeed, if ϕ22 had the above form, we would get the commutative diagram

2O(−1)
[X, Y ] //[

I
0

]
��

O //[
0
I

]
��

Cx

��

// 0

mO(−1)
ϕ22 // bO

η12 // F

.

Here Cx is the structure sheaf of the point x = (0 : 0 : 1). But the map Cx → F

is zero because F does not have zero-dimensional torsion. This shows that η12

has nontrivial kernel. This contradicts the fact that η is an isomorphism on global
sections.

Claim 6.4. There are no semistable sheaves F on P2 with h0(F(−1)) 6=0, h1(F)=

0 and Hilbert polynomial

PF(t)= nt + 1, n ≥ 2 or PF(t)= nt + 2, n ≥ 3.

Proof. The case PF(t)= nt +1 follows directly from Remark 6.3 because ϕ22 must
have the form

[X, Y, ?, · · · , ?].

In the case PF(t) = nt + 2 all 2 × 2-minors of ϕ22 are zero, cf. Remark 6.2. It
follows that ϕ22 has the form [

0 0 ? · · · ?

X Y ? · · · ?

]
.
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The claim follows from Remark 6.3. �

Remark 6.5. Let α = (αi j ) be a morphism of sheaves on Pn
= P(V ):

α : (m + 1)O → mO(l).

Assume that at least one of the maximal minors of α is a nonzero polynomial. Then
Ker(α)' O(−d) where d is an integer satisfying 0 ≤ d ≤ ml. More precisely, let
αi , 1 ≤ i ≤ m +1, denote the minor obtained from α by erasing the i th column. Let

β = (β1, . . . , βm+1), where βi =
(−1)iαi

g.c.d.(α1, . . . , αm+1)
, 1 ≤ i ≤ m + 1.

Let d be the degree of the entries of β. Then we have the exact sequence

0 → O(−d)
β
→ (m + 1)O

α
→ mO(l).

Claim 6.6. Let F be a semistable sheaf on P2
= P(V ) with h0(F(−1)) 6= 0,

h1(F) = 0 and Hilbert polynomial PF(t) = nt + 3, n ≥ 4. Then h0(F(−1)) = 1
and F has a resolution

0 → O(−2)
ψ
→ (n − 2)O(−2)⊕ 3O(−1)

ϕ
→ (n − 3)O(−1)⊕ 3O → F → 0

with ϕ12 = 0, ψ11 = 0, ϕ21 6= 0,

ψ21 ∼

 X
Y
Z

 , ϕ22 ∼

−Y X 0
−Z 0 X

0 −Z Y

 , ϕ11 �
[
ϕ′ 0
? ?

]
where ϕ′ is an m ×m-matrix with entries in V ∗, 1 ≤ m ≤ n −3. Moreover, F is an
extension of the form

0 → OC(1)→ F → G → 0

where C is a curve of degree d, 4 ≤ d ≤ n, and the map F → G is zero on global
sections. If n ≥ 7 then d ≥ 5.

Proof. Assume n ≥ 6 so that we are in case (ii). If m ≥ 5 then ϕ22 has the form ? ? ? 0 · · · 0
? ? ? ? · · · ?

? ? ? ? · · · ?

 =

 ? ? ?

? ? ? ϕ′

? ? ?

 .
From Remark 6.2 we see that all 2 × 2-minors of ϕ′ are zero. Since ϕ22 cannot
have a zero column it follows that

ϕ22 ∼

 ? ? ? 0 · · · 0
? ? ? 0 · · · 0
? ? ? ? · · · ?

 .
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By virtue of Remark 6.3 this is impossible.
Assume now that m = 4. Firstly, we notice that ϕ22 cannot have a zero row

because, if

ϕ22 =

[
0 · · · 0
ϕ′

]
,

then, arguing as in Remark 6.1, we get that ϕ′ has all maximal minors equal to
zero hence ϕ′ has one row identically zero. This, again, contradicts Remark 6.3.
Secondly, using the same kind of arguments, we notice that ϕ22 cannot have the
form  X 0 0 0

? ? ? ?

? ? ? ?

 .
Now ϕ22 has nontrivial kernel in ⊕4V ∗ by hypothesis. No element in the kernel
can have the form 

X
Y
0
0


otherwise we would arrive at a matrix excluded by Remark 6.3:

ϕ22 ∼

 0 0 ? ?

0 0 ? ?

−Y X ? ?

 .
Performing operations on the columns of ϕ22 we may assume that

X
Y
Z
0


is in the kernel of ϕ22. Performing operations on the rows of ϕ22 we may assume
that

ϕ22 =

−Y X 0 u
−Z 0 X v

0 −Z Y w

 .
From

0 =

∣∣∣∣∣∣
−Y X u
−Z 0 v

0 −Z w

∣∣∣∣∣∣ = Z2u − Y Zv+ X Zw
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we get Zu − Yv+ Xw = 0, which shows that the fourth column of ϕ22 is a linear
combination of the first three columns. Thus ϕ is equivalent to a matrix having a
zero column, contradiction.

The case m = 2 is excluded by using Remark 6.3. We conclude that m = 3 and,
from what was said above, that we have

ψ21 ∼

 X
Y
Z

 , ϕ22 ∼

−Y X 0
−Z 0 X

0 −Z Y

 .
Thus far we have obtained the desired resolution of F in the cases n ≥ 6. The

cases n = 4 and n = 5 are completely analogous. From our concrete description
of ϕ22 we see that C ' O(1). Since F surjects onto G, the latter has support of
dimension zero or one. Thus, at least one of the maximal minors of ϕ11 must
be a nonzero polynomial. We can apply Remark 6.5 to conclude that Ker(ϕ11)'

O(−d + 1) for some integer d ≥ 3. We have

PG(t)= (n−3)
(

t+1
2

)
− (n−2)

(
t
2

)
+

(
t+3−d

2

)
= (n−d)t+

(d−2)(d−3)
2

.

The sheaf G violates the semistability of F precisely when

(d − 2)(d − 3)
2(n − d)

<
3
n
, that is, n(d − 5) <−6.

Thus, we cannot have d = 3 and, if d = 4, then n ≤ 6. We conclude that F is an
extension

0 → OC(1)→ F → G → 0

with deg(C)= d ≥ 4, respectively deg(C)≥ 5 in the case n ≥ 7. Finally, we cannot
have

ϕ11 ∼

[
ϕ′ 0
? ?

]
with ϕ′

: mO(−2)→ mO(−1), 1 ≤ m ≤ n − 3.

Indeed, if this were the case, then, since ϕ11 has at least one nonzero maximal
minor, we would get det(ϕ′) 6= 0 and a surjection F → Coker(ϕ′) onto a sheaf
with Hilbert polynomial P(t)= mt . This would contradict the semistability of F.

�

Lemma 6.7. Let C ⊂ P2 be a curve given by the equation f = 0, where f (X, Y, Z)
is a homogeneos polynomial. Let I ⊂ OC be a sheaf of ideals. Then there is
a homogeneous polynomial g(X, Y, Z) dividing f such that the sheaf of ideals
J ⊂ OC generated by g satisfies: I ⊂ J and J/I is supported on finitely many
points.
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Proof. Dehomogenizing in a suitable open affine subset we reduce the problem to
the following: let f (X, Y ) be a polynomial in k[X, Y ]. Let I ⊂ k[X, Y ] be an ideal
containing f . Then there is a polynomial g(X, Y ) dividing f such that I ⊂ 〈g〉

and 〈g〉/I is supported on finitely many points.
Let f = f n1

1 . . . f nκ
κ be the decomposition of f into irreducible factors. Let

I = q1 ∩ . . .∩ qm ∩ a1 ∩ . . .∩ al

be a primary decomposition of I . Here m ≤ κ , qi is a primary ideal associated
to 〈 fi 〉 and a1, . . . , al are primary ideals associated to maximal ideals m1, . . . ,ml .
Put

q = q1 ∩ . . .∩ qm .

We notice that q/I is supported on m1, . . . ,ml . For 1 ≤ i ≤ m let ri be the largest
integer such that qi ⊂ 〈 f ri

i 〉. We claim that g = f r1
1 · . . . · f rm

m is the desired polyno-
mial. To prove this it is enough to show that 〈g〉/q is supported on finitely many
points. Since localization commutes with intersections it is enough to show that
each 〈 f ri

i 〉/qi is supported on finitely many points.
So far we have reduced the problem to the following: let f ∈ k[X, Y ] be an

irreducible polynomial. Let q ⊂ k[X, Y ] be a primary ideal associated to 〈 f 〉. Let
r ≥ 1 be the largest integer such that q⊂〈 f r

〉. Then 〈 f r
〉/q is supported on finitely

many points.
We may assume that q is not a power of 〈 f 〉. Let s be the smallest integer such

that 〈 f s
〉 ⊂ q. We will prove the above statement by induction on s. If s = r + 1

then

〈 f r
〉/q '

〈 f r
〉/〈 f r+1

〉

q/〈 f r+1〉

can be regarded as the structure sheaf of a proper subscheme of the scheme X ⊂ P2

given by { f = 0}. This is so because

〈 f r
〉/〈 f r+1

〉 ' k[X, Y ]/〈 f 〉 as k[X, Y ]- modules.

But X is an irreducible scheme of dimension one, hence any proper subscheme has
dimension zero.

Assume now that s > r + 1 and the statement is true for any ideal q′ satisfying
q′

⊂ 〈 f r
〉, q′ * 〈 f r+1

〉, 〈 f s−1
〉 $ q′. Such an ideal is q′

= q + 〈 f s−1
〉. By the

induction hypothesis we know that 〈 f r
〉/q′ is supported on finitely many points.

