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For a discrete valuation field F, using commensurability on valuation rings,
we construct arithmetic symbols on the linear group GL(n, F) that gen-
eralize classical symbols such as the tame symbol and the Hilbert norm
residue symbol on an algebraic curve. We also offer reciprocity laws for
these symbols on GL(n, 6C).

1. Introduction

J. Milnor [1971] defined the tame symbol dv associated with a discrete valuation v
on a field F. Explicitly, if Ov is the valuation ring, mv is the unique maximal ideal
and K(v)= Ov/mv is the residue class field, Milnor defined dv : F∗×F∗→K(v)∗

by
dv(x, y)= (−1)v(x)·v(y)

xv(y)

yv(x)
(mod mv).

If F∗ is a topological group with the v-topology and K(v)∗ is a discrete topo-
logical group, the tame symbol is a continuous Steinberg symbol (bimultiplicative
and satisfying dv( f, 1− f )= 1 for all f 6= 1). The tame symbol is used in algebraic
K-theory to study the group K2F.

During the last thirty years, characterizations of algebraic symbols (in particular
the tame symbol) have been obtained from the properties of infinite-dimensional
vector spaces in order to provide new interpretations for these symbols and to
deduce standard theorems from the new definitions in an easy way [Arbarello et al.
1989; Pablos Romo 2004; 2002].

Given a discrete valuation field F, the aim of this work is to provide a method
for constructing arithmetic symbols on the linear group GL(n,F) that generalize
classical symbols, and to offer reciprocity laws for some of these symbols. To do
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so, we use a new definition of commensurability on valuation rings, and a general
definition of the tame symbol over the linear group GL(n,F).

In [Muñoz Porras and Pablos Romo≥ 2008] we offered a reciprocity law for the
tame symbol on GL(n, 6C), 6C being the function field of a complete, irreducible
and nonsingular curve over a perfect field, and we have explored the explicit reci-
procity laws for the case GL(2, 6C). The present work generalizes the statements
of that paper in a dual way: the explicit expressions of symbols are valid for each
positive integer n and for an arbitrary discrete valuation field F. The proof of the
reciprocity law for the tame symbol on GL(n, 6C) offered here is similar to the
Tate’s proof [1968] of the residue theorem, and rather different from the one given
in [Muñoz Porras and Pablos Romo ≥ 2008], which was been deduced from the
triviality of an adelic central extension by considering rational points of a Sato
Grassmannian Gr(AC ,A+C ).

Section 2 introduces commensurability on k-vector spaces (k being a field),
together with its application to the study of the tame symbol on an algebraic
curve. Section 3 contains the technical results of this work. Commensurability
on valuation rings is defined, and from it a central extension is constructed and
a commutator pairing is studied. Section 4 is devoted to constructing, from that
commutator pairing, arithmetic symbols on the linear group GL(n,F), F being a
discrete valuation field. Thus, we define symbols that generalize classical symbols
such as the tame symbol and the Hilbert norm residue symbol on an algebraic curve.
Moreover, we show that these symbols can be extended to the infinite general linear
group GL(F)= lim

−→
GL(n,F).

In Section 5 we offer reciprocity laws for the symbols defined previously. If 6C

is the function field of an algebraic curve over a perfect field, we prove reciprocity
laws for symbols obtained from the tame symbol on GL(n, 6C), in particular
for the generalizations of the tame symbol and the Hilbert norm residue symbol.
When k is an algebraically closed field and A = k, the reciprocity law of the
generalized tame symbol coincides with the law for the Contou–Carrère symbol
on GL(n, 6C ⊗k A) that was proved in [Pablos Romo 2006] (where we defined a
Contou–Carrère symbol on GL

(
n, A((t))

)
for an artinian local ring A).

We remark that the statements in Sections 3 and 4 are valid for an arbitrary
discrete valuation field F, so it should be possible to study other properties of the
linear group GL(n,F) using the results presented here, and perhaps to apply them
in the context of the geometric Langlands program. As far as we know, except for a
reference in [Beilinson et al. 2002] and the above-mentioned papers [Muñoz Porras
and Pablos Romo ≥ 2008] and [Pablos Romo 2006], arithmetic symbols on the
linear group GL(n,F) have not been stated explicitly in the literature. The present
work, together with [Muñoz Porras and Pablos Romo ≥ 2008] and [Pablos Romo
2006], develop the main properties of this theory.
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2. Preliminaries

This section contains a review of the notion of commensurability on k-vector spaces
(k being a field), together with its application to the study of the tame symbol on
an algebraic curve.

Let V be a vector space (in general infinite-dimensional) over a field k.

Definition 2.1 [Tate 1968]. Two vector subspaces A and B of V are said to be
commensurable if dimk(A+ B/A∩ B) <∞. We shall use the symbol A ∼ B to
denote commensurable vector subspaces.

Let V+ ⊂ V be a fixed vector subspace, and assume k is algebraically closed.
Setting

GL(V, V+)= { f ∈ Autk(V ) such that f (V+)∼ V+},

E. Arbarello, C. de Concini and V.-G. Kac constructed in [Arbarello et al. 1989] a
central extension of groups

1→ k∗→ ˜GL(V, V+)→ GL(V, V+)→ 1,

and used it to study the tame symbol on an algebraic curve.
Given an element f ∈ GL(V, V+), the index of f over V+ is the integer

ik( f, V+)= dimk(V+/V+ ∩ f V+)− dimk( f V+/V+ ∩ f V+).

This construction was generalized in [Pablos Romo 2002] to define a tame sym-
bol for an algebraic curve over a perfect field. Now let C be a nonsingular and
irreducible curve over a perfect field, and let 6C again be its function field. We
keep the notation from that reference. If x ∈ C is a closed point and we denote
by Ax = Ôx the completion of the local ring Ox , and by Kx = (̂Ox)0 the field
of fractions of Ôx (which coincides with the completion of 6C with respect to
the valuation ring Ox ), it follows from [Pablos Romo 2002, Section 5] that, as in
[Arbarello et al. 1989], we have a central extension of groups

1→ k∗→ G̃L(Kx , Ax)→ GL(Kx , Ax)→ 1,

which, since 6∗C ⊆ GL(Kx , Ax), induces by restriction another central extension

1→ k∗→ 6̃∗C →6∗C → 1 ,

whose commutator, for all f, g ∈6∗C , is given by

{ f, g}Kx
Ax
= Nk(x)/k

(
f vx (g)

gvx ( f ) (p)
)
∈ k∗ ,

where k(x) is the residue class field of the closed point x and Nk(x)/k is the norm
of the extension k ↪→ k(x).
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Moreover, if deg(x)= dimkk(x), it is known that

ik( f, Ax)= dimk(Ax/Ax ∩ f Ax)− dimk( f Ax/Ax ∩ f Ax)= deg(x) · vx( f ).

