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We show two results on local theta correspondence and restrictions of irre-
ducible admissible representations of GL(2) over p-adic fields. Let F be a
nonarchimedean local field of characteristic 0, and let L be a quadratic ex-
tension of F. Let εL/F is the character of F× corresponding to the extension
L/F, and let GL2(F)+ be the subgroup of GL2(F) consisting of elements
with εL/F(det g) = 1. The first result is that the theorem of Moen–Rogawski
on the theta correspondence for the dual pair (U(1), U(1)) is equivalent to
a result by D. Prasad on the restriction to GL2(F)+ of the principal series
representation of GL2(F) associated with 1, εL/F . As the second result, we
show that we can deduce from this a theorem of D. Prasad on the restric-
tions to GL2(F)+ of irreducible supercuspidal representations of GL2(F)

associated to characters of L×.

1. Introduction

The purpose of this paper is to give two remarks on the comment in the last Remark
in Section 3 of [Prasad 2007] and Theorem 1.2 in [Prasad 1994].

Let F be a nonarchimedean local field of characteristic 0, and let L be an qua-
dratic extension of F . We denote by εL/F the quadratic character of F× corre-
sponding to the extension L/F .

Let Ps(1, εL/F ) be the normalized principal series representation of GL2(F)
associated to the characters 1 and εL/F . We fix an embedding of L× into GL2(F).
The restriction of Ps(1, εL/F ) to L× is a multiplicity-free direct sum. Let GL2(F)+

be the subgroup of GL2(F) consisting of elements with determinant belonging to
NL/F (L×). Then L× is contained in GL2(F)+, and the restriction of Ps(1, εL/F ) to
GL2(F)+ decomposes into two irreducible subspaces Ps±(1, εL/F ). In this situa-
tion, Lemma 4 in [Prasad 2007] states that a character φ of L× , whose restriction to
F× is εL/F , appears in Ps+(1, εL/F ) (resp. Ps−(1, εL/F )) if and only if ε(φ,ψ0)=1
(resp. −1). Hereψ0 is a character of L , the precise definition of which will be given
in Section 3. On the other hand, we fix a character χ of L× whose restriction to
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F× is εL/F , and consider the theta correspondence for the dual pair (U (1),U (1))
with respect to χ . Then the theorem of Moen–Rogawski states that a character
η of L1 appears in this theta correspondence if and only if ε(χη−1

L , ψ0) = 1 (see
[Moen 1987; Rogawski 1992]). Here ηL is the character of L× given by

ηL(x)= η(x/x̄)

for x ∈ L×. Now the correspondence η 7→χη−1
L yields a one to one correspondence

between characters of L1 and characters of L× whose restriction to F× is εL/F .
Thus the factor ε(φ,ψ0) appears in formulas expressing characters of linear and
nonlinear groups. The Remark in Section 3 of [Prasad 2007] raises the question
whether there is a natural explanation for this phenomenon. Our first remark is an
answer to this question. Our result is that Lemma 4 in Prasad’s article is equivalent
to the theorem of Moen–Rogawski. We show this in Sections 3 and 4 using seesaw
diagrams after some preparations on seesaw diagrams in Section 2. We note that
both the theorem of Moen–Rogawski and Prasad’s Lemma 4 were originally proved
by local methods for F with odd residual characteristic, and the general cases were
proved by these local results and global methods (see [Moen 1987], Proposition 3.4
of [Rogawski 1992], and Lemma 4 of [Prasad 2007]). Later a purely local proof
for the theorem of Moen–Rogawski was given by Harris, Kudla and Sweet (see
Corollaries 8.5 and A.9 of [Harris et al. 1996]), and that of Lemma 4 of [Prasad
2007] was given by the author (see Appendix of [Prasad 2007]).

The second remark is concerned with Theorem 1.2 in [Prasad 1994]. Let π be
the irreducible supercuspidal representation of GL2(F) associated to a character
λ of L× by theta correspondence. Then π |L× is multiplicity-free, and π |GL2(F)+

decomposes into two irreducible subspaces π+ and π−. In the article in ques-
tion, D. Prasad proved that φ with λφ−1

|F× = εL/F appears in π± if and only if
ε(λφ−1, ψ0) = ε(λ̄φ−1, ψ0) = ±1. In Section 3 we deduce an analogue of this
theorem for unitary groups of degree 2 (Theorem 3.5) from the theorem of Moen–
Rogawski using a seesaw diagram. In Section 4 we show the above theorem of D.
Prasad from this again using a seesaw diagram, which is found in [Harris 1993].
This is the first half of Theorem 1.2 in [Prasad 1994]. In Section 5, we treat a sim-
ilar problem for representations of multiplicative group of the division quaternion
algebra. This is the second half of Theorem 1.2 in [Prasad 1994].