To finish the proof it is enough to show that q′/q is supported on finitely many
points. But

q′/q ' 〈 f s−1
〉/q ∩ 〈 f s−1

〉.
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If q ∩〈 f s−1
〉 6= 〈 f s

〉 then the right-hand side is supported on finitely many points
by the first step in the induction argument. Now choose h ∈ q \ 〈 f r+1

〉. Then
f s−r−1h ∈ q ∩ 〈 f s−1

〉 \ 〈 f s
〉. This finishes the proof of the lemma. �

In the remaining part of this section we will seek more precise information about
the morphisms occuring in Claim 6.6. For a start, assume that F is an arbitrary
sheaf having a resolution as in Claim 6.6; we determine which subsheaves F′

⊂ F

are destabilizing. Let G′ be the image of F′ in G and let I(1) be the preimage
of F′ in OC(1). Here I is the ideal sheaf of a subscheme of C . By Lemma 6.7
we can find a curve C ′

⊂ C such that the ideal sheaf J of C ′ contains I and
PI(1)(t)= PJ(1)(t)− c, where c is a nonnegative integer. From the exact sequence

0 → I(1)→ F′
→ G′

→ 0

we get
PF′(t)= PI(1)(t)+ PG′(t)= PJ(1)(t)+ PG′(t)− c.

Put κ = deg(C ′). We allow κ = 0 for the case J = OC . From the exact sequence

0 → O(−d + 1)→ O(−κ + 1)→ J(1)→ 0

we see that h0(J(1)) = 0 if κ ≥ 2. But then h0(I(1)) = 0, forcing the map
H 0(F′)→ H 0(G′) to be injective. Since the map F → G is zero on global sections
we see that h0(F′)= 0. It follows that F′ does not violate the semistability of F.

In the case κ = 0 we have PF/F′(t)= c+ PG/G′(t), hence F′ violates the semista-
bility of F if and only if α1(G/G

′) > 0 and

α0(G/G
′)+ c

α1(G/G′)
<

3
n
.

Assume now that κ = 1. We have

PF/F′(t)= POC (1)/I(1)(t)+ PG/G′(t)= t + 2 + c + PG/G′,

hence F′ violates semistability if and only if

2 + c +α0(G/G
′)

1 +α1(G/G′)
<

3
n
.

Now the exact sequence

0 → OC(1)→ F → G → 0

together with the hypothesis h1(F(i)) = 0 for i ≥ 0 give h1(G(i)) = 0 for i ≥ 0.
This and the exact sequence

0 → G′
→ G → G/G′

→ 0
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yield h1(G/G′(i)) = 0 for i ≥ 0. In particular α0(G/G
′) =h0(G/G′) ≥ 0. This

eliminates the case α1(G/G
′)= 0 from above. We summarize our findings so far:

Remark 6.8. F is semistable if and only if there are no quotients sheaves E of G

satisfying

h1(E)= h1(E(1))= 0 and 0 ≤ α0(E) <
3
n
α1(E) 6= 0.

One direction was proved in the discussion above. The other direction follows by
taking κ = 0 and c = 0, in other words taking F′ to be the preimage of G′, where
G′ is the kernel of the surjection G → E.

Claim 6.9. Let F be a sheaf on P2 with resolution

0 → O(−2)→ (n − 2)O(−2)⊕ 3O(−1)→ (n − 3)O(−1)⊕ 3O → F → 0

satisfying the properties from Claim 6.6. Assume that n ∈ {4, 5, 6, 7}. Then F is
semistable.

Proof. Assume that there is E as in Remark 6.8. We must have α0(E)=0, otherwise

1<
3
n
α1(E)≤

3
n
α1(G)=

3
n
(n − d), forcing

3d
2
< n.

This gives n ≥ 8, contradicting our hypothesis.
The Beilinson sequence of E(1) leads to the following resolution:

0 → mO(−2)→ mO(−1)→ E → 0

for some integer m ≤ n − d. In the case n = 4 there is no such E. In the case
n = 5 we have m = 1. In the cases n ∈ {6, 7} we have m ∈ {1, 2}. We obtain a
commutative exact diagram

(n − 2)O(−2)
ϕ11 //

β

��

(n − 3)O(−1) //

α

��

G //

��

0

0 // mO(−2)
ϕ′

// mO(−1) // E //

��

0

0

with α 6= 0 because the following composition is surjective:

(n − 3)O(−1)
α
→ mO(−1)→ E.

After performing operations on the rows and columns of ϕ11 and ϕ′ it is always
possible to write

α =

[
Ir 0
0 0

]
, β =

[
Is 0
0 0

]
.
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We arrive at

ϕ11 ∼

[
ϕ′′ 0
? ?

]
with ϕ′′ an r ×s-matrix. But r ≥ rank(αϕ11)= rank(ϕ′β)= s. This contradicts the
assumption on ϕ11 and finishes the proof of the claim. �

Claim 6.10. Let F be a sheaf on P2 with PF(t)=nt+3, h1(F)=0, h0(F(−1)) 6=0.
Assume that 8 ≤ n ≤ 15. Then F is semistable if and only if it has a resolution

0 → O(−2)→ (n − 2)O(−2)⊕ 3O(−1)
ϕ
→ (n − 3)O(−1)⊕ 3O → F → 0

satisfying the properties from Claim 6.6 and, in addition, the following property:
ϕ11 is not equivalent to a matrix of the form[

ϕ′ 0
? ?

]
where ϕ′

: (m + 1)O(−2)→ mO(−1)

is a morphism having kernel O(−3) and m is an integer satisfying m > n
3 + 1.

Proof. One direction is clear: if F is semistable then it has a resolution as in Claim
6.6. If ϕ did not satisfy the “additional property” then F would surject onto a sheaf
E with resolution

0 → O(−3)→ (m + 1)O(−2)→ mO(−1)→ E → 0.

But

PE(t)= m
(

t + 1
2

)
− (m + 1)

(
t
2

)
+

(
t − 1

2

)
= (m − 1)t + 1,

which shows that E violates the semistability of F precisely when

1
m − 1

<
3
n
, that is,

n
3

+ 1< m.

Conversely, we assume that F has the resolution from the claim and let E be a
sheaf as in Remark 6.8. Our aim is to arrive at a contradiction. Since n ≤ 15 we
must have α0(E)= 0 or α0(E)= 1. In the first case the argument is the same as in
Claim 6.9. Now assume that α0(E)= 1 and write PE(t)= mt + 1. We have

h0(E)= 1, h1(E)= 0, h0(E(1))= m + 1, h1(E(1))= 0

so the Beilinson sequence (4.1) of E(1) gives the resolution

0 → O(−2)→ (p + m + 2)O(−1)
ρ
→ pO(−1)⊕ (m + 1)O → E(1)→ 0.

Here p is some integer and from the fact that E is supported on a curve we get
rank(ρ11)= p = 0. So far we have obtained a resolution

0 → O(−3)→ (m + 2)O(−2)
ϕ′

→ (m + 1)O(−1)→ E → 0
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that fits into an exact commutative diagram

0 // O(−d) // (n − 2)O(−2)
ϕ11 //

β

��

(n − 3)O(−1) //

α

��

G //

��

0

0 // O(−3) // (m + 2)O(−2)
ϕ′

//

��

(m + 1)O(−1) //

��

E //

��

0

(m + 2 − s)O(−2)
ϕ′′

//

��

(m + 1 − r)O(−1) //

��

0

0 0.

Here r, s are the ranks of α, β. Since ϕ′′ is surjective we must have either m +2−

s > m + 1 − r > 0, i.e., m + 1> r > s − 1, or r = m + 1. In the first case

ϕ11 ∼

[
ψ 0
? ?

]
with ψ an r ×s-matrix. Since at least one of the maximal minors of ϕ11 is nonzero
we must have r = s. But then our assumption on ϕ11 is contradicted.

Assume now that r = m + 1, so α is surjective. If β is not surjective we get the
same contradiction as above. Finally, if β is surjective then

ϕ11 ∼

[
ϕ′ 0
? ?

]
.

Also, 1=α0(E)< (3/n)α1(E)=3m/n forces (n/3)+1<m+1, so our assumption
on ϕ11 is contradicted. �

Claim 6.11. Let W be the space of morphisms

ϕ : (n − 2)O(−2)⊕ 3O(−1)→ (n − 3)O(−1)⊕ 3O.

Let 3= (λ1, λ2, µ1, µ2) be a polarization satisfying

λ1 < µ1 <
n − 2
n − 3

λ1,
3(n − 2)λ1 − 1

2(n − 3)
< µ1.

Equivalently, 3 is such that the pair (λ1, µ1) is in the interior of the triangle with
vertices (0, 0), ( 1

n ,
1
n ), (

1
n−2 ,

1
n−3). Then ϕ is semistable with respect to 3 only if
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ϕ is not equivalent to a matrix having one of the forms


? · · · ? 0 0
...

...
...
...

? · · · ? 0 0
? · · · ? ? ?

 ,

? · · · ? 0 0 0
...

...
...
...
...

? · · · ? 0 0 0
? · · · ? ? ? ?

? · · · ? ? ? ?

 ,


? · · · ? ? ? ?
...

...
...
...
...

? · · · ? ? ? ?

0 · · · 0 ? ? ?

0 · · · 0 ? ? ?

0 · · · 0 ? ? ?

 ,


? · · · ? ?
...

...
...

? · · · ? ?

0 · · · 0 ?

 ,

? · · · ? ? ?
...

...
...
...

? · · · ? ? ?

0 · · · 0 ? ?

0 · · · 0 ? ?

 ,


? · · · ? 0 · · · 0
...

...
...

...

? · · · ? 0 · · · 0
? · · · ? ? · · · ?
...

...
...

...
? · · · ? ? · · · ?


