Pacific Journal of Mathematics

TWO REMARKS ON A THEOREM OF DIPENDRA PRASAD

HIROSHI SAITO

Volume 234 No. 1

January 2008

TWO REMARKS ON A THEOREM OF DIPENDRA PRASAD

HIROSHI SAITO

We show two results on local theta correspondence and restrictions of irreducible admissible representations of GL(2) over *p*-adic fields. Let *F* be a nonarchimedean local field of characteristic 0, and let *L* be a quadratic extension of *F*. Let $\epsilon_{L/F}$ is the character of F^{\times} corresponding to the extension L/F, and let $GL_2(F)^+$ be the subgroup of $GL_2(F)$ consisting of elements with $\epsilon_{L/F}(\det g) = 1$. The first result is that the theorem of Moen–Rogawski on the theta correspondence for the dual pair (U(1), U(1)) is equivalent to a result by D. Prasad on the restriction to $GL_2(F)^+$ of the principal series representation of $GL_2(F)$ associated with $1, \epsilon_{L/F}$. As the second result, we show that we can deduce from this a theorem of D. Prasad on the restrictions to $GL_2(F)^+$ of irreducible supercuspidal representations of $GL_2(F)$ associated to characters of L^{\times} .

1. Introduction

The purpose of this paper is to give two remarks on the comment in the last Remark in Section 3 of [Prasad 2007] and Theorem 1.2 in [Prasad 1994].

Let *F* be a nonarchimedean local field of characteristic 0, and let *L* be an quadratic extension of *F*. We denote by $\epsilon_{L/F}$ the quadratic character of F^{\times} corresponding to the extension L/F.

Let $Ps(1, \epsilon_{L/F})$ be the normalized principal series representation of $GL_2(F)$ associated to the characters 1 and $\epsilon_{L/F}$. We fix an embedding of L^{\times} into $GL_2(F)$. The restriction of $Ps(1, \epsilon_{L/F})$ to L^{\times} is a multiplicity-free direct sum. Let $GL_2(F)^+$ be the subgroup of $GL_2(F)$ consisting of elements with determinant belonging to $N_{L/F}(L^{\times})$. Then L^{\times} is contained in $GL_2(F)^+$, and the restriction of $Ps(1, \epsilon_{L/F})$ to $GL_2(F)^+$ decomposes into two irreducible subspaces $Ps^{\pm}(1, \epsilon_{L/F})$. In this situation, Lemma 4 in [Prasad 2007] states that a character ϕ of L^{\times} , whose restriction to F^{\times} is $\epsilon_{L/F}$, appears in $Ps^+(1, \epsilon_{L/F})$ (resp. $Ps^-(1, \epsilon_{L/F})$) if and only if $\varepsilon(\phi, \psi_0) = 1$ (resp. -1). Here ψ_0 is a character of L, the precise definition of which will be given in Section 3. On the other hand, we fix a character χ of L^{\times} whose restriction to

MSC2000: primary 22E50, 11F27; secondary 11F70.

Keywords: theta correspondence, epsilon factor.

 F^{\times} is $\epsilon_{L/F}$, and consider the theta correspondence for the dual pair (U(1), U(1)) with respect to χ . Then the theorem of Moen–Rogawski states that a character η of L^1 appears in this theta correspondence if and only if $\varepsilon(\chi \eta_L^{-1}, \psi_0) = 1$ (see [Moen 1987; Rogawski 1992]). Here η_L is the character of L^{\times} given by

$$\eta_L(x) = \eta(x/\bar{x})$$

for $x \in L^{\times}$. Now the correspondence $\eta \mapsto \chi \eta_L^{-1}$ yields a one to one correspondence between characters of L^1 and characters of L^{\times} whose restriction to F^{\times} is $\epsilon_{L/F}$. Thus the factor $\varepsilon(\phi, \psi_0)$ appears in formulas expressing characters of linear and nonlinear groups. The Remark in Section 3 of [Prasad 2007] raises the question whether there is a natural explanation for this phenomenon. Our first remark is an answer to this question. Our result is that Lemma 4 in Prasad's article is equivalent to the theorem of Moen–Rogawski. We show this in Sections 3 and 4 using seesaw diagrams after some preparations on seesaw diagrams in Section 2. We note that both the theorem of Moen–Rogawski and Prasad's Lemma 4 were originally proved by local methods for *F* with odd residual characteristic, and the general cases were proved by these local results and global methods (see [Moen 1987], Proposition 3.4 of [Rogawski 1992], and Lemma 4 of [Prasad 2007]). Later a purely local proof for the theorem of Moen–Rogawski was given by Harris, Kudla and Sweet (see Corollaries 8.5 and A.9 of [Harris et al. 1996]), and that of Lemma 4 of [Prasad 2007] was given by the author (see Appendix of [Prasad 2007]).

The second remark is concerned with Theorem 1.2 in [Prasad 1994]. Let π be the irreducible supercuspidal representation of $GL_2(F)$ associated to a character λ of L^{\times} by theta correspondence. Then $\pi|_{L^{\times}}$ is multiplicity-free, and $\pi|_{GL_2(F)^+}$ decomposes into two irreducible subspaces π^+ and π^- . In the article in question, D. Prasad proved that ϕ with $\lambda \phi^{-1}|_{F^{\times}} = \epsilon_{L/F}$ appears in π^{\pm} if and only if $\epsilon(\lambda \phi^{-1}, \psi_0) = \epsilon(\bar{\lambda} \phi^{-1}, \psi_0) = \pm 1$. In Section 3 we deduce an analogue of this theorem for unitary groups of degree 2 (Theorem 3.5) from the theorem of Moen– Rogawski using a seesaw diagram. In Section 4 we show the above theorem of D. Prasad from this again using a seesaw diagram, which is found in [Harris 1993]. This is the first half of Theorem 1.2 in [Prasad 1994]. In Section 5, we treat a similar problem for representations of multiplicative group of the division quaternion algebra. This is the second half of Theorem 1.2 in [Prasad 1994].

