
Pacific
Journal of
Mathematics

ON A NECESSARY CONDITION FOR SPANNERS IN A WEDGE

SUNG-HO PARK

Volume 234 No. 1 January 2008



PACIFIC JOURNAL OF MATHEMATICS
Vol. 234, No. 1, 2008

ON A NECESSARY CONDITION FOR SPANNERS IN A WEDGE

SUNG-HO PARK

A spanner in a wedge or in a triangular pyramid is a compact embedded
surface of constant mean curvature that does not meet the edge of the wedge
or the triangular pyramid and meets the planes at constant angles. We show
that the area of the planar region bounded by the boundary curve(s) on each
plane, which is called the wetted region, of a spanner should be bigger than
or equal to the area of the wetted region of the unique spherical spanner.

1. Introduction

A spanner 6 in a wedge of R3 is a compact embedded surface of constant mean
curvature (cmc) that meets each plane of the wedge in constant angle and does not
meet the edge of the wedge. Under these conditions, the boundary of 6 determines
a number of bounded domains �i in the planes of the wedge; we refer to these
domains as the wetted regions and require that the spanner 6 along with the �i

bound an open volume in R3. In other words, 6 is a compact capillary surface in
a wedge in the absence of gravity which stays away from the edge. This means
that a spanner represents an equilibrium configuration of some liquid drop inside
the wedge, that is, not touching the edge, with respect to the energy

E(6) = σ |6| − a1σ |�1| − a2σ |�2|.

Here σ is the surface tension of the liquid-air interface, the ai are the adhesion
constants between the fluid and the planes, and each �i is the whole wetted region
on each plane. We assume that the spanners are C1 up to the boundary.

Let X be the position vector for points on 6, and let 1 be the intrinsic Laplacian
on 6. From the equation 1X = 2H EN on 6 (H is the mean curvature of 6) and
using the divergence theorem, we have∫

6

2H ENd S =

∮
∂6

Ends.
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Here EN is the outward unit normal of 6, and En is the outward unit conormal of
6 along ∂6. Since the mean curvature H and the contact angles γ1 and γ2 are
constant, we have (see for example [Concus et al. 2001])

(1) sin γ1|∂�1| + 2H |�1| = 0 and sin γ2|∂�2| + 2H |�2| = 0.

We note that the above formulas, which were proved for ring type spanners in
[Concus et al. 2001] and are called the balancing formulas, are true for all span-
ners of any topological type (see the proof of balancing formulas for spanners in
triangular pyramids in Section 2). In particular, they are still true when the wetted
region on a plane is not connected. An immediate consequence of the balancing
formulas is that the mean curvature vector of a spanner should point the inside of
the liquid drop.

For ring type spanners in a wedge, McCuan [1997] used a spherical reflection
technique to obtain a necessary condition ([Lemma 9] there or Lemma 1 in Section
2). Later, it was proved in [Park 2005], based on [McCuan 1997, Lemma 9], that
every ring type spanner in a wedge is in fact spherical; such spanners are called
spherical spanners.

In this paper, we obtain a necessary condition for spanners in a wedge. As an
application, we give a simple proof for [McCuan 1997, Lemma 9]. The argument
can be easily generalized to spanners in an octant or in a triangular pyramid. It
also generalizes to higher dimensional spanners in wedges or in unbalanced poly-
hedral cones in higher dimensional Euclidean space En+1 which are bounded by
closed (n−1)-dimensional submanifold(s) on each face of the cone. We say that
a polyhedral cone in Euclidean space is unbalanced if the unit normal vectors to
each face of the polyhedral cone are linearly independent. We use the balancing
formula for constant mean curvature surfaces and the isoperimetric inequality for
plane domains. Our necessary condition says that the area of wetted region of
spanners in a wedge or in an unbalanced polyhedral cones should be bigger than
or equal to the area of wetted region of the unique spherical spanner.