Definition 2.2. Let C be a nonsingular and irreducible curve over a perfect field,
and let 6C be its function field. The tame symbol associated with a closed point
x ∈ C is the map

( , )x : 6
∗

C ×6
∗

C → k∗

defined by

( f, g)x = (−1)deg(x)·vx ( f )·vx (g) Nk(x)/k

(
f vx (g)

gvx ( f ) (p)
)

for f, g ∈6∗C .

When x is a rational point of C , this definition coincides with the multiplicative
local symbol of [Serre 1959]. Using the same method as Tate’s proof [1968] of
the residue theorem, starting from the properties of the commutator { , }Kx

Ax
and

the finiteness of the cohomology groups H 0(C,OC) and H 1(C,OC), we prove the
reciprocity law ∏

x∈C

( f, g)x = 1 for f, g ∈6∗C .

3. Commensurability and central extensions on valuation rings

Let F be a discrete valuation field and K(v) its residue class field. The valuation
ring associated with v is again denoted by Ov, and mv is its maximal ideal.

Commensurability on valuation rings. Let V be an Ov-module and let M,N be
two Ov-submodules of V. Note that Ov is a local principal ideal domain.

Definition 3.1. M and N are said to be commensurable if M+N/M∩N is a finitely
generated torsion Ov-module. We use the symbol M∼N to denote commensurable
submodules.

Example 3.2. Let Ôv = lim
←−n

Ov/mv
nOv be the mv-adic completion of Ov and let

(̂Ov)0 be its field of fractions. It is clear that there exists a commutative diagram of
morphisms of Ov-modules

Ov
� � //

� _

��

F� _

��
Ôv

� � // (̂Ov)0

Hence, if f ∈ F∗ and v( f ) = β, when β > 0 we have the isomorphisms of Ov-
modules

Ôv + f · Ôv /̂Ov ∩ f · Ôv ' Ôv/mv
β Ôv ' Ov/mv

βOv
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and when β < 0 we have

Ôv + f · Ôv /̂Ov ∩ f · Ôv 'mv
β Ôv /̂Ov 'mv

βOv/Ov.

In both cases Ôv + f · Ôv /̂Ov ∩ f · Ôv is a torsion finitely generated Ov-module and
Ôv ∼ f · Ôv.

Remark 3.3. If k is a field such that K(v) is a finite k-algebra, Ov is a k-module,
and V is an Ov-module, it is clear that two subspaces M,N⊂V are commensurable
according to Definition 3.1 if and only if

dimk(M+N/M∩N) <∞.

Thus, this definition coincides with Tate’s definition (Definition 2.1) when V is a
vector space over k and M and N are k-vector subspaces (and is slightly differ-
ent from the definition of commensurability with respect to an ideal α offered in
[Pablos Romo 2004]).

A finitely generated Ov-module W is isomorphic to W ' Oαv ⊕ T (W), where
α = dimF(W⊗Ov F) and T (W) is the torsion submodule of W. Hence, from an
exact sequence of Ov-modules

0→M1→M2→M3→ 0 ,

one concludes that M2 is a torsion finitely generated Ov-module if and only if M1

and M3 are torsion finitely generated Ov-modules. Thus, if M,N are Ov-submodules
of V, the commensurability M∼N is equivalent to each of the following properties:

• M/M∩N and N/N∩M are finitely generated torsion Ov-modules.

• M+N/M and M+N/N are finitely generated torsion Ov-modules.

As in [Arbarello et al. 1989], one has:

Lemma 3.4. (1) If M ∼ N and N ∼ P, then M+N+P/M∩N∩P is a torsion
finitely generated Ov-module.

(2) Commensurability is an equivalence relation.

(3) Let M,N,M′,N′ be submodules of V and assume that M ∼ M′ and N ∼ N′.
Then, M+N∼M′+N′ and M∩N∼M′ ∩N′.

Moreover, if W is a Ov-module, we denote by Gmv
(W) its graded K(v)-module

induced by the mv-filtration {mn
vW}n≥0. Given commensurable submodules M and

N of V, we set

[M|N]mv
= dimK(v)Gmv

(M/M∩N)− dimK(v)Gmv
(N/M∩N).
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Lemma 3.5. Let M, N and P be pairwise commensurable submodules of V. Then

[M|N]mv
+ [N|P]mv

= [M|P]mv
.

Proof. From the exact sequence of Ov-modules

0→M∩N/M∩N∩P→M/M∩N∩P→M/M∩N→ 0,

one has

dimK(v)Gmv
(M/M∩N)

= dimK(v)Gmv
(M/M∩N∩P)− dimK(v)Gmv

(M∩N/M∩N∩P),

and the claim is deduced. �

Remark 3.6. With the notations of Example 3.2, one has

[̂Ov| f · Ôv]mv
= v( f ).

The central extension G̃V
V+

. Let V be again an Ov-module and let V+ be a fixed
Ov-submodule of V.

Definition 3.7. Define the group GV
V+
⊆ AutOv (V) by

GV
V+
= {τ ∈ AutOv (V) such that τ(V+)∼ V+ and τ−1(V+)∼ V+}.

As in [Pablos Romo 2002], if τ ∈ GV
V+

and 3 is the maximal exterior power,
we set

Det C•τV+
=3Gmv

(
V+/V+ ∩ τV+

)
⊗

K(v)
3

[
Gmv

(
τV+/V+ ∩ τV+

)]∗
,

which is a K(v)-vector space of dimension one.
If τV+ = V+, then Det C•τV+

= K(v).
From the computations made in [Arbarello et al. 1989; Pablos Romo 2004;

2002] one deduces the existence of a map

Det C•τV+
⊗

K(v)
Det C•σV+

ϕστ
−→ Det C•τσV+

,

which we shall write as ϕστ (s1⊗ s2)= s1 · τ̄ (s2), where τ̄ (s2) is an element of

3Gmv

(
τV+/τV+ ∩ τσV+

)
⊗

K(v)
3

[
Gmv

(
τσV+/τV+ ∩ τσV+

)]∗
.