2. Seesaw diagrams

In this section, we introduce notation and recall some seesaw diagrams which will be used in later sections. Let F, L and $\epsilon_{L/F}$ be as before, and fix a nontrivial additive character ψ of F. For $\alpha \in L$, we denote by $\bar{\alpha}$ its conjugate over F. We fix $\delta \in L^{\times}$ such that $\bar{\delta} = -\delta$ and $n_0 \in F^{\times}$ not contained in $N_{L/F}(L^{\times})$. For a finite-dimensional *L*-space *W* equipped with hermitian or antihermitian form, we denote by U(W) its unitary group and by GU(W) its unitary similitude group. For a vector space W with symplectic form, we denote by Sp(W)its symplectic group and by GSp(W) its symplectic similitude group. We denote by Mp(W) the metaplectic group of W. Let V' be a finite-dimensional right *F*space with symmetric bilinear form $\langle v, v' \rangle_F$ for $v, v' \in V'$. We denote by SO(V'), O(V'), and GO(V') the special orthogonal group, the orthogonal group, and the orthogonal similitude group of V' respectively. We denote by $GO^+(V')$ the group of proper similitudes of V'.

Let V be a finite-dimensional right L-space with hermitian form satisfying

$$\langle v_1 \alpha, v_2 \beta \rangle = \bar{\alpha} \langle v_1, v_2 \rangle \beta, \quad v_1, v_2 \in V$$

and let W be a left L-space with antihermitian form satisfying

$$\langle \alpha w_1, \beta w_2 \rangle = \alpha \langle w_1, w_2 \rangle \overline{\beta}, \quad w_1, w_2 \in W$$

for α , $\beta \in L$. Then on $\mathbb{W} = V \otimes_L W$, we can define a symplectic form by

$$\langle \langle v_1 \otimes w_1, v_2 \otimes w_2 \rangle \rangle = \frac{1}{2} \operatorname{tr}_{L/F} (\langle v_1, v_2 \rangle \overline{\langle w_1, w_2 \rangle}).$$

For W, V, we have a dual reductive pair (U(W), U(V)) in Sp(W). We denote the natural embeddings by

$$\iota_V \colon U(W) \to \operatorname{Sp}(W),$$

 $\iota_W \colon U(V) \to \operatorname{Sp}(W).$

Assume *W* is a direct sum of two antihermitian spaces W_1 , W_2 for L/F, and set $\mathbb{W}_i = V \otimes W_i$ for i = 1, 2. Similarly as above, we have dual pairs $(U(W_1), U(V))$ in Sp(\mathbb{W}_1) and $(U(W_2), U(V))$ in Sp(\mathbb{W}_2), and the embeddings

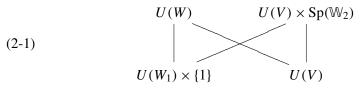
$$\iota_{V,1} \colon U(W_1) \to \operatorname{Sp}(\mathbb{W}_1),$$

$$\iota_{W_1} \colon U(V) \to \operatorname{Sp}(\mathbb{W}_1),$$

$$\iota_{V,2} \colon U(W_2) \to \operatorname{Sp}(\mathbb{W}_2),$$

$$\iota_{W_2} \colon U(V) \to \operatorname{Sp}(\mathbb{W}_2).$$

These dual pairs yield the seesaw diagram



The right vertical line is the map

 $\iota_{W_1} \times \iota_{W_2} \colon U(V) \to U(V) \times \operatorname{Sp}(\mathbb{W}_2) \subset \operatorname{Sp}(\mathbb{W}_1) \times \operatorname{Sp}(\mathbb{W}_2).$

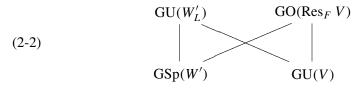
We recall one more seesaw diagram from [Harris 1993]. Let W' be a finitedimensional left *F*-space with symplectic form \langle , \rangle_F . We can define an antihermitian form on $W'_L = L \otimes_F W'$ by

$$\left\langle \sum_{i} \alpha_{i} \otimes v_{i}, \sum_{j} \beta_{j} \otimes v_{j}' \right\rangle = \sum_{i,j} \alpha_{i} \bar{\beta}_{j} \langle v_{i}, v_{j}' \rangle_{F}$$

for $\alpha_i, \beta_j \in L$, and $v_i, v_j \in V'$. Conversely, let *V* be a right *L*-space with hermitian form \langle , \rangle . Then composing the hermitian form with tr_{*L/F*}, we can define a symmetric bilinear form

$$\frac{1}{2} \operatorname{tr}_{L/F}(\langle v, v' \rangle)$$

on $\operatorname{Res}_F V$, the space V considered as an *F*-space. In this notation we have, from [Harris 1993, (3.5.1.1)],

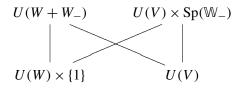


3. Application of the theorem of Moen-Rogawski

In this section, using the diagram (2-1) and the theorem of Moen–Rogawski, we deduce an analogue of Theorem 1.2 in [Prasad 1994] for unitary groups of degree 2.

For $\alpha \in L^{\times}$ with $\bar{\alpha} = -\alpha$, we denote by $W(\alpha)$ the 1 dimensional left *L*-space *L* with antihermitian form $\langle x, y \rangle = \alpha x \bar{y}$ for $x, y \in L$. For $\alpha, \beta \in L^{\times}$, we set $W(\alpha, \beta) = W(\alpha) \oplus W(\beta)$. For $a \in F^{\times}$, we denote by V(a) the 1 dimensional right *L*-space *L* with hermitian form $\langle x, y \rangle = a \bar{x} y$.

We set $W = W(\delta)$, $W_- = W(-\delta)$, and V = V(1), or $W = W(n_0\delta)$, $W_- = W(-n_0\delta)$, and V = V(1). Set $W = V \otimes_L W$, and $W_- = V \otimes_L W_-$. Then we have a seesaw diagram of type (2-1):



We recall the splittings of the above unitary groups into metaplectic groups, following Section 1 of [Harris et al. 1996]. We fix a character χ of L^{\times} whose restriction to F^{\times} is $\epsilon_{L/F}$. Let X be the graph of minus the identity from W to W_{-} , and let Y be the graph of the identity. Then $V \otimes_L X$ and $V \otimes_L Y$ are maximal isotropic subspace of \mathbb{W} , and $\mathbb{W} = V \otimes_L X + V \otimes_L Y$ yields a complete polarization

of W. This determines an isomorphism

$$Mp(\mathbb{W} + \mathbb{W}_{-}) \simeq Sp(\mathbb{W} + \mathbb{W}_{-}) \rtimes \mathbb{C}^{1},$$

where the product in Sp($\mathbb{W} + \mathbb{W}_{-}$) $\rtimes \mathbb{C}^{1}$ is given by the Rao cocycle [1993]. The inverse image in Mp($\mathbb{W} + \mathbb{W}_{-}$) of Sp(\mathbb{W}) \times {1} or {1} \times Sp(\mathbb{W}) is isomorphic to Mp(\mathbb{W}). By (1.21) of [Harris et al. 1996], we have splittings $\tilde{\iota}_{V,\chi}$, $\tilde{\iota}_{V,\chi} \times \tilde{\iota}_{V,\chi,-}$ satisfying