2. Seesaw diagrams

In this section, we introduce notation and recall some seesaw diagrams which will
be used in later sections. Let F, L and εL/F be as before, and fix a nontrivial
additive character ψ of F . For α ∈ L , we denote by ᾱ its conjugate over F . We
fix δ ∈ L× such that δ̄ = −δ and n0 ∈ F× not contained in NL/F (L×).
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For a finite-dimensional L-space W equipped with hermitian or antihermitian
form, we denote by U (W ) its unitary group and by GU(W ) its unitary simili-
tude group. For a vector space W with symplectic form, we denote by Sp(W)

its symplectic group and by GSp(W) its symplectic similitude group. We denote
by Mp(W) the metaplectic group of W. Let V ′ be a finite-dimensional right F-
space with symmetric bilinear form 〈v, v′

〉F for v, v′
∈ V ′. We denote by SO(V ′),

O(V ′), and GO(V ′) the special orthogonal group, the orthogonal group, and the
orthogonal similitude group of V ′ respectively. We denote by GO+(V ′) the group
of proper similitudes of V ′.

Let V be a finite-dimensional right L-space with hermitian form satisfying

〈v1α, v2β〉 = ᾱ〈v1, v2〉β, v1, v2 ∈ V

and let W be a left L-space with antihermitian form satisfying

〈αw1, βw2〉 = α〈w1, w2〉β̄, w1, w2 ∈ W

for α, β ∈ L . Then on W = V ⊗L W , we can define a symplectic form by

〈〈v1 ⊗w1, v2 ⊗w2〉〉 =
1
2 trL/F

(
〈v1, v2〉〈w1, w2〉

)
.

For W, V , we have a dual reductive pair (U (W ),U (V )) in Sp(W). We denote the
natural embeddings by

ιV : U (W )→ Sp(W),

ιW : U (V ) → Sp(W).

Assume W is a direct sum of two antihermitian spaces W1, W2 for L/F , and set
Wi = V ⊗ Wi for i = 1, 2. Similarly as above, we have dual pairs (U (W1),U (V ))
in Sp(W1) and (U (W2),U (V )) in Sp(W2), and the embeddings

ιV,1 : U (W1)→ Sp(W1),

ιW1 : U (V ) → Sp(W1),

ιV,2 : U (W2)→ Sp(W2),

ιW2 : U (V ) → Sp(W2).

These dual pairs yield the seesaw diagram

(2-1)

U (W1)× {1} U (V )

U (W ) U (V )× Sp(W2)

QQQQQQQQQQQQQQQQ mmmmmmmmmmmmmmm

The right vertical line is the map

ιW1 × ιW2 : U (V )→ U (V )× Sp(W2)⊂ Sp(W1)× Sp(W2).
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We recall one more seesaw diagram from [Harris 1993]. Let W ′ be a finite-
dimensional left F-space with symplectic form 〈 , 〉F . We can define an antiher-
mitian form on W ′

L = L ⊗F W ′ by〈∑
i

αi ⊗ vi ,
∑

j

β j ⊗ v′

j

〉
=

∑
i, j

αi β̄ j 〈vi , v
′

j 〉F

for αi , β j ∈ L , and vi . v j ∈ V ′. Conversely, let V be a right L-space with her-
mitian form 〈 , 〉. Then composing the hermitian form with trL/F , we can define a
symmetric bilinear form

1
2 trL/F (〈v, v

′
〉)

on ResF V , the space V considered as an F-space. In this notation we have, from
[Harris 1993, (3.5.1.1)],

(2-2)

GSp(W ′) GU(V )

GU(W ′

L) GO(ResF V )

QQQQQQQQQQQQQQQ mmmmmmmmmmmmmmm

3. Application of the theorem of Moen–Rogawski

In this section, using the diagram (2-1) and the theorem of Moen–Rogawski, we
deduce an analogue of Theorem 1.2 in [Prasad 1994] for unitary groups of degree
2.

For α ∈ L× with ᾱ = −α, we denote by W (α) the 1 dimensional left L-space
L with antihermitian form 〈x, y〉 = αx ȳ for x, y ∈ L . For α, β ∈ L×, we set
W (α, β)= W (α)⊕W (β). For a ∈ F×, we denote by V (a) the 1 dimensional right
L-space L with hermitian form 〈x, y〉 = ax̄ y.

We set W = W (δ), W− = W (−δ), and V = V (1), or W = W (n0δ), W− =

W (−n0δ), and V = V (1). Set W = V ⊗L W , and W− = V ⊗L W−. Then we have
a seesaw diagram of type (2-1):

U (W )× {1} U (V )

U (W + W−) U (V )× Sp(W−)

QQQQQQQQQQQQQQQQ mmmmmmmmmmmmmmm

We recall the splittings of the above unitary groups into metaplectic groups,
following Section 1 of [Harris et al. 1996]. We fix a character χ of L× whose
restriction to F× is εL/F . Let X be the graph of minus the identity from W to
W−, and let Y be the graph of the identity. Then V ⊗L X and V ⊗L Y are maximal
isotropic subspace of W, and W = V ⊗L X +V ⊗L Y yields a complete polarization
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of W. This determines an isomorphism

Mp(W + W−)' Sp(W + W−)o C1,

where the product in Sp(W + W−)o C1 is given by the Rao cocycle [1993]. The
inverse image in Mp(W + W−) of Sp(W)× {1} or {1} × Sp(W) is isomorphic to
Mp(W). By (1.21) of [Harris et al. 1996], we have splittings ι̃V,χ , ι̃V,χ × ι̃V,χ,−

satisfying

U (W + W−)
ι̃V,χ - Mp(W + W−)

U (W )× U (W )

i
6

ι̃V,χ×ι̃V,χ,−- Mp(W)× Mp(W).