Now consider the set

G̃V
V+
= {(τ, s) with τ ∈ GV

V+
, 0 6= s ∈ Det C•τV+

},

together with the operation

(τ, s1) · (σ, s2)= (τσ, s1 · τ̄ (s2)).
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It follows from the same three references that G̃V
V+

, with this operation, forms
a group and that there exists a central extension of groups

(3-1) 1→ K(v)∗
i
→ G̃V

V+

π
→ GV

V+
→ 1,

where i(λ)= (Id, λ) and π(τ, s)= τ .

The commutator pairing { , }V
V+

. If τ, σ ∈ GV
V+

commute and τ̃ , σ̃ ∈ G̃V
V+

are
elements such that π(̃τ )= τ and π(̃σ )= σ , there is a commutator pairing

{τ, σ }VV+ = τ̃ · σ̃ · τ̃
−1
· σ̃−1

∈ K(v)∗.

Fix elements σ, σ ′, τ, τ ′ ∈ GV
V+

such that each of σ, σ ′ commutes with each of
τ, τ ′. From the definition of the commutator pairing or the construction of G̃V

V+
,

we have:

• {σ, σ }VV+ = 1.

• {σ, τ }VV+ =
(
{τ, σ }VV+

)−1.

• {σσ ′, τ }VV+ = {σ, τ }
V
V+
{σ ′, τ }VV+ .

• {σ, ττ ′}VV+ = {σ, τ }
V
V+
{σ, τ ′}VV+ .

• If σV+ = V+ = τV+⇒ {σ, τ }
V
V+
= 1.

• If V+ = {0} or V+ = V, then {σ, τ }VV+ = 1.

• {σ, τ }VV+ depends only on the commensurability class of V+.

Lemma 3.8. Assume V is equipped with a direct sum decomposition V=V0⊕V1.
Put Vi+ :=Vi ∩V+ for i = 0, 1 and assume that V+=V0+⊕V1+. Let commuting
elements σ0, σ1 ∈ GV

V+
be given such that

σi |V0 ∈ GV0
V0+
, σi |V1 = 1

for i = 0, 1. Then {
σ0|V0, σ1|V0

}V0

V0+
= {σ0, σ1}

V
V+
.

Proof. Since σi V+ = [σi |V0V0+]⊕V1+, then

V+ ∩ σi V+ = [V0+ ∩ σi |V0V0+]⊕V1+.

Hence

Det C•σi V+
=3Gmv

(
V+/V+∩σi V+

)
⊗

K(v)
3

[
Gmv

(
σi V+/V+∩σi V+

)]∗
=3Gmv

(
V0+/V0+∩σi |V0V0+

)
⊗

K(v)
3

[
Gmv

(
σi |V0V0+/V0+∩σi |V0V0+

)]∗
= Det C•σi |V0 V0+

,
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and there exists a commutative diagram

Det C•σi V+
⊗

K(v)
Det C•σ1−i V+

ϕ
σ1−i
σi // Det C•σiσ1−i V+

Det C•σi |V0 V0+
⊗

K(v)
Det C•σ1−i |V0 V0+

ϕ
σ1−i |V0
σi |V0 // Det C•(σiσ1−i )|V0 V0+

,

whence the lemma can be deduced. �

Definition 3.9. Given an element τ ∈ GV
V+

, we shall call the integer number

iK(v)(τ,V+)= [V+|τV+]mv

the index of τ over V+.

Remark 3.10. Note that

iK(v)(τ,V+)= dimK(v)Gmv
(V+/τV+ ∩V+)− dimK(v)Gmv

(V+/τ
−1V+ ∩V+).

Moreover, if M∼ V+, then iK(v)(τ,M)= iK(v)(τ,V+).

Lemma 3.11. Again, assume V is equipped with a direct sum decomposition V =

V0⊕V1, put Vi+ := Vi ∩V+ for i = 0, 1 and assume that V+ = V0+⊕V1+. Let
σ0, σ1 ∈ GV

V+
be given such that

σi |Vi ∈ GVi
Vi+
, σi |V1−i = 1

for i = 0, 1. (Necessarily, σ0 and σ1 commute.) Then

{σ0, σ1}
V
V+
= (−1)α0α1,

where
αi := iK(v)(σi |Vi ,Vi+)= iK(v)(σi ,V+) for i = 0, 1.

Proof. Consider nonzero elements

a ∈3Gmv
(V+/σ0V+ ∩V+) '3Gmv

(V0+/σ0|V0V0+ ∩V0+),

b ∈3Gmv
(σ0V+/σ0V+ ∩V+)

∗
'3Gmv

(σ0|V0V0+/σ0|V0V0+ ∩V0+)
∗,

c ∈3Gmv
(V+/σ1V+ ∩V+) '3Gmv

(V1+/σ1|V1V1+ ∩V1+),

d ∈3Gmv
(σ1V+/σ1V+ ∩V+)

∗
'3Gmv

(σ1|V1V1+/σ1|V1V1+ ∩V1+)
∗,

where 3 is the maximal exterior power.
If s0 = a⊗ b and s1 = c⊗ d, then (σ0, s0), (σ1, s1) ∈ G̃V

V+
and

{σ0, σ1}
V
V+
= (σ0, s0) · (σ1, s1) · (σ0, s0)

−1
· (σ1, s1)

−1 .
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Bearing in mind the multiplication of G̃V
V+

, an easy computation shows that

s0 · σ̄0(s1)= (−1)iK(v)(σ0,V+)·iK(v)(σ1,V+) · [s1 · σ̄1(s0)],

and the claim is deduced. �

Proposition 3.12. Let V=V0⊕V1 and V+=V0+⊕V1+, where V0 and V1 are in-
variant by the action of two commuting elements τ, σ∈ GV

V+
and τ |Vi , σ |Vi∈ GVi

Vi+
.

Then
{τ, σ }VV+ = (−1)α · {τ |V0, σ |V0}

V0
V0+
· {τ |V1, σ |V1}

V1
V1+

with α = iK(v)(τ |V0,V0+) · iK(v)(σ |V1,V1+)+ iK(v)(τ |V1,V1+) · iK(v)(σ |V0,V0+).

Proof. The claim is a direct consequence of Lemmas 3.8 and 3.11, given the de-
compositions τ = τ0 · τ1 and σ = σ0 · σ1, where

τi (v0+ v1)= τ |Vi (vi )+ v1−i and σi (v0+ v1)= σ |Vi (vi )+ v1−i ,

with vi ∈ Vi . �

As in [Pablos Romo 2002], one has:

Corollary 3.13. Let M and N be two Ov-submodules of V. For all commuting
elements τ, σ ∈ GV

M ∩GV
N, we have τ, σ ∈ GV

M+N ∩GV
M∩N and

{τ, σ }VM · {τ, σ }
V
N = (−1)β · {τ, σ }VM+N · {τ, σ }

V
M∩N,

where

β = iK(v)(τ,M) · iK(v)(σ,N)+ iK(v)(τ,N) · iK(v)(σ,M)

+iK(v)(τ,M+N) · iK(v)(σ,M∩N)+ iK(v)(τ,M∩N) · iK(v)(σ,M+N).

