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This note is about the Nirenberg problem for a class of second-order fully
nonlinear scalar curvature operators, namely those that are nondegenerate
symmetric functions of the eigenvalues of the Schouten tensor. Near the
standard metric in its conformal class, we prove the nonconstrainability of
their local image, local existence à la Fredholm and local solvability under
a symmetry assumption à la Moser. We include a remark on the Kazdan–
Warner identities for the σk-curvatures.

1. Introduction

In this note we continue the study of the local Nirenberg problem begun in [Delanoë
2003; Delanoë and Robert 2007], by dealing with nondegenerate symmetric func-
tions of the eigenvalues of the Schouten tensor, such as the so-called σk-curvatures
[Sheng et al. 2007]. Relying on [Delanoë 2003, Section 4.1], we provide for such
curvature operators quick proofs of a “no-constraint” theorem analogous to [De-
lanoë 2003, Theorem 10] and [Delanoë and Robert 2007, Theorem 2], and of a
related local existence result.

Our no-constraint theorem stands in contrast with the identities of Kazdan–
Warner type [1974] satisfied by the graphs of the conformal σk-curvatures operators
when k ≤ 2 or on locally conformally flat manifolds [Viaclovsky 2000; Han 2006].
These identities follow from [Delanoë and Robert 2007, Theorem 3] since, on the
one hand, the Schouten tensor is natural [Stredder 1975], and hence so are the
σk-curvatures; on the other hand, setting F[u] = σk[λ(Au)] (see notations below),
the linearized operator dF[u] is self-adjoint with respect to the conformal metric
gu , by [Sheng et al. 2007, Section 2.4].
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2. Notations and statement of results

Set A = A(g) for the Schouten tensor of a Riemannian metric g on a manifold of
dimension n > 2. It is given by

A =
1

n−2

(
Ric −

Scal
2(n−1)

g
)
,

where Ric and Scal denote the Ricci and scalar curvatures of g. Set gu = e2ug0

for a metric pointwise conformal to the standard metric g0 of Sn and Au for the
Schouten tensor A(gu). Recall the transformation formula

(1) Au = A0 − H0(u) + du ⊗ du −
1
2 |du|

2
0 g0,

where Hu and | · |u stand for the Hessian and norm of the metric gu . Let Ãu be the
symmetric endomorphism field defined by

(2) Au(X, Z) = gu( Ãu X, Z) for all vector fields Z ,

and define H̃u likewise. Let λ(Au) be the n-tuple of eigenvalues of Ãu (repeated
according to their multiplicities); thus λ(A0) = ( 1

2 , . . . , 1
2). Using (1), we get at gu

d
dt

[
Ã(u+tv)

]
t=0 = −H̃u(v) − 2v Ãu ;

hence we have the following equation at g0, which we record for later use:

(3)
d
dt

[
Ãtv

]
t=0 = −H̃0(v) − v Id,

where Id denotes the identity
(1

1

)
-tensor. Finally, let f be a C∞ symmetric real

function defined in a domain D ⊂ Rn containing the n-tuple ( 1
2 , . . . , 1

2), satisfying
f(1

2 , . . . , 1
2) = 0 and the nondegeneracy condition df

( 1
2 , . . . , 1

2

)
6= 0. We have

(4) df
( 1

2 , . . . , 1
2

)
= (c, . . . , c) for some c ∈ R∗.

Define the conformal f-scalar curvature operator u 7→ F(u) by

F(u) := f[λ(Au)] for all u ∈ C∞(Sn).

In this context, the local f-Nirenberg problem is to characterize the local image of
F near u = 0, namely

I(F, 0) = {F(u), u ∈ C∞(Sn) close to 0}.

The difficulty arises from the fact, proved as property (i) in Section 3, that the
linearization L0 of F at u = 0 misses a vector space of dimension n+1, namely the
eigenspace 31 of first spherical harmonics; see [Berger et al. 1971], for example.
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Definition 1 [Delanoë 2003]. A local Fredholm resolution of F at 0 is a couple of
maps (D, S) defined near 0 in C∞(Sn), where the map D is a submersion valued
in 31 with D(0) = 0, the map S is valued in C∞(Sn) with S(0) = 0, and the couple
(D, S) satisfies the identity

(5) F[S( f )] = f − D( f ).

Definition 2 [Delanoë 2003]. A scalar constraint for F at 0 is a real-valued sub-
mersion K defined near 0 in C∞(Sn), such that K ◦ F ≡ 0.

We will prove for I(F, 0) the following results:

Theorem 1. There exists a local Fredholm resolution of F at 0. If f is close
enough to 0 in C∞(Sn) and invariant under a nontrivial group of isometries of
(Sn, g0) acting without fixed point, then D( f ) = 0; hence f lies in I(F, 0).