ĩ
6

Here we note that U (W−)= U (W ), Mp(W)= Mp(W−) and the splitting

ĩ : Mp(W)× Mp(W)→ Mp(W + W−)

of the embedding

i : Sp(W)× Sp(W)→ Sp(W + W−)

is specified so that the restriction to central C1 is given by

C1
× C1

→ C1, (c1, c2)→ c1c̄2.

Then, by [Harris et al. 1996, Lemma 1.1],

(3-1) ι̃V,χ,− = χ−1 ι̃V,χ .

In this case, U (V ) is the center of U (W + W−), and the splitting of U (V ) as the
center of U (W + W−) by χ coincides with the splitting ιW+W−,χ2 (Corollary A.8
of the same reference).

Let (ωψ ,S(V ⊗L X)) be the Weil representation of Mp(W + W−) realized on
the space of Schwartz–Bruhat functions on V ⊗F X as the Schrödinger model
associated to the complete polarization W = V ⊗L X +V ⊗L Y . For a character λ1

of U (V ), let θχ (λ1,W + W−) be the theta correspondence of λ1 to U (W + W−).
Namely, let SV,W,χ (λ

1) be the maximal quotient of S(V ⊗L X) on which U (V )
acts as multiple of λ1. Then

SV,W,χ (λ
1)' θχ (λ

1,W + W−)� λ
1,

as U (W + W−)× U (V )-spaces with an U (W + W−)-module θχ (λ1,W + W−).
Let ωψ.W be the Weil representation of Mp(W). Let ψ0 be the additive character

of L given by ψ0(x) = ψ( 1
2 trL/F (−δx)) for x ∈ L . For a character η of L1, we

denote by ηL the character of L× given by ηL(x)= η(x/x̄).
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Theorem 3.1 (Moen and Rogawski). Let

ε =

{
1 if W = W (δ),

−1 if W = W (n0δ).

Then
ωψ,W ◦ ι̃V,χ |U (W ) =

⊕
ε(χη−1

L ,ψ0)=ε

Cη.

Remark 3.2. Here we use the character ψ0 instead of ψ ◦ trL/F . This simplifies
some expressions (see Remark in Introduction of [Prasad 1994]).

For a character η of U (W ), we denote by θχ (η, V ) the theta correspondence of η
in Mp(W) to U (V ). Then θχ (η, V )=η−1 if η appears in the theta correspondence.
We note that U (V ) ' U (W ) ' L1, and the embedding ιV and ιW are chosen so
that the actions of U (V ) and U (W ) on W are the inverse of each other.

By the isomorphism U (V ) ' L1, we consider the restriction of χ to L1 as a
character of U (V ) and denote it also by χ .

Lemma 3.3. Let the notation be as above. Let U (W )× {1} be the subgroup of
U (W ) × U (W )(⊂ U (W + W−)) consisting of elements with unit in the second
component. Then

dim HomU (W )×{1}

(
θχ (χ

−1λ1,W + W−), η� 1
)

=

{
1 if η and λ1η appear in ωψ,W ◦ ι̃V,χ ,
0 otherwise.

Proof.

Hom(U (W )×{1})×U (V )(ωψ , (η� 1)�χ−1λ1)

' Hom(U (W )×{1})×U (V )(θχ (χ
−1λ1,W + W−)�χ

−1λ1, (η� 1)�χ−1λ1)

' HomU (W )×{1}(θχ (χ
−1λ1,W + W−), η� 1).

We note that U (V ) is embedded into U (W )× U (W ) diagonally in Sp(W + W−),
and the action of α∈U (V ) for α∈ L1 on S(V ⊗L X) is given by that of (α−1, α−1)∈

U (W )×U (W ). By [Mœglin et al. 1987, II.1, Remarques (5), (6)] and [Harris et al.
1996, Lemma 2.1(i)], the restriction of ωψ to Mp(W)× Mp(W) is ωψ,W �ω∨

ψ,W.
Here ω∨

ψ,W is the contragredient of ωψ,W, and by (3-1) we obtain

ω∨

ψ,W ◦ ι̃V,χ,− = χ(ωψ,W ◦ ι̃V,χ )
∨.