Remark 3.14. If V+ = Ôv and V= (̂Ov)0, as in Example 3.2, we have that

{ f, g}
(̂Ov)0

Ôv
:= { f, g}v =

f v(g)

gv( f ) (mod mv) ∈ K(v)∗,

for all f, g ∈ F∗, analogously to [Pablos Romo 2004, pp. 340–341].

4. Arithmetic symbols on GL(n, F)

With the notations of Section 3, for a positive integer number n, we consider the
Ov-modules

Vn
= (̂Ov)0⊕

n times
· · · · · · ⊕ (̂Ov)0, Vn

+
= Ôv ⊕

n times
· · · · · · ⊕ Ôv ⊆ Vn.

Clearly, the linear group GL(n,F) is contained in GVn

Vn
+

. Thus (3-1) yields a central
extension of groups

(4-1) 1→ K(v)∗
i
→ ˜GL(n,F)

π
→ GL(n,F)→ 1.
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If τ and σ are commuting elements of GL(n,F) and τ̃ , σ̃ ∈ ˜GL(n,F) are elements
such that π(̃τ )= τ and π(̃σ )= σ , there is a commutator pairing

{τ, σ }V
n

Vn
+
= τ̃ · σ̃ · τ̃−1

· σ̃−1
∈ K(v)∗.

Example 4.1. Consider the commuting matrices τ fi , τg j ∈ GL(n,F) given by

τ fi =

 f1 · · · 0
...
. . .

...

0 · · · fn

 and τg j =

g1 · · · 0
...
. . .

...

0 · · · gn

 ,

with fi , g j ∈F∗. It follows from Lemmas 3.8, 3.11 and the explicit expression of
the commutator { , }

(̂Ov)0

Ôv
discussed in Remark 3.14 that

{τ fi , τg j }
Vn

Vn
+
= (−1)

∑
i 6= j v( fi )v(g j ) ·

n∏
s=1

{ fs, gs}v ∈ K(v)∗ .

We shall now study the commutator { , }V
n

Vn
+

in depth.

Lemma 4.2. If τ ∈ GL(n,F), then iK(v)(τ,Vn
+
)= v(det τ).

Proof. It follows from the additivity of the index that iK(v)(τ,Vn
+
)= iK(v)(Jτ ,Vn

+
),

where Jτ is the Jordan matrix associated with τ .
Thus, as in [Pablos Romo 2006], from a (m,m)-matrix

τa =


0 0 · · · 0 a1

1 0 · · · 0 a2
...
. . .

. . .
...

...

0 · · · 1 0 am−1

0 · · · 0 1 am

 ,

we can consider the (m s,m s)-matrix

τ(a,s) =


τ 1

a
B τ 2

a
. . .

. . .

B τ s
a

 ,

where τ i
a = τa and

B =


0 · · · 0 1
0 · · · 0 0
...
. . .

...
...

0 · · · 0 0

 ,
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and a direct computation shows that

iK(v)(τ(a,s),Vm·s
+
)= iK(v)(ϕ(a,s),Vs

+
)= iK(v)(as

1, Ôv)= s · v(a1)= v(det τ(a,s)).

Accordingly, for an arbitrary τ ∈ GL(n,F), it follows from the general expres-
sion of the Jordan matrix Jτ , and the above results, that

iK(v)(Jτ ,Vn
+
)= v(det Jτ ),

from which the statement can be deduced. �

Now regard F∗ as a subgroup of GL(n,F) via the diagonal embedding

f 7→ σ n
f :=

 f · · · 0
...
. . .

...

0 · · · f

 .

Then F∗ = Z(GL(n,F)), so there exists a commutator map

{ , }V
n

Vn
+
: F∗×GL(n,F)→ k(v)∗.

We shall compute the explicit expression of this commutator map.

Lemma 4.3. If f ∈ F∗, then iK(v)(σ
n
f ,Vn

+
)= n · v( f ).

Proof. The claim is a direct consequence of Lemma 4.2. �

Proposition 4.4. For all f ∈ F∗ and τ ∈ GL(n,F),

{σ n
f , τ }

Vn

Vn
+
= (−1)(n−1)·v( f )·v(det τ)

· { f, det τ }v

= (−1)(n−1)·v( f )·v(det τ)
·

(
f v(det τ)

[det τ ]v( f ) (mod mv)

)
.

Proof. Write Sl(n, R) = {g ∈ GL(n, R) such that det g = 1} for a commutative
ring R (the special linear group of R).

We have the decomposition τ = τ0 · τdet, where τ0 ∈ Sl(n,F) and

τdet :=


det τ 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

By [Klingenberg 1961, p. 139, Korollar 1], Sl(n, R) is always a commutator sub-
group of GL(n, R) when R is a commutative local ring, so

{σ n
f , τ }

Vn

Vn
+
= {σ n

f , τdet}
Vn

Vn
+
.

Now the claim is easily deduced from the properties of the commutator { , }V
n

Vn
+

.
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�

Remark 4.5. When n = 1, the above expression is the commutator { , }v that
determines the tame symbol on an arbitrary discrete valuation field F [Pablos Romo
2004], and, when n=2, if X is an algebraic curve over an algebraically closed field
k, x ∈ X is a closed point, F= 6X (the function field of X ), and v = vx (the dis-
crete valuation induced by the point x), the statement of Proposition 4.4 coincides

with the characterization of the commutator map { , }K
2
x

A2
x
: 6∗X ×GL(2, 6X )→ k∗

obtained in [Muñoz Porras and Pablos Romo ≥ 2008].

The tame symbol on GL(n, F). We shall now define a generalization of the tame
symbol from the commutator { , }V

n

Vn
+

.

Definition 4.6. The tame symbol on GL(n,F) associated with v is the assignment

(τ, ϕ)nv = (−1)v(det τ)·v(detϕ)
· {τ, σ }V

n

Vn
+
∈ K(v)∗,

where τ, ϕ are commuting matrices of GL(n,F).

Remark 4.7. When n = 1, the map ( , )1v : F∗ ×F∗→ K(v)∗ is the usual tame
symbol associated with the discrete valuation field F.