I express my thanks to the referee for kind comments.

2. Main result

In the following, the unit normal vector field N points to the outside of the spanner
6, and the second fundamental form and the mean curvature H are computed with
respect to N . The surfaces are supposed to be C1 up to the boundary.

Theorem 1. Let 6 be a compact embedded cmc surface in a wedge. Suppose that
6 does not meet the edge of the wedge and that the contact angle between 6 and
each face of the wedge is constant. Let γ1 and γ2 be the contact angles, and let
�1 and �2 be the planar domains bounded by the boundary curves (the wetted
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regions). Then we have

(2) |�i | ≥
sin2 γi

H 2 π for i = 1, 2.

Therefore the area of the wetted region of any spanner in a wedge is bigger than
or equal to the area of the wetted region of the unique spherical spanner.

Proof. The isoperimetric inequality for domains in Euclidean plane says that

|∂�i |
2
≥ 4π |�i |.

Plugging (1) into this isoperimetric inequality, we have

(3) |�i | ≥
sin2 γi

H 2 π.

We note that sin γi/|H | is the radius of the wetted disk of the spherical spanner
with mean curvature H and contact angles γ1 and γ2. �

Now let 6 be a ring type spanner with contact angles γ1 and γ2. There is a
conformal curvature coordinate z = x + iy of 6 such that the second fundamental
form

I I = h11(dx)2
+ 2h12 dxdy + h22(dy)2

satisfies h12 ≡ 0 and h11 − h22 ≡ constant [McCuan 1997]. Let ds2
= λ|dz|2 be

the induced metric. Then the mean curvature is

H =
1

2λ
(h11 + h22).

Because h11 − h22 =: c is constant, the principal curvatures are given by

κ1 = H +
c

2λ
and κ2 = H −

c
2λ

.

We note that κ1 is the principal curvature in the radial direction and κ2 is the prin-
cipal curvature in the angular direction. We give a simple proof of [McCuan 1997,
Lemma 9].

Lemma 1. Let 6 be a ring type spanner in a wedge. Then the constant c=h11−h22

is nonpositive.

Proof. We note that the curvature κ of ∂�1 is κ2/sin γ1 = (H − c/2λ)/sin γ1.
If c > 0, then ∂�1 can be placed inside the circle of radius sin γ1/|H |, and the
inequality (3) cannot be satisfied. Hence, we must have c ≤ 0. �

Now we suppose that 6 is a spanner in a triangular pyramid. For completeness,
we include the proof of balancing formulas for spanners in triangular pyramids;
see [Concus et al. 2001]. For i = 1, 2, 3, let γi be the contact angles, let �i be
the wetted regions, and let Ni be the unit vectors perpendicular to the faces of
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the pyramid that are compatible with the surface normal N of 6. By integrating
1X = 2H EN over 6 and using the divergence theorem, we have∫

6

2H ENd S =

∫
6

1Xd S =

∫
∂6

Ends =

3∑
i=1

∫
∂�i

Ends.

It is clear that ∫
∂�i

Ends =

∫
∂�i

(cos γiνi + sin γi Ni )ds,

where νi is the outward conormal of �i along ∂�i . Since γi is constant,∫
∂�i

sin γi Ni ds = sin γi |∂�i |Ni .

From the divergence theorem, we have
∫
∂�

j
i

cos γiνi ds = 0 for each connected
component ∂�

j
i of ∂�i , and∫

6

ENd S +

3∑
i=1

∫
�i

Ni d S = 0.

Therefore we have
3∑

i=1

∫
�i

2H Ni d S +

3∑
i=1

sin γi |∂�i |Ni =

3∑
i=1

2H |�i |Ni +

3∑
i=1

sin γi |∂�i |Ni = 0.

Since N1, N2, and N3 are linearly independent (that is, a triangular pyramid is
unbalanced), we obtain the balancing formulas for spanners in triangular pyramids:

sin γi |∂�i | + 2H |�i | = 0 for i = 1, 2, 3.