Here we note that $U(W_{-}) = U(W)$, $Mp(W) = Mp(W_{-})$ and the splitting

$$\tilde{i}: \operatorname{Mp}(\mathbb{W}) \times \operatorname{Mp}(\mathbb{W}) \to \operatorname{Mp}(\mathbb{W} + \mathbb{W}_{-})$$

of the embedding

$$i: \operatorname{Sp}(\mathbb{W}) \times \operatorname{Sp}(\mathbb{W}) \to \operatorname{Sp}(\mathbb{W} + \mathbb{W}_{-})$$

is specified so that the restriction to central \mathbb{C}^1 is given by

$$\mathbb{C}^1 \times \mathbb{C}^1 \to \mathbb{C}^1$$
, $(c_1, c_2) \to c_1 \bar{c}_2$.

Then, by [Harris et al. 1996, Lemma 1.1],

(3-1)
$$\tilde{\iota}_{V,\chi,-} = \chi^{-1} \tilde{\iota}_{V,\chi}.$$

In this case, U(V) is the center of $U(W + W_{-})$, and the splitting of U(V) as the center of $U(W + W_{-})$ by χ coincides with the splitting $\iota_{W+W_{-},\chi^{2}}$ (Corollary A.8 of the same reference).

Let $(\omega_{\psi}, \mathcal{G}(V \otimes_L X))$ be the Weil representation of Mp($\mathbb{W} + \mathbb{W}_-$) realized on the space of Schwartz–Bruhat functions on $V \otimes_F X$ as the Schrödinger model associated to the complete polarization $\mathbb{W} = V \otimes_L X + V \otimes_L Y$. For a character λ^1 of U(V), let $\theta_{\chi}(\lambda^1, W + W_-)$ be the theta correspondence of λ^1 to $U(W + W_-)$. Namely, let $S_{V,W,\chi}(\lambda^1)$ be the maximal quotient of $\mathcal{G}(V \otimes_L X)$ on which U(V)acts as multiple of λ^1 . Then

$$S_{V,W,\chi}(\lambda^1) \simeq \theta_{\chi}(\lambda^1, W + W_-) \boxtimes \lambda^1$$

as $U(W + W_{-}) \times U(V)$ -spaces with an $U(W + W_{-})$ -module $\theta_{\chi}(\lambda^{1}, W + W_{-})$.

Let $\omega_{\psi,\mathbb{W}}$ be the Weil representation of Mp(\mathbb{W}). Let ψ_0 be the additive character of *L* given by $\psi_0(x) = \psi(\frac{1}{2} \operatorname{tr}_{L/F}(-\delta x))$ for $x \in L$. For a character η of L^1 , we denote by η_L the character of L^{\times} given by $\eta_L(x) = \eta(x/\bar{x})$. Theorem 3.1 (Moen and Rogawski). Let

$$\epsilon = \begin{cases} 1 & \text{if } W = W(\delta), \\ -1 & \text{if } W = W(n_0 \delta). \end{cases}$$

Then

$$\omega_{\psi,\mathbb{W}} \circ \tilde{\iota}_{V,\chi}|_{U(W)} = \bigoplus_{\varepsilon(\chi\eta_L^{-1},\psi_0)=\epsilon} \mathbb{C}\eta.$$

Remark 3.2. Here we use the character ψ_0 instead of $\psi \circ \text{tr}_{L/F}$. This simplifies some expressions (see Remark in Introduction of [Prasad 1994]).

For a character η of U(W), we denote by $\theta_{\chi}(\eta, V)$ the theta correspondence of η in Mp(\mathbb{W}) to U(V). Then $\theta_{\chi}(\eta, V) = \eta^{-1}$ if η appears in the theta correspondence. We note that $U(V) \simeq U(W) \simeq L^1$, and the embedding ι_V and ι_W are chosen so that the actions of U(V) and U(W) on \mathbb{W} are the inverse of each other.

By the isomorphism $U(V) \simeq L^1$, we consider the restriction of χ to L^1 as a character of U(V) and denote it also by χ .

Lemma 3.3. Let the notation be as above. Let $U(W) \times \{1\}$ be the subgroup of $U(W) \times U(W) (\subset U(W + W_{-}))$ consisting of elements with unit in the second component. Then

$$\dim \operatorname{Hom}_{U(W)\times\{1\}}\left(\theta_{\chi}(\chi^{-1}\lambda^{1}, W+W_{-}), \eta \boxtimes 1\right) = \begin{cases} 1 & \text{if } \eta \text{ and } \lambda^{1}\eta \text{ appear in } \omega_{\psi,\mathbb{W}} \circ \tilde{\iota}_{V,\chi}, \\ 0 & \text{otherwise.} \end{cases}$$

Proof.

$$\begin{split} & \operatorname{Hom}_{(U(W)\times\{1\})\times U(V)}(\omega_{\psi}, (\eta\boxtimes 1)\boxtimes\chi^{-1}\lambda^{1}) \\ & \simeq \operatorname{Hom}_{(U(W)\times\{1\})\times U(V)}(\theta_{\chi}(\chi^{-1}\lambda^{1}, W+W_{-})\boxtimes\chi^{-1}\lambda^{1}, (\eta\boxtimes 1)\boxtimes\chi^{-1}\lambda^{1}) \\ & \simeq \operatorname{Hom}_{U(W)\times\{1\}}(\theta_{\chi}(\chi^{-1}\lambda^{1}, W+W_{-}), \eta\boxtimes 1). \end{split}$$

We note that U(V) is embedded into $U(W) \times U(W)$ diagonally in $Sp(W + W_{-})$, and the action of $\alpha \in U(V)$ for $\alpha \in L^1$ on $\mathcal{G}(V \otimes_L X)$ is given by that of $(\alpha^{-1}, \alpha^{-1}) \in U(W) \times U(W)$. By [Mœglin et al. 1987, II.1, Remarques (5), (6)] and [Harris et al. 1996, Lemma 2.1(i)], the restriction of ω_{ψ} to $Mp(W) \times Mp(W)$ is $\omega_{\psi,W} \boxtimes \omega_{\psi,W}^{\vee}$. Here $\omega_{\psi,W}^{\vee}$ is the contragredient of $\omega_{\psi,W}$, and by (3-1) we obtain

$$\omega_{\psi,\mathbb{W}}^{\vee}\circ\tilde{\iota}_{V,\chi,-}=\chi(\omega_{\psi,\mathbb{W}}\circ\tilde{\iota}_{V,\chi})^{\vee}.$$