Now fix elements σ, σ ′, τ, τ ′ ∈ GL(n,F) such that σ, σ ′ commute with τ, τ ′.
The following relations are easily deduced from the definitions:

• (σ, σ )nv = 1.

• (σ, τ )nv = [(τ, σ )
n
v]
−1.

• (σσ ′, τ )nv = (σ, τ )
n
v · (σ

′, τ )nv .

• (σ, ττ ′)nv = (σ, τ )
n
v · (σ, τ

′)nv .

• (τ,−τ)nv = 1.

Remark 4.8. Given a diagonal matrix τ fi with fi 6= 1, it is clear that

(τ fi , 1− τ fi )
n
v = 1.

A remaining problem is to determine whether this property of Steinberg symbols
on F holds for arbitrary matrices τ, 1− τ ∈ GL(n,F).

Example 4.9. Consider again the commuting matrices τ fi , τg j ∈ GL(n,F) of Ex-
ample 4.1. Since

{τ fi , τg j }
Vn

Vn
+
= (−1)

∑
i 6= j v( fi )v(g j ) ·

n∏
s=1

{ fs, gs}v ∈ K(v)∗ ,

one has

(τ fi , τg j )
n
v =

n∏
s=1

( fs, gs)v,
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where ( , )v is the tame symbol.

Example 4.10. It follows from Proposition 4.4 that the explicit expression of the
tame symbol ( , )nv : F∗×GL(n,F)→ K(v)∗ is

(σ n
f , τ )

n
v = (−1)v( f )·v(det τ)

·

(
f v(det τ)

[det τ ]v( f ) (mod mv)

)
.

In particular, if F̃ is a number field (i.e., it is a finite extension of the field
of rational numbers) with a discrete valuation ṽ, in the theory of modular forms
the subgroup GL+(n, F̃) ⊂ GL(n, F̃) appears, such that τ ∈ GL+(n, F̃) implies
ṽ(det τ) = 0. Hence, the restricted symbol ( , )nṽ : F̃∗ ×GL+(n, F̃)→ K(̃v)∗ is
trivial.

Example 4.11. Consider a nonsingular and irreducible curve C over an alge-
braically closed field k and a closed point x ∈ C . If 6C is the function field of
C and vx is the discrete valuation on 6C associated with x , by using the above
method we can define the tame symbol on GL(n, 6C) associated with x , whose
explicit expression is

(τ, σ )nx = (−1)vx (det τ)·vx (det σ)
· {τ, σ }

K n
x

An
x
∈ k∗,

where τ, σ ∈ GL(n, 6C) are commuting matrices, An
x = Ôx ⊕

n times
· · · · · · ⊕ Ôx and

K n
x = (̂Ox)0⊕

n times
· · · · · · ⊕ (̂Ox)0.

Example 4.12 (Generalized Parshin symbol on a surface). Let C be an irreducible
and nonsingular algebraic curve on a smooth, proper, geometrically irreducible
surface S over an algebraically closed field k. If 6S is the function field of S, the
curve C defines a discrete valuation

vC : 6
∗

S→ Z,

whose residue class field is 6C (the function field of C).
Thus, it follows from the central extension (4-1) that there exists a central ex-

tension of groups

(4-2) 1→6∗C
i
→ ˜GL(n, 6S)

π
→ GL(n, 6S)→ 1 ,

and its commutator will be denoted by { , }nvC
.

Now setting an element z ∈6∗S with vC(z)= 1, given a closed point x ∈ C , we
denote

vn,z
x (τ )= vx({τ, σ

n
z }

n
vC
) ∈ Z

for a matrix τ ∈ GL(n, 6S).
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If { , }Kx
Ax

is again the commutator referred to in Section 2, we define the map

{ , , }
n,z
x,C : GL(n, 6S)×GL(n, 6S)×GL(n, 6S)→ k∗

by the expression

{τ1, τ2, τ3}
n,z
x,C =

(
{{τ1, σ

n
z }

n
vC
, {τ2, σ

n
z }

n
vC
}

Kx
Ax

)−vC (det τ3)

= (−1)(n−1)[vC (det τ1)+vC (det τ2)]vC (det τ3)

(
(det τ1)

−vC (det τ3) v
n,z
x (τ2)

(det τ2)−vC (det τ3) v
n,z
x (τ1)

(p)
)
,

for all matrices τ1, τ2, τ3 ∈ GL(n, 6S).
Thus, analogously to [Pablos Romo 2004, Section 3], we can consider the map
{ , , }nx,C given by

{τ1, τ2, τ3}
n
x,C

= {τ1, τ2, τ3}
n,z
x,C · {τ2, τ3, τ1}

n,z
x,C · {τ3, τ1, τ2}

n,z
x,C

=
(
(det τ1)

vC (det τ2)·v
n,z
x (τ3)−vC (det τ3)·v

n,z
x (τ2) · (det τ2)

vC (det τ3)·v
n,z
x (τ1)−vC (det τ1)·v

n,z
x (τ3)

· (det τ3)
vC (det τ1)·v

n,z
x (τ2)−vC (det τ2)·v

n,z
x (τ1)

)
(p)

= {det τ1, det τ2, det τ3}x,C ,

for all matrices τ1, τ2, τ3 ∈ GL(n, 6S). This map is independent of the choice of
the parameter z.

If we consider the symbol

〈 , , 〉nx,C : GL(n, 6S)×GL(n, 6S)×GL(n, 6S)→ k∗

defined by
〈τ1, τ2, τ3〉

n
x,C = (−1)α(τ1,τ2,τ3) · {τ1, τ2, τ3}

n
x,C ,

with

α(τ1, τ2, τ3)vC(det τ1) · vC(det τ2) · v
n,z
x (τ3)+ vC(det τ1) · vC(det τ3) · v

n,z
x (τ2)

+ vC(det τ2) · vC(det τ3) · v
n,z
x (τ1)+ vC(det τ1) · v

n,z
x (τ2) · v

n,z
x (τ3)

+ vC(det τ2) · v
n,z
x (τ1) · v

n,z
x (τ3)+ vC(det τ3) · v

n,z
x (τ1) · v

n,z
x (τ2),

bearing in mind the statements of [Pablos Romo 2004, Section 3], we see that this
symbol is independent of the choice of the parameter z and generalizes the symbol
on 6S offered by A. N. Parshin [1984].