.

(The zero submatrix in the last matrix has m rows and n + 1 − m columns, with
1 ≤ m ≤ n − 3.)

Proof. Using Proposition 3.3 we translate the conditions that ϕ be not equivalent
to the above matrices into conditions on3. We arrive at 6 inequalities which, after
simplifications, reduce to the inequalities from the claim. �

Claim 6.12. Let 3 be a polarization as at Claim 6.11. If 4 ≤ n ≤ 15 then the
morphisms ϕ from Claim 6.9 and Claim 6.10 form a thin constructible subset of
W ss(G,3).

Proof. First we notice that the morphisms ϕ from Claim 6.9 and Claim 6.10 are in
the closed subset of W ss(G,3) given by the conditions ϕ12 = 0 and det(ϕ22)= 0.
The condition

ϕ22 ∼

−Y X 0
−Z 0 X

0 −Z Y


is a locally closed condition because any orbit with respect to the action of an
algebraic group is a locally closed set. The condition Ker(ϕ) ' O(−2) gives a
constructible set as can be seen from the sequel. The condition

ϕ11 �
[
ϕ′ 0
? ?

]
with Ker(ϕ′)' O(−3)

gives a constructible set. To see this we only need to prove that the condition
Ker(ϕ′)' O(−3) gives a constructible subset inside the set of m×(m+1)-matrices
with entries linear forms. This follows from the following observation: let G be an
algebraic group acting on a variety X . Let Y ⊂ X be a constructible subset. Then
G.Y is constructible, too. To see this apply Chevalley’s theorem, stating that the
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image of a constructible set under an algebraic map is again constructible, to the
multiplication map G × X → X .

To finish the argument we need to show that the condition Ker(ϕ′) ' O(−3)
gives a constructible set. We represent ϕ′ by a m × (m + 1)-matrix α = (αi j ) with
entries in V ∗. Using the notations from Remark 6.5 we see that Ker(ϕ′)' O(−3)
if and only if deg(g.c.d.(α1, . . . , αm+1)) = m − 1. This, furthermore, is equivalent
to the following two conditions:

(i) at least two among α1, . . . , αm+1 are linearly independent;

(ii) the system αi f j = α j fi , 1 ≤ i < j ≤ m + 1, has a nontrivial solution f =

( f1, . . . , fm+1), f j ∈ V ∗.

In view of Remark 6.5 condition (i) is equivalent to saying that Ker(α) is not
isomorphic to O(−2). This is equivalent to saying that

α �

 0
α′

...

0

 with det(α′) 6= 0.

This condition gives a constructible set because the matrices on the right-hand side
form a locally closed subset and the smallest invariant subset containing a locally
closed subset must be constructible, as observed above.

Condition (ii) is a closed condition. Indeed, the above system can be written as a
linear system with unknowns the coefficients of f j , 1 ≤ j ≤ m+1, and coefficients
the coefficients of αi , 1 ≤ i ≤ m +1. Such a linear system has a nontrivial solution
if and only if the associated matrix has vanishing maximal minors. These minors
are polynomials in the coefficients of αi , 1 ≤ i ≤ m+1, so we get closed conditions
on α. �

7. Applications to moduli spaces

Thus far, for certain classes of semistable sheaves F, we have found presentations

E1
ϕ
→ E2 → F → 0

with decomposable vector bundles E1 and E2. In this section we will describe some
locally closed subsets inside the corresponding moduli spaces MP2(r, χ), defined
by means of cohomological conditions as in Remark 2.13. The question we will
try to answer is whether such a subset is a good quotient of the set of morphisms
ϕ modulo the action by conjugation of Aut E1 ×Aut E2. The difficulty here is that
Aut E is a nonreductive group if E has a direct summand of the form O(a)⊕ O(b)
with a 6= b.

Whenever we are dealing with a fine moduli space we can show the existence
of quotients by using the universal family to construct local sections; compare the
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proof of Proposition 7.6. If the moduli space is not fine we need to have a quotient
already constructed as, say, in the main theorem from [Drézet 2000]. We apply
this theorem in Proposition 7.12 to describe open dense subsets of MP2(6, 4) and
MP2(8, 6). At Proposition 7.13 we construct the quotient ad hoc as a fiber bundle
over a projective variety.

Unfortunately, Drézet and Trautmann’s theory of quotients modulo nonreductive
groups is still incomplete. For instance, the main theorem from [Drézet 2000] does
not cover the quotients from Claim 4.6. Thus, we are not able to describe as a
quotient an open dense subset of MP2(9, 6). Also, we do not know if quotients
exist for morphisms of type (2,2). This accounts for the “question marks” in the
table from the introduction.

We begin by recalling the notions of good and geometric quotients. Let G be a
linear algebraic group acting on a variety X . The action is algebraic; that is, the
map G × X → X given by (g, x)→ g.x is a morphism of varieties.

Definition 7.1. A categorical quotient of X by G is a pair (Y, π) where Y is
a variety and π : X → Y is a G-equivariant morphism satisfying the following
universal property: for any other G-equivariant morphism η : X → Z there exists
a unique morphism ρ : Y → Z making the diagram commute:

X

π

��

η

��@
@@

@@
@@

Y
ρ // Z

.

We write Y = X //G. If, in addition, the fibers of π are orbits, then Y is called an or-
bit space and is denoted X/G. Categorical quotients are unique up to isomorphism.

Definition 7.2. A good quotient of X by G is a pair (Y, π) where Y is a variety
and π : X → Y is a morphism satisfying:

(i) π is G-equivariant;

(ii) π is surjective;

(iii) for any open subset U ⊂ Y the pull-back map π∗ gives an isomorphism of
OY (U ) onto the ring of regular functions on π−1(U ) which are constant on
the G-orbits;

(iv) if W ⊂ X is closed and G-invariant, then π(W ) is closed;

(v) if W1,W2 ⊂ X are closed, G-invariant and disjoint, then π(W1) and π(W2)

are also disjoint;

(vi) π is affine, i.e., it returns open affine sets to affine sets.

If, in addition, the fibers of π are orbits, then (Y, π) is called a geometric quotient.
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Remark 7.3. Let G act on X as above and assume the existence of an affine
surjective morphism π : X → Y whose fibers are orbits. Assume that π admits
local sections; that is, for any y ∈ Y there is an open neighbourhood U of y and a
morphism σ : U → X satisfying π ◦ σ = 1. Then (Y, π) is a geometric quotient.

Definition 7.2 is important because good quotients are categorical quotients
while geometric quotients are orbit spaces:

Proposition 7.4. Let (Y, π) be a good quotient of X by G. Then:

(i) (Y, π) is a categorical quotient;

(ii) π(x1)= π(x2) if and only if G.x1 intersects G.x2;

(iii) if the G-orbits in X are closed, then (Y, π) is an orbit space;

(iv) Let Xo denote the subset of points x ∈ X with G.x closed and of maximal
dimension among the G-orbits. Then there is an open subset Yo ⊂ Y such that
π−1(Yo)= Xo and (Yo, π) is a geometric quotient of Xo by G.

The main technical tool that we will use in this section is the relative Beilinson
complex. Given a variety X and a coherent sheaf F on X ×P2 there is a sequence

0 → C−2
→ C−1

→ C0
→ C1

→ C2
→ 0

of sheaves on X ×P2 which is exact, except in the middle, where the cohomology
is F. On each fiber {x}×P2 this sequence restricts to the Beilinson complex of the
restricted sheaf Fx . Let p : X ×P2

→ X be the projection onto the first component.
The sheaves Ci are defined by means of the higher direct images of F:

Ci
= ⊕ j R j p∗(F ⊗�

j−i
X×P2/X ( j − i))� OP2(i − j).

In our applications F will be flat over X and its restrictions Fx onto the fibers
{x}×P2 will have one-dimensional supports. Thus H 2(Fx)=0 for all x ∈ X . From
the Base Change Theorem on p. 11 in [Okonek et al. 1980] we get R2 p∗(F)= 0.
Analogously, the other second direct images occuring above are zero. The relative
Beilinson complex now takes the form

(7.5) 0 → C−2
→ C−1

→ C0
→ C1

→ 0

with

C−2
= p∗(F(−1))� O(−2),

C−1
= p∗(F ⊗�1

X×P2/X (1))� O(−1)⊕ R1 p∗(F(−1))� O(−2),

C0
= p∗(F)� O ⊕ R1 p∗(F ⊗�1

X×P2/X (1))� O(−1),

C1
= R1 p∗(F)� O.
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Proposition 7.6. Let n ≥ 1 be an integer and let W be the vector space of mor-
phisms ϕ of sheaves on P2 of the form

O(−2)⊕ (n − 1)O(−1)
ϕ
→ nO.

With the notations from Section 3, assume that the polarization 3 = (λ1, λ2, µ1)

satisfies 0 < λ1 < 1/n. Let Wo be the open subset of W ss(G,3) given by the
condition det(ϕ) 6= 0. Then Wo admits a geometric quotient modulo G which
is isomorphic to the open dense subset of MP2(n + 1, n) given by the condition
h0(F(−1))= 0.

Proof. Consider the coherent sheaf F̃ on Wo × P2 given by the exact sequence

OWo � OP2(−2)⊕ OWo � (n − 1)OP2(−1)
8
→ nOWo×P2 → F̃ → 0.

On each fiber {ϕ} × P2 this sequence restricts to

0 → O(−2)⊕ (n − 1)O(−1)
ϕ
→ nO → F̃ϕ → 0.