Hence

$$\begin{split} \operatorname{Hom}_{(U(W)\times\{1\})\times U(V)}(\omega_{\psi}, (\eta\boxtimes 1)\boxtimes\chi^{-1}\lambda^{1}) \\ &\simeq \operatorname{Hom}_{U(W)\times U(V)}(\eta\boxtimes(\theta_{\chi}(\eta, V)\otimes\omega_{\psi,\mathbb{W}}^{\vee}\circ\tilde{\iota}_{V,\chi,-}), \eta\boxtimes\chi^{-1}\lambda^{1}) \\ &\simeq \operatorname{Hom}_{U(V)}(\theta_{\chi}(\eta, V)\otimes(\chi(\omega_{\psi,\mathbb{W}}\circ\tilde{\iota}_{V,\chi,})^{\vee}), \chi^{-1}\lambda^{1}). \end{split}$$

Our assertion follows from this.

Taking λ^1 to be the trivial character of L^1 , by Lemma 3.3 and Theorem 3.1, we obtain:

Theorem 3.4. *Let* ϵ *be as above. Then*

$$\theta_{\chi}(\chi^{-1}, W + W_{-})|_{U(W) \times \{1\}} = \bigoplus_{\varepsilon(\chi \eta_{L}^{-1}, \psi_{0}) = \epsilon} \mathbb{C}\eta \boxtimes 1.$$

Theorem 3.5. Let λ^1 be a nontrivial character of L^1 , and let ϵ be as above. Then

$$\theta_{\chi}(\chi^{-1}\lambda^{1}, W + W_{-})|_{U(W) \times \{1\}} = \bigoplus_{\substack{\varepsilon(\chi(\lambda_{L}^{1}\eta_{L})^{-1}, \psi_{0}) = \\ \varepsilon(\chi\eta_{L}^{-1}, \psi_{0}) = \epsilon}} \mathbb{C}\eta \boxtimes 1$$

4. Prasad's Theorem

We rewrite the results in the previous section in terms of GU(2) and a torus T_L in GU(2) isomorphic to L^{\times} , and by restricting it to a subgroup of index 2 of $GL_2(F)$, we deduce the theorem of D. Prasad using a seesaw diagram of type (2-2).

Let $W' = F^2$ be the two-dimensional left *F*-space with symplectic form

$$\langle v_1, v_2 \rangle = x_1 y_2 - y_1 x_2$$

for $v_1 = (x_1, y_1)$, $v_2 = (x_2, y_2) \in W'$, and let $W'_L = L^2$ be the two-dimensional left *L*-space with antihermitian from

$$\langle \tilde{v}_1, \tilde{v}_2 \rangle_H = x_1 \bar{y}_2 - y_1 \bar{x}_2$$

for $\tilde{v}_1 = (x_1, y_1)$, $\tilde{v}_2 = (x_2, y_2) \in W'_L$. Then we see $W(\delta, -\delta) \simeq W'_L$, as spaces with antihermitian forms. More explicitly, let

$$h = \begin{pmatrix} \delta & 1/2 \\ -\delta & 1/2 \end{pmatrix}.$$

Then

$$h\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}{}^t \bar{h} = \begin{pmatrix} \delta & 0 \\ 0 & -\delta \end{pmatrix}.$$

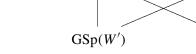
If we take $n_0 \langle v_1, v_2 \rangle$ instead of $\langle v_1, v_2 \rangle$, we get $W(n_0 \delta, -n_0 \delta) \simeq W'_L$. Similarly, we have

$$h\begin{pmatrix} 0 & n_0 \\ -n_0 & 0 \end{pmatrix}{}^t \bar{h} = \begin{pmatrix} n_0 \delta & 0 \\ 0 & -n_0 \delta \end{pmatrix}.$$

Let $\operatorname{Res}_F V$ be the two-dimensional right *F*-space with symmetric bilinear form associated with V(1). For these spaces, we have the following diagram of type

 $GO(\operatorname{Res}_F V)$

 $\mathrm{GU}(V)$



 $\mathrm{GU}(W'_L)$

Note that W' and V satisfy

$$GSp(W') = GL(W'), \quad Sp(W') = SL(W'), \quad U(W'_L) \supset SU(W'_L) = SL(W'),$$

$$SO(\operatorname{Res}_F V) = U(V), \quad GO^+(\operatorname{Res}_F V) = GU(V).$$

Let $v_W(g)$ be the similitude of $g \in U(W'_L)$. Let

$$GU(W'_L)^+ = \{g \in GU(W'_L) \mid \epsilon_{L/F}(\nu_W(g)) = 1\},\$$

$$GL(W')^+ = \{g \in GL(W') \mid \epsilon_{L/F}(\det g) = 1\},\$$

and identify L^{\times} with the center of $GU(W_L)$. Then

$$\operatorname{GU}(W'_L) \supset \operatorname{GU}(W'_L)^+ = L^{\times}U(W'_L) = L^{\times}\operatorname{GL}(W')^+,$$

since $N_{L/F}(L^{\times})L^{\times 2} = L^1 L^{\times 2}$.

Let T_L be the torus in GL(W') isomorphic to L^{\times} given by

$$\left\{ \begin{pmatrix} a & 2^{-1}b \\ 2\delta^2 b & a \end{pmatrix} \Big| {}^t(a,b) \in F^2 \setminus {}^t(0,0) \right\},\$$

and let

$$\alpha = a + b\delta \in L, \quad \mu = \alpha/\bar{\alpha}.$$

We fix the isomorphism

$$\alpha \mapsto \begin{pmatrix} a & 2^{-1}b \\ 2\delta^2 b & a \end{pmatrix}$$

and identify T_L with L^{\times} . We have

(4-1)
$$\begin{pmatrix} a & 2^{-1}b \\ 2\delta^2 b & a \end{pmatrix} = \begin{pmatrix} \bar{\alpha} & 0 \\ 0 & \bar{\alpha} \end{pmatrix} \frac{1}{2} \begin{pmatrix} \mu+1 & (2\delta)^{-1}(\mu-1) \\ (2\delta)(\mu-1) & \mu+1 \end{pmatrix}.$$

We note

$$\frac{1}{2} \begin{pmatrix} \mu+1 & (2\delta)^{-1}(\mu-1) \\ 2\delta(\mu-1) & \mu+1 \end{pmatrix} = h^{-1} \begin{pmatrix} \mu & 0 \\ 0 & 1 \end{pmatrix} h.$$