Remark 4.13 (Tame symbol on the infinite general linear group GL(F)). Similar
to [Milnor 1971], let GL(F) denote the direct limit of the sequence

GL(1,F)⊂ GL(2,F)⊂ GL(3,F)⊂ · · · ,
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where each GL(n,F) is injected into GL(n+ 1,F) by the correspondence

τ 7→ φn+1
n (τ )=

(
τ 0
0 1

)
.

The commutator subgroup of GL(F), E(F), consists of all elementary matrices;
that is, σ ∈ E(F) if and only if σ coincides with the identity matrix except for a sin-
gle off-diagonal entry. The abelian quotient group GL(F)/E(F) is the Whitehead
group K1(F), and it is known that K1(F)' F∗ by the assignment: [τ ] 7→ det τ .

Since

(σ n
f , τ )

n
v = (σ

n+1
f , φn+1

n (τ ))n+1
v

for all τ ∈ GL(n,F), the symbols ( , )nv induce a map

( , )∞v : F∗×GL(F)→ K(v)∗,

such that, for all n, there exist commutative diagrams

F∗×GL(F)
( , )∞v // K(v)∗

F∗×GL(n,F)
?�

OO

( , )nv

55kkkkkkkkkkkkkkk

,

Moreover, bearing in mind that the restriction of ( , )∞v to F∗ × E(F) is trivial,
because each elementary matrix is included in a special linear group Sl(n,F), one
has a map

( , )
∞

v : F∗× K1(F)→ K(v)∗,

K1(F) being the Whitehead group of F, and such that ( , )∞v factorizes through
( , )

∞

v and the natural projection F∗×GL(F)→ F∗× K1(F).
It follows from the isomorphism K1(F)' F∗ that

( f, [τ ])
∞

v = ( f, det τ)1v .

Thus, we have a double relation between these symbols: ( , )∞v is an extension
of the classical tame symbol ( , )1v and, also, ( , )1v is a “quotient” of ( , )∞v .

Note that with this method it is not possible to define a map over GL(F) from
the commutator { , }V

n

Vn
+

because

{σ n
f , τ }

Vn

Vn
+
6= {σ n+1

f , φn+1
n (τ )}V

n+1

Vn+1
+

.
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Symbols on GL(n, F) associated with a morphism K(v)∗ → G. Let G be an
abelian group and let us consider a morphism of groups

ψ : K(v)∗→ G.

The central extension (4-1) induces another central extension of groups

(4-3) 1→ G
i
→ ˜GL(n,F)ψ

π
→ GL(n,F)→ 1,

whose commutator is

{τ, σ }V
n

Vn
+,ψ
= τ̃ · σ̃ · τ̃−1

· σ̃−1,

τ, σ ∈GL(n,F) being two commuting matrices, τ̃ , σ̃ ∈ ˜GL(n,F)ψ , π(̃τ )= τ and
π(̃σ )= σ . It is clear that { , }V

n

Vn
+,ψ
= ψ ◦ { , }V

n

Vn
+

.

Example 4.14. Let C be a nonsingular and irreducible curve over a perfect field
k and let x ∈ C be a closed point. If 6C is again the function field of C , vx is the
discrete valuation on 6C associated with x , Ax = Ôx , Kx = (̂Ox)0, and k(x) is the
residue class field of x , from the norm Nk(x)/k of the extension k ↪→ k(x), we have
a commutator { , }K

n
x

An
x ,Nk(x)/k

defined by

{τ, σ }
K n

x
An

x ,Nk(x)/k
= Nk(x)/k

[
{τ, σ }

K n
x

An
x

]
∈ k∗,

for all commuting matrices τ, σ ∈ GL(n, 6C).

Example 4.15. Let C be a nonsingular and irreducible curve over a finite perfect
field Fq that contains the m-th roots of unity. If #Fq = q , one has the morphism of
groups

ψm : F∗q → µm, a 7→ a(q−1)/m,

and, with the notation of Example 4.14, we can consider the morphism of groups:

φm := ψm ◦ Nk(x)/k : k(x)∗→ µm,

and the induced commutator is

{τ, σ }
K n

x
An

x ,φm
= Nk(x)/k

[
{τ, σ }

K n
x

An
x

](q−1)/m
∈ µm,

for all commuting matrices τ, σ ∈ GL(n, 6C). Note that we can also obtain this
expression by considering the commensurability of k-modules instead of k(x)-
modules (see Section 2 for the case n = 1).

Definition 4.16. Given an abelian group G and a morphism of groupsψ : K(v)∗→

G, we define the tame symbol on GL(n,F) associated with v and the morphism
ψ as the assignment

(τ, ϕ)nv,ψ = ψ
[
(−1)v(det τ)·v(detϕ)]

· {τ, σ }V
n

Vn
+,ψ
∈ G,
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where τ, ϕ are two commuting matrices of GL(n,F).

Example 4.17. With the hypothesis of Example 4.14, one has the tame symbol
( , )nx,Nk(x)/k

on GL(n, 6C) associated with x :

(τ, σ )nx,Nk(x)/k
:= (τ, σ )nx = (−1)deg(x)·vx (det τ)·vx (det σ)

· Nk(x)/k
[
{τ, σ }

K n
x

An
x

]
∈ k∗,

where τ, σ ∈ GL(n, 6C) are commuting matrices, and deg(x) = dimkk(x) is the
degree of the closed point x . We keep the notation of Example 4.11, because if
x is a rational point of C both expressions coincide. Moreover, for a morphism
of groups ϕ : k∗→ G, we denote by ( , )nx,ϕ the tame symbol on GL(n, 6C)

associated with x and the morphism ϕ.

Example 4.18. With the hypothesis of Example 4.15, a particular case of Example
4.17 is the Hilbert norm residue symbol ( , )nx,φm

on GL(n, 6C) associated with x :

(τ, σ )nx,φm
= (−1)

q−1
m ·deg(x)·vx (det τ)·vx (det σ)

· Nk(x)/k
[
{τ, σ }

K n
x

An
x

]q−1
m ∈ µm,

where τ, σ ∈ GL(n, 6C) are commuting matrices. This formula generalizes the
Hilbert norm residue symbol [Schmid 1936] on 6C associated with the closed
point x ∈ C .

Example 4.19. Let Fp be a local field of characteristic p, p 6= 2, with a discrete
valuation vp. If µ2 is the group of the 2nd roots of the unity, from the morphism
of groups

φp : (Z/p)∗→ µ2, a 7→ a(p−1)/2,

we have a symbol ( , )np,φp
, defined by

(τ, σ )np,φp
= (−1)((p−1)/2)·vp(det τ)·vp(det σ)

· [(τ, σ )np]
(p−1)/2

∈ µ2,

for all commuting matrices τ, σ ∈ GL(n,Fp), ( , )np being the tame symbol on
GL(n,Fp) associated with vp.