Hence

Hom(U (W )×{1})×U (V )(ωψ , (η� 1)�χ−1λ1)

' HomU (W )×U (V )
(
η� (θχ (η, V )⊗ω∨

ψ,W ◦ ι̃V,χ,−), η�χ−1λ1)
' HomU (V )(θχ (η, V )⊗ (χ(ωψ,W ◦ ι̃V,χ,)

∨), χ−1λ1).
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Our assertion follows from this. �

Taking λ1 to be the trivial character of L1, by Lemma 3.3 and Theorem 3.1, we
obtain:

Theorem 3.4. Let ε be as above. Then

θχ (χ
−1,W + W−)|U (W )×{1} =

⊕
ε(χη−1

L ,ψ0)=ε

Cη� 1.

Theorem 3.5. Let λ1 be a nontrivial character of L1, and let ε be as above. Then

θχ (χ
−1λ1,W + W−)|U (W )×{1} =

⊕
ε(χ(λ1

LηL )
−1,ψ0)=

ε(χη−1
L ,ψ0)= ε

Cη� 1.

4. Prasad’s Theorem

We rewrite the results in the previous section in terms of GU(2) and a torus TL in
GU(2) isomorphic to L×, and by restricting it to a subgroup of index 2 of GL2(F),
we deduce the theorem of D. Prasad using a seesaw diagram of type (2-2).

Let W ′
= F2 be the two-dimensional left F-space with symplectic form

〈v1, v2〉 = x1 y2 − y1x2

for v1 = (x1, y1), v2 = (x2, y2) ∈ W ′, and let W ′

L = L2 be the two-dimensional left
L-space with antihermitian from

〈ṽ1, ṽ2〉H = x1 ȳ2 − y1 x̄2

for ṽ1 = (x1, y1), ṽ2 = (x2, y2) ∈ W ′

L . Then we see W (δ,−δ) ' W ′

L , as spaces
with antihermitian forms. More explicitly, let

h =

(
δ 1/2

−δ 1/2

)
.

Then

h
(

0 1
−1 0

)
t h̄ =

(
δ 0
0 −δ

)
.

If we take n0〈v1, v2〉 instead of 〈v1, v2〉, we get W (n0δ,−n0δ) ' W ′

L . Similarly,
we have

h
(

0 n0

−n0 0

)
t h̄ =

(
n0δ 0
0 −n0δ

)
.

Let ResF V be the two-dimensional right F-space with symmetric bilinear form
associated with V (1). For these spaces, we have the following diagram of type
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(2-2):

GSp(W ′) GU(V )

GU(W ′

L) GO(ResF V )

QQQQQQQQQQQQQQQ mmmmmmmmmmmmmmm

Note that W ′ and V satisfy

GSp(W ′)= GL(W ′), Sp(W ′)= SL(W ′), U (W ′

L)⊃ SU (W ′

L)= SL(W ′),

SO(ResF V )= U (V ), GO+(ResF V )= GU(V ).

Let νW (g) be the similitude of g ∈ U (W ′

L). Let

GU(W ′

L)
+

= {g ∈ GU(W ′

L) | εL/F (νW (g))= 1},

GL(W ′)+ = {g ∈ GL(W ′) | εL/F (det g)= 1},

and identify L× with the center of GU(WL). Then

GU(W ′

L)⊃ GU(W ′

L)
+

= L×U (W ′

L)= L× GL(W ′)+,

since NL/F (L×)L×2
= L1L×2.

Let TL be the torus in GL(W ′) isomorphic to L× given by{(
a 2−1b

2δ2b a

) ∣∣∣ t(a, b) ∈ F2
\

t(0, 0)
}
,

and let
α = a + bδ ∈ L , µ= α/ᾱ.

We fix the isomorphism

α 7→

(
a 2−1b

2δ2b a

)
and identify TL with L×. We have

(4-1)
(

a 2−1b
2δ2b a

)
=

(
ᾱ 0
0 ᾱ

)
1
2

(
µ+ 1 (2δ)−1(µ− 1)

(2δ)(µ− 1) µ+ 1

)
.

We note
1
2

(
µ+ 1 (2δ)−1(µ− 1)

2δ(µ− 1) µ+ 1

)
= h−1

(
µ 0
0 1

)
h.

We recall the action of some elements on S(V ⊗L X). We write them for the
pair (U (W ′

L),U (V )). Then X = {(x, 0) | x ∈ L}, Y = {(0, y) | y ∈ L}, and(
α 0
0 ᾱ−1

)
∈ U (W ′

L)
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acts on X by α and on Y by ᾱ−1. Hence

βV

(
α 0
0 ᾱ−1

)
= χ(ᾱ−1)= χ(α)

in the notation of Theorem 3.1 of [Kudla 1994]. By the same theorem we have,
for α ∈ L×,

ωψ

(
ι̃V,χ

(
α 0
0 ᾱ−1

))
f (x)= χ(α)|α|

1/2
L f (αx).

In particular, for α ∈ L1,

(4-2) ωψ

(
ι̃V,χ

(
α 0
0 α

))
f (x)= χ(α) f (αx).