According to Claim 4.2 each restriction F̃ϕ is semistable with Hilbert polynomial
P(t)= (n+1)t +n. As the Hilbert polynomial is independent of ϕ, and as the base
Wo is reduced, the sheaf F̃ is flat over Wo. By Definition 2.5 of a coarse moduli
space, F̃ gives rise to a morphism

η : Wo → MP2(n + 1, n),

which sends ϕ to the stable equivalence class of F̃ϕ .
By Claim 4.2 the image of η is the subset Mo of MP2(n + 1, n) given by the

condition h0(F(−1))= 0. By Remark 2.13 this subset is open and, as the moduli
space is irreducible, it must be dense.

The fibers of η are G-orbits. Indeed, an isomorphism f between two cokernels
F1 and F2 of ϕ1 and ϕ2 from Wo must fit into a commutative diagram

0 // O(−2)⊕ (n − 1)O(−1)
ϕ1 //

g
��

nO //

h
��

F1 //

f
��

0

0 // O(−2)⊕ (n − 1)O(−1)
ϕ2 // nO // F2 // 0

in which g and h are isomorphisms. Here h is defined in such a way as to coincide
with f on the level of global sections, while g is the induced map on the kernels.

To prove that η is a geometric quotient map it is enough to construct local
sections as in Remark 7.3. For this we will use the fact that MP2(n + 1, n) is a
fine moduli space, cf. Proposition 2.10, so it has a universal family. Let U denote
the restriction of the universal family to Mo × P2. Let p : Mo × P2

→ Mo be the
projection onto the first component. U is flat over Mo and all its restrictions to the
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fibers of p have Beilinson resolution as in the statement of Claim 4.2. In view of
the Base Change Theorem the higher direct images

p∗(U(−1)), R1 p∗(U(−1)), p∗(U), R1 p∗(U),

p∗(U ⊗�1
Mo×P2/Mo

(1)), R1 p∗(U ⊗�1
Mo×P2/Mo

(1))

are locally free of ranks 0, 1, n, 0, n − 1, 0. We cover Mo with open subsets S on
which the above sheaves are free. On S × P2, and relative to fixed trivializations
of the higher direct images, the Beilinson complex (7.5) gives the resolution

0 → OS � OP2(−2)⊕ OS � (n − 1)OP2(−1)
ϕ
→ nOS×P2 → U → 0.

We put σ(x)= ϕx for x ∈ S and notice that σ : S → Wo is a local section of η. �

The sets Wo are nonempty for all n. Indeed, it is easy to construct an n×(n−1)-
matrix ψ with entries in V ∗ whose maximal minors are linearly independent, and
which has the form 

? ? · · · ?

? ? · · · ?

0 ? · · · ?
...
...
. . .

...

0 0 · · · ?

 .
For example, 

Y Z Y Z
X 0 0 0
0 Y 0 0
0 0 Z 0
0 0 0 X


is such a matrix for n = 5. But it now becomes clear that the following matrix is
semistable and has nonzero determinant:[

X2

0
ψ

]
.

The existence of the geometric quotient Wo/G can be put into a broader context if
we realize that W ss(G,3) itself has a geometric quotient, as J.-M. Drézet pointed
out to the author:

Proposition 7.7. Let W ss(G,3) be the set of morphisms of sheaves on P2,

O(−2)⊕ (n − 1)O(−1)
ϕ
→ nO,

which are semistable with respect to a polarization 3 satisfying 0 < λ1 < 1/n.
Then there exists a geometric quotient W ss(G,3)/G which is a fiber bundle with
fiber P3n+2 and base a projective variety of dimension n2

− n.
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Proof. Write ϕ as a pair (ϕ1, ϕ2), where ϕ1 is an n×1-matrix with entries in S2V ∗,
while ϕ2 is an n × (n − 1)-matrix with entries in V ∗. Let Wi denote the vector
space of matrices ϕi .

The reductive group G2 =GL(n − 1)×GL(n)/k∗ acts on W2 by conjugation.
Here k∗ is embedded as the subgroup of homotheties. The only admissible po-
larization on W2 is (1/(n − 1), 1/n) and, since n − 1 and n are mutually prime,
equality cannot be achieved in Proposition 3.3. This shows that the set of semistable
points W ss

2 for the action of G2 coincides with the set of stable points. By clas-
sical geometric invariant theory there is a geometric quotient W ss

2 /G2 which is a
projective variety of dimension n2

− n. We denote it by N .
We view W as a trivial bundle with fiber W1 and base W2. Let U be the trivial

bundle on W2 with fiber the space of (n − 1)× 1-matrices with entries in V ∗. We
consider the morphism of bundles f : U → W given at every point ϕ2 by left-
multiplication with ϕ2. It is easy to see that f is injective at every semistable point
ϕ2, hence the restriction of Coker( f ) to W ss

2 is a vector bundle of rank 3n + 3,
denoted by E . P(E) carries a G2 action which is compatible with the action on
W ss

2 . At Lemma 8.1 below we will prove that for any ϕ2 ∈ W ss
2 the isotropy group

StabG2(ϕ2) is trivial, so it acts trivially on P(Eϕ2). It follows that P(E) descends
to a fiber bundle F on N , see 4.2.15 in [Huybrechts and Lehn 1997].

We notice that the semistability conditions on ϕ read as follows: ϕ2 is in W ss
2

and ϕ′

1 6= 0 for all ϕ′ in the same G-orbit as ϕ. In other words, W ss(G,3) can be
identified with the complement of Im( f ) inside W1|W ss

2
. The map

W1|W ss
2

\ Im( f )→ P(E)

admits local sections because E is a bundle. In view of Remark 7.3 this map is a
geometric quotient modulo the action of the subgroup of G given by the conditions
h1 = 1, g2 = 1, see the notations preceeding Definition 3.1. Combining this with
the fact that the map P(E) → F is a geometric quotient modulo G2, we easily
deduce that the map W ss(G,3)→ F is a geometric quotient modulo G. �

Our construction is similar to, though much less elegant than, the construction
from 10.2 in [Drézet and Trautmann 2003] which addresses morphisms on Pn of
the form

m1O(−2)⊕ m2O(−1)
ϕ
→ n1O.

The polarization satisfies 0<λ1<λmin, where λmin is the smallest positive number
such that for λ1 varying in the interval (0, λmin) the set of semistable points remains
unchanged. In the context of the above proposition λmin = 1/n. They show that
if certain conditions on the integers m1,m2, n1 are satisfied, then there exists a
geometric quotient which is a Grassmann bundle Grass(m1, p∗E(2)) with base
N = W ss

2 /G2. Here p : N×P2
→ N is the projection onto the first component and E
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is the universal sheaf on N×P2 that restricts to Coker(ϕ2) on each fiber {[ϕ2]}×P2.
One of their conditions, having to do with the injectivity of ϕ2 regarded as map
from m2O(−1) to n1O, is n1 ≥ nm2. Thus Drézet and Trautmann’s construction
addresses only the case n = 2 of the above proposition.

There is yet another, more direct way of constructing the quotient in the case
n = 2. The semistability conditions on a morphism ϕ : O(−2)⊕O(−1)→ 2O read:
det(ϕ) 6= 0 and ϕ12, ϕ22 are linearly independent in V ∗. The map

W ss(G,3)→ Grass(2, V ∗)× P(S3V ∗)' P2
× P(S3V ∗)

given by
ϕ → (span(ϕ12, ϕ22), 〈det( f )〉)

has fibers G-orbits and has image the universal cubic

C = {(x, 〈 f 〉) ∈ P2
× P(S3V ∗), f (x)= 0}.

It was first noticed in [Maican 2000] that the map W ss(G,3)→ C has local sec-
tions: Choose a point (x, 〈 f 〉) in C , say x = (0 : 0 : 1). As f does not contain the
monomial Z3, there are unique quadratic polynomials q1(X, Y, Z) and q2(X, Z)
such that f = q1Y − q2 X . We put

σ(x, 〈 f 〉)=

[
q1 X
q2 Y

]
.

Since all processes involved in defining σ are algebraic, we see that σ extends to a
section of the map W ss(G,3)→ C defined on a neighbourhood of (x, 〈 f 〉). Thus
W ss(G,3)/G ' C . A more sophisticated proof of this isomorphism can be found
in [Freiermuth 2000].

In the simplest case n = 1, W ss(G,3) is just the set of nonzero morphisms
O(−2)→ O and W ss(G,3)/G is P(S2V ∗).

As noticed, in the cases n = 1, 2 we have Wo = W ss(G,3), hence Wo/G is
complete, hence the set Mo from Proposition 7.6 is complete, hence Mo is the
entire moduli space. We have obtained the well-known fact that every semistable
sheaf on P2 with Hilbert polynomial P(t)= 2t +1 is the structure sheaf of a conic;
in other words MP2(2, 1)' P(S2V ∗). In the case n = 3 we have rediscovered one
of Le Potier’s result from [Le Potier 1993] to the effect that MP2(3, 2) is isomorphic
to the universal cubic.

If n ≥ 3 Wo is a proper open subset of the set of semistable points, hence Wo/G
is not complete, hence Mo is a proper open subset of MP2(n + 1, n). Indeed, it is
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easy to construct semistable morphisms with zero determinant; for example, in the
case n = 3,  0 X Y

XY Z 0
−X2 0 Z

 .
Thus, the most we can say at this time is this:

Corollary 7.8. For n ≥ 3 the projective varieties W ss(G,3)/G and MP2(n +1, n)
are birational.

Proof. From Definition 7.2(iv) we see that the image of Wo under the quotient map

W ss(G,3)→ W ss(G,3)/G

is an open set U . In fact, Wo is the preimage of U . Clearly, the properties from
Definition 7.2 are satisfied for the map Wo → U . This proves that Wo/G ' U and
so we have isomorphic open dense subsets of W ss(G,3)/G and of MP2(n +1, n).