We recall the action of some elements on $\mathcal{G}(V \otimes_L X)$. We write them for the pair $(U(W'_L), U(V))$. Then $X = \{(x, 0) \mid x \in L\}, Y = \{(0, y) \mid y \in L\}$, and

$$\begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha}^{-1} \end{pmatrix} \in U(W'_L)$$

(2-2):

acts on X by α and on Y by $\bar{\alpha}^{-1}$. Hence

$$\beta_V \begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha}^{-1} \end{pmatrix} = \chi(\bar{\alpha}^{-1}) = \chi(\alpha)$$

in the notation of Theorem 3.1 of [Kudla 1994]. By the same theorem we have, for $\alpha \in L^{\times}$,

$$\omega_{\psi}\left(\tilde{\iota}_{V,\chi}\begin{pmatrix}\alpha & 0\\ 0 & \bar{\alpha}^{-1}\end{pmatrix}\right)f(x) = \chi(\alpha)|\alpha|_{L}^{1/2}f(\alpha x).$$

In particular, for $\alpha \in L^1$,

(4-2)
$$\omega_{\psi} \left(\tilde{\iota}_{V,\chi} \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \right) f(x) = \chi(\alpha) f(\alpha x).$$

For the dual pair (SL(W'), SO(Res_{*F*} V)), let $S(\lambda^1)$ be the maximal quotient of $\mathcal{G}(V \otimes_L X) = \mathcal{G}(\text{Res}_F V \otimes_F X')$, $X' = \{(x, 0) \mid x \in F\}$, on which SO(Res_{*F*} V) acts as multiple of λ^1 . Here the action of $\alpha \in \text{SO}(\text{Res}_F V)$ with $\alpha \in L^1$ is given by $f(x) \mapsto f(\alpha^{-1}x)$. Then the above formula implies that

$$S_{V,W,\chi}(\chi^{-1}\lambda^1) = S(\lambda^1).$$

Hence the restriction of the action of $U(W'_L)$ on the space $\theta_{\chi}(\chi^{-1}\lambda^1, W + W_-)$ to SL(W') is the theta correspondence of λ^1 to SL(W'). We denote it by $\theta(\lambda^1, W')$.

We extend the theta correspondence θ_{χ} of U(V) to $U(W'_L)$ to that of GU(V) to $GU(W'_L)^+$ following [Harris 1993, 3.2]. The similitude ν_V of GU(V) satisfies $\nu_V(GU(V)) = N_{L/F}L^{\times}$. Let

$$R(V, W) = \{(g, h) \in \operatorname{GU}(W'_L) \times \operatorname{GU}(V) \mid \nu_V(h) = \nu_W(g)\}.$$

Then by corresponding (g, h) to the map

$$v \otimes w \mapsto h^{-1}v \otimes wg, v \in V, w \in W'_L$$

we can takes R(V, W) into $Sp((V \otimes_L W'_L))$. We consider a semidirect product $U(W'_L) \ltimes GU(V)$ defined by

$$hg = {}^{h}gh$$

with

$${}^{h}g = \begin{pmatrix} 1 & 0 \\ 0 & \nu_V(h) \end{pmatrix} g \begin{pmatrix} 1 & 0 \\ 0 & \nu_V(h) \end{pmatrix}^{-1}.$$

Then we have an isomorphism

$$R(V, W) \simeq U(W'_L) \ltimes \mathrm{GU}(V)$$

given by

$$(g,h) \rightarrow \left(g \begin{pmatrix} 1 & 0 \\ 0 & \nu_V(h) \end{pmatrix}^{-1}, h\right).$$

We let GU(V) act on $\mathcal{G}(V \otimes_L X)$ by

$$L(h) f(x) = \chi(\alpha^{-1}) |\alpha|_L^{-1/2} f(\alpha^{-1} x).$$

Then L(h) defines a unitary operator on $\mathcal{G}(V \otimes_L X)$, and this action with $\omega_{\psi} \circ \tilde{\iota}_{V,\chi}$ defines an action of R(V, W) on $\mathcal{G}(V \otimes_L X)$ and a splitting of R(V, W) into $Mp(V \otimes_L W'_L)$.

Let λ be a character of GU(V) whose restriction to U(V) is λ^1 . We identify λ with a character of L^{\times} by $GU(V) \simeq L^{\times}$. For a character λ of L^{\times} , let $\overline{\lambda}$ be the character of L^{\times} given by $\overline{\lambda}(\alpha) = \lambda(\overline{\alpha})$ for $\alpha \in L^{\times}$. By the projection to the second factor GU(V) of $GU(W'_L) \times GU(V)$, we may see $\chi \overline{\lambda}$ as a character of R(V, W). Define

$$(\mathscr{G}(V \otimes_L X) \otimes \chi \overline{\lambda})_{U(V)}$$

to be the maximal quotient of $\mathscr{G}(V \otimes_L X) \otimes \chi \overline{\lambda}$ on which U(V) acts trivially. Then $\mathrm{GU}(W'_L)^+$ acts on this space as follows. For $g \in \mathrm{GU}(W'_L)^+$, choose $h \in \mathrm{GU}(V)$ satisfying $\nu_W(g) = \nu_V(h)$. Define the action of g as that of $(g, h) \in R(W, V)$. Then this is independent of the choice of h. As $U(W'_L)$ -modules, we have

$$(\mathscr{G}(V \otimes_L X) \otimes \chi \overline{\lambda})_{U(V)} \simeq S_{V,W,\chi}(\chi^{-1}\lambda^1),$$

and on this space, $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \in \mathrm{GU}(W'_L)^+$ acts by $\chi \overline{\lambda}$. We denote the restriction to $\mathrm{GL}(W')^+$ of this representation by $\theta(\lambda, \mathrm{GL}(W'))^{\epsilon}$. Here ϵ is as in Section 3.