For the dual pair (SL(W ′),SO(ResF V )), let S(λ1) be the maximal quotient of
S(V ⊗L X) = S(ResF V ⊗F X ′), X ′

= {(x, 0) | x ∈ F}, on which SO(ResF V )
acts as multiple of λ1. Here the action of α ∈ SO(ResF V ) with α ∈ L1 is given by
f (x) 7→ f (α−1x). Then the above formula implies that

SV,W,χ (χ
−1λ1)= S(λ1).

Hence the restriction of the action of U (W ′

L) on the space θχ (χ−1λ1,W + W−) to
SL(W ′) is the theta correspondence of λ1 to SL(W ′). We denote it by θ(λ1,W ′).

We extend the theta correspondence θχ of U (V ) to U (W ′

L) to that of GU(V )
to GU(W ′

L)
+ following [Harris 1993, 3.2]. The similitude νV of GU(V ) satisfies

νV (GU(V ))= NL/F L×. Let

R(V,W )= {(g, h) ∈ GU(W ′

L)× GU(V ) | νV (h)= νW (g)}.

Then by corresponding (g, h) to the map

v⊗w 7→ h−1v⊗wg, v ∈ V, w ∈ W ′

L ,

we can takes R(V,W ) into Sp((V ⊗L W ′

L). We consider a semidirect product
U (W ′

L)n GU(V ) defined by

hg =
hgh

with

hg =

(
1 0
0 νV (h)

)
g

(
1 0
0 νV (h)

)−1

.

Then we have an isomorphism

R(V,W )' U (W ′

L)n GU(V )
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given by

(g, h)→

(
g

(
1 0
0 νV (h)

)−1

, h
)
.

We let GU(V ) act on S(V ⊗L X) by

L(h) f (x)= χ(α−1)|α|
−1/2
L f (α−1x).

Then L(h) defines a unitary operator on S(V ⊗L X), and this action with ωψ ◦ ι̃V,χ

defines an action of R(V,W ) on S(V ⊗L X) and a splitting of R(V,W ) into
Mp(V ⊗L W ′

L).
Let λ be a character of GU(V ) whose restriction to U (V ) is λ1. We identify

λ with a character of L× by GU(V ) ' L×. For a character λ of L×, let λ be the
character of L× given by λ(α)= λ(ᾱ) for α ∈ L×. By the projection to the second
factor GU(V ) of GU(W ′

L)× GU(V ), we may see χλ as a character of R(V,W ).
Define

(S(V ⊗L X)⊗χλ)U (V )

to be the maximal quotient of S(V ⊗L X)⊗χλ on which U (V ) acts trivially. Then
GU(W ′

L)
+ acts on this space as follows. For g ∈ GU(W ′

L)
+, choose h ∈ GU(V )

satisfying νW (g) = νV (h). Define the action of g as that of (g, h) ∈ R(W, V ).
Then this is independent of the choice of h. As U (W ′

L)-modules, we have

(S(V ⊗L X)⊗χλ)U (V ) ' SV,W,χ (χ
−1λ1),

and on this space,
(
α
0

0
α

)
∈ GU(W ′

L)
+ acts by χλ. We denote the restriction to

GL(W ′)+ of this representation by θ(λ,GL(W ′))ε . Here ε is as in Section 3.
Let a = αᾱ. Then (

a 0
0 1

)
=

(
ᾱ 0
0 ᾱ

) (
α 0
0 ᾱ−1

)
Hence

(
α
0

0
1

)
acts on f̃ ∈ S(λ1) sending it to the class in S(λ1) of the function

χ(ᾱ)λ(α)χ(α)|α|
1/2
L f (αx)= λ(α)|α|

1/2
L f (αx).

This coincides with the extension of the action of SL(W ′) to GL(W ′)+ in [Jacquet
and Langlands 1970, Proposition 1.5]. For a character λ of L×, we set

θ(λ,GL(W ′))= Ind GL(W ′)

GL(W ′)+
θ(λ,GL(W ′)+)+.

Then as GL(W ′)+-modules, we have

ResGL(W ′)

GL(W ′)+
θ(λ,GL(W ′))= θ(λ,GL(W ′)+)+ ⊕ θ(λ,GL(W ′)+)− ;

see [Mœglin et al. 1987, II.1, Remarque (3)].
Let Ps(1, εL/F ) be the principal series representation of GL2(F) associated with

characters (1, εL/F ). Then θ(1,GL(W ′)) is isomorphic to Ps(1, εL/F ) by [Jacquet
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and Langlands 1970, Theorem 4.7]. We set Ps(1, εL/F )
ε the subspace correspond-

ing to θ(λ,GL(W ′))ε . By setting φ=χη−1
L , we see that Theorem 3.4 is equivalent

to the following:

Theorem 4.1 [Prasad 2007, Lemma 4]. For ε = ±1,

Ps(1, ωL/F )
ε
|TL = ⊕ε(φ,ψ0)=εCφ,

where φ runs through all characters of L× whose restriction to F× is equal to
εL/F .