�

The same proof as in Proposition 7.6 can be used to show that for all fine moduli
spaces MP2(r, χ) occuring in Sections 4–6 the locally closed subsets described by
cohomological conditions are geometric quotients Wo/G of the corresponding sets
Wo ⊂ W ss(G,3). We have summarized the results in the table from the intro-
duction. For the quotients in Section 5 we should mention that ϕx depends in an
algebraic manner on the maps from the Beilinson complex of Ux , hence it depends
in an algebraic manner on x ; see Proposition 7.14 for the details.

The assumption that MP2(r, χ) be fine, or equivalently that a universal fam-
ily exist, is needed for the construction of the local sections of η. The proof of
Proposition 7.6 does not apply if the moduli space is not fine because, according
to Theorem 2.11, there is no universal family on any open subset of such a moduli
space.

Two of the quotients from Sections 5 and 6 have very concrete descriptions.
First we consider the case n = 1 from Claim 5.3. The set of morphisms

ϕ : O(−3)⊕ O(−1)→ 2O

semistable with respect to a polarization satisfying 0 < λ1 < 1/2 is characterized
by the conditions det(ϕ) 6= 0 and ϕ12, ϕ22 are linearly independent in V ∗. The
same discussion as in the case n = 2 of Proposition 7.6 shows that the geometric
quotient W ss(G,3)/G is isomorphic to the universal quartic in P2

× P(S4V ∗).
From Claim 5.3 we get:

Corollary 7.9. The subset of MP2(4, 1) given by the conditions h0(F(−1)) = 0
and h1(F) = 1 is closed and, equipped with its canonical reduced structure, it is
isomorphic to the universal quartic in P2

× P(S4V ∗).
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Now consider the simplest case n = 4 from Claim 6.6. It concerns morphisms

ϕ : 2O(−2)⊕ 3O(−1)→ O(−1)⊕ 3O

satisfying the conditions: ϕ12 = 0, ϕ11 has linearly independent entries in V ∗,
ϕ′

21 6= 0 for any ϕ′ in the same orbit as ϕ, ϕ22 is equivalent to the matrix−Y X 0
−Z 0 X

0 −Z Y

 .
Let f = 0 be the equation of the support of F. To be precise,

f =
[

Z −Y X
]
ϕ21

[
−X2

X1

]
, where ϕ11 =

[
X1 X2

]
and ϕ22 is assumed to be the above 3×3-matrix. We consider the G-invariant map

Wo → Grass(2, V ∗)× P(S4V ∗)' P2
× P(S4V ∗)

given by
ϕ → (span{X1, X2}, 〈 f 〉).

Its image is the universal quartic Q. To prove that the map Wo → Q is a geometric
quotient, we will construct local sections. We fix a point (span{X1, X2}, 〈 f 〉) in
Q. We complete {X1, X2} to a basis {X1, X2, X3} of V ∗. Relative to this basis f
can be uniquely written as

f (X1, X2, X3)= −X2 f1(X1, X2, X3)+ X1 f2(X1, X3).

Now f1 and f2 can each be uniquely written as

f1 = Zq11(X, Y, Z)− Y q21(X, Y )+ Xq31(X),

f2 = Zq12(X, Y, Z)− Y q22(X, Y )+ Xq32(X).

We put

σ(span{X1, X2}, 〈 f 〉)=


X1 X2 0 0 0
q11 q12 −Y X 0
q21 q22 −Z 0 X
q31 q32 0 −Z Y

 .
Since all processes involved in defining σ are algebraic, we see that σ extends to
a local section defined on an open subset of Q. From Claim 6.6 we get:

Corollary 7.10. The subset of MP2(4, 3) given by the conditions h0(F(−1)) = 1
and h1(F) = 0 is closed and, equipped with its canonical reduced structure, is
isomorphic to the universal quartic in P2

× P(S4V ∗).



120 MARIO MAICAN

We now turn to the moduli spaces MP2(r, χ) for which r and χ are not mutually
prime. As we shall see, if we knew the existence of the quotient Wo//G, then we
could prove that this quotient is isomorphic to the corresponding subvariety of the
moduli space. We know the existence of the quotients only in two cases: for the
situation in Claim 4.3(i) and for n = 3 in Claim 5.3. In the first case we will use a
theorem of Drézet:

Let m1,m2, n1 be integers and consider morphisms of sheaves on Pn of the form

m1O(−2)⊕ m2O(−1)
ϕ
→ n1O.

We recall from Section 3 that a polarization in this context is a triple3=(λ1,λ2,µ1)

of positive numbers satisfying the relations m1λ1+m2λ2 = n1µ1 = 1. Theorem 6.4
from [Drézet 2000] gives sufficient conditions on3which assure the existence of a
good quotient. Below we state part two of the theorem formulated in the particular
case of the projective plane which is of interest to us:

There exists a good quotient W ss(G,3)//G, which is a projective variety, if the
following four inequalities are fulfilled:

λ2 <
3
n1
, λ2 >

3m1 + n1

3m1n1 + n1m2
,

m2λ2 > 1 −
3m1

n1(3m1 − 1)
if m1 ≤ 3,

m2λ2 > 1 −
3m1

8n1
if m1 > 3.

Taking m1 = 2, m2 = n − 2, n1 = n these conditions become

λ1 <
6

n(n + 4)
, λ1 <

3
5n
.

Corollary 7.11. Let 3 ≤ n ≤ 7 be an integer and let W ss(G,3) be the space of
morphisms of sheaves on P2 of the form

2O(−2)⊕ (n − 2)O(−1)
ϕ
→ nO

that are semistable with respect to a polarization 3 satisfying 1/(2n) < λ1 < 1/n.
Then there exists a good quotient W ss(G,3)//G, which, moreover, is a projective
variety.

Proof. If
1

2n
< λ1 <

6
n(n + 4)

,

the statement follows from Drézet’s theorem. To conclude the proof we only need
observe that W ss(G,3) does not change when λ1 varies in the interval

( 1
2n ,

1
n

)
. �
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Proposition 7.12. For 3 ≤ n ≤ 6 let Wo be the subset of W ss(G,3) from Corollary
7.11 given by the condition det(ϕ) 6= 0. For n = 2 let Wo be the space of injective
morphisms 2O(−2) → 2O. Then Wo admits a good quotient modulo G, which is
isomorphic to the open dense subset of MP2(n + 2, n) given by the conditions

h0(F(−1))= 0, h1(F)= 0, h1(F ⊗�1(1))= 0.

In particular, the projective varieties W ss(G,3)//G and MP2(n + 2, n) are bira-
tional.

Proof. The good quotient Wo//G is an open dense subset of W ss(G,3)//G. The
latter exists by Corollary 7.11 when n ≥ 3 and by classical geometric invariant
theory when n = 2. The map

η : Wo → MP2(n + 2, n)

can be constructed as in Proposition 7.6 and has image the open subset Mo de-
scribed by the cohomological conditions from the proposition. By the universal
property 7.4(i) of a good quotient, η factors through a morphism

ρ : Wo//G → Mo.

If n is even the injectivity of ρ is not as straightforward as in Proposition 7.6
because the fibers of ηmay not be G-orbits, as there may occur properly semistable
sheaves. We will prove the injectivity only in the case n = 2, the cases n = 4 and
n = 6 being analogous:

Let [ϕ1] and [ϕ2] be in Wo//G and assume that F1 = Coker(ϕ1) and F2 =

Coker(ϕ2) are properly semistable and stable equivalent. Thus F1 and F2 have
the same terms in their Jordan–Hölder filtrations, say A1 and A2. According to the
discussion preceeding Corollary 7.8, Ai are cokernels of maps αi : O(−2)→ O. It
is easy to see that, modulo the action of G, ϕ1 and ϕ2 are equivalent to matrices

ψ1 =

[
α1 β1

0 α2

]
, respectively ψ2 =

[
α1 β2

0 α2

]
.

We consider the one-parameter subgroup λ of G given by

λ(t)=

([
t 0
0 1

]
,

[
t 0
0 1

])
.

We have

λ(t).ψi =

[
α1 tβi

0 α2

]
, forcing lim

t→0
λ(t).ψi =

[
α1 0
0 α2

]
,

which we denote by ψ . From Proposition 7.4(ii) we get [ψi ] = [ψ], so [ϕi ] = [ψ],
so ρ is injective.



122 MARIO MAICAN

To finish the proof we only need observe that Mo is smooth. At points repre-
sented by stable sheaves this is already known from Theorem 2.12. In general,
applying the long exact sequence of Ext groups to the exact sequence from Claim
4.3(i), we deduce that for all F in Mo we have Ext2(F,F) = 0. According to
Grothendieck’s Criterion, this gives smoothness at the point in the moduli space
represented by F.

Thus far ρ is a bijective morphism onto a normal variety. From Zariski’s Main
Theorem we conclude that ρ is an isomorphism. �

We notice that another way of proving that ρ is an isomorphism, which avoids
Grothendieck’s Criterion of smoothness and Zariski’s Main Theorem, is exhibited
in the proof of Proposition 7.14.

We do not know if the birational maps constructed above are isomorphisms. The
subsets Mo are open, proper subsets of MP2(n+2, n) because Wo are proper subsets
of the sets of semistable points. For example, in the case n = 2, the following
matrices are semistable but have zero determinant:[

X1Y1 X1Y2

X2Y1 X2Y2

]
where X1, X2 are linearly independent in V ∗ and same for Y1, Y2.

Proposition 7.13. For n = 1, 2, 3 let W ss(G,3) be the set of morphisms of sheaves
on P2 of the form

O(−3)⊕ nO(−1)
ϕ
→ (n + 1)O,

which are semistable with respect to a polarization 3 satisfying 0< λ1 < 1/n +1.
Then there exists a geometric quotient W ss(G,3)/G which is a fiber bundle with
fiber P4n+9 and base a projective variety of dimension n2

+ n.