Let $a = \alpha \bar{\alpha}$. Then

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \bar{\alpha} & 0 \\ 0 & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha}^{-1} \end{pmatrix}$$

Hence $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ acts on $\tilde{f} \in S(\lambda^1)$ sending it to the class in $S(\lambda^1)$ of the function

$$\chi(\bar{\alpha})\lambda(\alpha)\chi(\alpha)|\alpha|_L^{1/2}f(\alpha x) = \lambda(\alpha)|\alpha|_L^{1/2}f(\alpha x).$$

This coincides with the extension of the action of SL(W') to $GL(W')^+$ in [Jacquet and Langlands 1970, Proposition 1.5]. For a character λ of L^{\times} , we set

$$\theta(\lambda, \operatorname{GL}(W')) = \operatorname{Ind}_{\operatorname{GL}(W')^+}^{\operatorname{GL}(W')} \theta(\lambda, \operatorname{GL}(W')^+)^+.$$

Then as $GL(W')^+$ -modules, we have

$$\operatorname{Res}_{\operatorname{GL}(W')^+}^{\operatorname{GL}(W')} \theta(\lambda, \operatorname{GL}(W')) = \theta(\lambda, \operatorname{GL}(W')^+)^+ \oplus \theta(\lambda, \operatorname{GL}(W')^+)^-;$$

see [Mœglin et al. 1987, II.1, Remarque (3)].

Let $Ps(1, \epsilon_{L/F})$ be the principal series representation of $GL_2(F)$ associated with characters $(1, \epsilon_{L/F})$. Then $\theta(1, GL(W'))$ is isomorphic to $Ps(1, \epsilon_{L/F})$ by [Jacquet

and Langlands 1970, Theorem 4.7]. We set $Ps(1, \epsilon_{L/F})^{\epsilon}$ the subspace corresponding to $\theta(\lambda, GL(W'))^{\epsilon}$. By setting $\phi = \chi \eta_L^{-1}$, we see that Theorem 3.4 is equivalent to the following:

Theorem 4.1 [Prasad 2007, Lemma 4]. For $\epsilon = \pm 1$,

$$\operatorname{Ps}(1, \omega_{L/F})^{\epsilon}|_{T_L} = \bigoplus_{\varepsilon(\phi, \psi_0) = \epsilon} \mathbb{C}\phi,$$

where ϕ runs through all characters of L^{\times} whose restriction to F^{\times} is equal to $\epsilon_{L/F}$.

Remark 4.2. The map $\eta \mapsto \chi^{-1}\eta_L$ induces a one to one correspondence between the set of characters of L^1 and the set of characters of L^{\times} whose restriction to F^{\times} is $\epsilon_{L/F}$. Therefore the theorem of Moen–Rogawski is equivalent to the preceding theorem through Theorem 3.4.

For λ such that $\lambda|_{L^1}$ is not trivial, $\theta(\lambda, GL(W'))$ is an irreducible supercuspidal representation of GL(W') by Theorem 4.6 of [Jacquet and Langlands 1970]. In this case, Theorem 3.5 can be stated as follows:

Theorem 4.3 [Prasad 1994, Theorem 1.2]. Under the action of $GL_2(F)^+$, the space $\theta(\lambda, GL(W'))$ decomposes into two subspaces $\theta(\lambda, GL(W'))^{\pm}$, and for $\epsilon = \pm 1$, one has

$$\theta(\lambda, \operatorname{GL}(W'))^{\epsilon}|_{T_{L}} = \bigoplus_{\substack{\varepsilon(\lambda\phi^{-1}, \psi_{0}) = \\ \varepsilon(\bar{\lambda}\phi^{-1}, \psi_{0}) = \epsilon}} \mathbb{C}\phi,$$

where ϕ runs through all characters of L^{\times} which satisfy $\lambda \phi^{-1}|_{F^{\times}} = \epsilon_{L/F}$.

Proof. Set $\phi = \chi^{-1} \lambda \eta_L$. Since $\lambda_L^1 = \lambda \overline{\lambda}^{-1}$, we see

$$\chi (\eta_L \lambda_L^1)^{-1} = (\chi \lambda^{-1} \eta_L^{-1}) \overline{\lambda} = \overline{\lambda} \phi^{-1},$$
$$\chi \eta_L^{-1} = (\chi \lambda^{-1} \eta_L^{-1}) \lambda = \lambda \phi^{-1}.$$

We note $\overline{\lambda}\phi^{-1}|_{F^{\times}} = \lambda\phi^{-1}|_{F^{\times}} = \epsilon_{L/F}$. By (4-1), we can see the action of T_L by that of L^1 . For $v \in \theta_{\chi}(\chi^{-1}\lambda^1, W + W_-)$, $U(W) \times \{1\}$ acts on v via $\eta \boxtimes 1$ if and only if T_L acts on v via $\overline{\chi}\lambda\eta_L = \chi^{-1}\lambda\eta_L$. The assertion follows from this and Theorem 3.5.

5. Nonsplit case

We now consider the nonsplit case. Let

$$B = \left\{ \begin{pmatrix} \alpha & \beta \\ n_0 \bar{\beta} & \bar{\alpha} \end{pmatrix} \mid \alpha, \ \beta \in L \right\}.$$

Then B is the division quaternion algebra over F. Let

$$B^{+} = \{ x \in B \mid \epsilon_{L/F}(N(x)) = 1 \}, \quad B^{1} = \{ x \in B \mid N(x) = 1 \}.$$

Here N(x) is the reduced norm of $x \in B$. We set

$$T_L = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha} \end{pmatrix} \middle| \alpha \in L^{\times} \right\}.$$

Then $T_L \simeq L^{\times}$. We note

(5-1)
$$\begin{pmatrix} \alpha & 0 \\ 0 & \bar{\alpha} \end{pmatrix} = \begin{pmatrix} \bar{\alpha} & 0 \\ 0 & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \alpha/\bar{\alpha} & 0 \\ 0 & 1 \end{pmatrix}.$$

Let $\alpha = \delta$, $\beta = -n_0 \delta$, or $\alpha = n_0 \delta$, $\beta = -n_0^2 \delta$. Then $B^{\times} \subset GU(W(\alpha, \beta))$, and

$$T_L \subset B^+ \subset \mathrm{GU}(W(\alpha, \beta))^+ = L^{\times}U(W(\alpha, \beta)) = L^{\times}B^+.$$

Here $GU(W(\alpha, \beta))^+$ is the subgroup of $GU(W(\alpha, \beta))$ consisting of elements with similitude in $N_{L/F}(L^{\times})$.