The same argument can be applied to 1X = nH EN to produce the balancing for-
mulas for n-dimensional spanners in unbalanced polyhedral cones in the Euclidean
space En+1:

sin γi |∂�i | + nH |�i | = 0.

Since the balancing formulas hold for spanners in triangular pyramids, we have

Theorem 2. Let 6 be a compact embedded cmc surface in a triangular pyramid.
Suppose that 6 does not meet the edge and the vertex of the pyramid, and suppose
that the contact angles between 6 and the faces of the pyramid are constant on
each face of the pyramid. For i = 1, 2, 3, let γi be the contact angles, and let �i

be the planar domains bounded by the boundary curves on each face (the wetted
regions). Then

(4) |�i | ≥
sin2 γi

H 2 π for i = 1, 2, 3.
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From the balancing formulas for higher dimensional spanners together with the
isoperimetric inequality for domains in En , we have

Theorem 3. Let M be a compact embedded cmc hypersurface in an unbalanced
polyhedral cone in En+1 bounded by (n−1)-dimensional submanifold(s) on each
face of the cone. Suppose that M does not meet the edge and the vertex of the
cone, and suppose that the contact angles between M and the faces of the cone
are constant on each face of the cone. Let γi be the contact angles and �i be the
domains on each face of the cone bounded by the boundary submanifold(s) on each
face (the wetted regions). Then we have

(5) |�i | ≥

(sin γi

|H |

)n
ω(n),

where ω(n) is the volume of the unit ball in En .

In unbalanced polyhedral cones, there exists a unique spherical spanner for given
mean curvature H and contact angles γi ’s. The inequalities (4) and (5) say that the
wetted regions of a spanner in unbalanced polyhedral cone have bigger or equal
area than the wetted region of the spherical spanner.

In [Park 2005], it was shown that every ring type spanner in a wedge is actually
spherical. In this context, we ask two questions:

• Is every spanner in a wedge or in a triangular pyramid spherical?

• Is every spanner in an unbalanced polyhedral cone in En+1 spherical?

References

[Concus et al. 2001] P. Concus, R. Finn, and J. McCuan, “Liquid bridges, edge blobs, and Scherk-
type capillary surfaces”, Indiana Univ. Math. J. 50:1 (2001), 411–441. MR 2002g:76023 Zbl 0996.
76014

[McCuan 1997] J. McCuan, “Symmetry via spherical reflection and spanning drops in a wedge”,
Pacific J. Math. 180:2 (1997), 291–323. MR 98m:53013 Zbl 0885.53009

[Park 2005] S.-h. Park, “Every ring type spanner in a wedge is spherical”, Math. Ann. 332:3 (2005),
475–482. MR 2006h:53008 Zbl 02190811

Received March 7, 2007. Revised July 28, 2007.

SUNG-HO PARK

KOREA INSTITUTE FOR ADVANCED STUDY HOEGIRO 87
207-43 CHEONGNYANGNI 2-DONG, DONGDAEMUN-GU

SEOUL 130-722
KOREA

shubuti@kias.re.kr

http://dx.doi.org/10.1512/iumj.2001.50.1849
http://dx.doi.org/10.1512/iumj.2001.50.1849
http://www.ams.org/mathscinet-getitem?mr=2002g:76023
http://www.emis.de/cgi-bin/MATH-item?0996.76014
http://www.emis.de/cgi-bin/MATH-item?0996.76014
http://www.ams.org/mathscinet-getitem?mr=98m:53013
http://www.emis.de/cgi-bin/MATH-item?0885.53009
http://dx.doi.org/10.1007/s00208-005-0476-2
http://www.ams.org/mathscinet-getitem?mr=2006h:53008
http://www.emis.de/cgi-bin/MATH-item?02190811
mailto:shubuti@kias.re.kr

	1. Introduction
	2. Main result
	References