The proof is the same as in Proposition 7.7. The injectivity of f is clear in the
cases n = 1, 2 and follows from remark Remark 5.5 in the case n = 3.

Proposition 7.14. Let Wo be the open subset of W ss(G,3) from Proposition 7.13
given by the condition det(ϕ) 6= 0. Then Wo admits a geometric quotient modulo
G which is isomorphic to the locally closed subset of MP2(n + 3, n) given by the
conditions h0(F(−1))= 0 and h1(F)= 1, and equipped with its canonical reduced
structure.

Proof. The cases of the fine moduli spaces MP2(4, 1) and MP2(5, 2)were discussed
earlier. Assume now that n = 3. Let X be the subset of MP2(6, 3) described by the
cohomological conditions from the proposition.

As in Proposition 7.6, there is a morphism η : Wo → X associated to a flat family
on Wo and which factors through a morphism ρ : Wo/G → X . From Remark 5.4
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we know that all sheaves from X are stable, so we can repeat the argument from
Proposition 7.6 proving that the fibers of η are G-orbits. Thus ρ is bijective.

To prove that ρ is an isomorphism we will construct its inverse. Recall from
Section 2 that MP2(6, 3) is the good quotient of a certain open subset R inside
a quotient scheme, modulo the action of SL(V ). There is a locally closed sub-
variety S of R, invariant under the action of the special linear group, such that
X = S//SL(V ). The existence of S follows from remark 3.4.3 on p. 54 in [New-
stead 1978] and from the fact that in characteristic zero reductive groups are linearly
reductive (p. 50 in the same reference). In fact S is the preimage of X under the
quotient map R → MP2(6, 3). Let τ : S → X denote the quotient map.

Let U be the restriction to S × P2 of the universal quotient family on R × P2.
Let p : S × P2

→ S be the projection onto the first component. For an arbitrary
point in s ∈ S we denote by Us the restriction U|{s}×P2 . From Claim 5.3 we know
that Us has a resolution

0 → O(−3)⊕ 3O(−1)
ϕ
→ 4O → Us → 0.

In fact, with the notations from Section 5, we have

ϕ12 = ρ32, ϕ11 = −ρ31ψ
−1
12

 X
Y
Z

 .
Each Us is the middle cohomology of a Beilinson complex

0 → 3O(−2)⊕ 3O(−1)→ 3O(−1)⊕ 4O → O → 0

and ρ32, ρ31, ψ12 depend algebraically on the maps in this complex. We put ς(s)=
ϕ and we claim that ς can be extended to a morphism from a neighbourhood So

of s in S to Wo.
To see this we proceed as in the proof of Proposition 7.6. The higher direct

image sheaves

p∗(U(−1)), R1 p∗(U(−1)), p∗(U), R1 p∗(U),

p∗(U ⊗�1
S×P2/S(1)), R1 p∗(U ⊗�1

S×P2/S(1))

are locally free of ranks 0, 3, 4, 1, 3, 3. They are free on an open neighbourhood
So of s. Thus ρ32, ρ31, ψ12 can be made to depend algebraically on the point in So.
This allows us to define ς on So.

We now cover S with such open sets So and we notice that the locally defined
maps π ◦ ς glue together to a globally defined morphism σ : S → Wo/G making



124 MARIO MAICAN

the diagram commute:

Wo

π

��

So
ςoo i // S

τ

��

σ

vvmmmmmmmmmmmmmmm

Wo/G
ρ // X

.

Indeed, if ς1 and ς2 are defined on two distinct neighbourhoods of s, then ς1(s)
and ς2(s) are in the same G-orbit.

Finally, we observe that σ is constant on the fibers of τ . This is so because if
τ(s1)= τ(s2), then the corresponding sheaves Us1 and Us2 are isomorphic, so their
Beilinson resolutions are equivalent, and ς1(s1) and ς2(s2) are in the same G-orbit.
Here ςi is defined on a neighbourhood of si .

By the universal property 7.4(i) of a good quotient, the map σ factors through
a morphism from X to Wo/G. This is the desired inverse of ρ. �

The above proof could be carried out for all locally closed subsets X ⊂MP2(r, χ)
occuring at Claim 4.3, Claim 4.5(ii), Claim 4.7, Claim 4.8, provided that we knew
the existence of the quotients Wo//G. In all cases we would get the isomorphism
X ' Wo//G. Unfortunately, we do not know how to prove the existence of Wo//G
when r and χ are not mutually prime in each of the above cases. We should mention
that an essential ingredient in the proof is the fact that all sheaves from S have
the same kind of Beilinson complex. This is satisfied because the cohomological
conditions defining X are closed under stable equivalence. This fact is easy to
check in each case. To give the flavor of the argument we will just check the case
n = 6 from Claim 4.3(i): assume that G is stable equivalent to F and that F has
resolution

0 → 2O(−2)⊕ 4O(−1)→ 6O → F → 0.

Assume that F is properly semistable, so it fits into an exact sequence

0 → F1 → F → F2 → 0

with F1 and F2 in MP2(4, 3). From h1(F)= 0 and h2(F1)= 0 we get h1(F2)= 0.
Analogously, from h1(F⊗�1(1))=0 and from h2(F1⊗�

1(1))=0 we get h1(F2⊗

�1(1)) = 0. We cannot have h0(F2(−1)) > 0 because, in view of Claim 6.6, this
would force h1(F2 ⊗�1(1))= 1. Thus h0(F2(−1))= 0. From h0(F(−1))= 0 we
immediately also get h0(F1(−1)) = 0. In conclusion, both F1 and F2 satisfy the
hypotheses of Claim 4.2. We arrive at the resolutions

0 → O(−2)⊕ 2O(−1)→ 3O → Fi → 0.

By hypothesis G is an extension

0 → F1 → G → F2 → 0
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possibly with F1 and F2 interchanged. By the “horseshoe lemma” the resolutions
of F1 and F2 can be combined to give a resolution for G of the same kind as the
resolution of F.

8. Computation of codimensions

To find the codimensions of the locally closed subvarieties of MP2(r, χ) occuring
in the previous sections we need to find the dimensions of the stabilizers of generic
points from Wo. For actions of reductive groups it is known that a stable point has
zero-dimensional isotropy group. This fact will not remain true in our context.

We begin with a lemma which seems to be known, yet we couldn’t find a ref-
erence. Let V be a vector space over k and let W be the space of m × n-matrices
with entries in V . We consider the action by conjugation on W of the reductive
group G =GL(m)×GL(n)/k∗.

Lemma 8.1. The isotropy subgroup of a stable point from W is trivial.

Proof. Let w ∈ W be a stable matrix. Concretely, what this means, is that no
matrix in the same orbit as w can have a zero p × q-submatrix with p

m +
q
n ≥ 1.

We consider an element in the isotropy group of w represented by (g, h).
As G is reductive, StabG(w) is finite, so there are t ∈ k∗ and an integer r ≥ 1

such that gr
= t Im and hr

= t In . From this we see that g and h are diagonalizable
matrices. Replacing possibly w by another point in its orbit, we may assume that
g and h are diagonal matrices. We write

g = diag(t1, . . . , tm), h = diag(s1, . . . , sn).

From w = gwh−1 we see that wi j = 0 if ti 6= s j . Thus, if t1, . . . , tm, s1, . . . sn are
not all equal, then w is a block matrix, say[

? 0
0 ?

]
.

This contradicts the stability of w. In conclusion, g = t Im , h = t In; thus (g, h)
represents the identity of G. �

Claim 8.2. The isotropy group of a generic semistable morphism

2O(−2)⊕ (n − 1)O(−1)
ϕ
→ O(−1)⊕ nO, ϕ12 = 0,

has dimension n − 1. The semistability conditions are understood as in Claim 4.3.

Proof. We choose a morphism ϕ for which at least one of the maximal minors of
ϕ22 is nonzero. Let (g, h) be in StabG(ϕ). Keeping the notations from Section 3
we write

g−1
=

[
g1 0
u g2

]
, h =

[
h1 0
v h2

]
.
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We have ϕ = hϕg−1 so ϕ11 = h1ϕ11g1 and ϕ22 = h2ϕ22g2. But ϕ11 and ϕ22 are
stable matrices with entries in V ∗. From Lemma 8.1 we get h1 = t1, g1 = t−1

1 ,
h2 = t2 In , g2 = t−1

2 In−1. We have ϕ21 = vϕ11t−1
1 + t2ϕ21t−1

1 + t2ϕ22u. If t1 6= t2,
then ϕ is equivalent to a matrix ϕ′ for which ϕ′

21 = 0. This would contradict the
semistability of ϕ. Thus t1 = t2 = t and ϕ22u = −t−2vϕ11.

Recall that ϕ11 = [X1, X2] with linearly independent X1, X2 in V ∗. We put
ψ = [−X2, X1]

T . From ϕ22uψ = −t−2vϕ11ψ = 0 we get uψ = 0 because one of
the maximal minors of ϕ22 is nonzero. Thus u = αϕ11 with α ∈ Mn−1,1(k). From
(t−1v+ tϕ22α)ϕ11 = 0 we get v = −t2ϕ22α. Thus (g, h) is parametrized by t and
by the entries of α, giving the claim. �

The above proof worked because for ϕ11 there existed a matrix ψ such that for
any 1 × 2-matrix u with entries in V ∗

(8.3) uψ = 0 implies that u is a multiple of ϕ11.