Theorem 2. There exists no scalar constraint for F at 0.

Identity (5) is a local nonlinear analogue of the Fredholm theorem; the second part
of Theorem 1 is a local extension of existence results that are by now classical
[Moser 1973; Escobar and Schoen 1986].

3. Proofs

The proofs of the theorems rely on two properties:

(i) The linearization L0 of F at u = 0 is proportional to (10 − nI ).

(ii) For any z ∈ 31, the coefficient of (t z)3 in the expansion of F(t z) at t = 0 does
not vanish.

Here 10 stands for the Laplacian of the standard metric g0, whose first nonzero
eigenvalue is equal to n, and 31 is the corresponding (n + 1)-dimensional eigen-
space; see [Berger et al. 1971], for example. We require a standard lemma:

Lemma. Let D ⊂ Rn be a symmetric domain, ϕ a symmetric C1 real function
defined on D, Sn the open subset of real symmetric n ×n matrices a = (a j

i )1≤i, j≤n

whose n-tuple of eigenvalues λ(a) lies in D. For a ∈ Sn , set 8(a) := ϕ[λ(a)]. Let
a0 ∈ Sn be diagonal, with diagonal entries (λ01, . . . , λ0n) =: λ0. Then

∂8

∂a j
i

(a0) = δi j
∂ϕ

∂λi
(λ0).

To verify property (i), set f (a) := f[λ(a)] and fix v ∈ C∞(Sn). Then

Lv =
d
dt

F(tv)|t=0 =

∑
i, j

∂ f

∂a j
i

(A0)
d
dt

[
( Ãtv)

j
i

]
t=0 .
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Applying the Lemma to ϕ = f at a0 = A0, we find

L0v =

n∑
i=1

∂f

∂λi

(1
2
, . . . ,

1
2

) d
dt

[
( Ãtv)

i
i
]

t=0 .

Hence, from (3) and (4), we obtain L0v = c (10v − nv), as required.
To check property (ii), using (3), we first observe the identity

d
dt

[Tr( Ãtv)]t=0 = −Tr
(
v Id +H̃0(v)

)
for all v ∈ C∞(Sn),

where Tr stands for the trace. (The argument v Id +H̃0(v) on the right arises by
applying the tilde construction of (2) to vg0+H0(v), a Codazzi tensor [Ferus 1981]
vanishing if and only if v ∈ 31 [Obata 1962].) The preceding identity, applied to
v = z ∈31, simplifies greatly the calculation of (d3/dt3)F(t z)| t=0, which becomes
equal to ∑

i, j

∂ f

∂a j
i

(A0)
d3

dt3

[
( Ãtv)

j
i

]
t=0 ,

or yet, by the Lemma and (4), to

c
d3

dt3 [Tr( Ãtv)]t=0 ≡ c
d3

dt3

[
σ1

(
λ(Atv)

)]
t=0 .

This brings us back to the scalar curvature case f = σ1 − n/2 already treated in
[Delanoë 2003, p. 36].

Proof of Theorem 1. Let P1 be the L2(Sn, g0)-orthogonal projection of C∞(Sn)

onto 31 [Berger et al. 1971]. The Fredholm theorem, combined with property
(i), implies the existence of a unique solution u ∈ C∞(Sn) of the equation L0u =

f − P1 f with P1u = P1 f ; in other words, the equation (L0 + P1)u = f admits
a unique solution in C∞(Sn). Hence, by the open mapping theorem, the map
(L0 + P1) is an isomorphism of C∞(Sn). By an elliptic inverse function theorem
argument, as in Theorem 7 of [Delanoë 2003], the map u 7→ F(u) + P1u thus
induces a diffeomorphism between neighborhoods of zero in C∞(Sn): letting S
be its local inverse and setting D = P1 ◦ S we obtain (5), proving the first part of
Theorem 1. The second part is proved as in Corollary 5 of the same work, namely:
by naturality and uniqueness, the invariance of f implies that of S( f ) and, since
invariant functions are L2 orthogonal to 31 [Guan and Guan 2002], we indeed get
D( f ) = P1[S( f )] = 0. �

Proof of Theorem 2. We argue by contradiction, as in [Delanoë 2003, pp. 36–37]. If
F admits a scalar constraint at 0, by the naturality of g 7→ A(g) and the transitivity
on Sn of the isometry group of (Sn, g0), it must admit n + 1 linearly independent
scalar constraints at 0 [Delanoë 2003, Lemma 2]. If so, the map D which occurs
in the first part of Theorem 1 must satisfy D ◦ F ≡ 0, by Theorem 2 of the same
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reference. But we readily see that this contradicts property (ii) above, by arguing
as for Proposition 7 of that reference. �
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