We define splittings. Let $W = W(\alpha, -\beta)$. We embed $W(\alpha, \beta)$ into $W + W_$ and consider $U(W(\alpha, \beta))$ as a subgroup of $U(W + W_-)$. Let $W = V \otimes_F W$, and $W_- = V \otimes_F W_-$. We may consider $W(\alpha, \beta) = V \otimes_F W(\alpha, \beta)$ as a symplectic subspace of $W + W_-$ and Sp($W(\alpha, \beta)$)) as a subgroup of Sp($W + W_-$). Then we have splittings $\tilde{\iota}_{V,\chi}$, $\tilde{\iota}_{V,\chi,-}$ satisfying

We choose the embedding of $Mp(\mathbb{W}) \times Mp(\mathbb{W})$ into $Mp(\mathbb{W} + \mathbb{W}_{-})$ so that it induces the map $(c_1, c_2) \mapsto c_1 \bar{c}_2$ on the center $\mathbb{C}^1 \times \mathbb{C}^1$. Let $\mathbb{W}(\alpha) = V \otimes_L W(\alpha)$, and $\mathbb{W}(\beta) = V \otimes_L W(\beta)$. Restricting the above diagram to $Mp(\mathbb{W}(\alpha, \beta))$, we obtain

$$U(W(\alpha, \beta)) \xrightarrow{\tilde{\iota}_{V,\chi}} \operatorname{Mp}(\mathbb{W}(\alpha, \beta))$$

$$i \qquad \uparrow \qquad \qquad \uparrow \\ U(W(\alpha)) \times U(W(\beta)) \xrightarrow{\tilde{\iota}_{V,\chi} \times \tilde{\iota}_{V,\chi,-}} \operatorname{Mp}(\mathbb{W}(\alpha)) \times \operatorname{Mp}(\mathbb{W}(\beta))$$

Here $Mp(\mathbb{W}(\alpha, \beta))$ is the inverse image of $Sp(\mathbb{W}(\alpha, \beta))$ in $Mp(\mathbb{W} + \mathbb{W}_{-})$, and $Mp(\mathbb{W}(\alpha))$ and $Mp(\mathbb{W}(\beta))$ are the inverse images of $Sp(\mathbb{W}(\alpha))$ and $Sp(\mathbb{W}(\beta))$ in $Mp(\mathbb{W})$ on the first and the second factor in the above diagram respectively. The

restriction of $\tilde{\iota}_{V,\chi}$: $U(W(\alpha, -\beta)) \to Mp(\mathbb{W})$ to $U(W(-\beta))$ induces a map

$$U(W(-\beta)) = U(W(\beta)) \xrightarrow{\tilde{\iota}_{V,\chi}} Mp(\mathbb{W}(-\beta)) = Mp(\mathbb{W}(\beta)).$$

Then $\tilde{\iota}_{V,\chi,-}$ and $\chi^{-1}\tilde{\iota}_{V,\chi}$ coincide as homomorphisms of $U(W(\beta))$ to Mp($\mathbb{W}(\beta)$), by [Harris et al. 1996, Lemma 1.1]. We have

$$\omega_{\psi,\mathbb{W}+\mathbb{W}}\circ\tilde{i}=\omega_{\psi,\mathbb{W}(\alpha,-\beta)}\boxtimes\omega_{\psi,\mathbb{W}(\alpha,-\beta)}^{\vee}$$

by [Mœglin et al. 1987, II.1 Remarques (5), (6)] and [Harris et al. 1996, Lemma 2.1(i)]. By restricting this to $Mp(W(\alpha)) \times Mp(W(\beta))$, we obtain

$$\omega_{\psi,\mathbb{W}(\alpha,\beta)} \circ \tilde{i} = \omega_{\psi,\mathbb{W}(\alpha)} \boxtimes \chi \omega_{\psi,\mathbb{W}(-\beta)}^{\vee},$$
$$\omega_{\psi,\mathbb{W}(\alpha,\beta)} \circ \tilde{i} \circ (\tilde{i}_{V,\chi} \times \tilde{i}_{V,\chi,-}) = \omega_{\psi,\mathbb{W}(\alpha)} \circ \tilde{i}_{V,\chi} \boxtimes \omega_{\psi,\mathbb{W}(-\beta)}^{\vee} \circ \tilde{i}_{V,\chi,-}$$
$$= \omega_{\psi,\mathbb{W}(\alpha)} \circ \tilde{i}_{V,\chi} \boxtimes \chi \omega_{\psi,\mathbb{W}(-\beta)}^{\vee} \circ \tilde{i}_{V,\chi}$$

As for the splitting for U(V), we may take $\tilde{\iota}_{W+W_{-},\chi^4}$ or that induced by $\tilde{\iota}_{V,\chi}$.

Let $\theta_{\chi}(\chi^{-1}\lambda^1, W(\alpha, \beta))$ be the theta correspondence of the character $\chi^{-1}\lambda^1$ of U(V) to $U(W(\alpha, \beta))$ in Mp($\mathbb{W}(\alpha, \beta)$). By the same calculation as in the split case, we obtain:

Lemma 5.1. Let $U(W(\alpha)) \times \{1\}$ be the subgroup of $U(W(\alpha)) \times U(W(\beta))$. Then

dim Hom_{$U(W(\alpha))\times\{1\}$} $(\theta_{\chi}(\chi^{-1}\lambda^1, W(\alpha, \beta)), \eta \boxtimes 1)$

 $=\begin{cases} 1 & if \ \eta \ appears \ in \ \omega_{\psi,\mathbb{W}(\alpha)} \circ \tilde{\iota}_{V,\chi} \ and \ \lambda^1 \eta \ appears \ in \ \omega_{\psi,\mathbb{W}(-\beta)} \circ \tilde{\iota}_{V,\chi}, \\ 0 & otherwise. \end{cases}$

Since $\epsilon_{L/F}(-\beta/\alpha) = -1$, the trivial character does not satisfy the above condition for λ^1 . In the case of a nontrivial λ^1 , we have:

Theorem 5.2. Let λ^1 be a nontrivial character of L^1 , and let $\epsilon = \epsilon_{L/F}(\alpha/\delta)$. Then

$$\theta_{\chi}(\chi^{-1}\lambda^{1}, W(\alpha, \beta))|_{U(W(\alpha))\times\{1\}} = \bigoplus_{\substack{-\varepsilon(\chi(\lambda_{L}^{1}\eta_{L})^{-1}\lambda_{L}^{1}, \psi_{0}) = \epsilon \\ \varepsilon(\chi\eta_{L}^{-1}, \psi_{0}) = \epsilon}} \mathbb{C}\eta \boxtimes 1.$$

As in the split case, we can interpret this result by the dual reductive pair $(B^{\times}, \operatorname{GO}(V))$. In the same way as in the split case, we can define $\theta(\lambda^1, B^1)$. Let λ be a character of L^{\times} which restriction to L^1 is λ^1 . We define the action of L^{\times} , the center of $U(W(\alpha, \beta))$, on $\theta_{\chi}(\chi^{-1}\lambda^1, W(\alpha, \beta))$ by $\chi \overline{\lambda}$. Then this yields a well-defined smooth action of $L^{\times}U(W(\alpha, \beta))$ on $\theta_{\chi}(\chi^{-1}\lambda^1, W(\alpha, \beta))$, since $L^{\times} \cap U(W(\alpha, \beta)) = L^1$. By restriction, we obtain an action of B^+ , since $B^+ \subset L^{\times}U(W(\alpha, \beta))$. We denote this representation of B^+ by $\theta(\lambda, B^+)^{\epsilon}$ for $\epsilon = \epsilon_{L/F}(\alpha/\delta)$. We induce it to B^{\times} and denote it by $\theta(\lambda, B^{\times})$.