For morphisms from Claim 4.7 we can take

ϕ11 =
[

X Y Z
]
, ψ =

−Y −Z 0
X 0 −Y
0 X Z


and we see that (8.3) is true for 1 × 3-matrices u with entries in V ∗. We arrive at:

Claim 8.4. The isotropy group of a generic semistable morphism

3O(−2)⊕ (n − 2)O(−1)
ϕ
→ O(−1)⊕ nO, ϕ12 = 0,

has dimension n − 2. The semistability conditions are understood as in Claim 4.7.

For morphisms from Claims 4.8 and 4.9 the 2×3-matrix ϕ11 = ( fi j )i=1,2, j=1,2,3

with entries in V ∗ is stable. Concretely, stability here means that the maximal
minors of ϕ11 are linearly independent in S2V ∗. We put f = [ f1, f2, f3]

T , where

f1 =

∣∣∣∣ f12 f13

f22 f23

∣∣∣∣ , f2 =

∣∣∣∣ f13 f11

f23 f21

∣∣∣∣ , f3 =

∣∣∣∣ f11 f12

f21 f22

∣∣∣∣ .
Clearly ϕ11 f = 0. Our intention is to show that, for generic ϕ11, and for a 1 × 3-
matrix u with entries in V ∗, the equality u f = 0 implies that u is a linear combi-
nation of the rows of ϕ11. Indeed, the condition u f = 0 is the same as saying that
the determinant of

ψ =

 f11 f12 f13

f21 f22 f23

u1 u2 u3


is zero. We need to prove that, modulo operations on rows and columns, ψ is
equivalent to a matrix having a zero row. For this we will use Remark 5.6, namely
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we will exclude the other possibilities listed there. First we see that, as the columns
of ϕ11 are linearly independent, ψ cannot be equivalent to a matrix having a zero
column. Nor is ψ equivalent to a matrix of the form 0 0 ?

0 0 ?

? ? ?

 ,
for if gψh has the above form, then all 2 × 2-minors positioned on the first two
columns of ψh are zero. But the matrix obtained by deleting the third row of ψh is
equivalent to ϕ11, so it is stable, so its first maximal minor from the left is nonzero
(in fact all its maximal minors are nonzero).

If we choose ϕ11 generic enough, then ψ is equivalent to neither ψ1 nor ψ2 from
Remark 5.6. For instance, if ϕ11, regarded as a map from V ∗

⊕V ∗
⊕V ∗ to V ∗

⊕V ∗,
is injective, then ψ is not equivalent to ψ1. To rule out ψ2, we need only observe
that the condition det(ψ2) = 0 defines a thin subset inside the affine space with
coordinates a1, . . . a5 (notations as in Remark 5.6). In conclusion, ψ is equivalent
to a matrix having a zero row.

With the notations from the proof of Claim 8.2, we have u = αϕ11 with α ∈

Mn−1,2(k), and v = −t2ϕ22α. We arrive at the following:

Claim 8.5. The isotropy group of a generic semistable morphism

3O(−2)⊕ (n − 1)O(−1)
ϕ
→ 2O(−1)⊕ nO, ϕ12 = 0,

has dimension 2n − 2.

Finally, we turn to morphisms from Claim 6.9 and Claim 6.10.

Claim 8.6. The isotropy group of a generic semistable morphism

(n − 2)O(−2)⊕ 3O(−1)
ϕ
→ (n − 3)O(−1)⊕ 3O, ϕ12 = 0, ϕ22 = ψ1,

has dimension 4n − 11.

Proof. As in Claim 8.2 we have t1 = t2 = t and vϕ11t−1
= −tϕ22u. We put

ψ = [Z ,−X, Y ]. From ψvϕ11 = −t2ψϕ22u = 0 we get ψv = 0, because ϕ11

can be chosen generic enough that one of its maximal minors be nonzero. From
ψv= 0 we get v= ϕ22α with α ∈ M3,n−3(k). From ϕ22(αϕ11t−1

+ tu)= 0 we get
αϕ11t−1

+tu =[−Y, X, Z ]
Tβ. with β ∈M1,n−2(k). Thus StabG(ϕ) is parametrized

by t, the entries of α and the entries of β. �

Once we know the dimensions of the isotropy groups of generic points ϕ ∈ Wo

we can apply the obvious formula

dim(X)= dim(Wo)− dim(G)+ dim(StabG(ϕ)).
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We do not carry out here these computations; we refer, insted, to the table from
the introduction where we have recorded the results.

9. Duality results

In [Freiermuth 2000] one can find a birational map of fine moduli spaces

MP2(r, χ)→ MP2(r, r−χ)

given by sending a point represented by F to the point represented by the dual
sheaf FD . By modifying slightly the argument from [Freiermuth 2000] we will
construct such birational maps also for those coarse moduli spaces occuring in
Section 4. At Theorem 9.6 we will also obtain isomorphisms between dual locally
closed subspaces of MP2(r, χ) and MP2(r, r−χ).

In the sequel F will be a coherent sheaf on P2 with pure one-dimensional support
and without zero-dimensional torsion. We define its dual FD by

FD
= Ext1

O
P2
(F, �2

P2)(1).

Clearly FD has one-dimensional support, so it has linear Hilbert polynomial. This
can be computed using the following isomorphisms provided by Serre duality:

H 0(FD(−1))' H 1(F)∗, H 1(FD(−1))' H 0(F)∗,

H 0(FD)' H 1(F(−1))∗, H 1(FD)' H 0(F(−1))∗.

Thus, if PF(t) = r t + χ , then PFD (t) = r t + r − χ . In particular, the slopes of F

and FD are related by p(FD)= 1 − p(F).

Lemma 9.1. If F is Cohen–Macaulay, in particular if F is semistable, then FDD
'

F and Ext2(F, �2)= 0.

Proof. We will apply proposition 1.1.10 from [Huybrechts and Lehn 1997]. All
we need to show is that F satisfies the Serre condition S2,1:

depth(Fx)≥ min{2, dim OP2,x − 1} for all x ∈ Supp(F).

But if x is a closed point in the support of F, we have depth(Fx)=1 and dim OP2,x =

2. If x is a generic point of an irreducible component of Supp(F), we have
dim OP2,x = 1 and the above inequality is trivially fulfilled. Finally, we notice
that, by virtue of Proposition 2.3, semistable sheaves are Cohen–Macaulay. �

Lemma 9.2. F is semistable (stable) if and only if FD is semistable (stable).
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Proof. Assume that F is semistable. Let G = FD/K be a quotient sheaf of FD . As
K is a torsion sheaf, we have Hom(K, �2)= 0. Applying the long exact sequence
in Ext-sheaves to the short exact sequence

0 → K → FD
→ G → 0

we see that GD is a subsheaf of FDD
' F. Thus

1 − p(G)= p(GD)≤ p(F)= 1 − p(FD), so p(FD)≤ p(G).

This proves the semistability of FD .
Assume that F is not semistable. Then F has a quotient sheaf G with p(G) <

p(F). As before, GD is a destabilizing subsheaf of FD . �

Lemma 9.3. If F and G are semistable and stable equivalent, so are FD and GD .

Proof. Consider a Jordan–Hölder filtration for F:

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F.

We apply the long exact sequence in Ext-sheaves to the exact sequences

0 → Fi → Fi+1 → Fi+1/Fi → 0.

As Fi is a torsion sheaf we have Hom(Fi , �
2)= 0. As Fi+1/Fi is semistable, we

have, by Lemma 9.1, Ext2(Fi+1/Fi , �
2)= 0. We arrive at the exact sequences

0 → (Fi+1/Fi )
D

→ FD
i+1 → FD

i → 0.

Similarly we obtain exact sequences

0 → (F/Fi )
D

→ FD
→ FD

i → 0.

From these two sequences we conclude that

0 = (F/Fn)
D

⊂ (F/Fn−1)
D

⊂ · · · ⊂ (F/F1)
D

⊂ (F/F0)
D

= FD

is a Jordan–Hölder filtration of FD with terms (Fi+1/Fi )
D , the latter being stable

by virtue of Lemma 9.2. The lemma follows. �

Theorem 9.4. Assume that r/2 ≤ χ ≤ r and that r , χ are mutually prime. Then
the open dense subset of MP2(r, χ) given by the conditions

h0(F(−1))= 0, h1(F)= 0, h1(F ⊗�1(1))= 0,

is isomorphic to the open dense subset of MP2(r, r−χ) given by the conditions

h1(F)= 0, h0(F(−1))= 0, h0(F ⊗�1(1))= 0.

The isomorphism is given by [F] → [FD
].
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Proof. From Lemmas 9.1, 9.2 and 9.3 we see that the map δ given by [F] → [FD
]

is well defined and a bijection between the two open sets from the theorem, which
we call Mo(r, χ) and Mo(r, r−χ).

Every sheaf F from Mo(r, χ) has Beilinson resolution

(9.5) 0 → (r −χ)O(−2)⊕ (2χ − r)O(−1)
ϕ
→ χO → F → 0.

The long exact sequence in Ext-sheaves gives the resolution

0 → χO(−2)
ϕD

→ (r −χ)O ⊕ (2χ − r)O(−1)→ FD
→ 0,

where ϕD , viewed as a matrix, is simply the transpose of ϕ. The set of morphisms
ϕ occuring above forms an open subset Wo inside the vector space of morphisms

(r −χ)O(−2)⊕ (2χ − r)O(−1)→ χO.

On Wo × P2 we consider the coherent sheaf F̃ given by the exact sequence

OWo � (r −χ)OP2(−2)⊕ OWo � (2χ − r)OP2(−1)
8
→ χOWo×P2 → F̃ → 0.

On each fiber {ϕ} × P2 the restriction of 8 is ϕ. Similarly we construct the dual
family as the cokernel

OWo �χOP2(−2)
8D

→ OWo � (r −χ)OP2 ⊕ OWo � (2χ − r)OP2(−1)→ F̃D
→ 0

of a morphism 8D which restricts to ϕD on each fiber {ϕ} × P2. Clearly F̃ and
F̃D are Wo-flat, so they induce morphisms

ρ : Wo → Mo(r, χ), ρD
: Wo → Mo(r, r−χ).