Remark 4.2. The map η 7→ χ−1ηL induces a one to one correspondence between
the set of characters of L1 and the set of characters of L× whose restriction to F×

is εL/F . Therefore the theorem of Moen–Rogawski is equivalent to the preceding
theorem through Theorem 3.4.

For λ such that λ|L1 is not trivial, θ(λ,GL(W ′)) is an irreducible supercuspidal
representation of GL(W ′) by Theorem 4.6 of [Jacquet and Langlands 1970]. In
this case, Theorem 3.5 can be stated as follows:

Theorem 4.3 [Prasad 1994, Theorem 1.2]. Under the action of GL2(F)+, the
space θ(λ,GL(W ′)) decomposes into two subspaces θ(λ,GL(W ′))±, and for ε =

±1, one has
θ(λ,GL(W ′))ε |TL =

⊕
ε(λφ−1,ψ0)=

ε(λφ−1,ψ0)= ε

Cφ,

where φ runs through all characters of L× which satisfy λφ−1
|F× = εL/F .

Proof. Set φ = χ−1ληL . Since λ1
L = λλ−1, we see

χ(ηLλ
1
L)

−1
= (χλ−1η−1

L )λ= λφ−1,

χη−1
L = (χλ−1η−1

L )λ= λφ−1.

We note λφ−1
|F× = λφ−1

|F× = εL/F . By (4-1), we can see the action of TL by
that of L1. For v ∈ θχ (χ

−1λ1,W + W−), U (W )× {1} acts on v via η� 1 if and
only if TL acts on v via χ̄ληL = χ−1ληL . The assertion follows from this and
Theorem 3.5. �

5. Nonsplit case

We now consider the nonsplit case. Let

B =

{(
α β

n0β̄ ᾱ

) ∣∣∣ α, β ∈ L
}
.
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Then B is the division quaternion algebra over F . Let

B+
= {x ∈ B | εL/F (N (x))= 1}, B1

= {x ∈ B | N (x)= 1}.

Here N (x) is the reduced norm of x ∈ B. We set

TL =

{(
α 0
0 ᾱ

) ∣∣∣α ∈ L×

}
.

Then TL ' L×. We note

(5-1)
(
α 0
0 ᾱ

)
=

(
ᾱ 0
0 ᾱ

) (
α/ᾱ 0

0 1

)
.

Let α = δ, β = −n0δ, or α = n0δ, β = −n2
0δ. Then B×

⊂ GU(W (α, β)), and

TL ⊂ B+
⊂ GU(W (α, β))+ = L×U (W (α, β))= L×B+.

Here GU(W (α, β))+ is the subgroup of GU(W (α, β)) consisting of elements with
similitude in NL/F (L×).

We define splittings. Let W = W (α,−β). We embed W (α, β) into W + W−

and consider U (W (α, β)) as a subgroup of U (W + W−). Let W = V ⊗F W , and
W− = V ⊗F W−. We may consider W(α, β) = V ⊗F W (α, β) as a symplectic
subspace of W + W− and Sp(W(α, β))) as a subgroup of Sp(W + W−). Then we
have splittings ι̃V,χ , ι̃V,χ,− satisfying

U (W + W−)
ι̃V,χ - Mp(W + W−)

U (W )× U (W )

i
6

ι̃V,χ × ι̃V,χ,−- Mp(W)× Mp(W).

ĩ
6

We choose the embedding of Mp(W)×Mp(W) into Mp(W+W−) so that it induces
the map (c1, c2) 7→ c1c̄2 on the center C1

× C1. Let W(α) = V ⊗L W (α), and
W(β)= V ⊗L W (β). Restricting the above diagram to Mp(W(α, β)), we obtain

U (W (α, β))
ι̃V,χ - Mp(W(α, β))

U (W (α))× U (W (β))

i
6

ι̃V,χ×ι̃V,χ,−- Mp(W(α))× Mp(W(β))

ĩ
6

Here Mp(W(α, β)) is the inverse image of Sp(W(α, β)) in Mp(W + W−), and
Mp(W(α)) and Mp(W(β)) are the inverse images of Sp(W(α)) and Sp(W(β)) in
Mp(W) on the first and the second factor in the above diagram respectively. The
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restriction of ι̃V,χ : U (W (α,−β))→ Mp(W) to U (W (−β)) induces a map

U (W (−β))= U (W (β))
ι̃V,χ- Mp(W(−β))= Mp(W(β)).