By Theorem 5.2 and (5-1), we obtain:

Theorem 5.3. Under the action of B^+ , $\theta(\lambda, B^{\times})$ decomposes into two subspaces $\theta(\lambda, B^{\times})^{\epsilon}$ for $\epsilon = \pm 1$, and

$$\theta(B^{\times},\lambda)^{\epsilon}|_{T_{L}} = \bigoplus_{\substack{-\varepsilon(\bar{\lambda}\phi^{-1},\psi_{0})=\\\varepsilon(\lambda\phi^{-1},\psi_{0})=\epsilon}} \mathbb{C}\phi,$$

where ϕ runs through all characters of L^{\times} that satisfy $\lambda \phi^{-1}|_{F^{\times}} = \epsilon_{L/F}$.

Remark 5.4. The representations $\theta(\lambda, GL(W'))$ and $\theta(\lambda, B^{\times})$ are in Jacquet–Langlands correspondence with each other, and Theorem 5.3 gives the latter half of Theorem 1.2 in [Prasad 1994].

By [Mæglin et al. 1987, Chapitre 3, IV, Corollaire 9], an irreducible quotient of

$$\theta(\chi^{-1}\lambda^1, W(U(\alpha, \beta)))$$

is uniquely determined. Since $U(W(\alpha, \beta))$ is compact, $\theta(\chi^{-1}\lambda^1, U(W(\alpha, \beta)))$ is a multiple of this irreducible representation. Lemma 5.1 implies that the multiplicity is 1, and $\theta(\chi^{-1}\lambda^1, W(\alpha, \beta))$ is irreducible. Let $\pi = \theta(\lambda, B^{\times})$. Since $\lambda|_{L^1}$ is not trivial, $\theta(\lambda, \operatorname{GL}(W'))$ is supercuspidal. Let π' be the representation of B^{\times} which corresponds to $\theta(\lambda, \operatorname{GL}(W'))$ under the Jacquet–Langlands correspondence. We denote by $\chi_{\pi}, \chi_{\pi'}$ the characters of π, π' . Then π and π' satisfy

$$\pi \otimes \epsilon_{L/F} \simeq \pi, \quad \pi' \otimes \epsilon_{L/F} \simeq \pi',$$

and $\chi_{\pi} = \chi_{\pi'}$ on L^{\times} . By Corollaries 1.7 and 1.15 of [Hijikata et al. 1993] and Theorem 4.6 (and the remark following it) in [Takahashi 1996], this implies that $\chi_{\pi} = \chi_{\pi'}$ on all the other elliptic torus of B^{\times} . Therefore $\pi \simeq \pi'$.

Acknowledgement

The author thanks Professor D. Prasad for calling his attention to these problems.

References

- [Harris 1993] M. Harris, "*L*-functions of 2 × 2 unitary groups and factorization of periods of Hilbert modular forms", *J. Amer. Math. Soc.* **6**:3 (1993), 637–719. MR 93m:11043 Zbl 0779.11023
- [Harris et al. 1996] M. Harris, S. S. Kudla, and W. J. Sweet, "Theta dichotomy for unitary groups", *J. Amer. Math. Soc.* **9**:4 (1996), 941–1004. MR 96m:11041 Zbl 0870.11026
- [Hijikata et al. 1993] H. Hijikata, H. Saito, and M. Yamauchi, "Representations of quaternion algebras over local fields and trace formulas of Hecke operators", *J. Number Theory* **43**:2 (1993), 123–167. MR 94e:11126 Zbl 0819.11018

[Jacquet and Langlands 1970] H. Jacquet and R. P. Langlands, *Automorphic forms on* GL(2), Lecture Notes in Mathematics **114**, Springer, Berlin, 1970. MR 53 #5481 Zbl 0236.12010

[Kudla 1994] S. S. Kudla, "Splitting metaplectic covers of dual reductive pairs", *Israel J. Math.* **87**:1-3 (1994), 361–401. MR 95h:22019 Zbl 0840.22029

- [Mœglin et al. 1987] C. Mœglin, M.-F. Vignéras, and J.-L. Waldspurger, *Correspondances de Howe sur un corps p-adique*, Lecture Notes in Mathematics **1291**, Springer, Berlin, 1987. MR 91f:11040 Zbl 0642.22002
- [Moen 1987] C. Moen, "The dual pair (U(3), U(1)) over a *p*-adic field", *Pacific J. Math.* **127**:1 (1987), 141–154. MR 88e:22025 Zbl 0675.22008
- [Prasad 1994] D. Prasad, "On an extension of a theorem of Tunnell", *Compositio Math.* **94**:1 (1994), 19–28. MR 95k:22023 Zbl 0824.11035
- [Prasad 2007] D. Prasad, "Relating invariant linear form and local epsilon factors via global methods", *Duke Math. J.* **138**:2 (2007), 233–261. MR 2318284 Zbl 05170260
- [Ranga Rao 1993] R. Ranga Rao, "On some explicit formulas in the theory of Weil representation", *Pacific J. Math.* **157**:2 (1993), 335–371. MR 94a:22037 Zbl 0794.58017
- [Rogawski 1992] J. D. Rogawski, "The multiplicity formula for A-packets", pp. 395–419 in *The zeta functions of Picard modular surfaces* (Montreal, 1988), edited by R. P. Langlands and D. Ramakrishnan, Publications CRM, Montreal, 1992. MR 93f:11042 Zbl 0823.11027
- [Takahashi 1996] T. Takahashi, "Character formula for representations of local quaternion algebras (wildly ramified case)", J. Math. Kyoto Univ. 36:1 (1996), 151–197. MR 97f:11096 Zbl 0897.22018

Received March 2, 2007.

HIROSHI SAITO DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE KYOTO UNIVERSITY KYOTO 606-8502 JAPAN

saito@math.kyoto-u.ac.jp