We have δ ◦ ρ = ρD .
Next we recall from Section 2 that MP2(r, χ) is the good quotient of an open

subset R inside a certain quotient scheme. Let S be the preimage of Mo(r, χ) under
the quotient map R → MP2(r, χ). The map

π : S → Mo(r, χ)

ia a good quotient map. Let U be the restriction to S ×P2 of the universal quotient
family on R × P2. From the fact that all restrictions of U to the fibers {s} × P2,
s ∈ S, have Beilinson resolution (9.5) we deduce, as in the proof of Proposition
7.14, the existence of locally defined morphisms ς : So → Wo satisfying

ρ ◦ ς = π.
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The morphisms ρD
◦ς glue to a globally defined morphism πD making the diagram

S

π

����
��
��
��
��
��
��
��
��
��
��
��

πD

��0
00

00
00

00
00

00
00

00
00

00
00

0

So

i

OO

ς

��
Wo

ρ

zzvvvvvvvvv
ρD

%%KKKKKKKKKK

Mo(r, χ)
δ // Mo(r, r−χ)

commute. Thus δ is the map induced by πD via the universal property of the
quotient map π . As such, δ must be a morphism. By symmetry, its inverse must
be a morphism, too. �

The above theorem first appeared in [Freiermuth 2000]. Its proof given there
is simpler and makes use of the universal families on the fine moduli spaces. Our
argument, though more cumbersome, has the following advantage: it works also
in the case when r , χ are not mutually prime, as long as we know that all sheaves
giving a point in Mo have the same kind of Beilinson complex.

Theorem 9.6. Let X be the locally closed subvariety of MP2(r, χ) given by the
conditions

h0(F(−1))= a, h0(F)= b, h0(F ⊗�1(1))= c.

Assume that every sheaf giving a point in X satisfies the above conditions. This is
the case, for instance, when r , χ are mutually prime. Then X is isomorphic to the
locally closed subvariety X D of MP2(r, r−χ) given by the conditions

h1(F)= a, h1(F(−1))= b, h1(F ⊗�1(1))= c.

The isomorphism is given by [F] → [FD
]. Here X and X D are equipped with their

canonical reduced structures.

Proof. Assume that X is nonempty. We repeat the arguments from Theorem 9.4.
We consider vector bundles Ei on P2, i =−2,−1, 0, 1, which are decomposable

as direct sums of line bundles. We assume that for each F giving a point in X there
is a complex

(9.7) 0 → E−2 ϕ
→ E−1 ϕ′

→ E0 ϕ′′

→ E1
→ 0,
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which is exact, except at E0, where the cohomology is F. For instance, we could
choose Ei to be the bundles Ci occuring in the Beilinson complex (4.1). Let Wo

be the set of the above complexes.
Wo will play the same role as in the proof of Theorem 9.4. The existence of

ρ : Wo → X is clear by construction. To finish the proof, we only need to construct
ρD satisfying δ ◦ ρ = ρD . For this purpose we will show that Hom( ,�2)(1)
applied to (9.7) gives a complex

(9.8) 0 → E1
D → E0

D → E−1
D → E−2

D → 0

that is exact, except at E−1
D , where the cohomology is FD .

We consider the long exact sequences in Ext( ,�2)-sheaves induced by the
short exact sequences

0 → E−2
→ E−1

→ A → 0,

0 → B → E0
→ E1

→ 0,

0 → A → B → F → 0.

Since Ext j (O(d), ) = 0 for j ≥ 1, we have Ext j (Ei , �2) = 0 for j ≥ 1. The
second sequence gives Ext1(B, �2)= 0. In view of Lemma 9.1, the semistability
of F leads to Ext2(F, �2)= 0. The third sequence gives Ext1(A, �2)= 0. Thus
we arrive at the exact sequences

0 → Hom(A, �2)→ Hom(E−1, �2)→ Hom(E−2, �2)→ 0,

0 → Hom(E1, �2)→ Hom(E0, �2)→ Hom(B, �2)→ 0,

0 → Hom(B, �2)→ Hom(A, �2)→ Ext1(F, �2)→ 0,

which immediately yield (9.8). �

We mentioned at the end of Section 7 that all locally closed subvarieties X
occuring in Section 4, satisfy the hypotheses of the above theorem. Indeed, it can
be verified in each case that the cohomological properties defining X are closed
under stable equivalence. As a consequence, all locally closed subvarieties X ⊂

MP2(r, χ) occuring in Sections 4–6, with the possible exception of the subvarieties
in MP2(3r, 3), r = 3, 4, 5, occuring in section 6, are isomorphic to their duals X D .
In particular, Theorem 9.4 remains true for the following choices of multiplicity
and Euler characteristic: (6, 4), (8, 6), (9, 6). We obtain:

Corollary 9.9. The spaces MP2(r, χ) and MP2(r, r−χ) are birational for (r, χ)=

(6, 4), (8, 6), (9, 6).

Here is another application of Theorem 9.6: the closed subset of MP2(4, 1) given
by the conditions h0(F(−1))= 0, h1(F)= 1 (the condition h0(F ⊗�1(1))= 1 is
automatically fulfilled), is isomorphic to the closed subset of MP2(4, 3) given by
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the conditions h1(F)= 0, h0(F(−1))= 1. This we proved earlier at Corollary 7.9
and Corollary 7.10 by means of their description as geometric quotients.

Let W D
o denote the set of complexes (9.8), i.e. the set of complexes obtained

by applying Hom( ,�2)(1) to the complexes from Wo. If we identify Wo with a
certain subset of triples of matrices (ϕ, ϕ′, ϕ′′) inside the vector space

W = Hom(E−2,E−1)× Hom(E−1,E0)× Hom(E0,E1),

then W D
o is just the subset of triples of transposed matrices (ϕ′′T , ϕ′T , ϕT ) inside

the vector space

W D
= Hom(E1

D,E0
D)× Hom(E0

D,E−1
D )× Hom(E−1

D ,E−2
D ).

Thus transposition gives an isomorphism of Wo with W D
o , both equipped with their

canonical reduced structures induced by the ambient spaces W and W D .
On Wo and on W D

o we have the canonical action of the (usually nonreductive)
algebraic group

G = Aut(E−2)× Aut(E−1)× Aut(E0)× Aut(E1).

From the proofs of Theorem 9.4 and Theorem 9.6 we extract the following:

Proposition 9.10. Let X be as in Theorem 9.6. Assume that a good quotient of Wo

by G exists and is isomorphic to X. Then a good quotient of W D
o by G exists and

is isomorphic to X D .

For every subset X ⊂ MP2(r, χ) described in section 7 as a good (geometric)
quotient, we have a dual description of X D

⊂ MP2(r, r−χ) as a good (geometric)
quotient. For better understanding let us introduce to a polarization3 of type (2,1)
or type (2,2) its dual polarization 3D of type (1,2), respectively type (2,2):

for 3= (λ1, λ2, µ1) we put 3D
= (λD

1 , µ
D
1 , µ

D
2 )= (µ1, λ2, λ1);

for 3= (λ1, λ2, µ1, µ2) we put 3D
= (λD

1 , λ
D
2 , µ

D
1 , µ

D
2 )= (µ1, µ2, λ2, λ1).

If Wo is defined by semistability conditions expressed in terms of 3, then W D
o is

defined by semistability conditions expressed in terms of 3D . We list below the
consequences of Proposition 9.10 for the cases of generic sheaves:

Corollary 9.11. The open dense subset of MP2(n + 1, 1), n ≥ 2, given by the
condition h1(F) = 0, is isomorphic to Wo/G, where Wo is the set of injective
morphisms

nO(−2)
ϕ
→ (n − 1)O(−1)⊕ O, ϕ ∈ W ss(G,3), 3= (λ1, µ1, µ2), 0<µ2 <

1
n
.

The open dense subset of MP2(n + 2, 2), n = 3, 4, 5, 6, given by the conditions

h0(F(−1))= 0, h1(F)= 0, h0(F ⊗�1(1))= 0,
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is isomorphic to Wo//G, where Wo is the set of injective morphisms

nO(−2)
ϕ
→ (n−2)O(−1)⊕2O, ϕ∈ W ss(G,3), 3= (λ1, µ1, µ2),

1
2n
<µ2<

1
n
.

The open dense subset of MP2(n + 3, 3), n = 4, 5, given by the conditions

h0(F(−1))= 0, h1(F)= 0, h0(F ⊗�1(1))= 0,

is isomorphic to Wo/G, where Wo is the set of injective morphisms

nO(−2)
ϕ
→ (n−3)O(−1)⊕3O, ϕ∈ W ss(G,3), 3= (λ1, µ1, µ2),

2
3n
<µ2<

1
n
.

One final example of a quotient we were not able to obtain in Section 6: the
subset of MP2(6, 3) given by the conditions h0(F(−1))= 1, h1(F)= 0 (the condi-
tion h1(F ⊗�1(1))= 3 is automatically fulfilled), is isomorphic to Wo/G, where
Wo is the set of injective morphisms

4O(−2)
ϕ
→ 3O(−1)⊕ O(1), ϕ ∈ W ss(G,3), 3= (λ1, µ1, µ2), 0< µ2 <

1
4 .

Applying Proposition 9.10 to the quotients from Section 6 we get descriptions for
the subsets in MP2(n +3, n), n = 4, 5, 7, 8, 10, 11, 13, 14, given by the conditions
h0(F(−1))= 0, h1(F)= 1. We omit the details.
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