Then ι̃V,χ,− and χ−1 ι̃V,χ coincide as homomorphisms of U (W (β)) to Mp(W(β)),
by [Harris et al. 1996, Lemma 1.1]. We have

ωψ,W+W ◦ ĩ = ωψ,W(α,−β) �ω
∨

ψ,W(α,−β)

by [Mœglin et al. 1987, II.1 Remarques (5), (6)] and [Harris et al. 1996, Lemma
2.1(i)]. By restricting this to Mp(W(α))× Mp(W (β)), we obtain

ωψ,W(α,β) ◦ ĩ = ωψ,W(α) �χω
∨

ψ,W(−β),

ωψ,W(α,β) ◦ ĩ ◦ (ι̃V,χ × ι̃V,χ,−)= ωψ,W(α) ◦ ι̃V,χ � ω∨

ψ,W(−β) ◦ ι̃V,χ,−

= ωψ,W (α) ◦ ι̃V,χ � χω∨

ψ,W (−β) ◦ ι̃V,χ

As for the splitting for U (V ), we may take ι̃W+W−,χ4 or that induced by ι̃V,χ .
Let θχ (χ−1λ1,W (α, β)) be the theta correspondence of the character χ−1λ1

of U (V ) to U (W (α, β)) in Mp(W(α, β)). By the same calculation as in the split
case, we obtain:

Lemma 5.1. Let U (W (α))× {1} be the subgroup of U (W (α))× U (W (β)). Then

dim HomU (W (α))×{1}

(
θχ (χ

−1λ1,W (α, β)), η� 1
)

=

{
1 if η appears in ωψ,W(α) ◦ ι̃V,χ and λ1η appears in ωψ,W(−β) ◦ ι̃V,χ ,

0 otherwise.

Since εL/F (−β/α)= −1, the trivial character does not satisfy the above condi-
tion for λ1. In the case of a nontrivial λ1, we have:

Theorem 5.2. Let λ1 be a nontrivial character of L1, and let ε = εL/F (α/δ). Then

θχ (χ
−1λ1,W (α, β))|U (W (α))×{1} =

⊕
−ε(χ(λ1

LηL )
−1λ1

L ,ψ0)=

ε(χη−1
L ,ψ0)= ε

Cη� 1.

As in the split case, we can interpret this result by the dual reductive pair
(B×,GO(V )). In the same way as in the split case, we can define θ(λ1, B1).
Let λ be a character of L× which restriction to L1 is λ1. We define the action
of L×, the center of U (W (α, β)), on θχ (χ

−1λ1,W (α, β)) by χλ. Then this
yields a well-defined smooth action of L×U (W (α, β)) on θχ (χ−1λ1,W (α, β)),
since L×

∩ U (W (α, β)) = L1. By restriction, we obtain an action of B+, since
B+

⊂ L×U (W (α, β)). We denote this representation of B+ by θ(λ, B+)ε for
ε = εL/F (α/δ). We induce it to B× and denote it by θ(λ, B×).

By Theorem 5.2 and (5-1), we obtain:
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Theorem 5.3. Under the action of B+, θ(λ, B×) decomposes into two subspaces
θ(λ, B×)ε for ε = ±1, and

θ(B×, λ)ε |TL =

⊕
−ε(λφ−1,ψ0)=

ε(λφ−1,ψ0)=ε

Cφ,

where φ runs through all characters of L× that satisfy λφ−1
|F× = εL/F .

Remark 5.4. The representations θ(λ,GL(W ′)) and θ(λ, B×) are in Jacquet–
Langlands correspondence with each other, and Theorem 5.3 gives the latter half
of Theorem 1.2 in [Prasad 1994].

By [Mœglin et al. 1987, Chapitre 3, IV, Corollaire 9], an irreducible quotient of

θ
(
χ−1λ1,W (U (α, β))

)
is uniquely determined. Since U (W (α, β)) is compact, θ(χ−1λ1,U (W (α, β))) is a
multiple of this irreducible representation. Lemma 5.1 implies that the multiplicity
is 1, and θ(χ−1λ1,W (α, β)) is irreducible. Let π = θ(λ, B×). Since λ|L1 is not
trivial, θ(λ,GL(W ′)) is supercuspidal. Let π ′ be the representation of B× which
corresponds to θ(λ,GL(W ′)) under the Jacquet–Langlands correspondence. We
denote by χπ , χπ ′ the characters of π, π ′. Then π and π ′ satisfy

π ⊗ εL/F ' π, π ′
⊗ εL/F ' π ′,

and χπ = χπ ′ on L×. By Corollaries 1.7 and 1.15 of [Hijikata et al. 1993] and
Theorem 4.6 (and the remark following it) in [Takahashi 1996], this implies that
χπ = χπ ′ on all the other elliptic torus of B×. Therefore π ' π ′.

Acknowledgement

The author thanks Professor D. Prasad for calling his attention to these problems.

References

[Harris 1993] M. Harris, “L-functions of 2×2 unitary groups and factorization of periods of Hilbert
modular forms”, J. Amer. Math. Soc. 6:3 (1993), 637–719. MR 93m:11043 Zbl 0779.11023

[Harris et al. 1996] M. Harris, S. S. Kudla, and W. J. Sweet, “Theta dichotomy for unitary groups”,
J. Amer. Math. Soc. 9:4 (1996), 941–1004. MR 96m:11041 Zbl 0870.11026

[Hijikata et al. 1993] H. Hijikata, H. Saito, and M. Yamauchi, “Representations of quaternion al-
gebras over local fields and trace formulas of Hecke operators”, J. Number Theory 43:2 (1993),
123–167. MR 94e:11126 Zbl 0819.11018