Remark 4.20. With the above notation, similar to Remark 4.13, it is possible to
define morphisms

( , )∞v,ψ : F∗×GL(F)→ G,

( , )
∞

v,ψ : F∗× K1(F)→ G,

K1(F) again being the Whitehead group of F, and such that there exist commuta-
tive diagrams

F∗×GL(F)
( , )∞v,ψ // G,

F∗× GL(n,F)
?�

OO

( , )nv,ψ

66lllllllllllllll

F∗×GL(F)
( , )∞v,ψ //

��

G.

F∗× K1(F)

( , )
∞

v,ψ

66mmmmmmmmmmmmmmmm
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Moreover, using the natural isomorphism F∗'K1(F), we can recover the Stein-
berg symbol on F with values in G whose generalization is ( , )∞v,ψ as a quotient
of this generalized symbol.

5. Reciprocity laws on GL(n, 6C)

Let C again be a nonsingular and irreducible curve over a perfect field k. For
each closed point x ∈ C , k(x) is its residue class field and Nk(x)/k is the norm of
the extension k ↪→ k(x). We can now consider the k-vector spaces Ax = Ôx and
Kx = (̂Ox)0, and the ring of adeles AC is

AC =
∏
x∈C

′

Kx = { f = ( fx) such that fx ∈ Kx and fx ∈ Ax for almost all x}.

We write A+C =
∏
x∈C

Ax , and for each subset of closed points T ⊂ C , we put

AT =
∏
y∈T

′

K y, A+T =
∏
y∈T

Ay .

We will be concerned with commensurability on k-vector spaces. Consider a k-
vector space V and a vector subspace V+⊆V . According to [Arbarello et al. 1989]
and [Pablos Romo 2002], if

GV
V+ = { f ∈ Autk(V ) such that f V+ ∼ V+},

there exists a central extension of groups

1→ k∗→ G̃V
V+→ GV

V+→ 1 ,

whose commutator is denoted by { , }VV+ .

For each closed point x ∈ C , setting again An
x = Ôx ⊕

n times
· · · · · · ⊕ Ôx and K n

x =

(̂Ox)0⊕
n times
· · · · · · ⊕ (̂Ox)0, since

GL(n, 6C)⊆ G K n
x

An
x
,

then there exists a central extension of groups

(5-1) 1→ k∗→ ˜GL(n, 6C)x → GL(n, 6C)→ 1.

We write {̃ , }K
n
x

An
x

to denote the commutator of (5-1).

Lemma 5.1. For every two commuting matrices τ, σ ∈ GL(n, 6C) one has

{̃τ, σ }
K n

x

An
x
= {τ, σ }

K n
x

An
x ,Nk(x)/k

,

where { , }K
n
x

An
x ,Nk(x)/k

is the commutator referred to in Example 4.14.
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Proof. Bearing in mind the definitions of the commutators {̃ , }K
n
x

An
x

and { , }K
n
x

An
x

(both depend on determinants of the same finite-dimensional k(x)-vector spaces,
considering the natural structure as k-modules in the first case, and the structure
as k(x)-modules in the second one; see [Anderson and Pablos Romo 2004, p. 88],
the four square identity), the lemma is a direct consequence of the following well-
known property of determinants of vector spaces: If k ↪→ K is a finite extension
of fields, V is a K -vector space, and φ : V ' V is an automorphism of K -vector
spaces, then

detk(φ)= NK/k[detK (φ)]. �

Moreover, if τ ∈ GL(n, 6C),

(5-2) ik(τ, An
x)= dimk(An

x/An
x ∩ τ An

x)− dimk(τ An
x/An

x ∩ τ An
x)

= deg(x) · vx(det τ).

Lemma 5.2 [Pablos Romo 2002, Theorem 4.5, p. 4357]. If V = V1 ⊕ V2 and
V+ = V 1

+
⊕V 2
+

such that V1 and V2 are invariant by the action of f, g ∈ GV
V+ , then

{ f, g}VV+ = (−1)α · { f, g}V1

V 1
+

· { f, g}V2

V 2
+

with α = ik( f, V 1
+
) · ik(g, V 2

+
)+ ik( f, V 2

+
) · ik(g, V 1

+
).

Lemma 5.3 [Pablos Romo 2002, Theorem 4.8, p. 4359]. If M and N are two
arbitrary vector subspaces of V , such that f M ∼M and f N ∼ N for all f ∈GV

V+ ,
then

{ f, g}VM · { f, g}VN = (−1)β · { f, g}VM+N · { f, g}VM∩N

where β = ik( f,M) · ik(g, N )+ ik( f, N ) · ik(g,M)+ ik( f,M+N ) · ik(g,M∩N )+
ik( f,M ∩ N ) · ik(g,M + N ).

We now give a proof of a reciprocity law for the symbols on GL(n, 6C) defined
in Section 4.

Using the diagonal embedding, there exist immersions

GL(n, 6C) ↪→ G
K n

x1
⊕···⊕K n

xs
An

x1
⊕···⊕Bn

xs
,

for finite sets of closed points {x1, . . . , xs} ⊂ X . Thus, we can consider the central
extension of groups

(5-3) 1→ k∗→ ˜GL(n, 6C){x1,...,xs}→ GL(n, 6C)→ 1,

and we write {̃ , }
K n

x1
⊕···⊕K n

xs
An

x1
⊕···⊕An

xs
to denote the commutator of this central extension.
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Writing

An
C :=

∏
x∈C

′

K n
x =

{
ϕ = (ϕx) : ϕx ∈ K n

x and ϕx ∈ An
x for almost all x ∈ C

}
,

(An
C)
+
:=

∏
x∈C

An
x ,

the diagonal embedding also induces an immersion of linear groups

GL(n, 6C) ↪→ G
An

C
(An

C )
+ .

In general, for an arbitrary k-subspace H ⊆ An
C , such that

GL(n, 6C) ↪→ G
An

C
H ,

we can consider the corresponding central extension of groups

(5-4) 1→ k∗→ ˜GL(n, 6C)
An

C

H → GL(n, 6C)→ 1.

and we denote by {̃ , }
An

C
H its commutator.