[Jacquet and Langlands 1970] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lec-
ture Notes in Mathematics 114, Springer, Berlin, 1970. MR 53 #5481 Zbl 0236.12010

[Kudla 1994] S. S. Kudla, “Splitting metaplectic covers of dual reductive pairs”, Israel J. Math.
87:1-3 (1994), 361–401. MR 95h:22019 Zbl 0840.22029

http://dx.doi.org/10.2307/2152780
http://dx.doi.org/10.2307/2152780
http://www.ams.org/mathscinet-getitem?mr=93m:11043
http://www.emis.de/cgi-bin/MATH-item?0779.11023
http://dx.doi.org/10.1090/S0894-0347-96-00198-1
http://www.ams.org/mathscinet-getitem?mr=96m:11041
http://www.emis.de/cgi-bin/MATH-item?0870.11026
http://dx.doi.org/10.1006/jnth.1993.1013
http://dx.doi.org/10.1006/jnth.1993.1013
http://www.ams.org/mathscinet-getitem?mr=94e:11126
http://www.emis.de/cgi-bin/MATH-item?0819.11018
http://www.ams.org/mathscinet-getitem?mr=53:5481
http://www.emis.de/cgi-bin/MATH-item?0236.12010
http://www.ams.org/mathscinet-getitem?mr=95h:22019
http://www.emis.de/cgi-bin/MATH-item?0840.22029


TWO REMARKS ON A THEOREM OF DIPENDRA PRASAD 199

[Mœglin et al. 1987] C. Mœglin, M.-F. Vignéras, and J.-L. Waldspurger, Correspondances de Howe
sur un corps p-adique, Lecture Notes in Mathematics 1291, Springer, Berlin, 1987. MR 91f:11040
Zbl 0642.22002

[Moen 1987] C. Moen, “The dual pair (U(3),U(1)) over a p-adic field”, Pacific J. Math. 127:1
(1987), 141–154. MR 88e:22025 Zbl 0675.22008

[Prasad 1994] D. Prasad, “On an extension of a theorem of Tunnell”, Compositio Math. 94:1 (1994),
19–28. MR 95k:22023 Zbl 0824.11035

[Prasad 2007] D. Prasad, “Relating invariant linear form and local epsilon factors via global meth-
ods”, Duke Math. J. 138:2 (2007), 233–261. MR 2318284 Zbl 05170260

[Ranga Rao 1993] R. Ranga Rao, “On some explicit formulas in the theory of Weil representation”,
Pacific J. Math. 157:2 (1993), 335–371. MR 94a:22037 Zbl 0794.58017

[Rogawski 1992] J. D. Rogawski, “The multiplicity formula for A-packets”, pp. 395–419 in The
zeta functions of Picard modular surfaces (Montreal, 1988), edited by R. P. Langlands and D.
Ramakrishnan, Publications CRM, Montreal, 1992. MR 93f:11042 Zbl 0823.11027

[Takahashi 1996] T. Takahashi, “Character formula for representations of local quaternion algebras
(wildly ramified case)”, J. Math. Kyoto Univ. 36:1 (1996), 151–197. MR 97f:11096 Zbl 0897.22018

Received March 2, 2007.

HIROSHI SAITO

DEPARTMENT OF MATHEMATICS

FACULTY OF SCIENCE

KYOTO UNIVERSITY

KYOTO 606-8502
JAPAN

saito@math.kyoto-u.ac.jp

http://www.ams.org/mathscinet-getitem?mr=91f:11040
http://www.emis.de/cgi-bin/MATH-item?0642.22002
http://projecteuclid.org/getRecord?id=euclid.pjm/1102699674
http://www.ams.org/mathscinet-getitem?mr=88e:22025
http://www.emis.de/cgi-bin/MATH-item?0675.22008
http://www.numdam.org/item?id=CM_1994__94_1_19_0
http://www.ams.org/mathscinet-getitem?mr=95k:22023
http://www.emis.de/cgi-bin/MATH-item?0824.11035
http://dx.doi.org/10.1215/S0012-7094-07-13823-7
http://dx.doi.org/10.1215/S0012-7094-07-13823-7
http://www.ams.org/mathscinet-getitem?mr=2318284
http://www.emis.de/cgi-bin/MATH-item?05170260
http://projecteuclid.org/getRecord?id=euclid.pjm/1102634748
http://www.ams.org/mathscinet-getitem?mr=94a:22037
http://www.emis.de/cgi-bin/MATH-item?0794.58017
http://www.ams.org/mathscinet-getitem?mr=93f:11042
http://www.emis.de/cgi-bin/MATH-item?0823.11027
http://www.ams.org/mathscinet-getitem?mr=97f:11096
http://www.emis.de/cgi-bin/MATH-item?0897.22018
mailto:saito@math.kyoto-u.ac.jp

	1. Introduction
	2. Seesaw diagrams
	3. Application of the theorem of Moen--Rogawski
	4. Prasad's Theorem
	5. Nonsplit case
	Acknowledgement
	References