From the diagonal embedding of k-vector spaces

(6C)
n
:=6C ⊕

n times
· · · · · · ⊕6C ↪→

∏
x∈C

′

K n
x ,

according to the statements of [Tate 1968], we have

(An
C)
+
∩ (6C)

n
' H 0(C,OC)⊕

n times
· · · · · · ⊕ H 0(C,OC)

An
C
/
[(An

C)
+
+ (6C)

n
] ' H 1(C,OC)⊕

n times
· · · · · · ⊕ H 1(C,OC).

Thus, when C is a complete curve, (An
C)
+
∩(6C)

n
∼ (0) and (An

C)
+
+(6C)

n
∼An

C .
Bearing in mind the properties of the commutator { , }VV+ , for commuting matrices
σ, τ ∈ G

An
C
(An

C )
+ ∩ G

An
C
(6C )n

, one can see that

{̃σ, τ }
An

C

[(An
C )
+]∩(6C )n

= {̃σ, τ }
An

C

[(An
C )
+]+(6C )n

= 1 .

In particular, these equalities hold when σ, τ ∈ GL(n, 6C).
Furthermore, since (6C)

n
⊂ An

C is invariant under the action of GL(n, 6C), we
also have

{̃σ, τ }
An

C

(6C )n
= 1,

for all commuting matrices σ, τ ∈ GL(n, 6C).

Lemma 5.4. If C is a nonsingular, irreducible and complete curve over a perfect
field k, then

{̃σ, τ }
An

C

(An
C )
+ = 1,
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for all commuting matrices σ, τ ∈ GL(n, 6C).

Proof. Since

ik(σ, (6C)
n)= ik(σ, (A

n
C)
+
∩ (6C)

n)= ik(σ, (A
n
C)
+
+ (6C)

n)= 0

for every matrix σ ∈ GL(n, 6C), the claim follows from the above equalities of
commutators and Lemma 5.3. �

Lemma 5.5. Let C be a nonsingular and irreducible curve over a perfect field k
and let T ⊂ C be a subset of closed points. If

An
T =

∏
y∈T

′K n
y , (A+T )

n
=

∏
y∈T

An
y,

and τ = (τi j ), σ = (σi j ) ∈GL(n, 6C) are commuting matrices such that vy(τi j )=

vy(σi j ) = vy(det τ) = vy(det σ) = 0 for all y ∈ T , from the natural immersions

GL(n, 6C) ↪→ GL(n,AT )⊆ G
An

T
(A+T )

n one has

• ik(τ, (A
+

T )
n)= ik(σ, (A

+

T )
n)= 0,

• {τ, σ }
An

T
(A+T )

n = 1.

Proof. Since τ, σ ∈GL(n, Ay) for all y∈T , then τ, σ ∈GL(n,A+T ) and τ [(A+T )
n
]=

σ [(A+T )
n
] = (A+T )

n , whence the claim can be deduced. �

Lemma 5.6. Consider again a nonsingular and irreducible curve C over a perfect
field k, and two commuting matrices τ = (τi j ), σ = (σi j ) ∈ GL(n, 6C). If X =
{x1, . . . , xs} ⊂ C is a finite set of closed points of C , one has

{̃τ, σ }
K n

x1
⊕···⊕K n

xs
An

x1
⊕···⊕An

xs
= (−1)

∑
i 6= j deg(xi )·deg(x j )·vxi (det τ)·vx j (det σ)

·

s∏
h=1

{τ, σ }
K n

xh
An

xh
,Nk(x)/k

,

where {̃ , }
K n

x1
⊕···⊕K n

xs
An

x1
⊕···⊕An

xs
is the commutator of the central extension (5-3).

Proof. The statement is a direct consequence of Lemma 5.1, Lemma 5.2 and the
expression (5-2). �

Proposition 5.7. If C is a complete, nonsingular and irreducible curve over a
perfect field k, given two commuting matrices τ, σ ∈ GL(n, 6C), one has∏

x∈C

{τ, σ }
K n

xh
An

xh
,Nk(x)/k

= (−1)
∑
x∈C

deg(x)·vx (det τ)·vx (det σ)
,

almost all terms of the product being 1.
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Proof. If we consider a finite set of closed points X = {x1, . . . , xs} ⊂C containing
all zeros and poles of τi j , σi j , det τ and det σ and T =C− X , bearing in mind that
T satisfies the conditions of Lemma 5.5 and that

An
C ' K n

x1
⊕ · · ·⊕ K n

xs
⊕An

T , (A+C )
n
' An

x1
⊕ · · ·⊕ An

xs
⊕ (A+T )

n,

the claim can be deduced immediately from Lemmas 5.2, 5.4, 5.5, 5.6 and a well-
known property of complete curves over a perfect field:∑

x∈C

deg(x) · vx( f )= 0 for all f ∈6∗C . �

Theorem 5.8 (Reciprocity law). If C is a complete, nonsingular and irreducible
curve over a perfect field k, G is an abelian group and ψ : k∗→ G is a morphism
of groups, given two commuting matrices τ, σ ∈ GL(n, 6C) one has∏

x∈C

(τ, σ )nx,ψ = 1,

where ( , )nx,ψ is the tame symbol on GL(n, 6C) associated with the closed point
x and the morphism ψ .

Proof. This is a direct consequence of the definition of the symbol ( , )nx,ψ (see
Definition 4.16 and Example 4.17) and the statement of Proposition 5.7. �

Corollary 5.9. With the hypothesis of Theorem 5.8, if

( , )∞v,ψ : 6
∗

C ×GL(6C)→ G

is the morphism referred to in Remark 4.20, the∏
x∈C

( f, τ )∞v,ψ = 1 for all f ∈6∗C and τ ∈ GL(6C).

Remark 5.10. Theorem 5.8 gives reciprocity laws for the symbols constructed in
Example 4.11, Example 4.17 and Example 4.18 (the Hilbert norm residue symbol
on GL(n, 6C)). There remains the task of obtaining a reciprocity law on GL(n,Q)

generalizing Gauss’s reciprocity law, or one on GL(n,F) generalizing the m-th
power reciprocity theorem [Milnor 1971], F being a finite extension of the field of
rational numbers. Note that both reciprocity laws are related to symbols that are not
linear algebra objects, so it is difficult to study them using linear algebra techniques.
In fact, as far as we know interpretations of the classical Gauss reciprocity law and
the m-th power reciprocity theorem using the Tate and Arbarello–de Concini–Kac
method have not previously been stated explicitly in the literature. However, the
important arithmetical applications that will be the hypothetical generalizations of
both reciprocity laws imply that we believe that it is worth trying to obtain an
answer to this question.
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